EP4348097A1 - Installation de stockage d'un gaz liquéfié - Google Patents

Installation de stockage d'un gaz liquéfié

Info

Publication number
EP4348097A1
EP4348097A1 EP22730220.5A EP22730220A EP4348097A1 EP 4348097 A1 EP4348097 A1 EP 4348097A1 EP 22730220 A EP22730220 A EP 22730220A EP 4348097 A1 EP4348097 A1 EP 4348097A1
Authority
EP
European Patent Office
Prior art keywords
wall
welded
tank
peripheral edge
dome
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22730220.5A
Other languages
German (de)
English (en)
Inventor
Emmanuel HIVERT
Guillaume GOUBARD
Erwan MICHAUT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gaztransport et Technigaz SA
Original Assignee
Gaztransport et Technigaz SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaztransport et Technigaz SA filed Critical Gaztransport et Technigaz SA
Publication of EP4348097A1 publication Critical patent/EP4348097A1/fr
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/004Details of vessels or of the filling or discharging of vessels for large storage vessels not under pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/24Arrangement of ship-based loading or unloading equipment for cargo or passengers of pipe-lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/30Arrangement of ship-based loading or unloading equipment for transfer at sea between ships or between ships and off-shore structures
    • B63B27/34Arrangement of ship-based loading or unloading equipment for transfer at sea between ships or between ships and off-shore structures using pipe-lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B73/00Building or assembling vessels or marine structures, e.g. hulls or offshore platforms
    • B63B73/20Building or assembling prefabricated vessel modules or parts other than hull blocks, e.g. engine rooms, rudders, propellers, superstructures, berths, holds or tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B73/00Building or assembling vessels or marine structures, e.g. hulls or offshore platforms
    • B63B73/40Building or assembling vessels or marine structures, e.g. hulls or offshore platforms characterised by joining methods
    • B63B73/43Welding, e.g. laser welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/025Bulk storage in barges or on ships
    • F17C3/027Wallpanels for so-called membrane tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0157Polygonal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0358Thermal insulations by solid means in form of panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/22Assembling processes
    • F17C2209/221Welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • F17C2270/0107Wall panels

Definitions

  • the invention relates to the field of storage facilities for liquefied gas comprising a sealed and thermally insulating tank arranged in a supporting structure.
  • the invention relates to the field of sealed and thermally insulating tanks for the storage and/or transport of liquefied gas at low temperature, such as tanks for the transport of Liquefied Petroleum Gas (also called LPG) having for example a temperature between -50°C and 0°C, or for the transport of Liquefied Natural Gas (LNG) at approximately -162°C.
  • LPG Liquefied Petroleum Gas
  • LNG Liquefied Natural Gas
  • the invention relates more particularly to a storage facility of the aforementioned type comprising a dome structure projecting upwards from an upper load-bearing wall of the load-bearing structure and intended to be traversed by at least one pipe intended for loading or unloading the tank.
  • the document WO2015155377 discloses a storage facility for a liquefied gas comprising a support structure, consisting of the double hull of a ship, and a sealed and thermally insulating tank arranged in the support structure.
  • the installation has a dome structure, shown in the of the aforementioned document, which serves as a point of penetration for various equipment of the tank, such as pipes intended for loading or unloading the tank.
  • the dome structure projects upward from an upper supporting wall. It has a vertical load-bearing wall that rises above the ship's deck and a horizontal wall that is positioned atop the vertical load-bearing wall.
  • the horizontal wall supports a cover which consists essentially of a metal cover wall and thermal insulation which fits into the top of the dome structure.
  • One idea underlying the invention is therefore to propose a liquefied gas storage facility comprising a dome structure which has better pressure resistance.
  • the invention provides a storage facility for a liquefied gas comprising a supporting structure and a sealed and thermally insulating tank arranged in the supporting structure, the supporting structure comprising an upper supporting wall and the tank comprising a ceiling wall fixed to the upper load-bearing wall, the upper load-bearing wall and the ceiling wall being interrupted locally so as to delimit an opening, the load-bearing structure comprising a dome structure projecting towards the outside of the tank from the upper load-bearing wall around the opening and defining a passage intended to be traversed by at least one pipe intended for loading or unloading liquefied gas from the tank, the dome structure comprising dome walls projecting from the load-bearing wall upper and each having an upper end, the dome structure having a seat wall fi attached to the upper ends of the vertical dome walls, the seat wall extending horizontally and having a peripheral rim area which borders the passage and which projects towards the passage from the vertical dome walls, the dome structure comprising a lid which covers the passage and
  • the cover being welded to the peripheral edge zone which is the zone of the seat wall closest to the center of the dome structure, the moment being exerted on said welds when the pressure in the vessel is greater than the pressure outside the tank, is reduced, which makes it possible to limit the bending of the lid and to improve the resistance to pressure of the welds securing the lid to the seat wall.
  • the use of an intermediate plate makes it possible to distribute the forces over a greater number of welds.
  • the intermediate plate constitutes an additional stiffness between the cover and the seat wall which is capable of absorbing part of the forces by deforming.
  • such an installation may comprise one or more of the following characteristics.
  • the intermediate plate is welded to the peripheral edge zone along an internal edge of the peripheral edge zone. This allows the intermediate plate to be fixed to the seat wall by means of a lap line weld which is simple to implement and ensures satisfactory fixing performance.
  • the cover is welded to a plurality of intermediate plates which are arranged around the passage and which are each welded to the seat wall in the peripheral edge zone, preferably along the internal edge of the seat zone. peripheral border.
  • the or each intermediate plate protrudes inward from the dome structure.
  • the intermediate plate extends towards the passage beyond the inner edge of the peripheral border zone.
  • the intermediate plate is welded to the lid by means of at least one line of welding, continuous or discontinuous, extending along at least one edge of the intermediate plate.
  • the intermediate plate is welded to the lid via at least two weld lines extending respectively along at least two edges of the intermediate plate arranged on either side of the edge internal of the peripheral border area. This makes it possible to distribute the forces over larger weld surfaces and to fix the intermediate plate to the cover by means of lap weld lines which are simple to implement and ensure satisfactory fixing performance.
  • the cover is welded in leaktight manner to the seat wall via an intermediate frame which is arranged around the passage and around the at least one intermediate plate.
  • the intermediate frame is welded to the seat wall by means of at least one tight welding line extending along an internal or external peripheral edge of the intermediate frame.
  • said sealed weld line is a continuous weld line.
  • the cover is welded to the intermediate frame by means of at least one tight welding line.
  • the at least one sealed weld line preferably extends along an outer peripheral edge of the cover.
  • said sealed weld line is a continuous weld line.
  • the intermediate frame is welded to the seat wall via two weld lines extending respectively along the inner peripheral edge of the intermediate frame and along the outer peripheral edge of the intermediate frame.
  • the weld line extending along the outer peripheral edge of the intermediate frame is continuous and sealed, while the weld line extending along the inner peripheral edge of the intermediate frame is discontinuous.
  • the weld line extending along the inner peripheral edge of the intermediate frame is continuous and sealed, while the weld line extending along the outer peripheral edge of the intermediate frame is discontinuous.
  • the two weld lines are sealed, which further enhances the reliability of the seal.
  • the vessel comprises a vessel wall anchored against each of the dome walls, each vessel wall comprising a primary sealing membrane intended to be in contact with the liquefied gas contained in the vessel, the dome structure comprising a profiled frame against which the primary waterproofing membrane is welded, the profiled frame being welded by a tight welding line to the peripheral edge zone of the seat wall.
  • the primary sealing membrane exerts, on the peripheral edge zone of the seat wall, a force directed in a direction opposite to the forces which are exerted on said peripheral edge zone. due to the pressure exerted on the lid by the vapor phase of the liquefied gas, which makes it possible to further limit the bending of the seat wall and the lid.
  • the intermediate plate and the peripheral border area create a heat conduction area from the cover to the profiled frame which makes it possible to limit the temperature drop of the profiled frame and, consequently, to limit the thermal stresses acting on the profiled frame. .
  • the profiled frame has an L-shaped section which comprises a first wing and a second wing perpendicular to each other, the first wing being welded to the primary sealing membrane and to the area peripheral and vertically extending edging and the second horizontally extending wing being attached to a fixing lug which protrudes, towards the ceiling wall, i.e. downwards, from the edging area peripheral of the seat wall.
  • the profiled frame comprises reinforcing gussets which each have a first edge bearing against the first wing and a second edge bearing against the second wing.
  • the installation comprises a loading/unloading tower passing through the passage defined by the dome structure, the loading/unloading tower comprising at least two vertical masts passing through the cover and fixed to one to the other by crosspieces, the two vertical masts each forming a pipe for loading or unloading the tank.
  • the ceiling wall as well as each tank wall anchored against one of the dome walls comprises a secondary thermally insulating barrier retained against the load-bearing structure, a secondary sealing membrane resting against the secondary thermally insulating barrier , a primary thermally insulating barrier resting against the secondary sealing membrane and a primary sealing membrane which rests against the primary thermally insulating barrier and which is intended to be in contact with the liquefied gas contained in the tank.
  • a tank according to one of the aforementioned embodiments can be part of an onshore storage installation, for example for storing LNG or be installed in a floating, coastal or deep-water structure, in particular an LNG or LNG carrier, a floating storage and regasification unit (FSRU), floating production and remote storage unit (FPSO) and others.
  • the tank may be intended to receive liquefied natural gas serving as fuel for the propulsion of the floating structure.
  • the invention relates to a vessel for transporting a fluid which comprises an installation of the aforementioned type.
  • the ship comprises a double hull which forms the load-bearing structure.
  • the invention also provides a transfer system for a fluid, the system comprising the aforementioned vessel, insulated pipes arranged so as to connect the tank of the vessel to a floating or terrestrial storage installation and a pump for cause a flow of fluid through the insulated pipes from or to the floating or onshore storage facility to or from the vessel's tank.
  • the invention also provides a method for loading or unloading such a ship, in which a fluid is routed through insulated pipes from or to a floating or terrestrial storage installation to or from the tank of the vessel.
  • The is a schematic view of the multi-layered structure of the vessel walls.
  • The is a partial representation in perspective of a profiled frame forming a stopping zone of the primary waterproofing membrane.
  • The is a partial representation in perspective of a profiled frame according to an alternative embodiment of the .
  • a support structure 1 against which a sealed and thermally insulating tank for storing a liquefied gas is intended to be fixed.
  • the supporting structure 1 is, for example, formed by the double hull of a ship.
  • the carrier structure 1 has a generally polyhedral shape. It has two front and rear load-bearing walls 2, here of octagonal shape, of which only the rear load-bearing wall is represented on the .
  • the front and rear walls 2 are, for example, cofferdam walls of the ship which extend transversely to the longitudinal direction of the ship.
  • the load-bearing structure 1 also comprises an upper load-bearing wall 3, a lower load-bearing wall 4 and side load-bearing walls 5, 6, 7, 8, 9, 10.
  • the sealed and thermally insulating liquefied gas storage tank comprises a plurality of tank walls which are each anchored against one of the bearing walls 2, 3, 5, 6, 7, 8, 9, 10 of the bearing structure 1.
  • each wall of the tank has successively, from the outside inwards, in the thickness direction of the wall, a secondary thermally insulating barrier 12 comprising insulating elements 13 fixed to the support structure 1, a membrane of secondary sealing 14 anchored to the insulating elements 13 of the secondary thermally insulating barrier 12, a primary thermally insulating barrier 15 comprising insulating elements 16 fixed to the insulating elements 13 of the secondary thermally insulating barrier 12 or to the supporting structure 1 and resting against the membrane secondary sealing 14 and a primary sealing membrane 17 anchored to the insulating elements 16 of the primary thermally insulating barrier 15 and intended to be in contact with the liquefied gas contained in the tank.
  • the load-bearing structure 1 comprises a dome structure 19 which projects upwards from the upper bearing wall 3 around opening 18 and which defines a passage 24 intended to be traversed by one or more pipes 20, 21, 47 intended for loading or unloading the tank.
  • Dome structure 19 has vertical dome walls 22.
  • the dome walls 22 are, for example, four in number when the dome structure 19 has a square or rectangular section.
  • the dome walls 22 project upwards from the upper load-bearing wall 3 and here rise above the ship's deck.
  • the dome structure 19 also comprises, at the top of the dome walls 22, a seat wall 23 which extends horizontally all around the passage 24 formed by the dome walls 22 and thus forms with the dome walls 22, a coaming .
  • the seat wall 23 supports a cover 25 through which passes the pipe(s) 20, 21 intended for loading or unloading the tank.
  • Cover 25 includes a metal cover plate and thermal insulation, not shown, which is fixed against the underside of the metal cover plate and which fits into the dome structure 19.
  • the cover 25 comprises a network of stiffeners 48 which are each formed by metal plates welded against the upper face of the metal cover plate.
  • the load-bearing structure also comprises stiffeners 49 which are fixed under the seat wall 23 and rest against the upper load-bearing wall 3 and against the dome walls 22.
  • the multilayer structure of the tank is also present against the dome walls 22 but is not present at the lid of the dome structure 19.
  • a loading/unloading tower 26 passes inside the passage 24 defined by the dome structure 19.
  • the loading/unloading tower 26 comprises three vertical masts 20, 21, two of which are shown in the , which are each fixed to each other by crosspieces 27.
  • the three vertical masts 20, 21 pass through the cover 25 of the dome structure 19 and extend over substantially the entire height of the tank.
  • the loading/unloading tower 26 comprises a base, not shown, which cooperates with a support foot which is fixed to the lower bearing wall 4 and which thus aims to ensure that the loading/unloading tower 26 is maintained in the vertical position.
  • each of the masts 20, 21 is hollow, passes through the cover of the dome structure 19 and forms: - a pipe which is intended for loading the tank with liquefied gas, - a pipe which is intended for the unloading of liquefied gas from the tank and which is for this purpose associated with an unloading pump fixed to the lower end of the said pipe, or - an emergency well allowing the descent of an emergency pump and an unloading line in the event of failure of an unloading pump.
  • the cover 25 is fixed in a sealed manner to the seat wall 23.
  • the cover 25 is welded in a sealed manner to an intermediate frame 28, metallic, which is itself previously welded in a sealed manner to the seat wall. 23.
  • the intermediate frame 28 is welded, in a sealed manner, to the seat wall 23 by means of two continuous weld lines 29, 30 with lap which respectively extend along the internal peripheral edge of the intermediate frame 28 and along the outer peripheral edge of the intermediate frame 28.
  • the peripheral edge 39 of the cover 25 rests against the upper face of the intermediate frame 28 and is welded, in a sealed manner, by means of a weld line continuous 31 with lap, on said upper face of the intermediate frame 28.
  • the intermediate frame 28 rests at least partly against an outer zone 32 of the seat wall 23, that is to say a e zone which is positioned, with respect to the passage 24, outside the dome walls 22.
  • the seat wall 23 has a peripheral rim area 33 which borders the passage 24 and which projects horizontally towards the passage 24 with respect to the dome walls 22. Additionally, the cover 25 is also attached to the seat wall. seat 23 by means of a plurality of intermediate plates 34, made of metal, represented in FIGS. 4, 5 and 6.
  • the intermediate plates 34 are regularly arranged along the peripheral edge zone 33 and from the inside of the dome structure 19, with respect to the internal edge 37 of the peripheral edge zone 33.
  • the intermediate plates 34 have an elongated shape along the edge internal 37 of the peripheral edge zone 33 and an L-shaped square at the angle between two adjacent dome walls 22.
  • Each of the intermediate plates 34 is previously welded to the cover 25 before being welded to the peripheral edge zone 33 of the seat wall 23.
  • the intermediate plates 34 are each lap-welded against the inner face of the cover 25, by at least two weld lines 35, 36.
  • the two weld lines 35, 36 are formed along two edges of the intermediate plate 34 which are arranged on either side of the internal edge 37 of the peripheral edge zone 33.
  • the intermediate plates 34 are welded on each of their edges against the internal face of the cover 25.
  • each intermediate plate 34 are fixed to each other by means of a weld line 38, with lap, made along the internal edge 37 of the peripheral edge zone. 33 and against the underside of each intermediate plate 34.
  • Fixing the cover 25 to the peripheral edge zone 33 by means of said intermediate plates 34 is particularly advantageous in that it makes it possible to absorb the forces exerted on the cover 25 when the pressure prevailing inside the tank is greater than atmospheric pressure and thus makes it possible to relieve the weld line 31 which is produced, further outside the dome structure 19, and which ensures the sealing of the fixing of the cover 25 to the seat wall 23.
  • the intermediate plates 34 are advantageous in that they make it possible to distribute the forces over a larger weld surface.
  • the intermediate plates 34 constitute an intermediate stiffness between the cover 25 and the seat wall 23 which is able to deform elastically when the pressure prevailing inside the tank is greater than atmospheric pressure in order to absorb in part of the forces exerted on the cover 25.
  • the lines of welds 36, 37, 38 ensuring the fixing of the cover 25 to the peripheral edge zone of the seat wall 23 are positioned as close as possible to the center of the dome structure 19, the moment exerted on these weld lines 36, 37, 38, in the event of overpressure in the tank, is reduced.
  • the dome structure 19 comprises a profiled frame 40 against which the primary sealing membrane 17 is welded and which constitutes a stopping zone of the primary sealing membrane, that is to say a zone, located at the top of the dome structure 19, in which the primary sealing membrane 17 of the vessel walls mounted against the dome walls 22 is anchored to the load-bearing structure 1.
  • the profiled frame 40 is welded to the peripheral edge zone 33 of the seat wall 23, continuously all around it in order to seal the primary sealing membrane 17.
  • the primary sealing membrane 17 exerts on the peripheral edge zone 33 of the seat wall 23 a force directed in a direction opposite to the forces exerted on said peripheral edge zone 33 in due to the pressure forces exerted on the lid 25.
  • Such an arrangement therefore makes it possible to further limit the bending of the seat wall 23 and of the lid 25.
  • the profiled frame 40 has an L-shaped section, that is to say it comprises a first wing 41 and a second wing 42 which are perpendicular to one another. other.
  • the first wing 41 extends vertically, in the plane of the primary sealing membrane 17.
  • the first wing 41 has a free end which is welded to the peripheral edge zone 33 of the seat wall 23 by the weld 43.
  • the primary sealing membrane 17 rests against the first wing 41 and is welded thereto.
  • the second wing 42 extends parallel to the thickness direction of the wall. It is further welded via weld 45 against a fixing lug 44 which projects vertically downward from the peripheral edge zone 33 of the seat wall 23.
  • the profiled frame 40 comprises reinforcing gussets 46 which each have a first edge bearing against the first flange 41 of the profiled frame 40 and a second edge bearing against the second flange 42 of the profiled frame 40.
  • the dome structure 19 also includes a secondary closure plate 50, partially illustrated in the which is welded to the peripheral edge zone 33 of the seat wall 23, in a continuous manner all around the latter, and on which is fixed the secondary sealing membrane of the vessel walls mounted against the dome walls 22.
  • the liquefied gas intended to be stored in the tank can in particular be a liquefied natural gas (LNG), that is to say a gas mixture mainly comprising methane as well as one or more other hydrocarbons.
  • Liquefied gas can also be ethane or liquefied petroleum gas (LPG), i.e. a mixture of hydrocarbons resulting from petroleum refining comprising mainly propane and butane.
  • a cutaway view of an LNG carrier 70 shows a sealed and insulated tank 71 of generally prismatic shape mounted in the double hull 72 of the ship.
  • the wall of the tank 71 comprises a primary leaktight barrier intended to be in contact with the LNG contained in the tank, a secondary leaktight barrier arranged between the primary leaktight barrier and the double hull 72 of the ship, and two insulating barriers arranged respectively between the primary waterproof barrier and the secondary waterproof barrier and between the secondary waterproof barrier and the double hull 72.
  • loading/unloading pipes 73 arranged on the upper deck of the ship can be connected, by means of appropriate connectors, to a maritime or port terminal to transfer a cargo of LNG from or to the tank 71.
  • the represents an example of a maritime terminal comprising a loading and unloading station 75, an underwater pipeline 76 and an installation on land 77.
  • the loading and unloading station 75 is a fixed offshore installation comprising a mobile arm 74 and a tower 78 which supports the mobile arm 74.
  • the mobile arm 74 carries a bundle of insulated flexible pipes 79 which can be connected to the loading/unloading pipes 73.
  • the orientable mobile arm 74 adapts to all sizes of LNG carriers.
  • a connecting pipe, not shown, extends inside the tower 78.
  • the loading and unloading station 75 allows the loading and unloading of the LNG carrier 70 from or to the shore installation 77.
  • This comprises liquefied gas storage tanks 80 and connecting pipes 81 connected by the underwater pipe 76 to the loading or unloading station 75.
  • the underwater pipe 76 allows the transfer of the liquefied gas between the loading or unloading station 75 and the shore installation 77 over a great distance, for example 5 km, which makes it possible to keep the LNG carrier 70 at a great distance from the coast during loading and unloading operations.
  • pumps on board the ship 70 and/or pumps fitted to the shore installation 77 and/or pumps fitted to the loading and unloading station 75 are used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

L'invention concerne une installation de stockage d'un gaz liquéfié comportant une structure porteuse (1) et une cuve étanche et thermiquement isolante agencée dans la structure porteuse (1), la structure porteuse (1) comprenant une structure de dôme (19) faisant saillie verticalement vers l'extérieur de la cuve depuis une paroi porteuse supérieure (3), la structure de dôme (19) comportant des parois de dôme verticales (22) faisant saillie vers le haut depuis la paroi porteuse supérieure (3) et comportant chacune une extrémité supérieure, la structure de dôme (19) comportant une paroi de siège (23) se développant horizontalement et comportant une zone de bordure périphérique (33), la structure de dôme (19) comportant un couvercle (25) qui recouvre le passage et est soudé de manière étanche à la paroi de siège (23), ledit couvercle (25) étant soudé à au moins une plaque intermédiaire (34), ladite plaque intermédiaire (34) étant soudée à la paroi de siège (23) dans la zone de bordure périphérique (33).

Description

    Installation de stockage d’un gaz liquéfié
  • L’invention se rapporte au domaine des installations de stockage pour gaz liquéfié comprenant une cuve étanche et thermiquement isolante agencée dans une structure porteuse.
  • En particulier, l’invention se rapporte au domaine des cuves étanches et thermiquement isolantes pour le stockage et/ou le transport de gaz liquéfié à basse température, telles que des cuves pour le transport de Gaz de Pétrole Liquéfié (aussi appelé GPL) présentant par exemple une température comprise entre -50°C et 0°C, ou pour le transport de Gaz Naturel Liquéfié (GNL) à environ -162°C. Ces cuves peuvent être installées à terre ou sur un ouvrage flottant. Dans le cas d’un ouvrage flottant, la cuve peut être destinée au transport de gaz liquéfié ou à recevoir du gaz liquéfié servant de carburant pour la propulsion de l’ouvrage flottant.
  • L’invention vise plus particulièrement une installation de stockage du type précité comportant une structure de dôme faisant saillie vers le haut depuis une paroi porteuse supérieure de la structure porteuse et destinée à être traversée par au moins une conduite destinée au chargement ou au déchargement de la cuve.
  • Arrière-plan technologique
  • Le document WO2015155377 divulgue une installation de stockage d’un gaz liquéfié comportant une structure porteuse, constituée par la double coque d’un navire, et une cuve étanche et thermiquement isolante agencée dans la structure porteuse. L’installation comporte une structure de dôme, représentée sur la du document précité, qui sert de point de pénétration pour différents équipements de la cuve, tels que des conduites destinées au chargement ou au déchargement de la cuve. La structure de dôme fait saillie vers le haut depuis une paroi porteuse supérieure. Elle comporte une paroi porteuse verticale qui s’élève au-dessus du pont du navire et une paroi horizontale qui est positionnée au sommet de la paroi porteuse verticale. La paroi horizontale supporte un couvercle qui est essentiellement constitué d’une paroi métallique de couvercle et d’une isolation thermique qui s’insère dans le sommet de la structure de dôme.
  • Pour fixer la paroi horizontale de la structure de dôme et la paroi métallique de couvercle et assurer l’étanchéité de la structure de dôme, il est connu de réaliser une ligne de soudure le long du bord périphérique de la paroi métallique de couvercle. Lorsque la pression régnant à l’intérieur de la cuve est supérieure à la pression atmosphérique, ce différentiel de pression exerce sur le couvercle un effort dirigé vers l’extérieur de la cuve qui sollicite en flexion la paroi métallique de couvercle. Des telles sollicitations sont susceptibles de dégrader la ligne de soudure précitée et d’entraîner ainsi des problèmes d’étanchéité de la structure de dôme, notamment lorsque la cuve est destinée à stocker le gaz à des pressions supérieures à celles des cuves à membranes traditionnelles.
  • Un tel agencement de structure de dôme n’est donc pas pleinement satisfaisant.
  • Résumé
  • Une idée à la base de l’invention est donc de proposer une installation de stockage de gaz liquéfié comportant une structure de dôme qui présente une meilleure tenue à la pression.
  • Pour ce faire, selon un mode de réalisation, l’invention fournit une installation de stockage d’un gaz liquéfié comportant une structure porteuse et une cuve étanche et thermiquement isolante agencée dans la structure porteuse, la structure porteuse comportant une paroi porteuse supérieure et la cuve comprenant une paroi de plafond fixée à la paroi porteuse supérieure, la paroi porteuse supérieure et la paroi de plafond étant interrompues localement de manière à délimiter une ouverture , la structure porteuse comprenant une structure de dôme faisant saillie vers l’extérieur de la cuve depuis la paroi porteuse supérieure autour de l’ouverture et définissant un passage destiné à être traversé par au moins une conduite destinée au chargement ou au déchargement en gaz liquéfié de la cuve, la structure de dôme comportant des parois de dôme faisant saillie depuis la paroi porteuse supérieure et comportant chacune une extrémité supérieure, la structure de dôme comportant une paroi de siège fixée aux extrémités supérieures des parois de dôme verticales, la paroi de siège se développant horizontalement et comportant une zone de bordure périphérique qui borde le passage et qui fait saillie vers le passage à partir des parois de dômes verticales, la structure de dôme comportant un couvercle qui recouvre le passage et est soudé de manière étanche à la paroi de siège, ledit couvercle étant soudé à au moins une plaque intermédiaire, ladite plaque intermédiaire étant soudée à la paroi de siège dans la zone de bordure périphérique.
  • Ainsi, le couvercle étant soudé à la zone de bordure périphérique qui est la zone de la paroi de siège la plus proche du centre de la structure de dôme, le moment s’exerçant sur lesdites soudures lorsque la pression dans la cuve est supérieure à la pression à l’extérieur de la cuve, est réduit, ce qui permet de limiter la flexion du couvercle et d’améliorer la tenue à la pression des soudures assurant la fixation du couvercle à la paroi de siège. En outre, l’utilisation d’une plaque intermédiaire permet de répartir les efforts sur un plus grand nombre de soudures. De plus, la plaque intermédiaire constitue une raideur additionnelle entre le couvercle et la paroi de siège qui est susceptible d’absorber une partie des efforts en se déformant.
  • Selon des modes de réalisation, une telle installation peut comporter une ou plusieurs des caractéristiques suivantes.
  • Selon un mode de réalisation, la plaque intermédiaire est soudée à la zone de bordure périphérique le long d’un bord interne de la zone de bordure périphérique. Ceci permet de fixer la plaque intermédiaire à la paroi de siège au moyen d’une ligne soudure à clin qui est simple à mettre en œuvre et assure des performances de fixation satisfaisantes.
  • Selon un mode de réalisation, le couvercle est soudé à une pluralité de plaques intermédiaires qui sont disposées autour du passage et qui sont chacune soudées à la paroi de siège dans la zone de bordure périphérique, de préférence le long du bord interne de la zone de bordure périphérique.
  • Selon un mode de réalisation, la ou chaque plaque intermédiaire fait saillie vers l’intérieur de la structure de dôme. Ainsi, la plaque intermédiaire s’étend vers le passage au-delà du bord interne de la zone de bordure périphérique.
  • Selon un mode de réalisation, la plaque intermédiaire est soudée au couvercle par l’intermédiaire d’au moins une ligne de soudure, continue ou discontinue, s’étendant le long d’au moins un bord de la plaque intermédiaire.
  • Selon un mode de réalisation, la plaque intermédiaire est soudée au couvercle par l’intermédiaire d’au moins deux lignes de soudure s’étendant respectivement le long d’au moins deux bords de la plaque intermédiaire disposés de part et d’autre du bord interne de la zone de bordure périphérique. Ceci permet de répartir les efforts sur des plus grandes surfaces de soudures et de fixer la plaque intermédiaire au couvercle au moyen de lignes de soudure à clin qui sont simples à mettre en œuvre et assurent des performances de fixation satisfaisantes.
  • Selon un mode de réalisation, le couvercle est soudé de manière étanche à la paroi de siège par l’intermédiaire d’un cadre intermédiaire qui est disposé autour du passage et autour de l’au moins une plaque intermédiaire.
  • Selon un mode de réalisation, le cadre intermédiaire est soudé à la paroi de siège au moyen d’au moins une ligne de soudure étanche s’étendant le long d’un bord périphérique interne ou externe du cadre intermédiaire. Selon un mode de réalisation, ladite ligne de soudure étanche est une ligne de soudure continue.
  • Selon un mode de réalisation, le couvercle est soudé au cadre intermédiaire au moyen d’au moins une ligne de soudure étanche. L’au moins un ligne de soudure étanche s’étend de préférence le long d’un bord périphérique externe du couvercle. Ainsi, les lignes de soudures assurant l’étanchéité entre le couvercle et la paroi de siège sont disposées à l’extérieur de la zone de fixation additionnelle du couvercle à la paroi de siège de sorte qu’elles ne sont que peu sollicitées par les efforts générés par la surpression régnant à l’intérieur de la cuve. Selon un mode de réalisation, ladite ligne de soudure étanche est une ligne de soudure continue.
  • Selon un mode de réalisation, le cadre intermédiaire est soudé à la paroi de siège par l’intermédiaire de deux lignes de soudure s’étendant respectivement le long du bord périphérique interne du cadre intermédiaire et le long du bord périphérique externe du cadre intermédiaire. Selon une première variante de réalisation, la ligne de soudure s’étendant le long du bord périphérique externe du cadre intermédiaire est continue et étanche alors que la ligne de soudure s’étendant le long du bord périphérique interne du cadre intermédiaire est discontinue. Selon une deuxième variante de réalisation, la ligne de soudure s’étendant le long du bord périphérique interne du cadre intermédiaire est continue et étanche alors que la ligne de soudure s’étendant le long du bord périphérique externe du cadre intermédiaire est discontinue. Enfin, selon une troisième variante de réalisation, les deux lignes de soudure sont étanches ce qui renforce encore davantage la fiabilité de l’étanchéité.
  • Selon un mode de réalisation la cuve comporte une paroi de cuve ancrée contre chacune des parois de dôme, chaque paroi de cuve comportant une membrane d’étanchéité primaire destinée à être en contact avec le gaz liquéfié contenu dans la cuve, la structure de dôme comportant un cadre profilé contre lequel est soudé la membrane d’étanchéité primaire, le cadre profilé étant soudé par une ligne de soudure étanche à la zone de bordure périphérique de la paroi de siège. Ainsi, sous l’effet de sa contraction thermique, la membrane d’étanchéité primaire exerce, sur la zone de bordure périphérique de la paroi de siège, un effort dirigé dans un sens opposé aux efforts qui s’exercent sur ladite zone de bordure périphérique en raison de la pression exercée sur le couvercle par la phase vapeur du gaz liquéfié, ce qui permet de limiter encore davantage la flexion de la paroi de siège et du couvercle.
  • En outre, la plaque intermédiaire et la zone de bordure périphérique créent une zone de conduction thermique du couvercle vers le cadre profilé qui permet de limiter la descente en température du cadre profilé et, par conséquent, de limiter les contraintes thermiques agissant sur le cadre profilé.
  • Selon un mode de réalisation, le cadre profilé présente une section en forme de L qui comporte une première aile et une deuxième aile perpendiculaires l’une à l’autre, la première aile étant soudée à la membrane d’étanchéité primaire et à la zone de bordure périphérique et s’étendant verticalement et la deuxième aile s‘étendant horizontalement et étant fixée à une patte de fixation qui fait saillie, vers la paroi de plafond, c’est-à-dire vers le bas, depuis la zone de bordure périphérique de la paroi de siège.
  • Selon un mode de réalisation, le cadre profilé comporte des goussets de renfort qui présentent chacun un premier bord en appui contre la première aile et un deuxième bord en appui contre la deuxième aile.
  • Selon un mode de réalisation, l’installation comporte une tour de chargement/déchargement passant au travers du passage défini par la structure de dôme, la tour de chargement/déchargement comportant au moins deux mâts verticaux passant au travers du couvercle et fixés l’un à l’autre par des traverses, les deux mâts verticaux formant chacun un conduit de chargement ou de déchargement de la cuve.
  • Selon un mode de réalisation, la paroi de plafond ainsi que chaque paroi de cuve ancrée contre l’une des parois de dôme comporte une barrière thermiquement isolante secondaire retenue contre la structure porteuse, une membrane d’étanchéité secondaire reposant contre la barrière thermiquement isolante secondaire, une barrière thermiquement isolante primaire reposant contre la membrane d’étanchéité secondaire et une membrane d’étanchéité primaire qui repose contre la barrière thermiquement isolante primaire et qui est destinée à être en contact avec le gaz liquéfié contenu dans la cuve.
  • Une cuve selon l’un des modes de réalisation précités peut faire partie d’une installation de stockage terrestre, par exemple pour stocker du GNL ou être installée dans une structure flottante, côtière ou en eau profonde, notamment un navire méthanier ou méthanier, une unité flottante de stockage et de regazéification (FSRU), une unité flottante de production et de stockage déporté (FPSO) et autres. Dans le cas d’une structure flottante, la cuve peut être destinée à recevoir du gaz naturel liquéfié servant de carburant pour la propulsion de la structure flottante.
  • Selon un mode de réalisation, l’invention concerne un navire pour le transport d’un fluide qui comporte une installation du type précité.
  • Selon un mode de réalisation, le navire comporte une double coque qui forme la structure porteuse.
  • Selon un mode de réalisation, l’invention fournit aussi un système de transfert pour un fluide, le système comportant le navire précité, des canalisations isolées agencées de manière à relier la cuve du navire à une installation de stockage flottante ou terrestre et une pompe pour entrainer un flux de fluide à travers les canalisations isolées depuis ou vers l’installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.
  • Selon un mode de réalisation, l’invention fournit aussi un procédé de chargement ou déchargement d’un tel navire, dans lequel on achemine un fluide à travers des canalisations isolées depuis ou vers une installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.
  • Brève description des figures
  • L’invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement au cours de la description suivante de plusieurs modes de réalisation particuliers de l’invention, donnés uniquement à titre illustratif et non limitatif, en référence aux dessins annexés.
  • La est vue en perspective schématique d’une structure porteuse destinée à supporter une cuve étanche et thermique isolante de stockage d’un gaz liquéfié.
  • La est une vue schématique de la structure multicouche des parois de la cuve.
  • La est une vue schématique en coupe illustrant la structure de dôme.
  • La est une vue en coupe partielle illustrant la fixation du couvercle de la structure de dôme sur la paroi de siège.
  • La est une vue en perspective de dessous illustrant la structure de dôme.
  • La est une vue détaillée de la zone de la illustrant une pièce intermédiaire assurant la fixation du couvercle aux parois de siège.
  • ] La est une vue en perspective de dessus de la structure de dôme.
  • La est une représentation partielle en perspective d’un cadre profilé formant une zone d’arrêt de la membrane d’étanchéité primaire.
  • La est une représentation partielle en perspective d’un cadre profilé selon une variante de réalisation de la .
  • La est une représentation schématique écorchée d’une cuve de navire méthanier et d’un terminal de chargement/déchargement de cette cuve.
  • En relation avec la , l’on décrit une structure porteuse 1 contre laquelle une cuve étanche et thermiquement isolante de stockage d’un gaz liquéfié est destinée à être fixée. La structure porteuse 1 est, par exemple, formée par la double coque d’un navire. La structure porteuse 1 présente une forme générale polyédrique. Elle présente deux parois porteuses avant et arrière 2, ici de forme octogonale, dont seule la paroi porteuse arrière est représentée sur la . Les parois avant et arrière 2 sont, par exemple, des parois de cofferdam du navire qui s’étendent transversalement à la direction longitudinale du navire. La structure porteuse 1 comporte également une paroi porteuse supérieure 3, une paroi porteuse inférieure 4 et des parois porteuses latérales 5, 6, 7, 8, 9, 10.
  • La cuve étanche et thermiquement isolante de stockage du gaz liquéfié comporte une pluralité de parois de cuve qui sont chacune ancrées contre l’une des parois porteuses 2, 3, 5, 6, 7, 8, 9, 10 de la structure porteuse 1.
  • Comme représenté sur la , chaque paroi de la cuve présente successivement, de l’extérieur vers l’intérieur, selon la direction d’épaisseur de la paroi, une barrière thermiquement isolante secondaire 12 comportant des éléments isolants 13 fixés à la structure porteuse 1, une membrane d’étanchéité secondaire 14 ancrée aux éléments isolants 13 de la barrière thermiquement isolante secondaire 12, une barrière thermiquement isolante primaire 15 comportant des éléments isolants 16 fixés aux éléments isolants 13 de la barrière thermiquement isolante secondaire 12 ou à la structure porteuse 1 et reposant contre la membrane d’étanchéité secondaire 14 et une membrane d’étanchéité primaire 17 ancrée aux éléments isolants 16 de la barrière thermiquement isolante primaire 15 et destinée à être en contact avec le gaz liquéfie contenu dans la cuve.
  • Comme représenté sur les figures 3 et 7, la paroi porteuse supérieure 3 ainsi que la paroi de plafond 11 sont interrompues localement de manière à délimiter une ouverture 18. La structure porteuse 1 comporte une structure de dôme 19 qui fait saillie vers le haut depuis la paroi porteuse supérieure 3 autour de l’ouverture 18 et qui définit un passage 24 destiné à être traversé par une ou plusieurs conduites 20, 21, 47 destinées au chargement ou au déchargement de la cuve.
  • La structure de dôme 19 comporte des parois de dôme 22, verticales. Les parois de dôme 22 sont, par exemple, au nombre de quatre lorsque la structure de dôme 19 à une section de forme carré ou rectangulaire. Les parois de dôme 22 font saillie vers le haut depuis la paroi porteuse supérieure 3 et s’élèvent ici au-dessus du pont du navire. La structure de dôme 19 comporte également, au sommet des parois de dôme 22, une paroi de siège 23 qui s’étend horizontalement tout autour du passage 24 formé par les parois de dômes 22 et forme ainsi avec les parois de dôme 22, un surbau. La paroi de siège 23 supporte un couvercle 25 au travers duquel passe la ou les conduites 20, 21 destinées au chargement ou au déchargement de la cuve. Le couvercle 25 comporte une plaque métallique de couvercle et une isolation thermique, non représentée, qui est fixée contre la face inférieure de la plaque métallique de couvercle et qui s’insère dans la structure de dôme 19. Comme illustré sur les figures 3 et 7, selon un mode de réalisation, le couvercle 25 comporte un réseau de raidisseurs 48 qui sont chacun formés par des plaques métalliques soudées contre la face supérieure de la plaque métallique de couvercle.
  • Par ailleurs, la structure porteuse comporte également des raidisseurs 49 qui sont fixés sous la paroi de siège 23 et sont en appui contre la paroi porteuse supérieure 3 et contre les parois de dôme 22.
  • La structure multicouche de la cuve, décrite ci-dessus en relation avec la , est également présente contre les parois de dôme 22 mais n’est pas présente au niveau du couvercle de la structure de dôme 19.
  • Dans le mode de réalisation représenté sur la , une tour de chargement/déchargement 26 passe à l’intérieur du passage 24 défini par la structure de dôme 19. La tour de chargement/déchargement 26 comporte trois mâts verticaux 20, 21, dont deux sont représentés sur la , qui sont chacun fixés les uns aux autres par des traverses 27. Les trois mâts verticaux 20, 21 passent au travers du couvercle 25 de la structure de dôme 19 et s’étendent sur sensiblement toute la hauteur de la cuve. La tour de chargement/déchargement 26 comporte une base, non représentée, qui coopère avec un pied de support qui est fixé à la paroi porteuse inférieure 4 et qui vise ainsi à assurer un maintien en position verticale de la tour de chargement/déchargement 26.
  • Selon un mode de réalisation, chacun des mâts 20, 21 est creux, traverse le couvercle de la structure de dôme 19 et forme :
    - une conduite qui est destinée au chargement de la cuve en gaz liquéfié,
    - une conduite qui est destinée au déchargement en gaz liquéfié de la cuve et qui est pour ce faire associée à une pompe de déchargement fixée à l’extrémité inférieure de ladite conduite, ou
    - un puits de secours permettant la descente d’une pompe de secours et d’une ligne de déchargement en cas de défaillance d’une pompe de déchargement.
  • En relation avec la , on décrit ci-dessous la fixation du couvercle 25, et plus particulièrement de sa plaque métallique, à la paroi de siège 23 ainsi que la structure, à leur sommet, des parois de cuve qui sont fixées aux parois de dôme 22.
  • Le couvercle 25 est fixé de manière étanche à la paroi de siège 23. Pour ce faire, le couvercle 25 est soudé de manière étanche sur un cadre intermédiaire 28, métallique, qui est lui-même préalablement soudé de manière étanche à la paroi de siège 23. De manière avantageuse, le cadre intermédiaire 28 est soudé, de manière étanche, à la paroi de siège 23 par l’intermédiaire de deux lignes de soudure continues 29, 30 à clin qui s’étendent respectivement le long du bord périphérique interne du cadre intermédiaire 28 et le long du bord périphérique externe du cadre intermédiaire 28. Par ailleurs, le bord périphérique 39 du couvercle 25 repose contre la face supérieure du cadre intermédiaire 28 et est soudé, de manière étanche, au moyen d’une ligne de soudure continue 31 à clin, sur ladite face supérieure du cadre intermédiaire 28. Dans le mode de réalisation représenté, la cadre intermédiaire 28 repose au moins en partie contre une zone extérieure 32 de la paroi de siège 23, c’est-à-dire une zone qui est positionnée, par rapport au passage 24, à l’extérieur des parois de dôme 22.
  • Par ailleurs, la paroi de siège 23 comporte une zone de bordure périphérique 33 qui borde le passage 24 et qui fait saillie horizontalement vers le passage 24 par rapport aux parois de dôme 22. De manière additionnelle, le couvercle 25 est également fixé à la paroi de siège 23 au moyen d’une pluralité de plaques intermédiaires 34, en métal, représentées sur les figures 4, 5 et 6. Les plaques intermédiaires 34 sont, régulièrement disposées le long de la zone de bordure périphérique 33 et font saillie, en direction de l’intérieur de la structure de dôme 19, par rapport au bord interne 37 de la zone de bordure périphérique 33. Selon l’exemple de réalisation représenté sur les figures 5 et 6, les plaques intermédiaires 34 présentent une forme longiligne longeant le bord interne 37 de la zone de bordure périphérique 33 et une forme d’équerre en L au niveau de l’angle entre deux parois de dôme 22 adjacentes.
  • Chacune des plaques intermédiaires 34 est préalablement soudée au couvercle 25 avant d’être soudée à la zone de bordure périphérique 33 de la paroi de siège 23. Dans le mode de réalisation représenté sur la , les plaques intermédiaires 34 sont chacune soudées à clin contre la face intérieure du couvercle 25, par au moins deux lignes de soudure 35, 36. Les deux lignes de soudure 35, 36 sont formées le long de deux bords de la plaque intermédiaires 34 qui sont disposés de part et d’autre du bord interne 37 de la zone de bordure périphérique 33. Selon une variante de réalisation, les plaques intermédiaires 34 sont soudées sur chacun de leurs bords contre la face intérieure du couvercle 25.
  • En outre, la paroi de siège 23 et chaque plaque intermédiaire 34 sont fixées l’une à l’autre par l’intermédiaire d’une ligne de soudure 38, à clin, réalisée le long du bord interne 37 de la zone de bordure périphérique 33 et contre la face inférieure de chaque plaque intermédiaire 34. La fixation du couvercle 25 à la zone de bordure périphérique 33 par l’intermédiaire desdites plaques intermédiaires 34 est particulièrement avantageuse en ce qu’elle permet de reprendre les efforts s’exerçant sur le couvercle 25 lorsque la pression régnant à l’intérieur de la cuve est supérieure à la pression atmosphérique et permet ainsi de soulager la ligne de soudure 31 qui est réalisée, plus à l’extérieur de la structure de dôme 19, et qui assure l’étanchéité de la fixation du couvercle 25 à la paroi de siège 23. De plus, les plaques intermédiaires 34 sont avantageuses en ce qu’elles permettent de répartir les efforts sur une plus grande surface de soudure. En outre, les plaques intermédiaires 34 constituent une raideur intermédiaire entre le couvercle 25 et la paroi de siège 23 qui est apte à se déformer élastiquement lorsque la pression régnant à l’intérieur de la cuve est supérieure à la pression atmosphérique afin d’absorber en partie les efforts s’exerçant sur le couvercle 25. Enfin, comme les lignes de soudures 36, 37, 38 assurant la fixation du couvercle 25 à la zone de bordure périphérique de la paroi de siège 23 sont positionnées au plus près du centre de la structure de dôme 19, le moment s’exerçant sur ces lignes de soudure 36, 37, 38, en cas de surpression dans la cuve, est réduit.
  • Par ailleurs, comme représenté sur la , la structure de dôme 19 comporte un cadre profilé 40 contre lequel est soudé la membrane d’étanchéité primaire 17 et qui constitue une zone d’arrêt de la membrane d’étanchéité primaire, c’est-à-dire une zone, située au sommet de la structure de dôme 19, dans laquelle la membrane d’étanchéité primaire 17 des parois de cuve montées contre les parois de dôme 22 est ancrée à la structure porteuse 1. Le cadre profilé 40 est soudé à la zone de bordure périphérique 33 de la paroi de siège 23, de manière continue tout autour de celle-ci afin d’assurer l’étanchéité de la membrane d’étanchéité primaire 17.
  • Sous l’effet de sa contraction thermique, la membrane d’étanchéité primaire 17 exerce sur la zone de bordure périphérique 33 de la paroi de siège 23 un effort dirigé dans un sens opposé aux efforts s’exerçant sur ladite zone de bordure périphérique 33 en raison des efforts de pression s’exerçant sur le couvercle 25. Un tel agencement permet donc de limiter encore davantage la flexion de la paroi de siège 23 et du couvercle 25.
  • Comme représenté sur les figures 4 et 8, le cadre profilé 40 présente une section en forme de L, c’est-à-dire qu’il comporte une première aile 41 et une deuxième aile 42 qui sont perpendiculaires l’une à l’autre. La première aile 41 s’étend verticalement, dans le plan de la membrane d’étanchéité primaire 17. La première aile 41 présente une extrémité libre qui est soudée sur la zone de bordure périphérique 33 de la paroi de siège 23 par la soudure 43. De plus, au sommet de la structure de dôme 19, la membrane d’étanchéité primaire 17 repose contre la première aile 41 et est soudée à celle-ci. La deuxième aile 42 s’étend parallèlement à la direction d’épaisseur de la paroi. Elle est en outre soudée via la soudure 45 contre une patte de fixation 44 qui fait saillie verticalement vers le bas depuis la zone de bordure périphérique 33 de la paroi de siège 23.
  • Selon une variante de réalisation représenté sur la , le cadre profilé 40 comporte des goussets de renfort 46 qui présentent chacun un premier bord en appui contre la première aile 41 du cadre profilé 40 et un deuxième bord en appui contre la deuxième aile 42 du cadre profilé 40.
  • La structure de dôme 19 comporte également une plaque de fermeture secondaire 50, partiellement illustrée sur la qui est soudée à la zone de bordure périphérique 33 de la paroi de siège 23, de manière continue tout autour de celle-ci, et sur lequel est fixée la membrane d’étanchéité secondaire des parois de cuve montées contre les parois de dôme 22.
  • Le gaz liquéfié destiné à être stocké dans la cuve peut notamment être un gaz naturel liquéfié (GNL), c’est-à-dire un mélange gazeux comportant majoritairement du méthane ainsi qu’un ou plusieurs autres hydrocarbures. Le gaz liquéfié peut également être de l’éthane ou un gaz de pétrole liquéfié (GPL), c’est-à-dire un mélange d’hydrocarbures issu du raffinage du pétrole comportant essentiellement du propane et du butane.
  • En référence à la , une vue écorchée d’un navire méthanier 70 montre une cuve étanche et isolée 71 de forme générale prismatique montée dans la double coque 72 du navire. La paroi de la cuve 71 comporte une barrière étanche primaire destinée à être en contact avec le GNL contenu dans la cuve, une barrière étanche secondaire agencée entre la barrière étanche primaire et la double coque 72 du navire, et deux barrières isolante agencées respectivement entre la barrière étanche primaire et la barrière étanche secondaire et entre la barrière étanche secondaire et la double coque 72.
  • De manière connue en soi, des canalisations de chargement/déchargement 73 disposées sur le pont supérieur du navire peuvent être raccordées, au moyen de connecteurs appropriées, à un terminal maritime ou portuaire pour transférer une cargaison de GNL depuis ou vers la cuve 71.
  • La représente un exemple de terminal maritime comportant un poste de chargement et de déchargement 75, une conduite sous-marine 76 et une installation à terre 77. Le poste de chargement et de déchargement 75 est une installation fixe off-shore comportant un bras mobile 74 et une tour 78 qui supporte le bras mobile 74. Le bras mobile 74 porte un faisceau de tuyaux flexibles isolés 79 pouvant se connecter aux canalisations de chargement/déchargement 73. Le bras mobile 74 orientable s'adapte à tous les gabarits de méthaniers. Une conduite de liaison non représentée s'étend à l'intérieur de la tour 78. Le poste de chargement et de déchargement 75 permet le chargement et le déchargement du méthanier 70 depuis ou vers l'installation à terre 77. Celle-ci comporte des cuves de stockage de gaz liquéfié 80 et des conduites de liaison 81 reliées par la conduite sous-marine 76 au poste de chargement ou de déchargement 75. La conduite sous-marine 76 permet le transfert du gaz liquéfié entre le poste de chargement ou de déchargement 75 et l'installation à terre 77 sur une grande distance, par exemple 5 km, ce qui permet de garder le navire méthanier 70 à grande distance de la côte pendant les opérations de chargement et de déchargement.
  • Pour engendrer la pression nécessaire au transfert du gaz liquéfié, on met en œuvre des pompes embarquées dans le navire 70 et/ou des pompes équipant l'installation à terre 77 et/ou des pompes équipant le poste de chargement et de déchargement 75.
  • Bien que l'invention ait été décrite en liaison avec plusieurs modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention, telle que définir par les revendications.
  • L’usage du verbe « comporter », « comprendre » ou « inclure » et de ses formes conjuguées n’exclut pas la présence d’autres éléments ou d’autres étapes que ceux énoncés dans une revendication.
  • Dans les revendications, tout signe de référence entre parenthèses ne saurait être interprété comme une limitation de la revendication.

Claims (16)

  1. Installation de stockage d’un gaz liquéfié comportant une structure porteuse (1) et une cuve étanche et thermiquement isolante agencée dans la structure porteuse (1), la structure porteuse (1) comportant une paroi porteuse supérieure (3) et la cuve comprenant une paroi de plafond (11) fixée à la paroi porteuse supérieure (3), la paroi porteuse supérieure (3) et la paroi de plafond (11) étant interrompues localement de manière à délimiter une ouverture (18), la structure porteuse (1) comprenant une structure de dôme (19) faisant saillie verticalement vers l’extérieur de la cuve depuis la paroi porteuse supérieure (3) autour de l’ouverture et définissant un passage (24) destiné à être traversé par au moins une conduite (20, 21) destinée au chargement ou au déchargement en gaz liquéfié de la cuve, la structure de dôme (19) comportant des parois de dôme (22) faisant saillie depuis la paroi porteuse supérieure (3) et comportant chacune une extrémité supérieure, la structure de dôme (19) comportant une paroi de siège (23) fixée aux extrémités supérieures des parois de dôme (22), la paroi de siège (23) se développant horizontalement et comportant une zone de bordure périphérique (33) qui borde le passage (24) et qui fait saillie vers le passage (24) à partir des parois de dômes verticales (22), la structure de dôme (19) comportant un couvercle (25) qui recouvre le passage et est soudé de manière étanche à la paroi de siège (23), ledit couvercle (25) étant soudé à au moins une plaque intermédiaire (34), ladite plaque intermédiaire (34) étant soudée à la paroi de siège (23) dans la zone de bordure périphérique (33).
  2. Installation selon la revendication 1, dans laquelle la plaque intermédiaire (34) est soudée à la zone de bordure périphérique (33) le long d’un bord interne (37) de la zone de bordure périphérique (33).
  3. Installation selon la revendication 2, dans laquelle le couvercle (25) est soudé à une pluralité de plaques intermédiaires (34) qui sont disposées autour du passage et qui sont chacune soudées à la paroi de siège (23) dans la zone de bordure périphérique (33), le long du bord interne (37) de la zone de bordure périphérique (33).
  4. Installation selon l’une quelconque des revendications 1 à 3, dans laquelle la ou chaque plaque intermédiaire (34) fait saillie vers l’intérieur de la structure de dôme (19) et dans laquelle la plaque intermédiaire (34) est soudée au couvercle (25) par l’intermédiaire d’au moins une ligne de soudure (35, 36) s’étendant le long d’au moins un bord de la plaque intermédiaire (34).
  5. Installation selon la revendication 4 prise en combinaison avec la revendication 2, dans laquelle la ou chaque plaque intermédiaire (34) est soudée au couvercle (25) par l’intermédiaire d’au moins deux lignes de soudure (35, 36) s’étendant le long d’au moins deux bords de la plaque intermédiaire (34) disposés de part et d’autre du bord interne (37) de la zone de bordure périphérique (33).
  6. Installation selon l’une quelconque des revendications 1 à 5, dans laquelle le couvercle (25) est soudé de manière étanche à la paroi de siège (23) par l’intermédiaire d’un cadre intermédiaire (28) qui est disposé autour du passage (24) et autour de l’au moins une plaque intermédiaire (34).
  7. Installation selon la revendication 6, dans laquelle le cadre intermédiaire (28) est soudé à la paroi de siège (23) au moyen d’au moins une ligne de soudure étanche (29, 30) s’étendant le long d’un bord périphérique interne ou externe du cadre intermédiaire (28).
  8. Installation selon la revendication 6 ou 7, dans laquelle le couvercle (25) est soudé au cadre intermédiaire (28) au moyen d’au moins une ligne de soudure étanche (31), l’au moins une ligne de soudure étanche (31) s’étendant de préférence le long d’un bord périphérique (39) externe du couvercle (25).
  9. Installation selon l’une quelconque des revendications 1 à 8, dans laquelle la cuve comporte une paroi de cuve ancrée contre chacune des parois de dôme (22), chaque paroi de cuve comportant une membrane d’étanchéité primaire (17) destinée à être en contact avec le gaz liquéfié contenu dans la cuve, la structure de dôme (19) comportant un cadre profilé (40) contre lequel est soudé la membrane d’étanchéité primaire (17) et qui est soudé par une ligne de soudure (43) étanche à la zone de bordure périphérique (33) de la paroi de siège (23).
  10. Installation selon la revendication 9, dans laquelle le cadre profilé (40) présente une section en forme de L qui comporte une première aile (41) et une deuxième aile (42) perpendiculaires l’une à l’autre, la première aile (41) étant soudée à la membrane d’étanchéité primaire (17) et à la zone de bordure périphérique (33) et s’étendant verticalement et la deuxième aile (42) s‘étendant horizontalement et étant fixée à une patte de fixation (44) qui fait saillie vers la paroi de plafond (11) depuis la zone de bordure périphérique (33) de la paroi de siège (23).
  11. Installation selon la revendication 10, dans laquelle le cadre profilé (40) comporte des goussets de renfort (46) qui présentent chacun un premier bord en appui contre la première aile (41) et un deuxième bord en appui contre la deuxième aile (42).
  12. Installation selon l’une quelconque des revendications 1 à 11, comportant une tour de chargement/déchargement (26) passant au travers du passage (24) défini par la structure de dôme (19), la tour de chargement/déchargement (26) comportant au moins deux mâts verticaux passant au travers du couvercle (25) et fixés l’un à l’autre par des traverses (27), les deux mâts verticaux formant chacun un conduit de chargement ou de déchargement de la cuve.
  13. Installation selon l’une quelconque des revendications 1 à 12, dans laquelle la paroi de plafond (11) ainsi que chaque paroi de cuve ancrée contre l’une des parois de dôme verticales (22) comporte une barrière thermiquement isolante secondaire (12) retenue contre la structure porteuse (1), une membrane d’étanchéité secondaire (14) reposant contre la barrière thermiquement isolante secondaire (12), une barrière thermiquement isolante primaire (15) reposant contre la membrane d’étanchéité secondaire (14) et une membrane d’étanchéité primaire (17) qui repose contre la barrière thermiquement isolante primaire (15) et qui est destinée à être en contact avec le gaz liquéfié contenu dans la cuve.
  14. Navire (70) pour le transport d’un fluide, le navire comportant une installation selon l’une quelconque des revendications 1 à 13.
  15. Système de transfert pour un fluide, le système comportant un navire (70) selon la revendication 14, des canalisations isolées (73, 79, 76, 81) agencées de manière à relier la cuve (71) du navire à une installation de stockage flottante ou terrestre (77) et une pompe pour entrainer un fluide à travers les canalisations isolées depuis ou vers l’installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.
  16. Procédé de chargement ou déchargement d’un navire (70) selon la revendication 14, dans lequel on achemine un fluide à travers des canalisations isolées (73, 79, 76, 81) depuis ou vers une installation de stockage flottante ou terrestre (77) vers ou depuis la cuve du navire (71).
EP22730220.5A 2021-05-31 2022-05-23 Installation de stockage d'un gaz liquéfié Pending EP4348097A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2105726A FR3123409B1 (fr) 2021-05-31 2021-05-31 Installation de stockage d’un gaz liquéfié
PCT/EP2022/063906 WO2022253615A1 (fr) 2021-05-31 2022-05-23 Installation de stockage d'un gaz liquéfié

Publications (1)

Publication Number Publication Date
EP4348097A1 true EP4348097A1 (fr) 2024-04-10

Family

ID=77317079

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22730220.5A Pending EP4348097A1 (fr) 2021-05-31 2022-05-23 Installation de stockage d'un gaz liquéfié

Country Status (6)

Country Link
EP (1) EP4348097A1 (fr)
KR (1) KR20240017362A (fr)
CN (1) CN117597536A (fr)
FR (1) FR3123409B1 (fr)
TW (1) TW202336379A (fr)
WO (1) WO2022253615A1 (fr)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101829928B1 (ko) * 2012-12-27 2018-02-19 현대중공업 주식회사 리퀴드돔 상부의 방벽 설치구조
FR3019520B1 (fr) 2014-04-08 2016-04-15 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante logee dans un ouvrage flottant
FR3081041B1 (fr) * 2018-05-11 2021-03-19 Gaztransport Et Technigaz Procede d'assemblage d'une cuve etanche et thermiquement isolante

Also Published As

Publication number Publication date
FR3123409A1 (fr) 2022-12-02
TW202336379A (zh) 2023-09-16
FR3123409B1 (fr) 2023-12-08
WO2022253615A1 (fr) 2022-12-08
CN117597536A (zh) 2024-02-23
KR20240017362A (ko) 2024-02-07

Similar Documents

Publication Publication Date Title
FR2973097A1 (fr) Element calorifuge pour paroi de cuve etanche et thermiquement isolante
FR3069044A1 (fr) Cuve etanche et thermiquement isolante
FR2973098A1 (fr) Cuve etanche et thermiquement isolante
EP3473915B1 (fr) Cuve etanche et thermiquement isolante
WO2020193665A1 (fr) Cuve étanche et thermiquement isolante
FR3054872A1 (fr) Structure de paroi etanche
FR3078136A1 (fr) Paroi de cuve etanche comprenant une membrane d'etancheite comportant une zone renforcee
FR3064042A1 (fr) Cuve etanche et thermiquement isolante comportant un bouchon isolant de renfort
FR3080905A1 (fr) Paroi de cuve etanche comprenant une membrane d'etancheite
FR3082596A1 (fr) Cuve etanche et thermiquement isolante a ondulations continues dans le dome liquide
WO2021140218A1 (fr) Installation de stockage pour gaz liquéfié
FR3073270A1 (fr) Cuve etanche et thermiquement isolante comportant des dispositifs d'ancrage des panneaux isolants primaires sur des panneaux isolants secondaires
WO2022253615A1 (fr) Installation de stockage d'un gaz liquéfié
WO2021233712A1 (fr) Installation de stockage pour gaz liquéfié
WO2021053055A1 (fr) Cuve etanche et thermiquement isolante
FR3069903B1 (fr) Cuve etanche et themiquement isolante
EP3827195A1 (fr) Cuve etanche et thermiquement isolante
EP3824216A1 (fr) Installation de stockage de fluide
WO2023036769A1 (fr) Installation de stockage pour gaz liquéfié
FR3082593A1 (fr) Cuve etanche munie d'un element de jonction ondule
WO2019012237A1 (fr) Cuve etanche et thermiquement isolante a bande de support incurvee
WO2023227379A1 (fr) Structure de dôme pour une cuve étanche et thermiquement isolante
WO2022243081A1 (fr) Procédé de fermeture d'une membrane d'étanchéité pour cuve étanche et thermiquement isolante
EP4198375A1 (fr) Installation de stockage d'un gaz liquefie comportant une cuve et une structure de dome
WO2021013856A9 (fr) Membrane d'etancheite pour cuve etanche de stockage de fluide

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20231206

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR