EP4330545A1 - Wind turbine system having an articulated mast - Google Patents

Wind turbine system having an articulated mast

Info

Publication number
EP4330545A1
EP4330545A1 EP22722258.5A EP22722258A EP4330545A1 EP 4330545 A1 EP4330545 A1 EP 4330545A1 EP 22722258 A EP22722258 A EP 22722258A EP 4330545 A1 EP4330545 A1 EP 4330545A1
Authority
EP
European Patent Office
Prior art keywords
mast
wind turbine
platform
ball joint
wind
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22722258.5A
Other languages
German (de)
French (fr)
Inventor
Philippe Durand
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coffratherm SC
Original Assignee
Coffratherm SC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR2104346A external-priority patent/FR3122223B1/en
Priority claimed from FR2104345A external-priority patent/FR3122160A1/en
Priority claimed from FR2104348A external-priority patent/FR3122221B1/en
Application filed by Coffratherm SC filed Critical Coffratherm SC
Publication of EP4330545A1 publication Critical patent/EP4330545A1/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/25Arrangements for mounting or supporting wind motors; Masts or towers for wind motors specially adapted for offshore installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0204Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for orientation in relation to wind direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/93Mounting on supporting structures or systems on a structure floating on a liquid surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/95Mounting on supporting structures or systems offshore
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/40Movement of component
    • F05B2250/43Movement of component with three degrees of freedom
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/50Kinematic linkage, i.e. transmission of position
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines

Definitions

  • the invention is in the field of maritime platforms, in particular that of platforms intended to install energy production devices on the high seas, in particular wind turbines, but not only.
  • the invention is more particularly in the field of floating platforms.
  • Deep-sea floating platforms also called offshore, are used in very deep areas, generally greater than forty meters, where fixed platforms, mounted on pillars resting on the seabed, are not economically viable. They avoid some of the inherent disadvantages of fixed platforms. Notably :
  • floating platforms are subject to variations in the liquid surface on which they float, in particular the effects of the swell. This can reach values of fourteen meters in height, measured from hollow to crest and, unless their dimensions are considerably increased, G inclination of the platform can then reach an angle of seventeen degrees.
  • the mechanical components of the latter, in particular the blades are strongly stressed by the swell and the variations in inclination, as are the fixings of the mast of this wind turbine on the platform.
  • the wind generates forces proportional to the cube of its speed and the surface exposed, that is to say the square of the length of the blades, in the case of a wind turbine.
  • these forces reach one hundred tons and more.
  • these forces are balanced at the level of the recess.
  • these forces are balanced by Archimedes' thrust at its center of thrust. It is therefore the inclination of the platform on which the mast is fixed that will balance the whole. If the platform is not sufficiently dimensioned, this can lead to the total destabilization of the whole. In all cases, these oscillations cause a loss of performance of the wind turbine, and fatigue of the resistant components.
  • An object of the invention is to provide an offshore platform system that is more stable and less sensitive to environmental hazards, in particular to swell and wind, and capable of obtaining better performance from these elements.
  • a wind turbine system which comprises a wind turbine having a mast and a moving assembly comprising a propeller of the wind turbine, a nacelle to which the propeller is fixed and a balance beam, the wind turbine further comprising means for swiveling the rocker arm, the swiveling means being carried by the mast, preferably at an upper end of said mast.
  • the pendulum may comprise a rod which extends downwards from the swivel means, and a counterweight fixed to a lower end of the rod.
  • the mast is advantageously hollow so that it defines a substantially tubular passage through which the rod extends.
  • the system may include a shaft that extends the passageway down past the mast.
  • the ball joint means may comprise a cradle formed at the upper end of the mast and having a spherical concavity oriented upwards, the ball joint means further comprising a ball joint provided to come to rest on the cradle.
  • the system may include a floating platform that carries the wind turbine. Then, the well is advantageously formed through the platform so that the counterweight is placed under the platform.
  • the system can also comprise a ring, and connecting means for coupling this ring with the balance.
  • the ring is advantageously arranged to constitute an inertial mass and/or a wind resistance.
  • the system comprises a floating platform
  • the latter may comprise two parts that are movable relative to each other, one of the parts being arranged around the mast, connecting means being provided for coupling said mass with the pendulum.
  • the part coupled to the pendulum comprises advantageously pneumatic means for recovering energy from a swell.
  • a floating platform system which comprises a floating platform, moorings and cables to connect this platform to the moorings, the platform comprising a floating box, a bridge arranged at the above the casing and means for holding the deck fixed to the casing, the holding means being designed to offer a reduced grip to the elements, in particular to the swell and the wind, the cables being designed so that the casing is kept submerged at one depth below the surface of the water and the deck is kept out of the water.
  • the floating box has a volume capable of generating an Archimedean thrust greater than the weight of the system.
  • the system can also comprise winch means for adjusting the lengths of the cables, in particular according to the tides, in particular to maintain or to adjust the depth of immersion of the caisson.
  • the depth of immersion is at least equal to half of a predictable wavelength for swell.
  • the depth of immersion is advantageously at least equal to the foreseeable amplitude for the swell.
  • the system may further comprise means for producing electrical energy, preferably a wind turbine mounted on the platform, even more preferably a horizontal axis wind turbine.
  • a floating platform system which comprises a floating platform, the latter comprising a bridge maintained above the surface of the water and pneumatic means for recovering energy of a swell.
  • the pneumatic means advantageously comprise at least one bellows, driven by the swell and a turbine driven by the air sucked in and/or expelled by this bellows.
  • the system comprises at least two turbines, a first turbine intended to be driven by the air sucked in by the bellows and a second turbine driven by the air expelled by the bellows.
  • the system comprises several bellows and at least two pads, a first pad of which is provided to receive the air passed through the first turbine and intended to be sucked in by said bellows and a second pad of which is provided to receive the air expelled by the bellows and intended to drive the second turbine.
  • Each bellows may comprise a plate fixed under the deck, a floating base intended to follow the movements of the swell and a deformable wall connecting the plate and the base in an airtight manner, and, preferably, a guide for movement base vertical
  • FIG. 1 is a schematic perspective view of a system according to the invention for the production of electrical energy at sea;
  • FIG. 2 is a schematic elevational view of the system of Figure 1:
  • FIG. 3 is a schematic perspective view from above of a floating platform for the system of FIG. 1;
  • FIG. 4 is a sectional view of the platform of Figure 3;
  • FIG. 5 is a schematic view, in elevation and in section, of a balancing system for a wind turbine equipping the system of FIG. 1;
  • FIG. 6 is a schematic perspective view from above of a mooring device for the system of FIG. 1;
  • FIG. 7 is a schematic view in perspective and in section of a pneumatic energy production device, for the system of FIG. 1;
  • FIG. 8 is a schematic view in elevation and in section, illustrating the operation of the pneumatic device of FIG. 7;
  • FIG. 9 is a schematic top view of the platform, illustrating a distribution of bellows for the pneumatic device of Figures 7 and 8.
  • FIG. 10 is a schematic perspective view from above, illustrating a variant of the system according to the invention using six deadweights.
  • FIG. 11 is a schematic view in elevation and in perspective of a terrestrial variant of a balancing system according to the invention.
  • FIG. 12 is a schematic sectional view of the system of Figure 11.
  • FIG 1 illustrates a floating energy production system 1.
  • the system comprises a floating platform 2, on which are mounted means 3, 4 for producing electrical energy. These means of production comprise a wind turbine 3 and a pneumatic device 4.
  • the system 1 further comprises a set of deadweights 6 to hold the system relative to the seabed 7.
  • the platform 2 is substantially of revolution around a vertical axis X2, called platform axis. It comprises a floating box 8, a horizontal bridge 9 arranged high above the box 8 and struts 11 to connect between them, substantially rigidly, the box 8 and the bridge 9.
  • the struts form a support substantially transparent to the elements, it that is to say presenting a weak resistance to swell, waves and wind.
  • the box 8 has the shape of a cylinder section of revolution around the platform axis X2. He has a diameter D8 between 1.2 and 1.5 times a thickness E8 measured axially, that is to say along the platform axis X2, substantially constant.
  • the box 8 is made of reinforced concrete.
  • each cable comprises two strands 12 A, 12B; a first of the strands 12A connects the respective deadman to the box 8, the second strand 12B connects the same deadman to a respective winch 13 arranged on the bridge 9 of the platform.
  • the first strand 12A forms an angle Al 2 with a vertical axis V of an axial plane comprising the platform axis X2.
  • the angle A12 is between twenty and forty-five degrees, preferably close to thirty degrees.
  • Each mooring comprises a grooved pulley 14, illustrated in FIG. 6, which serves as an mooring point for the platform 2.
  • the cable is mounted on the pulley 14, so that the winch makes it possible to simultaneously modify the length of the two strands 12A, 12B of the cable 12.
  • H7 between the casing 8 and the seabed 7.
  • the moorings are used so that the caisson is kept submerged at a depth H8 below the surface 10.
  • the swell takes the form of a surface wave 100, of amplitude H100 and wavelength L100.
  • the immersion depth H8 of the caisson is measured from a mean plane P100 of the surface wave 100.
  • statistically corresponds a typical amplitude H100T and a typical wavelength L100T, considered to be greater than those generally encountered in this place, for example greater than 80% of the amplitudes and the wavelengths in this place.
  • the swell can commonly reach an amplitude of seven meters. Near the surface 10, the swell causes turbulence likely to affect the stability of the platform.
  • the caisson 8 can be immersed under a depth of water H8 greater than or equal to the typical amplitude H100T, to which a safety depth HS can also be added.
  • the height H8 is chosen greater than or equal to half a wavelength L100, that is to say: H8 > L 100/2.
  • the stability of the platform is increased; the "transparency" of the support 11 also limits the grip of the elements, water or wind, so that these elements do not significantly destabilize the platform.
  • the stability of the platform is increased; the "transparency" of the support 11 also limits the grip of the elements, water or wind, so that these elements do not significantly destabilize the platform.
  • its greater stability makes it possible to limit the fatigue of the components of the wind turbine, in particular its mast.
  • the platform can also be affected by the tidal phenomenon.
  • the depth H10 of the sea depending on the location of the platform, can vary significantly, from a few tens of centimeters to more than ten meters.
  • the winches 13 are used to modify the length of the cables 12; thus, the platform can be brought closer to the bottom 7 when the tide is falling, or moved away from it when the tide is rising, while maintaining a sufficient air draft H9 under the bridge 9.
  • the control of the winches is advantageously automated.
  • She can be defined from a digitized table of local tides and/or from a sensor making it possible to estimate an instantaneous depth of immersion H8.
  • the sensor can, for example, be a pressure sensor or a sonar; it can be used to correct or refine tide table values.
  • the dead bodies 6 are of a type that can be described as an artificial reef, that is to say designed to limit the impact on the local ecosystem. They are substantially identical to each other.
  • the mooring 6 shown in Figure 6 comprises a concrete block 16.
  • the block 16 comprises holes 17 formed irregularly in the block, so as to constitute through passages or niches. These gaps serve as refuges for aquatic fauna.
  • the holes 17 are cylindrical in shape, with a substantially horizontal axis XI 7 and of different diameters DI 7.
  • the deadweight 6 further comprises a tangle 18 disposed on the block 16.
  • the tangle consists of tetrapod elements 19; each tetrapod comprising four beams extending in different, non-coplanar directions.
  • the elements are arranged in a substantially random manner and entangled with each other.
  • the elements 19 constitute a refuge for the aquatic fauna and a support for the flora.
  • the deadman also comprises a ring 21 supported by posts 22 which connect it to block 16.
  • the ring has substantially the same diameter as block 16. It is placed substantially above entanglement 18.
  • the ring and the posts form a retaining device for the tetrapod elements.
  • a bar horizontal 23 is fixed diametrically to the ring 21. It carries the pulley 14, serving to return the cable 12.
  • the system 1 is designed for the production of energy and comprises in particular the wind turbine 3.
  • this wind turbine comprises a tubular mast 31 rigidly fixed to the bridge 9 and extending vertically upwards from the bridge.
  • a well 32 extends the mast downwards, through the deck, and as far as an underside of the box 8.
  • the mast and the well together form a rectilinear tubular space 33 which opens towards the top at the top 31A of the mast and down at the base 8A of the box.
  • the top 31A of the mast 31 comprises a cradle 34 of which a spherical concavity 34 A, of radius R and of center C, is oriented upwards.
  • the wind turbine further comprises a moving assembly 36 comprising a propeller 37 with a horizontal axis X37, a nacelle 38, a rod 39, a ball joint 60 and a pendulum 61.
  • the nacelle 38 comprises means for transforming the wind energy into electric energy.
  • the ball joint 60 has the same radius R as the cavity 34A and it is provided to come to rest on the cradle 34 A and cooperate with it to form a ball joint between the movable assembly 36 and the mast 31.
  • the rod 39 extends upwards from the ball joint and it connects the nacelle and the ball joint together.
  • the cradle may be part of a spherical bearing, that is to say cooperating with a substantially spherical ball joint, preventing any translation.
  • a spherical bearing in particular avoids any risk of rebound of the ball joint 60 in its cradle 34.
  • the center of rotation R of the ball joint in the cradle is arranged on the axis X37 of rotation of the propeller 37; if this is not possible, it is advantageously arranged as close as possible to this axis.
  • the pendulum 61 comprises a rod 62 and a counterweight 63.
  • the rod extends downwards from the ball joint, through the passage 33, to below the box 8.
  • the counterweight is fixed at one end bottom of the rod, under the box.
  • the rod and the bead are substantially aligned with each other, along an X36 crew axis.
  • the assembly axis X36 coincides with the platform axis X2 .
  • the crew axis tilts. This inclination is limited by the restoring force of the rocker arm, in particular by the action of the counterweight 63.
  • This arrangement is particularly advantageous since, on the one hand, it eliminates the forces of embedding the nacelle on the mast and, on the other hand, it allows a reduced section for the rod, which limits the aerodynamic disturbances downstream of the propeller 37.
  • the energy production system 1 comprises, in addition to the wind turbine 3, a pneumatic device 4 for energy production.
  • Such a pneumatic device 4 is illustrated in FIGS. 7 to 9. It notably comprises a set of bellows 40 and two turbines 41, 42.
  • the turbines are fixed on the bridge 9.
  • the bellows are fixed under the bridge. They are substantially cylindrical. Their number is not imposed.
  • the set of bellows is represented by a single bellows; nevertheless, a higher number of bellows makes it possible to follow the movements of the swell more precisely, as illustrated in figure 8.
  • each bellows comprises an upper plate 43, a base 44 and a deformable wall 46.
  • the plate 43 is fixed under the deck.
  • the base 44 is floating, so that it can follow the vertical movements of the swell by sliding along a respective vertical guide 47, fixed to the deck 9 and to the caisson 8.
  • the wall 46 has a substantially cylindrical shape, around guide 47; it is designed to deform like that of an accordion when the base 44 approaches or moves away from the plate 43, under the action of the swell.
  • the wall is made of an airtight material, for example a rubber or a coated fabric, optionally reinforced with fiber, for example metal fibers.
  • the base 44 can advantageously take the form of a concrete box, an interior volume of which is filled with polystyrene, in order to ensure its buoyancy.
  • the density of the base 44 of the bellows is close to the density of water.
  • the pneumatic device further comprises two buffer volumes 51, 52.
  • a first buffer 51 is connected with a first turbine 4L
  • the other buffer 52 is connected to the second turbine 42.
  • Each bellows is connected, through the plate 43 to each of the two buffers 51, 52 by valves 53, 54 respectively.
  • a first valve 53 connected to the first buffer, opens when the volume of the bellows increases and sucks in air. The surrounding air is sucked into the first buffer and drives the first 4L turbine. The air sucked in is pooled between all the bellows in the first buffer, which allows a substantially regular drive of the first turbine.
  • the second valve 54 connected to the second buffer 52, opens when the volume of the bellows decreases and rejects air. This air is rejected in the second buffer and drives the second turbine 42, when it joins the atmosphere. The exhaled air is pooled between all the bellows in the second buffer 52 which allows a substantially regular drive of the second turbine 42.
  • the turbines 41, 42 are wind turbines with a vertical axis, of the Darrieus type, wrapped in a fairing 55. They drive one or more alternators or dynamos, which thus produce electrical energy.
  • the platform 2 is moored to six moorings 6 of the type previously described with reference to Figure 6.
  • the six moorings are arranged on a circle, that is to say say, in the position of Figure 10, substantially evenly distributed around the platform axis X2.
  • the platform 2 comprises three high recovery points 71, on the edge of the bridge 9, and three low recovery points 72, on the bank of the base 8 A of the box 8. They are arranged so that an axial plane passing through a high point 71 and an axial plane passing through a neighboring low point 72 together form an offset angle A7 equal to half of a similar angle between two neighboring high points. That is to say, the low points 72 are regularly offset from the high points 71 around the platform axis XL. In this example, the angle of offset A7 is equal to sixty degrees.
  • Each deadweight 6 is connected to the same high point 71 as one of its two immediate neighboring deadweights and to the same low point as its other immediate neighboring deadweight. This arrangement ensures greater stability of the platform relative to the seabed 7.
  • the moorings may include mooring points consisting of pulleys 14, as previously described.
  • the low points 72 can also comprise pulleys, as well as at least two of the high points 71, the third high point comprising an attachment point, for one end of the cable 12, and a winch for the opposite end of the cable.
  • the same cable 12 therefore passes successively through a high point 71, an anchoring point 14 and a low point 72, from the attachment point to the winch.
  • a single winch makes it possible to adjust the altitude of the platform above the bottom 7.
  • the principle of angular offset of the mooring points is also applied to the embodiment of Figures 1 and 2.
  • the wind turbine comprises ball joint means 34, 60 similar to those previously described with reference to Figure 5.
  • the system 1 comprises a concrete block 80 buried in a pit 81; the pit is dug in the ground.
  • the mast 31 is sealed in the block 80 which ensures the stability of the system 1.
  • the mast has a conical shape which tapers from bottom to top.
  • the mast rests on, and is anchored in, a bottom 81 A of the pit 81.
  • a well 132 is formed through the bottom 81 A, in the buried mass 80 in the axis of the mast, to receive there a lower end of the pendulum 61, in particular the counterweight 63.
  • the system further comprises a balancer ring 82 arranged nearby on the ground, around the mast 31 and rigidly connected to the rod 62 by arms 84.
  • the mast 31 comprises openings 87; a respective arm extends through each of the soundholes.
  • the system shown includes four arms and four vents. In Figure 13, only two arms and two vents are shown.
  • the balancing ring 82 is movable with the pendulum 61, above the block 80 and above the level NS of the ground. Arranged in this way, it has a significant grip on a component W1 of the wind which is moving close to the ground. Given the lever arm formed by the distance between the ball joint center C and the ring 82, the pressure exerted by this wind W1 compensates at least in part for the pressure exerted by the component W2 of the wind on the propeller 37 of G wind turbine. Thus, the ring makes it possible to balance the torque exerted by the component W2 of the wind around the center of ball jointing.
  • the weight of the balancing ring 82 contributes, like the counterweight 63, to the balance of the wind turbine 3.
  • the ring 82 thus constitutes an inertial mass which resists the effects of the wind, generating a force countering the effects wind which is added to the restoring force developed by the counterweight 63.
  • the use of an inertial mass 82 makes it possible to reduce the length of the pendulum 61 and/or the weight of the counterweight; where possible, the counterweight can be removed. This arrangement is particularly advantageous in the case of a terrestrial system, so that it avoids or limits the digging of a well 132.
  • the block essentially has the function of transmitting to the ground the stresses due to the dead weight of the wind turbine system 1. Because of this arrangement, the buried concrete block can have a reduced volume, which limits the costs and the impact environment of an onshore wind turbine. In particular, the concrete block can be more easily destroyed, being of a volume and a thickness much lower than those of a block necessary for the anchoring of an onshore wind turbine of the prior art. Thus, it appears that the volume of the concrete block 80 can be reduced by ninety percent compared to those which hold the wind turbines of the prior art. Such a mass is more easily recyclable.
  • the ring can be a solid element, as illustrated in figures 12 and 13. It can also be a simple sheet, solid or expanded metal, for example.
  • cable used in the description, covers any type of mooring line, flexible, wired, capable of being used to connect the platform to its moorings, in particular a rope or a chain, in any appropriate material, for example steel, or composite materials.
  • the cable In areas of low tidal range, provision can be made for the cable to be of constant length. In this case, it is not necessary to provide a winch on the deck or a pulley on the moorings, the cable can have a fixed length.
  • the shapes of the different elements may vary.
  • the platform can have a rectangular plan instead of a circular one.
  • the corresponding floating box may be parallelepipedal; it can also be conical.
  • a bellows may not be directly driven by the swell, but indirectly, for example by a linkage driven by a float driven by the swell.
  • the bellows can be arranged above the deck.
  • the swiveling means can be arranged substantially at the level of the deck of the platform, so that the mast has a low height or that there is no need for a mast.
  • the immersion of the box and the swiveling of the nacelle significantly reduce the forces undergone by the energy production system according to the invention, compared to the systems of the prior art.
  • the quantities of material needed to manufacture such a platform are reduced accordingly, which significantly reduces the cost.
  • the stability of the moving assembly is improved.
  • the wind turbine propeller is generally closer to a vertical plane, within a range of wider wind speed.
  • the efficiency of the wind turbine is therefore markedly improved by the improvements provided by the invention.
  • a system according to the invention has all or part of the following advantages: reduction of the movements which result from the deformations of the surface of the liquid, since it comprises means which make it possible to immerse the box under the zone of turbulence of the surface of the sea, and to keep it there;
  • the pneumatic device of the offshore system allows an additional energy production estimated at approximately 4% of the energy produced thanks to an offshore electrical energy production system according to the invention.
  • a platform or a platform system according to the invention is not limited to a use for the production of electricity, it can comprise only a horizontal axis wind turbine, or only pneumatic means of energy production. Such a platform can also be used to carry dwellings or serve as a wharf or floating bridge.
  • the pneumatic device can comprise more than two turbines, for example four or six.
  • the inertial mass device illustrated for an onshore wind turbine in Figures 11 and 12 can also be used in the case of a wind turbine installed at sea, where the seabed is shallow and does not allow a pendulum of a length sufficient, that is to say to have the counterweight at a sufficient distance from the center of ball joint.
  • the swivel system can be replaced by a cylindrical bearing of revolution around a horizontal axis in a plane perpendicular to the axis of rotation of the propeller; a rotation around the vertical axis of the platform, or the axis of the mast, being ensured in addition.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

The invention relates to a wind turbine system comprising a wind turbine (3) having a mast (31) and a mobile assembly (36) which comprises a rotor of the wind turbine, a nacelle (38) to which the rotor is fixed, and a rocker arm (61), this wind turbine further comprising means (34, 60) for the swivelling of the rocker arm, which are carried by the mast.

Description

DESCRIPTION DESCRIPTION
Titre : Système d’éolienne ayant un mit articulé. Title: Wind turbine system having an articulated mit.
L’invention se situe dans le domaine des plateformes maritimes, notamment celui des plateformes prévues pour installer des dispositifs de production d’énergie en haute-mer, notamment des éoliennes, mais pas seulement. L’invention se situe plus particulièrement dans le domaine des plateformes flottantes. The invention is in the field of maritime platforms, in particular that of platforms intended to install energy production devices on the high seas, in particular wind turbines, but not only. The invention is more particularly in the field of floating platforms.
Des plateformes fixes sont destinées aux ouvrages réalisés dans des eaux peu profondes, entre cinq et quarante mètres. La descente de charges est réalisée par des fondations ancrées dans le fond. Généralement elles sont destinées à supporter des ouvrages dont le poids est très élevé ; 12 000 tonnes et plus pour une éolienne. Les fondations réalisées sous la surface liquide sont donc importantes et délicates à réaliser. Leur coût est donc élevé. Elles sont en outre soumises à des efforts dont la direction et l’amplitude sont variables : Fixed platforms are intended for works carried out in shallow water, between five and forty meters. The descent of loads is carried out by foundations anchored in the bottom. Generally they are intended to support works of which the weight is very heavy; 12,000 tons and more for a wind turbine. The foundations made under the liquid surface are therefore important and delicate to make. Their cost is therefore high. They are also subject to forces whose direction and amplitude are variable:
- les effets horizontaux du vent de surface, - the horizontal effects of the surface wind,
- les variations géométriques de la surface liquide, l’effet de houle. - the geometric variations of the liquid surface, the swell effect.
Ces efforts sont généralement horizontaux. Le moment fléchissant induit, proportionnel à la hauteur de l’ouvrage, doit être repris par les fondations. Ceci induit un surcoût important, mais également des contraintes de fatigue des matériaux qui composent l’ouvrage, et, une réduction de sa durée de vie. These efforts are generally horizontal. The induced bending moment, proportional to the height of the structure, must be taken up by the foundations. This induces a significant additional cost, but also fatigue constraints of the materials that make up the structure, and a reduction in its lifespan.
Les plateformes flottantes de haute-mer, aussi dites offshore sont utilisées dans les zones de grande profondeur, généralement supérieures à quarante mètres, là où des plateformes fixes, montées sur les piliers reposant sur le fond marin, ne sont pas économiquement viables. Elles évitent certains des inconvénients inhérents aux plateformes fixes. Notamment : Deep-sea floating platforms, also called offshore, are used in very deep areas, generally greater than forty meters, where fixed platforms, mounted on pillars resting on the seabed, are not economically viable. They avoid some of the inherent disadvantages of fixed platforms. Notably :
- leur poids et celui des ouvrages qu’elles supportent est équilibré par la poussée d’Archimède. Les problèmes des fondations profondes et la reprise du moment fléchissant d’encastrement sont donc supprimés ; et, - flottantes, elles suivent les variations de hauteurs dues aux phénomènes des marées. - their weight and that of the structures they support is balanced by the thrust of Archimedes. The problems of deep foundations and the recovery of the bending moment of embedding are therefore eliminated; and, - floating, they follow the variations in height due to the phenomena of the tides.
Cependant, les plateformes flottantes sont soumises aux variations de la surface liquide sur laquelle elles flottent, notamment aux effets de la houle. Celle-ci peut atteindre des valeurs de quatorze mètres de hauteur, mesurée de creux à crête et, sauf à augmenter considérablement leurs dimensions, G inclinaison de la plateforme peut alors atteindre dix-sept degrés d’angle. Lorsqu’une telle plateforme porte une éolienne, les organes mécaniques de cette dernière, notamment les pales, sont fortement sollicités par la houle et les variations d’inclinaison, de même que les fixations du mât de cette éolienne sur la plateforme. However, floating platforms are subject to variations in the liquid surface on which they float, in particular the effects of the swell. This can reach values of fourteen meters in height, measured from hollow to crest and, unless their dimensions are considerably increased, G inclination of the platform can then reach an angle of seventeen degrees. When such a platform carries a wind turbine, the mechanical components of the latter, in particular the blades, are strongly stressed by the swell and the variations in inclination, as are the fixings of the mast of this wind turbine on the platform.
En outre, le vent génère des forces proportionnelles au cube de sa vitesse et de la surface exposée, c’est-à-dire au carré de la longueur des pales, dans le cas d’une éolienne. En cas extrême (100km/h), pour une longueur de pales égale à 40 m, ces forces atteignent cent tonnes et plus. Si le mât est encastré dans le sol, ces forces transmises au mât sont équilibrées au niveau de l’encastrement. Cependant, dans le cas de la technologie offshore, ces efforts sont équilibrés par la poussée d’Archimède en son centre de poussée. C’est donc l’inclinaison de la plateforme sur laquelle est fixé le mât qui va équilibrer l’ensemble. Si la plateforme n’est pas suffisamment dimensionnée, cela peut conduire à déstabiliser totalement l’ensemble. Dans tous les cas, ces oscillations provoquent une perte de rendement de l’éolienne, et une fatigue des organes résistants. In addition, the wind generates forces proportional to the cube of its speed and the surface exposed, that is to say the square of the length of the blades, in the case of a wind turbine. In extreme cases (100 km/h), for a length of blades equal to 40 m, these forces reach one hundred tons and more. If the mast is embedded in the ground, these forces transmitted to the mast are balanced at the level of the recess. However, in the case of offshore technology, these forces are balanced by Archimedes' thrust at its center of thrust. It is therefore the inclination of the platform on which the mast is fixed that will balance the whole. If the platform is not sufficiently dimensioned, this can lead to the total destabilization of the whole. In all cases, these oscillations cause a loss of performance of the wind turbine, and fatigue of the resistant components.
Un but de l'invention est de proposer un système de plate-forme offshore plus stable et moins sensible aux aléas environnementaux, notamment à la houle et au vent, et apte à tirer un meilleur rendement de ces éléments. Selon un premier objet de l’invention, on propose un système d’éolienne qui comprend une éolienne ayant un mât et un équipage mobile comprenant une hélice de l’éolienne, une nacelle à laquelle est fixée l’hélice et un balancier, l’éolienne comprenant en outre des moyens de rotulage du balancier, les moyens de rotulage étant portés par le mât, de préférence à une extrémité supérieure dudit mât. An object of the invention is to provide an offshore platform system that is more stable and less sensitive to environmental hazards, in particular to swell and wind, and capable of obtaining better performance from these elements. According to a first object of the invention, a wind turbine system is proposed which comprises a wind turbine having a mast and a moving assembly comprising a propeller of the wind turbine, a nacelle to which the propeller is fixed and a balance beam, the wind turbine further comprising means for swiveling the rocker arm, the swiveling means being carried by the mast, preferably at an upper end of said mast.
Le balancier peut comprendre une tringle qui s’étend vers le bas depuis les moyens de rotulage, et un contre-poids fixé à une extrémité basse de la tringle. Le mât est avantageusement creux de sorte qu’il définit un passage sensiblement tubulaire au travers duquel s’étend la tringle. Le système peut comprendre un puits qui prolonge le passage vers le bas, au-delà du mât. The pendulum may comprise a rod which extends downwards from the swivel means, and a counterweight fixed to a lower end of the rod. The mast is advantageously hollow so that it defines a substantially tubular passage through which the rod extends. The system may include a shaft that extends the passageway down past the mast.
Les moyens de rotulage peuvent comprendre un berceau formé à l’extrémité supérieure du mât et possédant une concavité sphérique et orientée vers le haut, les moyens de rotulage comprenant en outre une rotule prévue pour venir reposer sur le berceau. The ball joint means may comprise a cradle formed at the upper end of the mast and having a spherical concavity oriented upwards, the ball joint means further comprising a ball joint provided to come to rest on the cradle.
Le système peut comprendre une plateforme flottante qui porte l’éolienne. Alors, le puits est avantageusement formé au travers de la plateforme de sorte que le contre-poids est disposé sous la plateforme. The system may include a floating platform that carries the wind turbine. Then, the well is advantageously formed through the platform so that the counterweight is placed under the platform.
Le système peut aussi comprendre un anneau, et des moyens de liaison pour coupler cet anneau avec le balancier. L’anneau est avantageusement disposé pour constituer une masse inertielle et/ou une prise à du vent. The system can also comprise a ring, and connecting means for coupling this ring with the balance. The ring is advantageously arranged to constitute an inertial mass and/or a wind resistance.
Notamment dans le cas où le système comprend une plateforme flottante, celle- ci peut comprendre deux parties mobiles l’une par rapport à l’autre, l’une des parties étant disposée autour du mât, des moyens de liaison étant prévus pour coupler ladite masse avec le balancier. La partie couplée au balancier comprend avantageusement des moyens pneumatiques pour récupérer de l’énergie d’une houle. In particular in the case where the system comprises a floating platform, the latter may comprise two parts that are movable relative to each other, one of the parts being arranged around the mast, connecting means being provided for coupling said mass with the pendulum. The part coupled to the pendulum comprises advantageously pneumatic means for recovering energy from a swell.
Selon un deuxième objet de l’invention, on propose un système de plateforme flottante, qui comprend une plateforme flottante, des corps-morts et des câbles pour relier cette plateforme aux corps-morts, la plateforme comprenant un caisson flottant, un pont disposé au-dessus du caisson et des moyens pour maintenir le pont fixé au caisson, les moyens de maintien étant conçus pour offrir une prise réduite aux éléments, notamment à la houle et au vent, les câbles étant conçus de sorte que le caisson est maintenu immergé à une profondeur sous la surface de l’eau et le pont est maintenu hors d’eau. De préférence, le caisson flottant a un volume apte à générer une poussée d’Archimède supérieure au poids du système. According to a second object of the invention, a floating platform system is proposed, which comprises a floating platform, moorings and cables to connect this platform to the moorings, the platform comprising a floating box, a bridge arranged at the above the casing and means for holding the deck fixed to the casing, the holding means being designed to offer a reduced grip to the elements, in particular to the swell and the wind, the cables being designed so that the casing is kept submerged at one depth below the surface of the water and the deck is kept out of the water. Preferably, the floating box has a volume capable of generating an Archimedean thrust greater than the weight of the system.
Le système peut aussi comprendre des moyens de treuil pour régler des longueurs des câbles, notamment en fonction des marées, notamment pour maintenir ou pour régler la profondeur d’immersion du caisson. The system can also comprise winch means for adjusting the lengths of the cables, in particular according to the tides, in particular to maintain or to adjust the depth of immersion of the caisson.
De préférence, la profondeur d’immersion est au moins égale à la moitié d’une longueur d’onde prévisible pour de la houle. La profondeur d’immersion est avantageusement au moins égale à l’amplitude prévisible pour de la houle. Preferably, the depth of immersion is at least equal to half of a predictable wavelength for swell. The depth of immersion is advantageously at least equal to the foreseeable amplitude for the swell.
Le système peut en outre comprendre des moyens de production d’énergie électrique, de préférence une éolienne montée sur la plateforme, encore plus de préférence une éolienne à axe horizontal. The system may further comprise means for producing electrical energy, preferably a wind turbine mounted on the platform, even more preferably a horizontal axis wind turbine.
Selon un troisième objet de l’invention, on propose un système de plateforme flottante, qui comprend une plateforme flottante, celle-ci comprenant un pont maintenu au-dessus de la surface de l’eau et des moyens pneumatiques pour récupérer de l’énergie d’une houle. Les moyens pneumatiques comprennent avantageusement au moins un soufflet, entraîné par la houle et une turbine entraînée par de l’air aspiré et/ou expulsé par ce soufflet. De préférence, le système comprend au moins deux turbines, une première turbine prévue pour être entraînée par l’air aspiré par le soufflet et une deuxième turbine entraînée par l’air expulsé par le soufflet. According to a third object of the invention, there is proposed a floating platform system, which comprises a floating platform, the latter comprising a bridge maintained above the surface of the water and pneumatic means for recovering energy of a swell. The pneumatic means advantageously comprise at least one bellows, driven by the swell and a turbine driven by the air sucked in and/or expelled by this bellows. Preferably, the system comprises at least two turbines, a first turbine intended to be driven by the air sucked in by the bellows and a second turbine driven by the air expelled by the bellows.
De préférence, le système comprend plusieurs soufflets et au moins deux tampons dont un premier tampon est prévu pour recevoir l’air passé au travers de la première turbine et destiné à être aspiré par lesdits soufflets et dont un deuxième tampon est prévu pour recevoir l’air expulsé par les soufflets et destiné à entraîner la deuxième turbine. Preferably, the system comprises several bellows and at least two pads, a first pad of which is provided to receive the air passed through the first turbine and intended to be sucked in by said bellows and a second pad of which is provided to receive the air expelled by the bellows and intended to drive the second turbine.
Chaque soufflet peut comprendre une plaque fixée sous le pont, une base flottante destinée à suivre les mouvements de la houle et une paroi déformable reliant de façon étanche à l’air la plaque et la base, et, de préférence, un guide pour un déplacement vertical de la base Each bellows may comprise a plate fixed under the deck, a floating base intended to follow the movements of the swell and a deformable wall connecting the plate and the base in an airtight manner, and, preferably, a guide for movement base vertical
Des modes de réalisation et des variantes seront décrits ci-après, à titre d’exemples non limitatifs, avec référence aux dessins annexés dans lesquels : [Fig. 1] est une vue schématique en perspective d’un système selon l’invention pour la production d’énergie électrique en mer ; Embodiments and variants will be described below, by way of non-limiting examples, with reference to the appended drawings in which: [Fig. 1] is a schematic perspective view of a system according to the invention for the production of electrical energy at sea;
[Fig. 2] est une vue schématique en élévation du système de la figure 1 : [Fig. 2] is a schematic elevational view of the system of Figure 1:
[Fig. 3] est une vue schématique en perspective et de dessus d’une plateforme flottante pour le système de la figure 1 ; [Fig. 3] is a schematic perspective view from above of a floating platform for the system of FIG. 1;
[Fig. 4] est une vue en coupe de la plateforme de la figure 3 ; [Fig. 4] is a sectional view of the platform of Figure 3;
[Fig. 5] est une vue schématique, en élévation et en coupe, d’un système d’équilibrage pour une éolienne équipant le système de la figure 1 ; [Fig. 5] is a schematic view, in elevation and in section, of a balancing system for a wind turbine equipping the system of FIG. 1;
[Fig. 6] est une vue schématique en perspective et de dessus d’un dispositif de corps-mort pour le système de la figure 1 ; [Fig. 6] is a schematic perspective view from above of a mooring device for the system of FIG. 1;
[Fig. 7] est une vue schématique en perspective et en coupe d’un dispositif pneumatique de production d’énergie, pour le système de la figure 1 ; [Fig. 8] est une vue schématique en élévation et en coupe, illustrant le fonctionnement du dispositif pneumatique de la figure 7 ; [Fig. 7] is a schematic view in perspective and in section of a pneumatic energy production device, for the system of FIG. 1; [Fig. 8] is a schematic view in elevation and in section, illustrating the operation of the pneumatic device of FIG. 7;
[Fig. 9] est une vue schématique de dessus de la plateforme, illustrant une répartition de soufflets pour le dispositif pneumatiques des figures 7 et 8. [Fig. 9] is a schematic top view of the platform, illustrating a distribution of bellows for the pneumatic device of Figures 7 and 8.
[Fig. 10] est une vue schématique en perspective de dessus, illustrant une variante du système selon l’invention utilisant six corps-morts ; et, [Fig. 10] is a schematic perspective view from above, illustrating a variant of the system according to the invention using six deadweights; and,
[Fig. 11] est une vue schématique en élévation et en perspective d’une variante terrestre d’un système d’équilibrage selon l’invention ; et, [Fig. 11] is a schematic view in elevation and in perspective of a terrestrial variant of a balancing system according to the invention; and,
[Fig. 12] est une vue schématique en coupe du système de la figure 11. [Fig. 12] is a schematic sectional view of the system of Figure 11.
Dans la description qui suit, les termes horizontal et vertical doivent être compris dans une position théorique de repos, telle qu’illustrée aux figures 1 et 2, en l’absence d’inclinaison qui pourrait être due, par exemple, à l’action de la houle, du vent, ou à une charge mal répartie. In the following description, the terms horizontal and vertical must be understood in a theoretical position of rest, as illustrated in figures 1 and 2, in the absence of inclination which could be due, for example, to the action swell, wind, or an ill-distributed load.
La figure 1 illustre un système flottant 1 de production d’énergie. Le système comprend une plateforme flottante 2, sur laquelle sont montés des moyens 3, 4 de production d’énergie électrique. Ces moyens de production comprennent une éolienne 3 et un dispositif pneumatique 4. Comme particulièrement illustré à la figure 2, le système 1 comprend en outre un ensemble de corps-morts 6 pour maintenir le système relativement au fond marin 7. Figure 1 illustrates a floating energy production system 1. The system comprises a floating platform 2, on which are mounted means 3, 4 for producing electrical energy. These means of production comprise a wind turbine 3 and a pneumatic device 4. As particularly illustrated in Figure 2, the system 1 further comprises a set of deadweights 6 to hold the system relative to the seabed 7.
La plateforme 2 est sensiblement de révolution autour d’un axe vertical X2, dit axe de plateforme. Elle comprend un caisson flottant 8, un pont 9 horizontal disposé haut-dessus du caisson 8 et des étais 11 pour relier entre eux, sensiblement rigidement, le caisson 8 et le pont 9. Les étais forment un support sensiblement transparent aux éléments, c’est-à-dire présentant une faible prise à la houle, aux vagues et au vent. The platform 2 is substantially of revolution around a vertical axis X2, called platform axis. It comprises a floating box 8, a horizontal bridge 9 arranged high above the box 8 and struts 11 to connect between them, substantially rigidly, the box 8 and the bridge 9. The struts form a support substantially transparent to the elements, it that is to say presenting a weak resistance to swell, waves and wind.
Comme particulièrement illustré aux figures 3 et 4, le caisson 8 a la forme d’un tronçon de cylindre de révolution autour de l’axe de plateforme X2. Il a un diamètre D8 compris entre 1,2 et 1,5 fois une épaisseur E8 mesurée axialement, c’est-à-dire selon l’axe de plateforme X2, sensiblement constante. Dans l’exemple illustré, le caisson 8 est réalisé en béton armé. As particularly illustrated in Figures 3 and 4, the box 8 has the shape of a cylinder section of revolution around the platform axis X2. He has a diameter D8 between 1.2 and 1.5 times a thickness E8 measured axially, that is to say along the platform axis X2, substantially constant. In the example illustrated, the box 8 is made of reinforced concrete.
Comme particulièrement illustré à la figure 2, la plateforme est reliée à chacun des corps-morts 6 par un câble 12 respectif. Dans l’exemple illustré, chaque câble comprend deux brins 12 A, 12B ; un premier des brins 12A relie le corps- mort respectif au caisson 8, le deuxième brin 12B relie le même corps-mort à un treuil 13 respectif disposé sur le pont 9 de la plateforme. Dans l’exemple illustré à la figure 1, le premier brin 12A forme un angle Al 2 avec un axe vertical V d’un plan axial comprenant l’axe de plateforme X2. De préférence, l’angle A12 est compris entre vingt et quarante-cinq degrés, de préférence voisin de trente degrés. As particularly illustrated in Figure 2, the platform is connected to each of the deadweights 6 by a respective cable 12. In the example shown, each cable comprises two strands 12 A, 12B; a first of the strands 12A connects the respective deadman to the box 8, the second strand 12B connects the same deadman to a respective winch 13 arranged on the bridge 9 of the platform. In the example illustrated in Figure 1, the first strand 12A forms an angle Al 2 with a vertical axis V of an axial plane comprising the platform axis X2. Preferably, the angle A12 is between twenty and forty-five degrees, preferably close to thirty degrees.
Chaque corps-mort comprend une poulie à gorge 14, illustrée à la figure 6, qui sert de point d’amarrage pour la plateforme 2. Le câble est monté sur la poulie 14, de sorte que le treuil permet de modifier simultanément la longueur des deux brins 12 A, 12B du câble 12. Ainsi, il est possible de régler une distance H7 entre le caisson 8 et le fond marin 7. Comme illustré aux figures 1, 2 et 8, notamment, dans le système flottant 1 selon l’invention, on utilise les corps-morts pour que le caisson soit maintenu immergé à une profondeur H8 sous la surface 10. Each mooring comprises a grooved pulley 14, illustrated in FIG. 6, which serves as an mooring point for the platform 2. The cable is mounted on the pulley 14, so that the winch makes it possible to simultaneously modify the length of the two strands 12A, 12B of the cable 12. Thus, it is possible to adjust a distance H7 between the casing 8 and the seabed 7. As illustrated in FIGS. 1, 2 and 8, in particular, in the floating system 1 according to the invention, the moorings are used so that the caisson is kept submerged at a depth H8 below the surface 10.
Comme illustré à la figure 8, la houle prend la forme d’une onde de surface 100, d’amplitude H100 et longueur d’onde L100. La profondeur d’immersion H8 du caisson est mesurée à partir d’un plan moyen P100 de l’onde de surface 100. En un lieu donné, correspond statistiquement une amplitude typique H100T et une longueur d’onde typique L100T, considérées comme supérieures à celles généralement rencontrées en ce lieu, par exemple supérieures à 80% des amplitudes et les longueurs d’onde en ce lieu. Typiquement, la houle peut couramment atteindre une amplitude de sept mètres. À proximité de la surface 10, la houle provoque des turbulences susceptibles d’affecter la stabilité de la plateforme. As illustrated in Figure 8, the swell takes the form of a surface wave 100, of amplitude H100 and wavelength L100. The immersion depth H8 of the caisson is measured from a mean plane P100 of the surface wave 100. In a given place, statistically corresponds a typical amplitude H100T and a typical wavelength L100T, considered to be greater than those generally encountered in this place, for example greater than 80% of the amplitudes and the wavelengths in this place. Typically, the swell can commonly reach an amplitude of seven meters. Near the surface 10, the swell causes turbulence likely to affect the stability of the platform.
Afin de limiter l’influence de la houle sur la stabilité de la plateforme, on peut immerger le caisson 8 sous une profondeur d’eau H8 supérieure ou égale à l’amplitude typique H100T, à laquelle on peut aussi ajouter une profondeur de sécurité HS. Ainsi, on peut choisir H8=H100T+HS. Par exemple, pour H100T=7m et HS=5m, on immerge le caisson à une profondeur H8=12m. In order to limit the influence of the swell on the stability of the platform, the caisson 8 can be immersed under a depth of water H8 greater than or equal to the typical amplitude H100T, to which a safety depth HS can also be added. . Thus, we can choose H8=H100T+HS. For example, for H100T=7m and HS=5m, the casing is immersed at a depth H8=12m.
Par ailleurs, des études ont démontré qu’à partir d’une profondeur HH1 égale à la moitié de la longueur d’onde L100, c’est-à-dire HH 1=E 100/2, et au-delà, il n’y a sensiblement plus de turbulences dues à la houle. Ainsi, de préférence, la hauteur H8 est choisie supérieure ou égale à une demi-longueur d’onde L100, c’est-à-dire : H8 > L 100/2. Furthermore, studies have shown that from a depth HH1 equal to half the wavelength L100, i.e. HH 1=E 100/2, and beyond, there is no there is noticeably more turbulence due to the swell. Thus, preferably, the height H8 is chosen greater than or equal to half a wavelength L100, that is to say: H8 > L 100/2.
Ainsi, en immergeant le caisson 8, de préférence à une profondeur H8 supérieure à une épaisseur d’une zone de turbulence locale, on augmente la stabilité de la plateforme ; la « transparence » du support 11 limite en outre la prise des éléments, eau ou vent, de sorte que ces éléments ne déstabilisent pas notablement la plateforme. Dans le cas illustré d’une plateforme supportant une éolienne, sa plus grande stabilité permet de limiter la fatigue des éléments constitutifs de l’éolienne, notamment de son mât. Thus, by immersing the caisson 8, preferably to a depth H8 greater than a thickness of a local turbulence zone, the stability of the platform is increased; the "transparency" of the support 11 also limits the grip of the elements, water or wind, so that these elements do not significantly destabilize the platform. In the illustrated case of a platform supporting a wind turbine, its greater stability makes it possible to limit the fatigue of the components of the wind turbine, in particular its mast.
La plateforme peut aussi être affectée par le phénomène de marée. Ainsi, la profondeur H10 de la mer, selon le lieu d’implantation de la plateforme, peut varier notablement, de quelques dizaines de centimètres à plus de dix mètres. Afin de maintenir une profondeur d’immersion H8 sensiblement constante, on utilise les treuils 13 pour modifier la longueur des câbles 12 ; ainsi, on peut rapprocher la plateforme du fond 7 lorsque la marée baisse, ou l’en éloigner lorsque la marée monte, tout en maintenant un tirant d’air H9 suffisant sous le pont 9. La commande des treuils est avantageusement automatisée. Elle peut être définie à partir d’une table numérisée des marées locales et/ou d’un capteur permettant d’estimer une profondeur d’immersion H8 instantanée. Le capteur peut, par exemple, être un capteur de pression ou un sonar ; il peut être utilisé pour corriger ou préciser les valeurs de la table des marées. The platform can also be affected by the tidal phenomenon. Thus, the depth H10 of the sea, depending on the location of the platform, can vary significantly, from a few tens of centimeters to more than ten meters. In order to maintain a substantially constant depth of immersion H8, the winches 13 are used to modify the length of the cables 12; thus, the platform can be brought closer to the bottom 7 when the tide is falling, or moved away from it when the tide is rising, while maintaining a sufficient air draft H9 under the bridge 9. The control of the winches is advantageously automated. She can be defined from a digitized table of local tides and/or from a sensor making it possible to estimate an instantaneous depth of immersion H8. The sensor can, for example, be a pressure sensor or a sonar; it can be used to correct or refine tide table values.
Dans l’exemple décrit et comme particulièrement illustré à la figure 6, les corps- morts 6 sont d’un type que l’on peut qualifier de récif artificiel, c’est-à-dire conçus pour en limiter l’impact sur l’écosystème local. Ils sont sensiblement identiques entre eux. In the example described and as particularly illustrated in Figure 6, the dead bodies 6 are of a type that can be described as an artificial reef, that is to say designed to limit the impact on the local ecosystem. They are substantially identical to each other.
Le corps-mort 6 illustré à la figure 6 comprend un bloc de béton 16. Le bloc 16 est cylindrique ; il a une épaisseur El 6, mesurée verticalement dans la position d’usage illustrée, et un diamètre D16, mesuré horizontalement dans cette même position d’usage. Typiquement on a E16=2m environ et 016=3, 5m environ. Le bloc 16 comprend des trouées 17 formées de façon irrégulière dans le bloc, de façon à constituer des passages traversants ou des niches. Ces trouées servent notamment de refuges pour la faune aquatique. Dans l’exemple illustré les trouées 17 sont de forme cylindrique, d’axe XI 7 sensiblement horizontal et de différents diamètres DI 7. The mooring 6 shown in Figure 6 comprises a concrete block 16. The block 16 is cylindrical; it has a thickness El 6, measured vertically in the position of use illustrated, and a diameter D16, measured horizontally in this same position of use. Typically we have E16=2m approximately and 016=3.5m approximately. The block 16 comprises holes 17 formed irregularly in the block, so as to constitute through passages or niches. These gaps serve as refuges for aquatic fauna. In the example shown, the holes 17 are cylindrical in shape, with a substantially horizontal axis XI 7 and of different diameters DI 7.
Le corps-mort 6 comprend en outre un enchevêtrement 18 disposé sur le bloc 16. Dans l’exemple illustré, l’enchevêtrement est constitué d’éléments tétrapodes 19 ; chaque tétrapode comprenant quatre poutres s’étendant dans des directions différentes et non coplanaires. Les éléments sont disposés de façon sensiblement aléatoire et enchevêtrés entre eux. Ainsi disposés, les éléments 19 constituent un refuge pour la faune aquatique et un support pour la flore. The deadweight 6 further comprises a tangle 18 disposed on the block 16. In the example shown, the tangle consists of tetrapod elements 19; each tetrapod comprising four beams extending in different, non-coplanar directions. The elements are arranged in a substantially random manner and entangled with each other. Thus arranged, the elements 19 constitute a refuge for the aquatic fauna and a support for the flora.
Le corps-mort comprend aussi un anneau 21 supporté par des potelets 22 qui le relient au bloc 16. L’anneau a sensiblement le même diamètre que le bloc 16. Il est disposé sensiblement au-dessus de l’enchevêtrement 18. L’anneau et les potelets forment un dispositif de retenue pour les éléments tétrapodes. Une barre horizontale 23 est fixée diamétralement à l’anneau 21. Elle porte la poulie 14, servant au renvoi du câble 12. The deadman also comprises a ring 21 supported by posts 22 which connect it to block 16. The ring has substantially the same diameter as block 16. It is placed substantially above entanglement 18. The ring and the posts form a retaining device for the tetrapod elements. A bar horizontal 23 is fixed diametrically to the ring 21. It carries the pulley 14, serving to return the cable 12.
Comme précisé ci-dessus, le système 1 est conçu pour la production d’énergie et comprend notamment l’éolienne 3. Selon l’invention, cette éolienne comprend un mât tubulaire 31 rigidement fixé au pont 9 et s’étendant verticalement vers le haut depuis le pont. Comme particulièrement illustré aux figures 4 et 5, un puits 32 prolonge le mât vers le bas, au travers du pont, et jusqu’à une face inférieure du caisson 8. Le mât et le puits forment ensemble un espace tubulaire rectiligne 33 qui débouche vers le haut au sommet 31A du mât et vers le bas à la base 8A du caisson. As specified above, the system 1 is designed for the production of energy and comprises in particular the wind turbine 3. According to the invention, this wind turbine comprises a tubular mast 31 rigidly fixed to the bridge 9 and extending vertically upwards from the bridge. As particularly illustrated in FIGS. 4 and 5, a well 32 extends the mast downwards, through the deck, and as far as an underside of the box 8. The mast and the well together form a rectilinear tubular space 33 which opens towards the top at the top 31A of the mast and down at the base 8A of the box.
Comme particulièrement illustré à la figure 5, le sommet 31A du mât 31 comprend un berceau 34 dont une concavité 34 A sphérique, de rayon R et de centre C, est orientée vers le haut. As particularly illustrated in FIG. 5, the top 31A of the mast 31 comprises a cradle 34 of which a spherical concavity 34 A, of radius R and of center C, is oriented upwards.
L’éolienne comprend en outre un équipage mobile 36 comprenant une hélice 37 d’axe horizontal X37, une nacelle 38, une tige 39, une rotule 60 et un balancier 61. La nacelle 38 comprend des moyens de transformation de l’énergie éolienne en énergie électrique. The wind turbine further comprises a moving assembly 36 comprising a propeller 37 with a horizontal axis X37, a nacelle 38, a rod 39, a ball joint 60 and a pendulum 61. The nacelle 38 comprises means for transforming the wind energy into electric energy.
La rotule 60 a le même rayon R que la cavité 34A et elle est prévue pour venir reposer sur le berceau 34 A et coopérer avec lui pour former une liaison rotule entre l’équipage mobile 36 et le mât 31. La tige 39 s’étend vers le haut depuis la rotule et elle relie la nacelle et la rotule entre elles. Bien entendu, bien que représenté très schématiquement à la figure 5, le berceau peut être une partie d’un palier sphérique, c’est-à-dire coopérant avec une rotule sensiblement sphérique, en empêchant toute translation. Un palier sphérique évite notamment tout risque de rebond de la rotule 60 dans son berceau 34. De préférence, le centre de rotation R de la rotule dans le berceau est disposé sur l’axe X37 de rotation de l’hélice 37 ; si ce n’est pas possible, il est avantageusement disposé le plus proche possible de cet axe. The ball joint 60 has the same radius R as the cavity 34A and it is provided to come to rest on the cradle 34 A and cooperate with it to form a ball joint between the movable assembly 36 and the mast 31. The rod 39 extends upwards from the ball joint and it connects the nacelle and the ball joint together. Of course, although shown very schematically in Figure 5, the cradle may be part of a spherical bearing, that is to say cooperating with a substantially spherical ball joint, preventing any translation. A spherical bearing in particular avoids any risk of rebound of the ball joint 60 in its cradle 34. Preferably, the center of rotation R of the ball joint in the cradle is arranged on the axis X37 of rotation of the propeller 37; if this is not possible, it is advantageously arranged as close as possible to this axis.
Le balancier 61 comprend une tringle 62 et un contre-poids 63. La tringle s’étend vers le bas depuis la rotule, au travers du passage 33, jusqu’en-dessous du caisson 8. Le contre-poids est fixé à une extrémité basse de la tringle, sous le caisson. La tige et la tringle sont sensiblement alignées entre elles, selon un axe d’équipage X36. Dans une position de repos, c’est-à-dire lorsque la plateforme et l’équipage mobile ne subissent que leur poids propre et la force d’Archimède, l’axe d’équipage X36 est confondu avec l’axe de plateforme X2. Notamment sous l’action du vent appliquée à l’hélice 37, l’axe d’équipage s’incline. Cette inclinaison est limitée par la force de rappel du balancier, notamment par l’action du contre-poids 63. Cette disposition est particulièrement avantageuse puisque, d’une part, elle supprime les efforts d’encastrement de la nacelle sur le mât et, d’autre part, elle autorise une section réduite pour la tige, ce qui limite les perturbations aérodynamiques à l’aval de l’hélice 37. The pendulum 61 comprises a rod 62 and a counterweight 63. The rod extends downwards from the ball joint, through the passage 33, to below the box 8. The counterweight is fixed at one end bottom of the rod, under the box. The rod and the bead are substantially aligned with each other, along an X36 crew axis. In a rest position, i.e. when the platform and the moving assembly only undergo their own weight and the Archimedes force, the assembly axis X36 coincides with the platform axis X2 . In particular under the action of the wind applied to propeller 37, the crew axis tilts. This inclination is limited by the restoring force of the rocker arm, in particular by the action of the counterweight 63. This arrangement is particularly advantageous since, on the one hand, it eliminates the forces of embedding the nacelle on the mast and, on the other hand, it allows a reduced section for the rod, which limits the aerodynamic disturbances downstream of the propeller 37.
Comme précisé plus haut, le système 1 de la production d’énergie comprend, en plus de l’éolienne 3, un dispositif pneumatique 4 de production d’énergie. As specified above, the energy production system 1 comprises, in addition to the wind turbine 3, a pneumatic device 4 for energy production.
Un tel dispositif pneumatique 4 est illustré aux figures 7 à 9. Il comprend notamment un ensemble de soufflets 40 et deux turbines 41, 42. Les turbines sont fixées sur le pont 9. Les soufflets sont fixés sous le pont. Ils sont sensiblement cylindriques. Leur nombre n’est pas imposé. Aux figures 1 et 2, l’ensemble de soufflets est représenté par un seul soufflet ; néanmoins, un nombre plus élevé de soufflets permet de suivre plus précisément les mouvements de la houle, comme illustré à la figure 8. Dans la vue de dessus de la figure 9, il y a trente-six soufflets régulièrement répartis sous le pont 9. Dans l’exemple illustré, chaque soufflet comprend une plaque supérieure 43, une base 44 et une paroi déformable 46. La plaque 43 est fixée sous le pont. La base 44 est flottante, de sorte qu’elle peut suivre les mouvements verticaux de la houle en coulissant le long d’un guide 47 vertical respectif, fixé au pont 9 et au caisson 8. La paroi 46 a une forme sensiblement cylindrique, autour du guide 47 ; elle est conçue pour se déformer comme celle d’un accordéon lorsque la base 44 se rapproche ou s’éloigne de la plaque 43, sous l’action de la houle. La paroi est en un matériau étanche à l’air, par exemple un caoutchouc ou une toile enduite, éventuellement renforcée de fibre, par exemple de fibres métalliques. La base 44 peut avantageusement avoir la forme d’un caisson en béton, dont un volume intérieur est rempli de polystyrène, afin d’en assurer la flottabilité. De préférence, la densité de la base 44 du soufflet est proche de la densité de l’eau. Such a pneumatic device 4 is illustrated in FIGS. 7 to 9. It notably comprises a set of bellows 40 and two turbines 41, 42. The turbines are fixed on the bridge 9. The bellows are fixed under the bridge. They are substantially cylindrical. Their number is not imposed. In Figures 1 and 2, the set of bellows is represented by a single bellows; nevertheless, a higher number of bellows makes it possible to follow the movements of the swell more precisely, as illustrated in figure 8. In the plan view of figure 9, there are thirty-six bellows regularly distributed under deck 9. In the example illustrated, each bellows comprises an upper plate 43, a base 44 and a deformable wall 46. The plate 43 is fixed under the deck. The base 44 is floating, so that it can follow the vertical movements of the swell by sliding along a respective vertical guide 47, fixed to the deck 9 and to the caisson 8. The wall 46 has a substantially cylindrical shape, around guide 47; it is designed to deform like that of an accordion when the base 44 approaches or moves away from the plate 43, under the action of the swell. The wall is made of an airtight material, for example a rubber or a coated fabric, optionally reinforced with fiber, for example metal fibers. The base 44 can advantageously take the form of a concrete box, an interior volume of which is filled with polystyrene, in order to ensure its buoyancy. Preferably, the density of the base 44 of the bellows is close to the density of water.
Le dispositif pneumatique comprend en outre deux volumes tampons 51, 52. Un premier tampon 51 est connecté avec une première turbine 4L L’autre tampon 52 est relié à la deuxième turbine 42. Chaque soufflet est relié, au travers de la plaque 43 à chacun des deux tampons 51, 52 par des clapets 53, 54 respectif. Un premier clapet 53, relié au premier tampon, s’ouvre lorsque le volume du soufflet augmente et aspire de l’air. L’air environnant est aspiré dans le premier tampon et entraîne la première turbine 4L L’air aspiré est mutualisé entre l’ensemble des soufflets dans le premier tampon ce qui permet un entrainement sensiblement régulier de la première turbine. Le deuxième clapet 54, relié au deuxième tampon 52, s’ouvre lorsque le volume du soufflet diminue et rejette de l’air. Cet air est rejeté dans le deuxième tampon et entraîne la deuxième turbine 42, lorsqu’il rejoint l’atmosphère. L’air expiré est mutualisé entre l’ensemble des soufflets dans le deuxième tampon 52 ce qui permet un entrainement sensiblement régulier de la deuxième turbine 42. The pneumatic device further comprises two buffer volumes 51, 52. A first buffer 51 is connected with a first turbine 4L The other buffer 52 is connected to the second turbine 42. Each bellows is connected, through the plate 43 to each of the two buffers 51, 52 by valves 53, 54 respectively. A first valve 53, connected to the first buffer, opens when the volume of the bellows increases and sucks in air. The surrounding air is sucked into the first buffer and drives the first 4L turbine. The air sucked in is pooled between all the bellows in the first buffer, which allows a substantially regular drive of the first turbine. The second valve 54, connected to the second buffer 52, opens when the volume of the bellows decreases and rejects air. This air is rejected in the second buffer and drives the second turbine 42, when it joins the atmosphere. The exhaled air is pooled between all the bellows in the second buffer 52 which allows a substantially regular drive of the second turbine 42.
Dans l’exemple illustré, les turbines 41, 42 sont des éoliennes à axe vertical, de type Darrieus, enveloppées dans un carénage 55. Elles entraînent un ou plusieurs alternateurs ou dynamos, qui produisent ainsi de l’énergie électrique. Dans le mode de réalisation illustré à la figure 10, la plateforme 2 est amarrée à six corps-morts 6 du type précédemment décrit en référence à la figure 6. Les six corps-morts sont disposés sur un cercle, c’est-à-dire, dans la position de la figure 10, sensiblement régulièrement répartis autour de l’axe de plateforme X2. In the example illustrated, the turbines 41, 42 are wind turbines with a vertical axis, of the Darrieus type, wrapped in a fairing 55. They drive one or more alternators or dynamos, which thus produce electrical energy. In the embodiment illustrated in Figure 10, the platform 2 is moored to six moorings 6 of the type previously described with reference to Figure 6. The six moorings are arranged on a circle, that is to say say, in the position of Figure 10, substantially evenly distributed around the platform axis X2.
La plateforme 2 comprend, trois points de reprise hauts 71, en rive du pont 9, et trois points de reprise bas 72, en rive de la base 8 A du caisson 8. Ils sont disposés de sorte qu’un plan axial passant par un point haut 71 et un plan axial passant par un point bas 72 voisin forment ensemble un angle de décalage A7 égal à la moitié d’un angle similaire entre deux points hauts voisins. C’est-à-dire que les points bas 72 sont régulièrement décalés des point hauts 71 autour de l’axe de plateforme XL Dans cet exemple, l’angle de décalage A7 est égal à soixante degrés. The platform 2 comprises three high recovery points 71, on the edge of the bridge 9, and three low recovery points 72, on the bank of the base 8 A of the box 8. They are arranged so that an axial plane passing through a high point 71 and an axial plane passing through a neighboring low point 72 together form an offset angle A7 equal to half of a similar angle between two neighboring high points. That is to say, the low points 72 are regularly offset from the high points 71 around the platform axis XL. In this example, the angle of offset A7 is equal to sixty degrees.
Chaque corps-mort 6 est relié à un même point de haut 71 que l’un de ses deux corps-morts voisins immédiats et à un même point bas que son autre corps-mort voisin immédiat. Cette disposition permet d’assurer une plus grande stabilité de la plateforme relativement au fond marin 7. Each deadweight 6 is connected to the same high point 71 as one of its two immediate neighboring deadweights and to the same low point as its other immediate neighboring deadweight. This arrangement ensures greater stability of the platform relative to the seabed 7.
En outre, les corps-morts peuvent comprendre des points d’amarrage constitués de poulies 14, comme précédemment décrit. Les point bas 72 peuvent aussi comprendre des poulies, ainsi que deux au moins des points hauts 71, le troisième point haut comprenant un point de fixation, pour une extrémité du câble 12, et un treuil pour l’extrémité opposée du câble. Le même câble 12 passe donc successivement par un point haut 71, un point d’amarrage 14 et un point bas 72, depuis le point de fixation jusqu’au treuil. Ainsi, un seul treuil permet de régler l’altitude de la plateforme au-dessus du fond 7. Le principe de décalage angulaire des points d’amarrage est aussi appliqué au mode de réalisation des figures 1 et 2. On va maintenant décrire une adaptation du système précédemment décrit, applicable à une éolienne implantée dans une profondeur d’eau réduite ou à une éolienne, en référence aux figures 12 et 13. In addition, the moorings may include mooring points consisting of pulleys 14, as previously described. The low points 72 can also comprise pulleys, as well as at least two of the high points 71, the third high point comprising an attachment point, for one end of the cable 12, and a winch for the opposite end of the cable. The same cable 12 therefore passes successively through a high point 71, an anchoring point 14 and a low point 72, from the attachment point to the winch. Thus, a single winch makes it possible to adjust the altitude of the platform above the bottom 7. The principle of angular offset of the mooring points is also applied to the embodiment of Figures 1 and 2. We will now describe an adaptation of the system described above, applicable to a wind turbine installed in a reduced depth of water or to a wind turbine, with reference to Figures 12 and 13.
Dans ce mode de réalisation, l’éolienne comprend des moyens de rotulage 34, 60 similaires à ceux précédemment décrit en référence à la figure 5. In this embodiment, the wind turbine comprises ball joint means 34, 60 similar to those previously described with reference to Figure 5.
Par ailleurs, le système 1 comprend un massif bétonné 80 enterré dans une fosse 81 ; la fosse est creusée dans le sol. Le mât 31 est scellé dans le massif 80 qui assure la stabilité du système 1. Dans cet exemple, le mât a une forme conique qui va en se rétrécissant de bas en haut. Le mât repose sur, et est ancré dans, un fond 81 A de la fosse 81. Un puits 132 est formé au travers du fond 81 A, dans le massif enterré 80 dans l’axe du mât, pour y recevoir une extrémité inférieure du balancier 61, notamment le contrepoids 63. Furthermore, the system 1 comprises a concrete block 80 buried in a pit 81; the pit is dug in the ground. The mast 31 is sealed in the block 80 which ensures the stability of the system 1. In this example, the mast has a conical shape which tapers from bottom to top. The mast rests on, and is anchored in, a bottom 81 A of the pit 81. A well 132 is formed through the bottom 81 A, in the buried mass 80 in the axis of the mast, to receive there a lower end of the pendulum 61, in particular the counterweight 63.
Le système comprend en outre un anneau équilibreur 82 disposé à proximité sur le sol, autour du mât 31 et rigidement relié à la tringle 62 par des bras 84. Le mât 31 comprend des ouïes 87 ; un bras respectif s’étend au travers de chacune des ouïes. Le système illustré comprend quatre bras et quatre ouïes. À la figure 13, seuls deux bras et deux ouïes sont représentés. The system further comprises a balancer ring 82 arranged nearby on the ground, around the mast 31 and rigidly connected to the rod 62 by arms 84. The mast 31 comprises openings 87; a respective arm extends through each of the soundholes. The system shown includes four arms and four vents. In Figure 13, only two arms and two vents are shown.
L’anneau équilibreur 82 est mobile avec le balancier 61, au-dessus du massif 80 et au-dessus du niveau NS du sol. Ainsi disposé, il présente une prise importante à une composante W1 du vent qui se déplace à proximité du sol. Compte tenu du bras de levier formé par la distance entre le centre de rotulage C et l’anneau 82, la pression exercée par ce vent W1 compense au moins en partie la pression exercée par la composante W2 du vent sur l’hélice 37 de G éolienne. Ainsi, l’anneau permet d’équilibrer le couple exercé par la composante W2 du vent autour du centre de rotulage. Le poids de l’anneau équilibreur 82 contribue, comme le contrepoids 63, à l’équilibre de l’éolienne 3. L’anneau 82 constitue ainsi une masse inertielle qui résiste aux effets du vent, engendrant une force à l’encontre des effets du vent qui vient s’additionner à la force de rappel développée par le contrepoids 63. L’utilisation d’une masse inertielle 82 permet de réduire la longueur du balancier 61 et/ou le poids du contrepoids ; lorsque c’est possible, le contrepoids peut être supprimé. Cette disposition est particulièrement avantageuse dans le cas d’un système terrestre, de sorte qu’il évite ou limite le creusement d’un puits 132. The balancing ring 82 is movable with the pendulum 61, above the block 80 and above the level NS of the ground. Arranged in this way, it has a significant grip on a component W1 of the wind which is moving close to the ground. Given the lever arm formed by the distance between the ball joint center C and the ring 82, the pressure exerted by this wind W1 compensates at least in part for the pressure exerted by the component W2 of the wind on the propeller 37 of G wind turbine. Thus, the ring makes it possible to balance the torque exerted by the component W2 of the wind around the center of ball jointing. The weight of the balancing ring 82 contributes, like the counterweight 63, to the balance of the wind turbine 3. The ring 82 thus constitutes an inertial mass which resists the effects of the wind, generating a force countering the effects wind which is added to the restoring force developed by the counterweight 63. The use of an inertial mass 82 makes it possible to reduce the length of the pendulum 61 and/or the weight of the counterweight; where possible, the counterweight can be removed. This arrangement is particularly advantageous in the case of a terrestrial system, so that it avoids or limits the digging of a well 132.
Les efforts de basculement provoqués par le vent dans l’hélice sont réduits par l’utilisation d’un mât avec un balancier rotulé. Ainsi, le massif a essentiellement pour fonction de transmettre au sol les contraintes dues au poids propre du système d’éolienne 1. Du fait de cette disposition, le massif bétonné enterré peut avoir un volume réduit, ce qui limite les coûts et l’impact environnemental d’une éolienne terrestre. En particulier, le massif bétonné peut être plus facilement détruit, étant d’un volume et d’une épaisseur nettement inférieurs à ceux d’un massif nécessaire à l’ancrage d’une éolienne terrestre de l’art antérieur. Ainsi, il apparaît que le volume du massif bétonné 80 peut être réduit de quatre-vingt-dix pourcents par rapport à ceux qui maintiennent les éoliennes de l’art antérieur. Un tel massif est plus aisément recyclable. The tilting forces caused by the wind in the propeller are reduced by the use of a mast with a ball joint. Thus, the block essentially has the function of transmitting to the ground the stresses due to the dead weight of the wind turbine system 1. Because of this arrangement, the buried concrete block can have a reduced volume, which limits the costs and the impact environment of an onshore wind turbine. In particular, the concrete block can be more easily destroyed, being of a volume and a thickness much lower than those of a block necessary for the anchoring of an onshore wind turbine of the prior art. Thus, it appears that the volume of the concrete block 80 can be reduced by ninety percent compared to those which hold the wind turbines of the prior art. Such a mass is more easily recyclable.
L’anneau peut être un élément massif, tel qu’illustré aux figures 12 et 13. Il peut aussi être une simple tôle, pleine ou en métal déployé, par exemple. The ring can be a solid element, as illustrated in figures 12 and 13. It can also be a simple sheet, solid or expanded metal, for example.
Bien sûr, l'invention n'est pas limitée aux exemples qui viennent d'être décrits. Au contraire, l'invention est définie par les revendications qui suivent. Of course, the invention is not limited to the examples which have just been described. On the contrary, the invention is defined by the following claims.
Il apparaîtra en effet à l'homme de l'art que diverses modifications peuvent être apportées aux modes de réalisation décrits ci-dessus, à la lumière de l'enseignement qui vient de lui être divulgué. Ainsi, le terme de câble, employé dans la description, recouvre tout type de ligne d’amarrage, souple, filaire, susceptible de servir à relier la plateforme à ses corps-morts, notamment un filin ou une chaîne, en toute matière appropriée, par exemple de l’acier, ou des matériaux composites. It will indeed appear to those skilled in the art that various modifications can be made to the embodiments described above, in the light of the teaching which has just been disclosed to them. Thus, the term cable, used in the description, covers any type of mooring line, flexible, wired, capable of being used to connect the platform to its moorings, in particular a rope or a chain, in any appropriate material, for example steel, or composite materials.
Dans les zones de faible marnage, on peut prévoir que le câble est de longueur constante. Dans ce cas, il n’est pas nécessaire de prévoir de treuil sur le pont ni de poulie sur les corps-morts, le câble pouvant avoir une longueur fixe. In areas of low tidal range, provision can be made for the cable to be of constant length. In this case, it is not necessary to provide a winch on the deck or a pulley on the moorings, the cable can have a fixed length.
Aussi, les formes des différents éléments peuvent varier. En particulier, la plateforme peut avoir un plan rectangulaire au lieu de circulaire. Ainsi, le caisson flottant correspondant peut-être parallélépipédique ; il peut aussi être conique. Also, the shapes of the different elements may vary. In particular, the platform can have a rectangular plan instead of a circular one. Thus, the corresponding floating box may be parallelepipedal; it can also be conical.
Aussi, un soufflet peut ne pas être directement entraîné par la houle, mais indirectement, par exemple par une tringlerie mue par un flotteur entraîné par la houle. De ce cas, le soufflet peut être disposé au-dessus du pont. Also, a bellows may not be directly driven by the swell, but indirectly, for example by a linkage driven by a float driven by the swell. In this case, the bellows can be arranged above the deck.
Notamment dans le cas d’une plateforme maritime, les moyens de rotulage peuvent être disposés sensiblement au niveau du pont de la plateforme, de sorte le mât a une hauteur faible ou qu’il n’y a pas besoin de mât. In particular in the case of a maritime platform, the swiveling means can be arranged substantially at the level of the deck of the platform, so that the mast has a low height or that there is no need for a mast.
L’immersion du caisson et le rotulage de la nacelle réduisent notablement les efforts subis par le système de production d’énergie selon l’invention, par rapport aux systèmes de l’art antérieur. Les quantités de matière nécessaires à la fabrication d’une telle plateforme sont réduites en conséquence, ce qui en diminue notablement le coût. The immersion of the box and the swiveling of the nacelle significantly reduce the forces undergone by the energy production system according to the invention, compared to the systems of the prior art. The quantities of material needed to manufacture such a platform are reduced accordingly, which significantly reduces the cost.
En outre, la stabilité de l’équipage mobile est améliorée. De ce fait l’hélice de l’éolienne est généralement plus proche d’un plan vertical, dans une plage de vitesse de vent plus étendue. Le rendement de l’éolienne est donc nettement amélioré par les perfectionnements apportés par l’invention. In addition, the stability of the moving assembly is improved. As a result, the wind turbine propeller is generally closer to a vertical plane, within a range of wider wind speed. The efficiency of the wind turbine is therefore markedly improved by the improvements provided by the invention.
Ainsi, un système selon l’invention a tout ou partie des avantages suivants : - réduction des mouvements qui résultent des déformations de la surface du liquide, puisqu’il comprend des moyens qui permettent d’immerger le caisson sous la zone de turbulence de la surface de la mer, et de l’y maintenir ;Thus, a system according to the invention has all or part of the following advantages: reduction of the movements which result from the deformations of the surface of the liquid, since it comprises means which make it possible to immerse the box under the zone of turbulence of the surface of the sea, and to keep it there;
- abaissement du centre de transmission des efforts dûs au vent dans l’éolienne ; cette disposition permet de réduire le moment appliqué au centre de gravité du caisson, et donc le coût et l’impact sur l’environnement ; - lowering of the center of transmission of forces due to the wind in the wind turbine; this arrangement makes it possible to reduce the moment applied to the center of gravity of the box, and therefore the cost and the impact on the environment;
- maintien dans un plan sensiblement vertical de la surface décrite par les pales de l’éolienne, sans augmenter le volume de flottaison nécessaire pour équilibrer le poids propre des ouvrages de l’ensemble offshore ; cette disposition permet de réduire considérablement les quantités de matières mises en œuvre dans les systèmes connus, généralement du béton armé ou de l’acier ; - maintenance in a substantially vertical plane of the surface described by the blades of the wind turbine, without increasing the buoyancy volume necessary to balance the dead weight of the structures of the offshore assembly; this arrangement makes it possible to considerably reduce the quantities of materials used in the known systems, generally reinforced concrete or steel;
- récupération de l’énergie de la houle produite par la déformation de la surface du plan d’eau sous l’action du vent ; - recovery of wave energy produced by the deformation of the surface of the water body under the action of the wind;
- réduction des sections des mâts perturbateurs pour l’écoulement du vent sur les pales. Ce qui augmente le rendement de l’éolienne verticale ; - reduction of the sections of the disturbing masts for the flow of the wind on the blades. This increases the performance of the vertical wind turbine;
- diminution des quantités de matière nécessaires à la fabrication d’une telle plateforme, grâce à une meilleure répartition des réactions des efforts et à la suppression des mouvements provoqués par la houle, ce qui en diminue notablement le coût et son impact environnemental. - reduction of the quantities of material necessary for the manufacture of such a platform, thanks to a better distribution of the reactions of the forces and the suppression of the movements caused by the swell, which notably reduces the cost and its environmental impact.
Le dispositif pneumatique du système offshore permet une production d’énergie supplémentaire estimée à 4% environ de l’énergie produite grâce à un système offshore de production d’énergie électrique selon l’invention. Bien entendu, une plateforme ou un système de plateforme selon l’invention n’est pas limité à un usage de production d’électricité, elle peut comprendre uniquement une éolienne d’axe horizontal, ou seulement des moyens pneumatiques de production d’énergie. Une telle plateforme peut aussi être utilisée pour porter des habitations ou encore servir de quai ou de pont flottant. Aussi, le dispositif pneumatique peut comprendre plus de deux turbines, par exemple quatre ou six. The pneumatic device of the offshore system allows an additional energy production estimated at approximately 4% of the energy produced thanks to an offshore electrical energy production system according to the invention. Of course, a platform or a platform system according to the invention is not limited to a use for the production of electricity, it can comprise only a horizontal axis wind turbine, or only pneumatic means of energy production. Such a platform can also be used to carry dwellings or serve as a wharf or floating bridge. Also, the pneumatic device can comprise more than two turbines, for example four or six.
Le dispositif de masse inertielle illustré pour une éolienne terrestre aux figures 11 et 12 peut aussi être utilisé dans le cas d’une éolienne installée en mer, là où les fonds marins sont peu profonds et ne permettent pas de mettre un balancier d’une longueur suffisante, c’est-à-dire de disposer le contre-poids à une distance suffisante du centre de rotulage. The inertial mass device illustrated for an onshore wind turbine in Figures 11 and 12 can also be used in the case of a wind turbine installed at sea, where the seabed is shallow and does not allow a pendulum of a length sufficient, that is to say to have the counterweight at a sufficient distance from the center of ball joint.
Aussi, le système de rotulage peut être remplacé par un palier cylindrique de révolution autour d’un axe horizontal dans un plan perpendiculaire à l’axe de rotation de l’hélice ; une rotation autour de l’axe verticale de plateforme, ou de l’axe du mât, étant assurée par ailleurs. Also, the swivel system can be replaced by a cylindrical bearing of revolution around a horizontal axis in a plane perpendicular to the axis of rotation of the propeller; a rotation around the vertical axis of the platform, or the axis of the mast, being ensured in addition.

Claims

Revendications Claims
1. Système d’éolienne comprenant une éolienne (3) ayant un mât (31) et un équipage mobile (36) qui comprend une hélice (37) de l’éolienne, une nacelle (38) à laquelle est fixée l’hélice et un balancier (61), ladite éolienne comprenant en outre des moyens de rotulage (34, 60) du balancier, lesdits moyens de rotulage étant portés par ledit mât, ledit balancier (61) comprenant une tringle (62) qui s’étend vers le bas depuis les moyens de rotulage, et un contre-poids (63) fixé à une extrémité basse de ladite tringle, ledit mât étant creux et définissant un passage (33) sensiblement tubulaire au travers duquel s’étend la tringle (62). 1. Wind turbine system comprising a wind turbine (3) having a mast (31) and a moving assembly (36) which comprises a propeller (37) of the wind turbine, a nacelle (38) to which the propeller is fixed and a rocker (61), said wind turbine further comprising means for ball jointing (34, 60) of the rocker, said ball joint means being carried by said mast, said rocker (61) comprising a rod (62) which extends towards the bottom from the swivel means, and a counterweight (63) fixed to a lower end of said rod, said mast being hollow and defining a passage (33) substantially tubular through which the rod (62) extends.
2. Système selon la revendication 1, caractérisé en ce les moyens de rotulage étant portés par ledit mât à une extrémité supérieure (31 A) dudit mât (31), 2. System according to claim 1, characterized in that the swivel means being carried by said mast at an upper end (31 A) of said mast (31),
3. Système selon l’une des revendications 1 et 2, caractérisé en ce qu’il comprend un puits (32,132) qui prolonge le passage (33) vers le bas, au-delà du mât. 3. System according to one of claims 1 and 2, characterized in that it comprises a well (32.132) which extends the passage (33) downwards, beyond the mast.
4. Système selon l’une des revendications 1 à 3, caractérisé en ce que les moyens de rotulage comprennent un berceau (34) formé à l’extrémité supérieure (31 A) du mât et possédant une concavité (34 A) sphérique et orientée vers le haut, les moyens de rotulage comprenant en outre une rotule (60) prévue pour venir rotuler dans ladite concavité, un centre de rotulage (C) étant avantageusement disposé le plus proche possible d’un axe de rotation (X37) de l’hélice (37), ou, de préférence, sur ledit axe (X37) . 4. System according to one of claims 1 to 3, characterized in that the swiveling means comprise a cradle (34) formed at the upper end (31 A) of the mast and having a concavity (34 A) spherical and oriented upwards, the ball joint means further comprising a ball joint (60) provided to come ball joint in said concavity, a ball joint center (C) being advantageously arranged as close as possible to an axis of rotation (X37) of the helix (37), or, preferably, on said axis (X37).
5. Système (1) selon l’une des revendication 1 à 4, caractérisé en ce qu’il comprend une plateforme flottante (2) qui porte l’éolienne. 5. System (1) according to one of claims 1 to 4, characterized in that it comprises a floating platform (2) which carries the wind turbine.
6. Système selon les revendications 2 et 4, caractérisé en ce que le puits (32) est formé au travers de la plateforme de sorte que le contre-poids (63) est disposé sous ladite plateforme. 6. System according to claims 2 and 4, characterized in that the well (32) is formed through the platform so that the counterweight (63) is arranged under said platform.
7. Système selon l’une des revendications 1 à 6, caractérisé en ce qu’il comprend un anneau (82) disposé autour du bas du mât et des moyens de liaison (84) pour coupler ledit anneau avec le balancier (61). 7. System according to one of claims 1 to 6, characterized in that it comprises a ring (82) arranged around the bottom of the mast and connecting means (84) for coupling said ring with the balance (61).
8. Système selon la revendication 6 et l’une des revendications 4 et 5, caractérisé en ce que ledit anneau est disposé pour constituer une masse inertielle et/ou une prise à du vent (W2). 8. System according to claim 6 and one of claims 4 and 5, characterized in that said ring is arranged to constitute an inertial mass and/or a wind resistance (W2).
EP22722258.5A 2021-04-27 2022-04-12 Wind turbine system having an articulated mast Pending EP4330545A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR2104346A FR3122223B1 (en) 2021-04-27 2021-04-27 Wind turbine system having an articulated mast.
FR2104345A FR3122160A1 (en) 2021-04-27 2021-04-27 Floating platform for the high seas and in particular a system for producing electrical energy using such a platform.
FR2104348A FR3122221B1 (en) 2021-04-27 2021-04-27 Floating platform system including pneumatic means of energy production.
PCT/EP2022/059710 WO2022228885A1 (en) 2021-04-27 2022-04-12 Wind turbine system having an articulated mast

Publications (1)

Publication Number Publication Date
EP4330545A1 true EP4330545A1 (en) 2024-03-06

Family

ID=81595591

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22722258.5A Pending EP4330545A1 (en) 2021-04-27 2022-04-12 Wind turbine system having an articulated mast

Country Status (2)

Country Link
EP (1) EP4330545A1 (en)
WO (1) WO2022228885A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2295259A1 (en) * 1974-07-26 1976-07-16 Simion Jean Wind driven turbine with fixed pitch blades - and speed control by varying angle of inclination of rotor axis
JPS6067786A (en) * 1983-09-22 1985-04-18 Hayashibara Takeshi Windmill
FR2908839A1 (en) * 2006-11-21 2008-05-23 Joacquim Barracho Energy producing unit, has rod provided with parasol shaped float at its lower part, where upper part of rod is ringed and comprises transversal waviness that are in form of ring and acts on links of compressors or pumps
FR2969720B1 (en) * 2010-12-23 2012-12-28 IFP Energies Nouvelles FLOATING OFFSHORE WIND TURBINE COMPRISING AN ACTIVE STABILIZATION SYSTEM IN INCLINATION OF THE NACELLE
FR2990476B1 (en) * 2012-05-09 2014-04-25 IFP Energies Nouvelles FLOATING SUPPORT WINDBRED COMPRISING A SYSTEM FOR MAINTAINING THE WIND TURBINE IN A PRIVILEGED POSITION
DE102019110311A1 (en) * 2019-04-18 2020-10-22 Innogy Se Anchoring element

Also Published As

Publication number Publication date
WO2022228885A1 (en) 2022-11-03

Similar Documents

Publication Publication Date Title
EP2441893B1 (en) Support device for a wind turbine for producing electric power at sea, corresponding facility for producing electric power at sea.
EP3717343B1 (en) Floating support structure for offshore wind turbine and method for installing a wind turbine provided with such a support structure
EP3472458B1 (en) Floating device supporting an offshore wind turbine, and corresponding floating wind turbine unit
WO2017148647A1 (en) Stabilisation system, in particular for a floating support, comprising at least three interconnected liquid reserves
EP1856406B1 (en) Device for maintaining a hydraulic turbomachine
FR2935005A1 (en) SEAT STRUCTURE OF A HYDRAULIC TURBOMACHINE
EP2906818B1 (en) Wind turbine on a spar floating structure with two rotors on a v-shaped support structure
FR3053020A1 (en) PLATFORM FOR A FLOATING WIND TURBINE, FLOATING WIND TURBINE EQUIPPED WITH SUCH A PLATFORM.
WO2014184454A1 (en) Offshore wind turbine on a floating mount comprising a combination of shock-absorbing means
EP2986848A1 (en) Floating wind turbine structure
FR2967642A1 (en) OFFSHORE WIND POWER DEVICE WITH PARTICULAR SEMI-SUBMERSIBLE FLOAT
FR2990476A1 (en) Wind turbine for use at sea, has supporting unit for supporting mast of wind turbine in desired position, where supporting unit is interdependent of mast, and independent of movements of floating support
WO2012123209A1 (en) Buoyant device having a special anchoring system
FR2552461A1 (en) FLEXIBLE MARINE PLATFORM
EP2516251B1 (en) Pendular system for transporting a civil engineering structure in an aquatic medium
FR2980245A1 (en) DEVICE FOR RECOVERING ENERGY FROM MARINE OR WATERCOURSE CURRENTS
FR2850425A1 (en) Sub-sea collector for e.g. oil released from wreck, comprises modular textile column with upward and downward funneled terminations located by anchoring weights and flotation rings
EP3286069B1 (en) Floating mounting having a depth-variable horizontal cross-section
EP2148974B1 (en) Bottom-surface linking equipment including a flexible link between a floating support and the upper end of an under-surface rigid duct
WO2022228885A1 (en) Wind turbine system having an articulated mast
FR3122160A1 (en) Floating platform for the high seas and in particular a system for producing electrical energy using such a platform.
FR3122223A1 (en) Wind turbine system having an articulated mast.
FR3122221A1 (en) Floating platform system comprising pneumatic means of energy production.
FR2984420A1 (en) WIND TURBINE MOUNTED ON A ROTATING PLATFORM
FR3088298A1 (en) ARTICULATED FLOAT FOR A FLOATING PLATFORM, PARTICULARLY FOR A FLOATING WIND TURBINE.

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20231019

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR