EP4327377A1 - Mixture of active materials for cathode of a lithium-ion element - Google Patents

Mixture of active materials for cathode of a lithium-ion element

Info

Publication number
EP4327377A1
EP4327377A1 EP22721392.3A EP22721392A EP4327377A1 EP 4327377 A1 EP4327377 A1 EP 4327377A1 EP 22721392 A EP22721392 A EP 22721392A EP 4327377 A1 EP4327377 A1 EP 4327377A1
Authority
EP
European Patent Office
Prior art keywords
lithiated
nickel
lithium
oxide
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22721392.3A
Other languages
German (de)
French (fr)
Inventor
Lucille GAL
Michelle Baudry
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAFT Societe des Accumulateurs Fixes et de Traction SA
Original Assignee
SAFT Societe des Accumulateurs Fixes et de Traction SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAFT Societe des Accumulateurs Fixes et de Traction SA filed Critical SAFT Societe des Accumulateurs Fixes et de Traction SA
Publication of EP4327377A1 publication Critical patent/EP4327377A1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/488Cells or batteries combined with indicating means for external visualization of the condition, e.g. by change of colour or of light density
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the technical field of the present invention is that of active materials intended to be used in the cathode of an electrochemical element of the lithium-ion type, also called lithium-ion element.
  • the technical field is also that of methods for detecting the end of the charge of lithium-ion elements whose cathodic active material comprises a lithiated phosphate of at least one transition metal.
  • Electrochemical elements of the lithium-ion type comprising a cathode whose active material is based on lithium phosphate of at least one transition metal are known from the state of the art.
  • a lithiated phosphate of at least one transition metal typically has the formula UMPO4 where M represents at least one transition metal, for example Mn or Fe or Mn associated with Fe.
  • Such elements have a mass capacity lower than that of elements whose cathode comprises an active material which is a lithiated oxide of at least one transition metal of formula UMO2 where M represents at least one transition metal.
  • FIG. 1 An example of a charge profile of an element whose cathode comprises a li thie phosphate of at least one transition metal is shown in Figure 1.
  • the present invention provides a mixture comprising:
  • lithiated nickel oxide chosen from: i) a lithiated oxide of nickel, manganese and cobalt of formula Li w (Ni x Mn y Co z M t )0 2 where 0.9 ⁇ w ⁇ 1.1;0.80 ⁇ x;0 ⁇ y;0 ⁇ z;0 ⁇ t; M being at least one element selected from the group consisting of Al, B, Mg, Si, Ca, Ti, V, Cr, Fe, Cu, Zn, Y, Zr, Nb, W, Mo, Sr, Ce, Ta, Ga, Nd, Pr, La; ii) a lithium oxide of nickel, cobalt and aluminum of formula Li w (Ni x Co y Al z M t )0 2 where 0.9 ⁇ w ⁇ 1.1;0.83 ⁇ x;0 ⁇ y;0 ⁇ z;0 ⁇ t; M being at least one element selected from the group consisting of B, Mg, Si, Ca, Ti, V, Cr, Mn, Fe,
  • the incorporation into the lithium phosphate of a nickel-rich lithium oxide made it possible to obtain a mixture of active materials which, when used in the cathode of a lithium-electrochemical element ion can be used to detect the imminence of the end of the charge of the element, thus avoiding a start of overcharging.
  • the charge profile of the element presents an indicator plate of the end of the charge of the element. This plateau appears for a state of charge close to 90-95%. The appearance of the plateau results in a slowing down of the increase in tension. It can be detected by analyzing periodically or at predetermined times the variation in the voltage of the element over time. After detection of the tray, a signal indicating the imminence of the end of the charge can be sent to a user.
  • said at least one lithiated nickel oxide is monocrystalline.
  • said at least one lithiated nickel oxide is in the form of particles whose size distribution is characterized by a volume median diameter Dv 5 o less than or equal to 7 ⁇ m, preferably ranging from 2 to 6 ⁇ m, the median diameter being measured on particles which are not part of an agglomerate of particles.
  • the mixture comprises:
  • the mixture comprises:
  • the index x of the nickel ranges from 0.84 to 0.90.
  • the index x of the nickel is less than or equal to 0.98 or less than or equal to 0.90.
  • the 1-y-z index of manganese ranges from 0.6 to less than 1.
  • the invention also relates to an electrochemical element comprising:
  • the subject of the invention is a method for detecting the end of the charge of a lithium-ion electrochemical element, said method comprising the steps of: a) providing an electrochemical element as described above, b) charge of the cell, c) for a state of charge of the cell greater than approximately 70%, or greater than approximately 80%, or greater than or equal to 85%, or greater than or equal to 90 %, calculation at periodic or predetermined instants of the value of the derivative of the voltage with respect to time dV/dt, d) sending of a signal indicating the imminence of the end of the charge if the value of the derivative dV/dt is below a predetermined threshold.
  • FIG. 1 shows the charge profile of an element whose cathode comprises as electrochemically active material only a lithium phosphate of manganese and iron.
  • FIG. 2 shows the load profiles of the elements prepared in the examples.
  • FIG. 3 is a magnification of the load profiles shown in Figure 2.
  • the addition to the lithiated phosphate of at least one nickel-rich lithiated oxide makes it possible to obtain a mixture whose charge profile presents a plateau as the end of the charge approaches. of the element.
  • the term "rich in nickel” denotes in the following a stoichiometric nickel index greater than or equal to 0.80 for the lithiated oxide of nickel, manganese and cobalt and greater than or equal to 0.83 for the lithiated nickel oxide , cobalt and aluminum.
  • the proportion of the lithiated oxide ranges from 1 to less than 50% of the mass of all the active materials present in the cathode. It can range from 5 to 40% or from 10 to 30% or from 15 to 25% of the mass of all the active materials present in the cathode.
  • the lithiated nickel oxide is said to be lamellar because it consists of a stack of layers of formula MO2, where M designates one or more transition elements.
  • M designates one or more transition elements.
  • Each sheet is made up of the association of MOb octahedra sharing their edges.
  • the center of each octahedron is occupied by a transition element M and the six vertices of the octahedron are occupied by an oxygen atom.
  • the lithium atom is intercalated between the MO2 sheets. During the charging of the electrochemical cell, it disintercalates from the sheets. During the discharge of the element, it is reintercalated between the layers.
  • the nickel of the lithiated oxide can be combined with manganese, cobalt, and optionally one or more chemical elements to give the compound of formula Li w (Ni x Mn y Co z M t )0 2 abbreviated NMC where 0.9 ⁇ w ⁇ 1.1;0.80 ⁇ x;0 ⁇ y;0 ⁇ z;0 ⁇ t; M being at least one element selected from the group consisting of Al, B, Mg, Si, Ca, Ti, V, Cr, Fe, Cu, Zn, Y, Zr, Nb, W, Mo, Sr, Ce, Ta, Ga, Nd, Pr and La.
  • Preferred NMC compounds 1)-3) satisfy the following criteria:
  • x may be at least equal to 0.82 or at least equal to 0.84 or at least equal to 0.86 or at least equal to 0.88 or at least equal to 0.90.
  • x can be at least equal to 0.86 or at least equal to 0.88 or at least equal to 0.90.
  • x can be at least equal to 0.85 or at least equal to 0.86 or at least equal to 0.88 or at least equal to 0.90.
  • NMC-like compounds are for example LiNio ,84 Mno , o 8 Coo , o 80 2 and Li N io,87Mno,o6Coo,o702, LiNio,89Mno,o6Coo,o502.
  • Several NMC-like compounds may be present in the cathode.
  • the nickel of the lithiated oxide can be combined with cobalt, aluminum and optionally one or more chemical elements to give the compound of formula Li w (Ni x CoyAl z M t )0 2 abbreviated N CA where 0.9 ⁇ w ⁇ 1.1;0.83 ⁇ x;0 ⁇ y;0 ⁇ z;0 ⁇ t; M being at least one element selected from the group consisting of B, Mg, Si, Ca, Ti, V, Cr, Mn, Fe, Cu, Zn, Y, Zr, Nb, W, Mo, Sr, Ce, Ga, Ta, Nd, Pr and La.
  • Preferred N CA compounds 1)-3) satisfy the following criteria:
  • x can be at least equal to 0.84 or at least equal to 0.86 or at least equal to 0.88 or at least equal to 0.90 or at least equal to 0.92.
  • x can be at least equal to 0.86 or at least equal to 0.88 or at least equal to 0.90.
  • x can be at least equal to 0.85 or at least equal to 0.86 or at least equal to 0.88 or at least equal to 0.90.
  • NCA type compounds rich in nickel are for example LiNio .84 Coo , osAlo , o 8 0 2 ,
  • NCA-like compounds may be present in the cathode.
  • a mixture of one or more NMC type compounds and one or more NCA type compounds can be used in the cathode.
  • the lithiated nickel oxide can be a single crystal or a polycrystal.
  • a monocrystal is a solid made up of a single crystal, formed from a single seed.
  • a polycrystal is a solid made up of a set of crystals of varying size, shape and orientation, separated by grain boundaries.
  • the lithiated nickel oxide is a single crystal. It has in fact been discovered that when the lithiated nickel oxide is in the form of a monocrystal, the electrochemical element has a better cycle life.
  • a procedure given by way of indication for the manufacture of a monocrystal of the lithiated oxide of nickel, manganese and cobalt is as follows.
  • aqueous solutions are prepared from a nickel salt, a manganese salt, a cobalt salt and a salt of the element M. Salts that are highly soluble in aqueous medium. It can for example be NÎS0 4 -6H 2 0, MnSO ôhhO, CoS0 4 -7H 2 0. The quantities of salts are calculated to correspond to the molar ratios Ni: Mn: Co: M of x: y: z: t.
  • the aqueous solutions are simultaneously introduced into a continuously stirred reactor under a nitrogen atmosphere.
  • a solution of NaOH for example 5 mol-L 1
  • a solution of NH3 ⁇ 2O for example 4 mol-L 1
  • chelating agent for example 4 mol-L 1
  • the temperature for example 50°C
  • the pH value for example 11.5
  • the stirring speed of the solution for example 500 rpm
  • Ni x Mn y Co z M t (OH)2 particles are obtained by washing, filtration and drying in a vacuum oven at 110° C. overnight. Then this precursor is mixed with LiOH-hhO.
  • the molar quantity of lithium is in slight excess compared to the total molar quantity of the elements Ni, Mn, Co and M.
  • the excess lithium is intended to compensate for the loss of lithium during the sintering process.
  • the mixture is annealed at about 500°C for about 5 hours, then calcined at about 850°C for about 10 hours under an oxygen atmosphere to finally obtain the monocrystal of Li w Ni x Mn y Co z M t 0 2
  • the preparation of a monocrystal of Li w Ni x Co y Al z M t 0 2 is carried out in a similar manner.
  • the aluminum element is supplied in the form of an aqueous solution prepared from aluminum salts which are soluble in an aqueous medium. It can be sulphate or nitrate or aluminum chloride.
  • the lithiated nickel oxide is used in the formulation of the cathode in the form of a powder of particles.
  • the size distribution of the particles is characterized by a median volume diameter Dv 5 o less than or equal to 7 ⁇ m, or ranging from 2 to 6 ⁇ m, the median diameter being measured on particles not not part of an agglomerate of particles.
  • the size distribution of the agglomerate of crystals is characterized by a median volume diameter Dv 5 o greater than or equal to 8 ⁇ m, ranging for example from 8 to 12 ⁇ m.
  • the term "median diameter Dv 5 o equal to X pm" means that 50% of the volume of the lithiated nickel oxide particles is made up of particles having an equivalent diameter less than X pm, and 50% of the volume of the oxide particles Nickel lithium is made up of particles having an equivalent diameter greater than X pm.
  • the term equivalent diameter of a particle designates the diameter of a sphere having the same volume as this particle. The measurement of the particle size can be carried out by the technique of granulometry by laser diffraction using a Malvern Mastersizer 2000 device.
  • the lithium manganese iron phosphate has the formula Li x Mni- yz Fe y M z P0 4 (LMFP), where M is at least one element selected from the group consisting of B, Mg, Al, Si, Ca, Ti, V, Cr, Co, Ni, Cu, Zn, Y, Zr, Nb and Mo, with 0.8 ⁇ x ⁇ 1.2;0 ⁇ y ⁇ 0.5;0 ⁇ z ⁇ 0.2.
  • LMFP Li x Mni- yz Fe y M z P0 4
  • the stoichiometric index y of iron can be strictly less than 0.5 or less than or equal to 0.45 or less than or equal to 0.40 or less than or equal to 0.30 or less than or equal to 0.20. It may be greater than or equal to 0.05 or greater than or equal to 0.10 or greater than or equal to 0.20 or greater than or equal to 0.30 or greater than or equal to 0.40.
  • Typical formulas for lithium manganese iron phosphate are LiMno.sFeo ⁇ PC, LiMno,7Feo,3P04, LiMn2/3Fe1/3P04 and LiMno,5Feo,5P04.
  • the lithium manganese iron phosphate can be coated with a layer of a conductive material, such as carbon.
  • the proportion of lithium phosphate ranges from more than 50% to 99%, or from 55 to 90% or from 60 to 80% or from 65 to 75% of the mass of all the materials active from the cathode.
  • the presence of a majority of lithium phosphate gives the electrochemical element good thermal stability.
  • a preferred mixture of active materials comprises:
  • the cathode active material composition designates the set of compounds which cover the current collector of the cathode on at least one of its faces.
  • this composition includes:
  • electrochemically active materials that is to say said at least one lithiated nickel oxide, the lithiated manganese and iron phosphate described above and possibly one or more other electrochemically active materials;
  • the function of the binder is to reinforce the cohesion between the particles of active material as well as to improve the adhesion of the mixture according to the invention to the current collector.
  • the binder may be one or more of the following compounds: polyvinylidene fluoride (PVDF) and its copolymers such as polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP), polytetrafluoroethylene (PTFE) and its copolymers, polyacrylonitrile (PAN ), poly(methyl)- or (butyl)methacrylate, polyvinyl chloride (PVC), poly(vinyl formal), polyester, block polyetheramides, polymers of acrylic acid, methacrylic acid, acrylamide, itaconic acid, sulfonic acid, elastomers and cellulosic compounds.
  • PVDF polyvinylidene fluoride
  • PVDF-HFP polyvinylidene fluoride-co-hexaflu
  • the elastomer or elastomers that can be used as binder can be chosen from styrene-butadiene (SBR), butadiene-acrylonitrile rubber (NBR), hydrogenated butadiene-acrylonitrile rubber (HNBR).
  • SBR styrene-butadiene
  • NBR butadiene-acrylonitrile rubber
  • HNBR hydrogenated butadiene-acrylonitrile rubber
  • the electronically conductive material is generally chosen from graphite, carbon black, acetylene black, soot, graphene, carbon nanotubes or a mixture thereof. It is used in small quantities, generally 5% or less relative to the sum of the masses of the mixture of active materials, of the binder(s) and of the electronically conductive material.
  • An ink is prepared by mixing the cathode active materials, the binder(s), generally an electronically conductive material and at least one solvent.
  • the solvent is an organic solvent which can be chosen from N-methyl-2-pyrrolidone (NMP), dimethyl formamide (DMF) and dimethyl sulphoxide (DMSO). It can also be chosen from cyclopentyl methyl ether (CPME), xylene (o-xylene, m-xylene or p-xylene), heptane, or a ketone-based solvent such as acetone or methyl ethyl ketone ( MEK).
  • NMP N-methyl-2-pyrrolidone
  • DMF dimethyl formamide
  • DMSO dimethyl sulphoxide
  • CPME cyclopentyl methyl ether
  • xylene o-xylene, m-xylene or p-xylene
  • heptane heptane
  • MEK ketone
  • the viscosity of the ink is adjusted by varying the quantity of solid materials, that is to say the cathodic active materials, the binder and the electronically conductive material, or else by varying the quantity of solvent.
  • the ink is deposited on one or both sides of a current collector.
  • This one is a current-conducting support, preferably two-dimensional, such as a solid or perforated strip, based on carbon or metal, for example nickel, steel, stainless steel or aluminum, preferably aluminum.
  • the current collector can also be coated on one or both sides with a layer of carbon.
  • the ink-coated current collector is placed in an oven and the solvent is evaporated.
  • the quantity of solid material remaining after evaporation of the solvent can range from 35 to 65% or from 45 to 55% by mass relative to the mass of the ink before drying.
  • the cathode can then be compressed during a calendering step. This step makes it possible to adjust the thickness of the layer of solid material deposited on the current collector.
  • a typical composition of cathodic active material after drying is as follows:
  • binder(s) from 1 to 10% by mass of binder(s), preferably from 1 to 5%;
  • the anode is prepared in a conventional manner. It consists of a conductive support used as a current collector which is coated on one or both sides with a layer containing an anode active material and also generally a binder and an electronically conductive material.
  • the current collector can be a two-dimensional conductive support such as a solid or perforated strip, in aluminum or in an aluminum-based alloy or in copper or in a copper-based alloy.
  • the current collector can be coated on one or both sides with a layer of carbon.
  • the anodic active material is not particularly limited. It is a material capable of inserting lithium into its structure. It can be chosen from lithium compounds, carbonaceous materials such as graphite, coke, carbon black and glassy carbon. It can also be based on tin, silicon, compounds based on carbon and silicon, compounds based on carbon and tin or compounds based on carbon, tin and silicon. It can also be a lithiated titanium oxide such as LÎ 4 Ti 5 0i 2 or a niobium titanium oxide such as TiNb2O7. It can also be made of lithium metal or of a lithium alloy with one or more chemical elements.
  • the anode binder can be chosen from the following compounds, taken alone or as a mixture: polyvinylidene fluoride (PVDF) and its copolymers, polytetrafluoroethylene (PTFE) and its copolymers, polyacrylonitrile (PAN), poly(methyl)- or (butyl) methacrylate, polyvinyl chloride (PVC), poly(vinyl formal), a polyester, block polyetheramides, polymers of acrylic acid, methacrylic acid, a acrylamide, itaconic acid, sulfonic acid, elastomers and cellulosic compounds.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PAN polyacrylonitrile
  • PVC poly(methyl)- or (butyl) methacrylate
  • PVC polyvinyl chloride
  • PV formal poly(vinyl formal)
  • block polyetheramides polymers of acrylic acid, methacrylic acid, a
  • the electronically conductive material is generally chosen from graphite, carbon black, acetylene black, soot, graphene, carbon nanotubes or a mixture thereof. It is generally used at a rate of 7% or less relative to the sum of the masses of the mixture of anodic active material, of the binder and of the electronic conductive material.
  • Lithium-ion element [0047] Lithium-ion element:
  • the lithium-ion element is manufactured in a conventional manner. At least one cathode, at at least one separator and at least one anode are superposed. The assembly can be rolled to form a cylindrical electrochemical bundle.
  • the invention is not limited to the manufacture of elements of cylindrical format.
  • the format of the element can also be taken as matic or as a pouch type.
  • the electrodes can also be stacked to form a planar electrochemical bundle.
  • a connection part is fixed on an edge of the cathode not covered with active material. It is connected to a current output terminal.
  • the anode can be electrically connected to the cell container. Conversely, the cathode can be connected to the cell container and the anode to a current output terminal.
  • the electrochemical bundle After being inserted into the cell container, the electrochemical bundle is impregnated with electrolyte. The element is then closed tightly.
  • the element can also be conventionally equipped with a safety valve causing the container of the element to open if the internal pressure of the element exceeds a predetermined value.
  • the electrolyte can be liquid and comprise a lithium salt dissolved in an organic solvent.
  • This lithium salt can be chosen from lithium perchlorate UCIO4, lithium hexafluorophosphate L1PF6, lithium tetrafluoroborate L1BF4, lithium hexafluoroarsenate LiAsF 6 , lithium hexafluoroantimonate LiSbF 6 , trifluoromethanesulfo- lithium ate UCF3SO3, lithium bis(fluorosulfonyl)imide Li(FS0 2 ) 2 N (LiFSI), lithium trifluoromethanesulfonimide LiN(CF 3 S0 2 ) 2 (LiTFSI), lithium trifluoromethanesulfone methide LiC( CF 3 S0 2 ) 3 (LiTFSM), lithium bisperfluoroethylsulfonimide LiN(C 2 F 5 S0 2 ) 2 (LiBETI), lithium 4,5-di
  • the electrolyte solvent can be chosen from saturated cyclic carbonates, unsaturated cyclic carbonates, linear carbonates, alkyl esters, ethers, cyclic esters, such as lactones.
  • the electrolyte can be solid. It may be a compound which conducts lithium ions, chosen for example from oxides which conduct lithium ions and sulphides which conduct lithium ions.
  • the electrolyte can also be a polymer that conducts lithium ions, such as polyethylene oxide (PEO), polyphenylene sulfide (PPS) and polycarbonate.
  • the electrolyte can also be in the form of a gel obtained by impregnating a polymer with a liquid mixture comprising at least one lithium salt and an organic solvent.
  • the separator may consist of a layer of polypropylene (PP), polyethylene (PE), polytetrafluoroethylene (PTFE), polyacrylonitrile (PAN), polyester such as polyethylene terephthalate (PET), poly( butylene) terephthalate (PBT), cellulose, polyimide, glass fibers or a mixture of layers of different types.
  • PP polypropylene
  • PE polyethylene
  • PTFE polytetrafluoroethylene
  • PAN polyacrylonitrile
  • PET polyethylene terephthalate
  • PBT poly( butylene) terephthalate
  • cellulose polyimide
  • glass fibers or a mixture of layers of different types.
  • the polymers mentioned can be coated with a ceramic layer and/or polyvinylidene difluoride (PVdF) or poly(vinylidene fluoride-hexafluoropropylene (PVdF-HFP) or acrylates.
  • PVdF polyvinylidene di
  • FIG. 2 is an enlargement of FIG. 2 for states of charge close to the end of charging.
  • the load profile of elements 3 and 4 has a plateau located between the flat part and the sudden rise in voltage.
  • the plateau is visible for elements 3 and 4, whether it is monocrystalline NMC or polycrystalline NMC.
  • the presence of this plateau can be detected using means for measuring the voltage of the element coupled to electronic means for processing the measured voltage values.
  • the change in concavity of the load profile is detectable by computer means. The detection of the tray triggers a signal that warns a user of the imminence of the end of the charge.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

The invention relates to a mixture comprising: - more than 50 to 99% by weight of a lithium phosphate of manganese and iron - 1 to less than 50% by weight of at least one lithium oxide of nickel, manganese and cobalt or at least one lithium oxide of nickel, cobalt and aluminium, or of a mixture of these two oxides, these two lithium oxides being rich in nickel. This mixture can be used as active material of the cathode of a lithium-ion electrochemical element. The charging profile of the element has a plateau indicating the end of charging.

Description

Description Description
Titre : Mélange de matières actives pour cathode d’élément lithium-ion Title: Mixture of active materials for cathode of lithium-ion element
Domaine technique de l’invention Technical field of the invention
[0001] Le domaine technique de la présente invention est celui des matières actives destinées à être utilisées dans la cathode d’un élément électrochimique de type lithium-ion, encore appelé élément lithium-ion. Le domaine technique est également celui des méthodes de détection de la fin de la charge d’éléments lithium-ion dont la matière active cathodique comprend un phosphate lithié d’au moins un métal de transition. The technical field of the present invention is that of active materials intended to be used in the cathode of an electrochemical element of the lithium-ion type, also called lithium-ion element. The technical field is also that of methods for detecting the end of the charge of lithium-ion elements whose cathodic active material comprises a lithiated phosphate of at least one transition metal.
Contexte de l'invention Background of the invention
[0002] Des éléments électrochimiques de type lithium-ion comportant une cathode dont la ma tière active est à base de phosphate lithié d’au moins un métal de transition sont connus de l’état de la technique. Un phosphate lithié d’au moins un métal de transition a typique ment pour formule UMPO4 où M représente au moins un métal de transition, par exemple Mn ou Fe ou Mn associé à Fe. De tels éléments présentent une capacité massique infé rieure à celle d’éléments dont la cathode comprend une matière active qui est un oxyde lithié d’au moins un métal de transition de formule UMO2 où M représente au moins un métal de transition. Cependant, ils offrent une sécurité d’utilisation supérieure en raison du fait que les phosphates lithiés de métaux de transition sont plus stables thermiquement que les oxydes lithiés de métaux de transition. [0002] Electrochemical elements of the lithium-ion type comprising a cathode whose active material is based on lithium phosphate of at least one transition metal are known from the state of the art. A lithiated phosphate of at least one transition metal typically has the formula UMPO4 where M represents at least one transition metal, for example Mn or Fe or Mn associated with Fe. Such elements have a mass capacity lower than that of elements whose cathode comprises an active material which is a lithiated oxide of at least one transition metal of formula UMO2 where M represents at least one transition metal. However, they offer superior safety in use due to the fact that lithiated transition metal phosphates are more thermally stable than lithiated transition metal oxides.
[0003] La détermination de l’état de charge d’un élément dont la cathode comprend un phos phate lithié d’au moins un métal de transition est difficile. En effet, un tel élément présente pour des états de charge compris entre 30 et 80% un profil de charge dit « plat ». On en tend par profil de charge la courbe représentant la variation de la tension de l’élément en fonction du temps au cours de la charge. Dans la plage d’états de charge compris entre 30 et 80%, la tension de l’élément augmente très peu, de sorte qu’il est difficile d’établir une correspondance entre la tension de l’élément et son état de charge. De plus, à l’ap proche de la fin de la charge, c’est-à-dire pour un état de charge compris entre environ 95 et 100 %, la tension de l’élément augmente brusquement. En effet, la délithiation de la quasi totalité du lithium présent dans le phosphate lithié entraine une hausse subite de la tension. Cette hausse subite ne permet pas de prévenir suffisamment tôt un utilisateur de l’imminence d’une surcharge. La tension de l’élément peut attendre rapidement des va leurs élevées. Une exposition prolongée de l’élément à une surcharge entraine une dé gradation de l’électrolyte et une baisse de la durée de vie de l’élément. [0003] Determining the state of charge of an element whose cathode comprises a lithiated phosphate of at least one transition metal is difficult. Indeed, such an element has for states of charge comprised between 30 and 80% a so-called “flat” charge profile. We tend by load profile the curve representing the variation of the voltage of the element as a function of time during the load. In the state-of-charge range of 30-80%, the cell voltage increases very little, so it is difficult to establish a correspondence between the cell's voltage and its state-of-charge. In addition, near the end of the charge, that is to say for a state of charge between about 95 and 100%, the voltage of the element increases suddenly. Indeed, the delithiation of almost all of the lithium present in the lithium phosphate causes a sudden rise in voltage. This sudden increase does not allow a user to be warned early enough of the imminence of an overload. The cell voltage can reach high values quickly. Prolonged exposure of the cell to an overcharge leads to electrolyte degradation and reduced cell life.
[0004] Un exemple de profil de charge d’un élément dont la cathode comprend un phosphate li thié d’au moins un métal de transition est représenté Figure 1. On note une première phase allant de l’état de charge 0 % jusqu’à 30 % au cours de laquelle la tension aug mente rapidement, puis une seconde phase allant de 30 % jusqu’à environ 80 % d’état de charge au cours de laquelle la tension n’augmente quasiment pas et enfin une troisième phase allant de environ 95 % à 100 % au cours de laquelle la tension augmente très rapi dement. An example of a charge profile of an element whose cathode comprises a li thie phosphate of at least one transition metal is shown in Figure 1. There is a first phase ranging from the 0% charge state to at 30% during which the voltage increases rapidly, then a second phase going from 30% up to about 80% of state of charge during which the voltage hardly increases and finally a third phase ranging from approximately 95% to 100% during which the voltage increases very rapidly.
[0005] Des procédés de détection de la fin de la charge ont été recherchés pour permettre de détecter suffisamment tôt l’imminence de la fin de la charge. On peut par exemple citer le document EP-A-2309615. Dans ce document, on mesure périodiquement la tension et lorsqu’on détecte une brusque élévation de celle-ci, la charge est interrompue ou l’inten sité du courant de charge est réduite. [0005] Methods for detecting the end of the charge have been researched to make it possible to detect the imminence of the end of the charge sufficiently early. Mention may be made, for example, of document EP-A-2309615. In this document, the voltage is periodically measured and when a sudden rise in voltage is detected, charging is interrupted or the intensity of the charging current is reduced.
[0006] On recherche un moyen de rendre encore plus sûre la détection de la fin de la charge en prévenant encore plus précisément l’imminence de la fin de la charge. [0006] We are looking for a way to make the detection of the end of the charge even safer by preventing even more precisely the imminence of the end of the charge.
Résumé de l'invention Summary of the invention
[0007] A cet effet, la présente invention propose un mélange comprenant : For this purpose, the present invention provides a mixture comprising:
- de plus de 50 à 99 % en masse d’un phosphate lithié de manganèse et de fer de for mule : LixMni-y-zFeyMzP04 où 0,8<x<1,2 ; 0,5<1-y-z<1 ; 0<y<0,5 ; 0<z<0,2 et M est au moins un élément choisi dans le groupe constitué de B, Mg, Al, Si, Ca, Ti, V, Cr, Co, Ni, Ou, Zn, Y, Zr, Nb et Mo ; - more than 50 to 99% by mass of a lithiated manganese iron phosphate of formula: Li x Mni-y- z Fe y M z P0 4 where 0.8<x<1.2;0.5<1-yz<1;0<y<0.5;0<z<0.2 and M is at least one element selected from the group consisting of B, Mg, Al, Si, Ca, Ti, V, Cr, Co, Ni, Ou, Zn, Y, Zr, Nb and MB;
- de 1 à moins de 50 % en masse d’au moins un oxyde lithié de nickel choisi parmi : i) un oxyde lithié de nickel, de manganèse et de cobalt de formule Liw(NixMnyCozMt)02 où 0,9<w<1,1 ; 0,80<x ; 0<y ; 0<z ; 0<t ; M étant au moins un élément choisi dans le groupe constitué de Al, B, Mg, Si, Ca, Ti, V, Cr, Fe, Cu, Zn, Y, Zr, Nb, W, Mo, Sr, Ce, Ta, Ga, Nd, Pr, La ; ii) un oxyde lithié de nickel, de cobalt et d’aluminium de formule Liw(NixCoyAlzMt)02 où 0,9<w<1,1 ; 0,83<x ; 0<y ; 0<z ; 0<t ; M étant au moins un élément choisi dans le groupe constitué de B, Mg, Si, Ca, Ti, V, Cr, Mn, Fe, Cu, Zn, Y, Zr, Nb, W, Mo, Sr, Ce, Ga, Ta, Nd, Pr, La, et iii) un mélange dudit oxyde lithié de nickel, de manganèse et de cobalt avec ledit oxyde lithié de nickel, de cobalt et d’aluminium. - from 1 to less than 50% by mass of at least one lithiated nickel oxide chosen from: i) a lithiated oxide of nickel, manganese and cobalt of formula Li w (Ni x Mn y Co z M t )0 2 where 0.9<w<1.1;0.80<x;0<y;0<z;0<t; M being at least one element selected from the group consisting of Al, B, Mg, Si, Ca, Ti, V, Cr, Fe, Cu, Zn, Y, Zr, Nb, W, Mo, Sr, Ce, Ta, Ga, Nd, Pr, La; ii) a lithium oxide of nickel, cobalt and aluminum of formula Li w (Ni x Co y Al z M t )0 2 where 0.9<w<1.1;0.83<x;0<y;0<z;0<t; M being at least one element selected from the group consisting of B, Mg, Si, Ca, Ti, V, Cr, Mn, Fe, Cu, Zn, Y, Zr, Nb, W, Mo, Sr, Ce, Ga, Ta, Nd, Pr, La, and iii) a mixture of said lithiated oxide of nickel, manganese and cobalt with said lithiated oxide of nickel, cobalt and aluminum.
[0008] Il a été découvert de manière surprenante que l’incorporation au phosphate lithié d’un oxyde lithié riche en nickel permettait d’obtenir un mélange de matières actives qui lorsqu’il est utilisé dans la cathode d’un élément électrochimique lithium-ion peut servir à détecter l’imminence de la fin de la charge de l’élément, donc éviter un début de sur charge. En effet, le profil de charge de l’élément présente un plateau indicateur de la fin de la charge de l’élément. Ce plateau apparaît pour un état de charge proche de 90-95%. L’apparition du plateau se traduit par un ralentissement de l’augmentation de la tension. Elle peut être détectée en analysant périodiquement ou à des instants prédéterminés la variation de la tension de l’élément au cours du temps. Après détection du plateau, un si gnal indicateur de l’imminence de la fin de la charge peut être envoyé à un utilisateur. [0009] Selon un mode de réalisation, ledit au moins un oxyde lithié de nickel est monocristallin. It has been surprisingly discovered that the incorporation into the lithium phosphate of a nickel-rich lithium oxide made it possible to obtain a mixture of active materials which, when used in the cathode of a lithium-electrochemical element ion can be used to detect the imminence of the end of the charge of the element, thus avoiding a start of overcharging. Indeed, the charge profile of the element presents an indicator plate of the end of the charge of the element. This plateau appears for a state of charge close to 90-95%. The appearance of the plateau results in a slowing down of the increase in tension. It can be detected by analyzing periodically or at predetermined times the variation in the voltage of the element over time. After detection of the tray, a signal indicating the imminence of the end of the charge can be sent to a user. According to one embodiment, said at least one lithiated nickel oxide is monocrystalline.
[0010] Selon un mode de réalisation, ledit au moins un oxyde lithié de nickel se présente sous la forme de particules dont la distribution en taille est caractérisée par un diamètre médian en volume Dv5o inférieur ou égal à 7 pm, de préférence allant de 2 à 6 pm, le diamètre médian étant mesuré sur des particules ne faisant pas partie d’un agglomérat de parti cules. According to one embodiment, said at least one lithiated nickel oxide is in the form of particles whose size distribution is characterized by a volume median diameter Dv 5 o less than or equal to 7 μm, preferably ranging from 2 to 6 μm, the median diameter being measured on particles which are not part of an agglomerate of particles.
[0011] Selon un mode de réalisation, le mélange comprend : [0011] According to one embodiment, the mixture comprises:
- de 60 à 90 % en masse de phosphate lithié de manganèse et de fer ; - from 60 to 90% by mass of lithiated manganese iron phosphate;
- de 10 à 40 % en masse dudit au moins un oxyde lithié de nickel. [0012] Selon un mode de réalisation, le mélange comprend : - From 10 to 40% by weight of said at least one lithiated nickel oxide. [0012] According to one embodiment, the mixture comprises:
- de 70 à 80 % en masse de phosphate lithié de manganèse et de fer ; - from 70 to 80% by mass of lithiated manganese iron phosphate;
- de 20 à 30 % en masse dudit au moins un oxyde lithié de nickel. - From 20 to 30% by weight of said at least one lithiated nickel oxide.
[0013] Selon un mode de réalisation, dans l’oxyde lithié de nickel, l’indice x du nickel va de 0,84 à 0,90. [0013] According to one embodiment, in the lithiated nickel oxide, the index x of the nickel ranges from 0.84 to 0.90.
[0014] Selon un mode de réalisation, dans l’oxyde lithié de nickel, l’indice x du nickel est inférieur ou égal à 0,98 ou inférieur ou égal à 0,90. According to one embodiment, in the lithiated nickel oxide, the index x of the nickel is less than or equal to 0.98 or less than or equal to 0.90.
[0015] Selon un mode de réalisation, dans le phosphate lithié de manganèse et de fer, l’indice 1- y-z du manganèse va de 0,6 à moins de 1. According to one embodiment, in the lithiated manganese iron phosphate, the 1-y-z index of manganese ranges from 0.6 to less than 1.
[0016] L’invention a également pour objet un élément électrochimique comprenant : The invention also relates to an electrochemical element comprising:
- au moins une anode, - at least one anode,
- au moins une cathode comprenant le mélange tel que décrit ci-avant. - at least one cathode comprising the mixture as described above.
[0017] Enfin, l’invention a pour objet un procédé de détection de la fin de la charge d’un élément électrochimique lithium-ion, ledit procédé comprenant les étapes de : a) mise à disposition d’un élément électrochimique tel que décrit ci-avant, b) charge de l’élément, c) pour un état de charge de l’élément supérieur à environ 70%, ou supérieur à environ 80%, ou supérieur ou égal à 85%, ou supérieur ou égal à 90%, calcul à des instants pé riodiques ou prédéterminés de la valeur de la dérivée de la tension par rapport au temps dV/dt, d) envoi d’un signal indiquant l’imminence de la fin de la charge si la valeur de la dérivée dV/dt est inférieure à un seuil prédéterminé. Finally, the subject of the invention is a method for detecting the end of the charge of a lithium-ion electrochemical element, said method comprising the steps of: a) providing an electrochemical element as described above, b) charge of the cell, c) for a state of charge of the cell greater than approximately 70%, or greater than approximately 80%, or greater than or equal to 85%, or greater than or equal to 90 %, calculation at periodic or predetermined instants of the value of the derivative of the voltage with respect to time dV/dt, d) sending of a signal indicating the imminence of the end of the charge if the value of the derivative dV/dt is below a predetermined threshold.
Brève description des dessins Brief description of the drawings
[0018] Des modes de réalisation de l'invention sont décrits ci-dessous plus en détail avec réfé rence aux figures jointes. [0018] Embodiments of the invention are described below in more detail with reference to the accompanying figures.
[0019] [Fig. 1] montre le profil de charge d’un élément dont la cathode comprend comme matière électrochimiquement active uniquement un phosphate lithié de manganèse et de fer. [0020] [Fig. 2] montre les profils de charge des éléments préparés dans les exemples. [0019] [Fig. 1] shows the charge profile of an element whose cathode comprises as electrochemically active material only a lithium phosphate of manganese and iron. [0020] [Fig. 2] shows the load profiles of the elements prepared in the examples.
[0021] [Fig. 3] est un grossissement des profils de charge représentés à la figure 2. [0021] [Fig. 3] is a magnification of the load profiles shown in Figure 2.
Description des modes de réalisation de l'invention Description of embodiments of the invention
[0022] Selon l’invention, l’ajout au phosphate lithié d’au moins un d’oxyde lithié riche en nickel permet d’obtenir un mélange dont le profil de charge présente un plateau à l’approche de la fin de la charge de l’élément. Le terme « riche en nickel » désigne dans ce qui suit un indice stoechiométrique en nickel supérieur ou égal à 0,80 pour l’oxyde lithié de nickel, manganèse et cobalt et supérieur ou égal à 0,83 pour l’oxyde lithié de nickel, cobalt et aluminium. Selon l’invention, la proportion de l’oxyde lithié va de 1 à moins de 50 % de la masse de l’ensemble des matières actives présentes dans la cathode. Elle peut aller de 5 à 40 % ou de 10 à 30 % ou de 15 à 25 % de la masse de l’ensemble des matières actives présentes dans la cathode. According to the invention, the addition to the lithiated phosphate of at least one nickel-rich lithiated oxide makes it possible to obtain a mixture whose charge profile presents a plateau as the end of the charge approaches. of the element. The term "rich in nickel" denotes in the following a stoichiometric nickel index greater than or equal to 0.80 for the lithiated oxide of nickel, manganese and cobalt and greater than or equal to 0.83 for the lithiated nickel oxide , cobalt and aluminum. According to the invention, the proportion of the lithiated oxide ranges from 1 to less than 50% of the mass of all the active materials present in the cathode. It can range from 5 to 40% or from 10 to 30% or from 15 to 25% of the mass of all the active materials present in the cathode.
[0023] L’oxyde lithié de nickel est dit lamellaire car il est constitué d’un empilement de feuillets de formule MO2, où M désigne un ou plusieurs éléments de transition. Chaque feuillet est constitué de l’association d'octaèdres MOb partageant leurs arêtes. Le centre de chaque octaèdre est occupé par un élément de transition M et les six sommets de l’octaèdre sont occupés par un atome d’oxygène. L’atome de lithium est intercalé entre les feuillets MO2. Au cours de la charge de l’élément électrochimique, il se désintercale des feuillets. Au cours de la décharge de l’élément, il se réintercale entre les feuillets. The lithiated nickel oxide is said to be lamellar because it consists of a stack of layers of formula MO2, where M designates one or more transition elements. Each sheet is made up of the association of MOb octahedra sharing their edges. The center of each octahedron is occupied by a transition element M and the six vertices of the octahedron are occupied by an oxygen atom. The lithium atom is intercalated between the MO2 sheets. During the charging of the electrochemical cell, it disintercalates from the sheets. During the discharge of the element, it is reintercalated between the layers.
[0024] Le nickel de l’oxyde lithié peut être associé à du manganèse, du cobalt, et éventuellement un ou plusieurs éléments chimiques pour donner le composé de formule Liw(NixMnyCozMt)02 abrévié NMC où 0,9<w<1 ,1 ; 0,80<x ; 0<y ; 0<z ; 0<t ; M étant au moins un élément choisi dans le groupe constitué de Al, B, Mg, Si, Ca, Ti, V, Cr, Fe, Cu, Zn, Y, Zr, Nb, W, Mo, Sr, Ce, Ta, Ga, Nd, Pr et La. Des composés NMC préférés 1 )-3) satisfont les critères suivants : The nickel of the lithiated oxide can be combined with manganese, cobalt, and optionally one or more chemical elements to give the compound of formula Li w (Ni x Mn y Co z M t )0 2 abbreviated NMC where 0.9<w<1.1;0.80<x;0<y;0<z;0<t; M being at least one element selected from the group consisting of Al, B, Mg, Si, Ca, Ti, V, Cr, Fe, Cu, Zn, Y, Zr, Nb, W, Mo, Sr, Ce, Ta, Ga, Nd, Pr and La. Preferred NMC compounds 1)-3) satisfy the following criteria:
1) 0,9<w<1 ,1 ; 0,80<x ; 0<y<0,15 ; 0<z<0,15 et t=0. Dans ce mode de réalisation, x peut, être au moins égal à 0,82 ou au moins égal à 0,84 ou au moins égal à 0,86 ou au moins égal à 0,88 ou au moins égal à 0,90. 1) 0.9<w<1.1; 0.80<x; 0<y<0.15; 0<z<0.15 and t=0. In this embodiment, x may be at least equal to 0.82 or at least equal to 0.84 or at least equal to 0.86 or at least equal to 0.88 or at least equal to 0.90.
2) 0,9<w<1 ,1 ; 0,84<x ; 0<y<0,10 ; 0<z<0,10 et t=0. Dans ce mode de réalisation, x peut être au moins égal à 0,86 ou au moins égal à 0,88 ou au moins égal à 0,90. 2) 0.9<w<1.1; 0.84<x; 0<y<0.10; 0<z<0.10 and t=0. In this embodiment, x can be at least equal to 0.86 or at least equal to 0.88 or at least equal to 0.90.
3) w=1 ; 0,84<x ; 0<y<0,10 ; 0<z<0,10 et t=0. Dans ce mode de réalisation x peut être au moins égal à 0,85 ou au moins égal à 0,86 ou au moins égal à 0,88 ou au moins égal à 0,90. 3) w=1; 0.84<x; 0<y<0.10; 0<z<0.10 and t=0. In this embodiment x can be at least equal to 0.85 or at least equal to 0.86 or at least equal to 0.88 or at least equal to 0.90.
[0025] Des composés de type NMC riches en nickel sont par exemple LiNio,84Mno,o8Coo,o802 et Li N io,87Mno,o6Coo,o702, LiNio,89Mno,o6Coo,o502. Plusieurs composés de type NMC peuvent être présents dans la cathode. Compounds of the NMC type rich in nickel are for example LiNio ,84 Mno , o 8 Coo , o 80 2 and Li N io,87Mno,o6Coo,o702, LiNio,89Mno,o6Coo,o502. Several NMC-like compounds may be present in the cathode.
[0026] Le nickel de l’oxyde lithié peut être associé à du cobalt, de l’aluminium et éventuellement un ou plusieurs éléments chimiques pour donner le composé de formule Liw(NixCoyAlzMt)02 abrévié N CA où 0,9<w<1 ,1 ; 0,83<x ; 0<y ; 0<z ; 0<t ; M étant au moins un élément choisi dans le groupe constitué de B, Mg, Si, Ca, Ti, V, Cr, Mn, Fe, Cu, Zn, Y, Zr, Nb, W, Mo, Sr, Ce, Ga, Ta, Nd, Pr et La. Des composés N CA préférés 1 )-3) satisfont les critères suivants : The nickel of the lithiated oxide can be combined with cobalt, aluminum and optionally one or more chemical elements to give the compound of formula Li w (Ni x CoyAl z M t )0 2 abbreviated N CA where 0.9<w<1.1;0.83<x;0<y;0<z;0<t; M being at least one element selected from the group consisting of B, Mg, Si, Ca, Ti, V, Cr, Mn, Fe, Cu, Zn, Y, Zr, Nb, W, Mo, Sr, Ce, Ga, Ta, Nd, Pr and La. Preferred N CA compounds 1)-3) satisfy the following criteria:
1) 0,9<w<1 ,1 ; 0,83<x ; 0<y<0,15 ; 0<z<0,15 et t=0. Dans ce mode de réalisation, x peut être au moins égal à 0,84 ou au moins égal à 0,86 ou au moins égal à 0,88 ou au moins égal à 0,90 ou au moins égal à 0,92. 1) 0.9<w<1.1; 0.83<x; 0<y<0.15; 0<z<0.15 and t=0. In this embodiment, x can be at least equal to 0.84 or at least equal to 0.86 or at least equal to 0.88 or at least equal to 0.90 or at least equal to 0.92.
2) 0,9<w<1 ,1 ; 0,84<x ; 0<y<0,10 ; 0<z<0,10 et t=0. Dans ce mode de réalisation, x peut être au moins égal à 0,86 ou au moins égal à 0,88 ou au moins égal à 0,90. 2) 0.9<w<1.1; 0.84<x; 0<y<0.10; 0<z<0.10 and t=0. In this embodiment, x can be at least equal to 0.86 or at least equal to 0.88 or at least equal to 0.90.
3) w=1 ; 0,84<x ; 0<y<0,10 ; 0<z<0,10 et t=0. Dans ce mode de réalisation, x peut être au moins égal à 0,85 ou au moins égal à 0,86 ou au moins égal à 0,88 ou au moins égal à 0,90. 3) w=1; 0.84<x; 0<y<0.10; 0<z<0.10 and t=0. In this embodiment, x can be at least equal to 0.85 or at least equal to 0.86 or at least equal to 0.88 or at least equal to 0.90.
[0027] Des composés de type NCA riches en nickel sont par exemple LiNio,84Coo,osAlo,o802,NCA type compounds rich in nickel are for example LiNio .84 Coo , osAlo , o 8 0 2 ,
LiNio,85Coo,ioAlo,o502, LiNio,87Coo,o6Alo,o702, LiNi0,89Co0,o6Alo,o502. Plusieurs composés de type NCA peuvent être présents dans la cathode. Un mélange d’un ou de plusieurs composés de type NMC et d’un ou plusieurs composés de type NCA peut être utilisé dans la cathode. LiNio,8 5 Coo,ioAlo,o502, LiNio, 87 Coo,o6Alo,o702, LiNi 0.89 Co 0, o6Alo,o502. Several NCA-like compounds may be present in the cathode. A mixture of one or more NMC type compounds and one or more NCA type compounds can be used in the cathode.
[0028] L’oxyde lithié de nickel peut être un monocristal ou un polycristal. Un monocristal est un solide constitué d’un unique cristal, formé à partir d’un seul germe. Un polycristal est un solide constitué d’un ensemble de cristaux de taille, de forme et d’orientation variées, séparés par des joints de grains. De préférence, l’oxyde lithié de nickel est un monocristal. Il a été en effet découvert que lorsque l’oxyde lithié de nickel est sous la forme d’un monocristal, l’élément électrochimique présente une meilleure durée de vie en cyclage. Un mode opératoire donné à titre indicatif pour la fabrication d’un monocristal de l’oxyde lithié de nickel, de manganèse et de cobalt est le suivant. On prépare un précurseur NixMnyCozMt(OH)2 via une méthode de coprécipitation. Pour ce faire, on prépare des solu tions aqueuses à partir d’un sel de nickel, d’un sel de manganèse, d’un sel de cobalt et d’un sel de l’élément M. On choisit des sels fortement solubles en milieu aqueux. Il peut par exemple s’agir de NÎS04-6H20, MnSO ôhhO, CoS04-7H20. Les quantités de sels sont calculées pour correspondre aux ratios molaires Ni : Mn : Co : M de x : y : z : t. Les solutions aqueuses sont simultanément introduites dans un réacteur agité en continu sous atmosphère d’azote. Pendant ce temps, une solution de NaOH (par exemple 5 mol-L 1), utilisée comme agent de précipitation, et une solution de NH3Ή2O (par exemple 4 mol-L 1), utilisée comme agent chélatant, sont introduites séparément dans le réacteur. La température, par exemple de 50 °C, la valeur du pH, par exemple de 11,5 et la vitesse d'agitation de la solution, par exemple de 500 tr/min, sont contrôlées et maintenues cons tantes. Des particules de NixMnyCozMt(OH)2 sont obtenues par lavage, filtration et sé chage dans une étuve sous vide à 110 °C pendant toute une nuit. Ensuite, ce précurseur est mélangé avec LiOH-hhO. La quantité molaire de lithium est en léger excès par rapport à la quantité molaire totale des éléments Ni, Mn, Co et M. L’excès de lithium est destiné à compenser la perte de lithium durant le procédé de frittage. Ensuite, le mélange est recuit à environ 500°C pendant environ 5 heures, puis calciné à environ 850°C pendant environ 10 heures sous atmosphère d’oxygène pour obtenir finalement le monocristal de LiwNixMnyCozMt02. La préparation d’un monocristal de LiwNixCoyAlzMt02 s’effectue de ma nière similaire. L’élément aluminium est apporté sous la forme d’une solution aqueuse préparée à partir de sels d’aluminium solubles en milieu aqueux. Il peut s’agir de sulfate ou de nitrate ou de chlorure d’aluminium. The lithiated nickel oxide can be a single crystal or a polycrystal. A monocrystal is a solid made up of a single crystal, formed from a single seed. A polycrystal is a solid made up of a set of crystals of varying size, shape and orientation, separated by grain boundaries. Preferably, the lithiated nickel oxide is a single crystal. It has in fact been discovered that when the lithiated nickel oxide is in the form of a monocrystal, the electrochemical element has a better cycle life. A procedure given by way of indication for the manufacture of a monocrystal of the lithiated oxide of nickel, manganese and cobalt is as follows. Preparing a precursor Ni x Mn y Co z M t (OH)2 via a co-precipitation method. To do this, aqueous solutions are prepared from a nickel salt, a manganese salt, a cobalt salt and a salt of the element M. Salts that are highly soluble in aqueous medium. It can for example be NÎS0 4 -6H 2 0, MnSO ôhhO, CoS0 4 -7H 2 0. The quantities of salts are calculated to correspond to the molar ratios Ni: Mn: Co: M of x: y: z: t. The aqueous solutions are simultaneously introduced into a continuously stirred reactor under a nitrogen atmosphere. During this time, a solution of NaOH (for example 5 mol-L 1 ), used as precipitation agent, and a solution of NH3Ή2O (for example 4 mol-L 1 ), used as chelating agent, are introduced separately into the reactor . The temperature, for example 50°C, the pH value, for example 11.5 and the stirring speed of the solution, for example 500 rpm, are controlled and kept constant. Ni x Mn y Co z M t (OH)2 particles are obtained by washing, filtration and drying in a vacuum oven at 110° C. overnight. Then this precursor is mixed with LiOH-hhO. The molar quantity of lithium is in slight excess compared to the total molar quantity of the elements Ni, Mn, Co and M. The excess lithium is intended to compensate for the loss of lithium during the sintering process. Then, the mixture is annealed at about 500°C for about 5 hours, then calcined at about 850°C for about 10 hours under an oxygen atmosphere to finally obtain the monocrystal of Li w Ni x Mn y Co z M t 0 2 The preparation of a monocrystal of Li w Ni x Co y Al z M t 0 2 is carried out in a similar manner. The aluminum element is supplied in the form of an aqueous solution prepared from aluminum salts which are soluble in an aqueous medium. It can be sulphate or nitrate or aluminum chloride.
[0029] L’oxyde lithié de nickel est utilisé dans la formulation de la cathode sous la forme d’une poudre de particules. Dans le cas d’un monocristal, la distribution en taille des particules est caractérisée par un diamètre médian en volume Dv5o inférieur ou égal à 7 pm, ou al lant de 2 à 6 pm, le diamètre médian étant mesuré sur des particules ne faisant pas partie d’un agglomérat de particules. Dans le cas d’un polycristal, la distribution en taille de l’ag glomérat de cristaux est caractérisée par un diamètre médian en volume Dv5o supérieur ou égal à 8 pm, allant par exemple de 8 à 12 pm. Le terme « diamètre médian Dv5o égal à X pm » signifie que 50 % du volume des particules d'oxyde lithié de nickel est constitué de particules présentant un diamètre équivalent inférieur à X pm, et 50 % du volume des particules d'oxyde lithié de nickel est constitué de particules présentant un diamètre équi valent supérieur à X pm. On désigne par le terme de diamètre équivalent d'une particule le diamètre d'une sphère possédant le même volume que cette particule. La mesure de la taille des particules peut être effectuée par la technique de granulométrie par diffraction laser en utilisant un appareil Malvern Mastersizer 2000. [0029] The lithiated nickel oxide is used in the formulation of the cathode in the form of a powder of particles. In the case of a single crystal, the size distribution of the particles is characterized by a median volume diameter Dv 5 o less than or equal to 7 μm, or ranging from 2 to 6 μm, the median diameter being measured on particles not not part of an agglomerate of particles. In the case of a polycrystal, the size distribution of the agglomerate of crystals is characterized by a median volume diameter Dv 5 o greater than or equal to 8 μm, ranging for example from 8 to 12 μm. The term "median diameter Dv 5 o equal to X pm" means that 50% of the volume of the lithiated nickel oxide particles is made up of particles having an equivalent diameter less than X pm, and 50% of the volume of the oxide particles Nickel lithium is made up of particles having an equivalent diameter greater than X pm. The term equivalent diameter of a particle designates the diameter of a sphere having the same volume as this particle. The measurement of the particle size can be carried out by the technique of granulometry by laser diffraction using a Malvern Mastersizer 2000 device.
[0030] Le phosphate lithié de manganèse et de fer a pour formule LixMni-y-zFeyMzP04 (LMFP), où M est au moins un élément choisi dans le groupe consistant en B, Mg, Al, Si, Ca, Ti, V, Cr, Co, Ni, Cu, Zn, Y, Zr, Nb et Mo, avec 0,8<x<1,2 ; 0<y<0,5 ; 0<z<0,2. The lithium manganese iron phosphate has the formula Li x Mni- yz Fe y M z P0 4 (LMFP), where M is at least one element selected from the group consisting of B, Mg, Al, Si, Ca, Ti, V, Cr, Co, Ni, Cu, Zn, Y, Zr, Nb and Mo, with 0.8<x<1.2;0<y<0.5;0<z<0.2.
Dans un mode de réalisation, 0,7<1-y-z<0,9 ou 0,75<1-y-z<0,8. In one embodiment, 0.7<1-y-z<0.9 or 0.75<1-y-z<0.8.
L’indice stoechiométrique y du fer peut être strictement inférieur à 0,5 ou inférieur ou égal à 0,45 ou inférieur ou égal à 0,40 ou inférieur ou égal à 0,30 ou inférieur ou égal à 0,20. Il peut être supérieur ou égal à 0,05 ou supérieur ou égal à 0,10 ou supérieur ou égal à 0,20 ou supérieur ou égal à 0,30 ou supérieur ou égal à 0,40. The stoichiometric index y of iron can be strictly less than 0.5 or less than or equal to 0.45 or less than or equal to 0.40 or less than or equal to 0.30 or less than or equal to 0.20. It may be greater than or equal to 0.05 or greater than or equal to 0.10 or greater than or equal to 0.20 or greater than or equal to 0.30 or greater than or equal to 0.40.
Dans un mode de réalisation, 0,15<y<0,25. In one embodiment, 0.15<y<0.25.
Les formules typiques du phosphate lithié de manganèse et de fer sont LiMno.sFeo^PC , LiMno,7Feo,3P04, LiMn2/3Fei/3P04 et LiMno,5Feo,5P04. Typical formulas for lithium manganese iron phosphate are LiMno.sFeo^PC, LiMno,7Feo,3P04, LiMn2/3Fe1/3P04 and LiMno,5Feo,5P04.
Le phosphate lithié de manganèse et de fer peut être enrobé d’une couche d'un matériau conducteur, tel que du carbone. The lithium manganese iron phosphate can be coated with a layer of a conductive material, such as carbon.
[0031] Selon l’invention, la proportion du phosphate lithié va de plus de 50 % à 99 %, ou de 55 à 90 % ou de 60 à 80 % ou de 65 à 75 % de la masse de l’ensemble des matières actives de la cathode. La présence d’une majorité de phosphate lithié confère à l’élément électro chimique une bonne stabilité thermique. According to the invention, the proportion of lithium phosphate ranges from more than 50% to 99%, or from 55 to 90% or from 60 to 80% or from 65 to 75% of the mass of all the materials active from the cathode. The presence of a majority of lithium phosphate gives the electrochemical element good thermal stability.
[0032] Un mélange préféré de matières actives comprend : [0032] A preferred mixture of active materials comprises:
- de 60 à 90 % ou de 70 à 80 % en masse de phosphate lithié, - from 60 to 90% or from 70 to 80% by weight of lithiated phosphate,
- de 10 à 40 % ou de 20 à 30 % en masse d’au moins un oxyde lithié de nickel monocris tallin. - from 10 to 40% or from 20 to 30% by mass of at least one single-crystal lithiated nickel oxide.
[0033] Préparation de la cathode : [0033] Preparation of the cathode:
La composition de matière active cathodique désigne l’ensemble des composés qui re couvrent le collecteur de courant de la cathode sur au moins une de ses faces. Générale ment, cette composition comprend : The cathode active material composition designates the set of compounds which cover the current collector of the cathode on at least one of its faces. Generally, this composition includes:
- l’ensemble des matières électrochimiquement actives, c’est-à-dire ledit au moins un oxyde lithié de nickel, le phosphate lithié de manganèse et de fer décrits ci-avant et éven tuellement une ou plusieurs autres matières électrochimiquement actives ; - all of the electrochemically active materials, that is to say said at least one lithiated nickel oxide, the lithiated manganese and iron phosphate described above and possibly one or more other electrochemically active materials;
- un ou plusieurs liants ; et - one or more binders; and
- un ou plusieurs matériaux conducteurs électroniques. - one or more electronic conductive materials.
[0034] Le liant a pour fonction de renforcer la cohésion entre les particules de matière active ainsi que d'améliorer l'adhérence du mélange selon l’invention au collecteur de courant. Le liant peut être un ou plusieurs des composés suivants : le polyfluorure de vinylidène (PVDF) et ses copolymères tels que le polyfluorure de vinylidère-co-hexafluoropropylène (PVDF-HFP), le polytétrafluoroéthylène (PTFE) et ses copolymères, le polyacrylonitrile (PAN), le poly(méthyl)- ou (butyl)méthacrylate, le polychlorure de vinyle (PVC), le poly(vi- nyl formai), le polyester, les polyétheramides séquencés, les polymères d'acide acrylique, l’acide méthacrylique, l’acrylamide, l’acide itaconique, l’acide sulfonique, des élastomères et des composés cellulosiques. Le ou les élastomères pouvant être utilisés comme liant peuvent être choisis parmi le styrène-butadiène (SBR), le caoutchouc butadiène-acryloni- trile (NBR), le caoutchouc butadiène-acrylonitrile hydrogéné (HNBR). The function of the binder is to reinforce the cohesion between the particles of active material as well as to improve the adhesion of the mixture according to the invention to the current collector. The binder may be one or more of the following compounds: polyvinylidene fluoride (PVDF) and its copolymers such as polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP), polytetrafluoroethylene (PTFE) and its copolymers, polyacrylonitrile (PAN ), poly(methyl)- or (butyl)methacrylate, polyvinyl chloride (PVC), poly(vinyl formal), polyester, block polyetheramides, polymers of acrylic acid, methacrylic acid, acrylamide, itaconic acid, sulfonic acid, elastomers and cellulosic compounds. The elastomer or elastomers that can be used as binder can be chosen from styrene-butadiene (SBR), butadiene-acrylonitrile rubber (NBR), hydrogenated butadiene-acrylonitrile rubber (HNBR).
[0035] Le matériau conducteur électronique est généralement choisi parmi le graphite, le noir de carbone, le noir d'acétylène, la suie, le graphène, les nanotubes de carbone ou un mé lange de ceux-ci. Il est utilisé en faible quantité, généralement 5 % ou moins par rapport à la somme des masses du mélange de matières actives, du ou des liant(s) et du matériau conducteur électronique. [0035] The electronically conductive material is generally chosen from graphite, carbon black, acetylene black, soot, graphene, carbon nanotubes or a mixture thereof. It is used in small quantities, generally 5% or less relative to the sum of the masses of the mixture of active materials, of the binder(s) and of the electronically conductive material.
[0036] On prépare une encre en mélangeant les matières actives cathodiques, le ou les liant(s), généralement un matériau conducteur électronique et au moins un solvant. Le solvant est un solvant organique pouvant être choisi parmi la N-méthyl-2-pyrrolidone (NMP), le dimé- thyl formamide (DMF) et le diméthylsulfoxyde (DMSO). Il peut aussi être choisi parmi le cyclopentyl méthyl éther (CPME), le xylène (o-xylène, m-xylène ou p-xylène), l'heptane, ou un solvant à base de cétone telle que l’acétone ou la méthyléthylcétone (MEK). An ink is prepared by mixing the cathode active materials, the binder(s), generally an electronically conductive material and at least one solvent. The solvent is an organic solvent which can be chosen from N-methyl-2-pyrrolidone (NMP), dimethyl formamide (DMF) and dimethyl sulphoxide (DMSO). It can also be chosen from cyclopentyl methyl ether (CPME), xylene (o-xylene, m-xylene or p-xylene), heptane, or a ketone-based solvent such as acetone or methyl ethyl ketone ( MEK).
[0037] La viscosité de l’encre est ajustée en faisant varier la quantité de matières solides, c’est- à-dire les matières actives cathodiques, le liant et le matériau conducteur électronique, ou encore en faisant varier la quantité de solvant. [0037] The viscosity of the ink is adjusted by varying the quantity of solid materials, that is to say the cathodic active materials, the binder and the electronically conductive material, or else by varying the quantity of solvent.
[0038] L’encre est déposée sur l’une ou les deux faces d’un collecteur de courant. Celui-ci est un support conducteur de courant, de préférence bidimensionnel, tel qu'un feuillard plein ou perforé, à base de carbone ou de métal, par exemple en nickel, en acier, en acier inoxy dable ou en aluminium, de préférence en aluminium. Le collecteur de courant peut de plus être revêtu sur l’une ou sur ses deux faces d’une couche de carbone. The ink is deposited on one or both sides of a current collector. This one is a current-conducting support, preferably two-dimensional, such as a solid or perforated strip, based on carbon or metal, for example nickel, steel, stainless steel or aluminum, preferably aluminum. The current collector can also be coated on one or both sides with a layer of carbon.
[0039] On place le collecteur de courant revêtu de l’encre dans un four et on évapore le solvant. The ink-coated current collector is placed in an oven and the solvent is evaporated.
La quantité de matière solide restant après évaporation du solvant peut aller de 35 à 65 % ou de 45 à 55 % en masse par rapport à la masse de l’encre avant séchage. On peut en suite comprimer la cathode au cours d'une étape de calandrage. Cette étape permet d'ajuster l'épaisseur de la couche de matière solide déposée sur le collecteur de courant. The quantity of solid material remaining after evaporation of the solvent can range from 35 to 65% or from 45 to 55% by mass relative to the mass of the ink before drying. The cathode can then be compressed during a calendering step. This step makes it possible to adjust the thickness of the layer of solid material deposited on the current collector.
[0040] Une composition typique de matière active cathodique après séchage est la suivante : A typical composition of cathodic active material after drying is as follows:
- de 75 à 97 % en masse du mélange de matières actives cathodique, de préférence de 80 à 90 % ; - from 75 to 97% by mass of the mixture of cathodic active materials, preferably from 80 to 90%;
- de 1 à 10 % en masse de liant(s), de préférence de 1 à 5 % ; - from 1 to 10% by mass of binder(s), preferably from 1 to 5%;
- de 1 à 10 % en masse de matériau conducteur électronique, de préférence de 1 à 5 %. - From 1 to 10% by mass of electronically conductive material, preferably from 1 to 5%.
[0041] Préparation de l’anode : [0041] Preparation of the anode:
[0042] L'anode est préparée de manière conventionnelle. Elle consiste en un support conducteur utilisé comme collecteur de courant qui est revêtu sur l’une ou sur ses deux faces d'une couche contenant une matière active anodique et en outre généralement un liant et un matériau conducteur électronique. [0042] The anode is prepared in a conventional manner. It consists of a conductive support used as a current collector which is coated on one or both sides with a layer containing an anode active material and also generally a binder and an electronically conductive material.
[0043] Le collecteur de courant peut être un support conducteur bidimensionnel tel qu'un feuillard plein ou perforé, en aluminium ou en alliage à base d’aluminium ou en cuivre ou en al liage à base de cuivre. Le collecteur de courant peut être revêtu sur l’une ou ses deux faces d’une couche de carbone. [0043] The current collector can be a two-dimensional conductive support such as a solid or perforated strip, in aluminum or in an aluminum-based alloy or in copper or in a copper-based alloy. The current collector can be coated on one or both sides with a layer of carbon.
[0044] La matière active anodique n’est pas particulièrement limitée. Elle est un matériau ca pable d’insérer du lithium dans sa structure. Elle peut être choisie parmi des composés du lithium, des matériaux carbonés comme le graphite, le coke, le noir de carbone et le car bone vitreux. Elle peut aussi être à base d’étain, de silicium, de composés à base de car bone et de silicium, de composés à base de carbone et d’étain ou de composés à base de carbone, d’étain et de silicium. Elle peut aussi être un oxyde de titane lithié tel que LÎ4Ti50i2 ou un oxyde de titane de de niobium tel que TiNb207. Elle peut être aussi consti tuée de lithium métal ou d’un alliage de lithium avec un ou plusieurs éléments chimiques. The anodic active material is not particularly limited. It is a material capable of inserting lithium into its structure. It can be chosen from lithium compounds, carbonaceous materials such as graphite, coke, carbon black and glassy carbon. It can also be based on tin, silicon, compounds based on carbon and silicon, compounds based on carbon and tin or compounds based on carbon, tin and silicon. It can also be a lithiated titanium oxide such as LÎ 4 Ti 5 0i 2 or a niobium titanium oxide such as TiNb2O7. It can also be made of lithium metal or of a lithium alloy with one or more chemical elements.
[0045] Le liant de l’anode peut être choisi parmi les composés suivants, pris seuls ou en mé lange : le polyfluorure de vinylidène (PVDF) et ses copolymères, le polytétrafluoroéthylène (PTFE) et ses copolymères, le polyacrylonitrile (PAN), poly(méthyl)- ou (butyl)méthacry- late, le polychlorure de vinyle (PVC), le poly(vinyl formai), un polyester, les polyéthera- mides séquencés, les polymères d'acide acrylique, l’acide méthacrylique, un acrylamide, l’acide itaconique, l’acide sulfonique, les élastomères et les composés cellulosiques. The anode binder can be chosen from the following compounds, taken alone or as a mixture: polyvinylidene fluoride (PVDF) and its copolymers, polytetrafluoroethylene (PTFE) and its copolymers, polyacrylonitrile (PAN), poly(methyl)- or (butyl) methacrylate, polyvinyl chloride (PVC), poly(vinyl formal), a polyester, block polyetheramides, polymers of acrylic acid, methacrylic acid, a acrylamide, itaconic acid, sulfonic acid, elastomers and cellulosic compounds.
[0046] Le matériau conducteur électronique est généralement choisi parmi le graphite, le noir de carbone, le noir d'acétylène, la suie, le graphène, les nanotubes de carbones ou un mé lange de ceux-ci. Il est utilisé généralement à raison de 7% ou moins par rapport à la somme des masses du mélange de matière active anodique, du liant et du matériau con ducteur électronique. The electronically conductive material is generally chosen from graphite, carbon black, acetylene black, soot, graphene, carbon nanotubes or a mixture thereof. It is generally used at a rate of 7% or less relative to the sum of the masses of the mixture of anodic active material, of the binder and of the electronic conductive material.
[0047] Elément lithium-ion : [0047] Lithium-ion element:
[0048] L’élément lithium-ion est fabriqué de manière conventionnelle. Au moins une cathode, au moins un séparateur et au moins une anode sont superposés. L'ensemble peut être en roulé pour former un faisceau électrochimique cylindrique. L’invention ne se limite pas à la fabrication d’éléments de format cylindrique. Le format de l’élément peut aussi être pris matique ou de type pochette (pouch). Les électrodes peuvent aussi être empilées pour former un faisceau électrochimique plan. Une pièce de connexion est fixée sur un bord de la cathode non recouvert de matériau actif. Elle est reliée à une borne de sortie courant. L’anode peut être connectée électriquement au conteneur de l’élément. Inversement, la cathode peut être connectée au conteneur de l’élément et l’anode à une borne de sortie de courant. Après avoir été inséré dans le conteneur de l’élément, le faisceau électrochi mique est imprégné d'électrolyte. L’élément est ensuite fermé de manière étanche. L’élé ment peut également être équipé de manière conventionnelle d'une soupape de sécurité provoquant l'ouverture du conteneur de l’élément au cas où la pression interne de l’élé ment dépasserait une valeur prédéterminée. [0048] The lithium-ion element is manufactured in a conventional manner. At least one cathode, at at least one separator and at least one anode are superposed. The assembly can be rolled to form a cylindrical electrochemical bundle. The invention is not limited to the manufacture of elements of cylindrical format. The format of the element can also be taken as matic or as a pouch type. The electrodes can also be stacked to form a planar electrochemical bundle. A connection part is fixed on an edge of the cathode not covered with active material. It is connected to a current output terminal. The anode can be electrically connected to the cell container. Conversely, the cathode can be connected to the cell container and the anode to a current output terminal. After being inserted into the cell container, the electrochemical bundle is impregnated with electrolyte. The element is then closed tightly. The element can also be conventionally equipped with a safety valve causing the container of the element to open if the internal pressure of the element exceeds a predetermined value.
[0049] L'électrolyte peut être liquide et comprendre un sel de lithium dissous dans un solvant or ganique. Ce sel de lithium peut être choisi parmi le perchlorate de lithium UCIO4, l'hexa- fluorophosphate de lithium L1PF6, le tétrafluoroborate de lithium L1BF4, l’hexafluoroarsé- nate de lithium LiAsF6, l’hexafluoroantimonate de lithium LiSbF6, le trifluorométhanesulfo- nate de lithium UCF3SO3, le bis(fluorosulfonyl)imide de lithium Li(FS02)2N (LiFSI), le tri- fluorométhanesulfonimide de lithium LiN(CF3S02)2 (LiTFSI), le trifluorométhanesulfone- méthide de lithium LiC(CF3S02)3 (LiTFSM), le bisperfluoroéthylsulfonimide de lithium LiN(C2F5S02)2 (LiBETI), le 4,5-dicyano-2-(trifluoromethyl) imidazolide de lithium (LiTDI), le bis(oxalatoborate) de lithium (LiBOB), le difluoro(oxalato)borate de lithium (LIDFOB), le tris(pentafluoroethyl)trifluorophosphate de lithium LiPF3(CF2CF3)3 (LiFAP), le difluorophos- phate de lithium L1PO2F2 et les mélanges de ceux-ci. The electrolyte can be liquid and comprise a lithium salt dissolved in an organic solvent. This lithium salt can be chosen from lithium perchlorate UCIO4, lithium hexafluorophosphate L1PF6, lithium tetrafluoroborate L1BF4, lithium hexafluoroarsenate LiAsF 6 , lithium hexafluoroantimonate LiSbF 6 , trifluoromethanesulfo- lithium ate UCF3SO3, lithium bis(fluorosulfonyl)imide Li(FS0 2 ) 2 N (LiFSI), lithium trifluoromethanesulfonimide LiN(CF 3 S0 2 ) 2 (LiTFSI), lithium trifluoromethanesulfone methide LiC( CF 3 S0 2 ) 3 (LiTFSM), lithium bisperfluoroethylsulfonimide LiN(C 2 F 5 S0 2 ) 2 (LiBETI), lithium 4,5-dicyano-2-(trifluoromethyl)imidazolide (LiTDI), bis( oxalatoborate) (LiBOB), lithium difluoro(oxalato)borate (LIDFOB), lithium tris(pentafluoroethyl)trifluorophosphate LiPF3(CF2CF3)3 (LiFAP), lithium difluorophosphate L1PO2F2 and mixtures thereof this.
[0050] Le solvant de l’électrolyte peut être choisi parmi les carbonates cycliques saturés, les car bonates cycliques insaturés, les carbonates linéaires, les esters d’alkyles, les éthers, les esters cycliques, tels que les lactones. The electrolyte solvent can be chosen from saturated cyclic carbonates, unsaturated cyclic carbonates, linear carbonates, alkyl esters, ethers, cyclic esters, such as lactones.
[0051] Comme alternative, l’électrolyte peut être solide. Il peut être un composé conducteur des ions lithium, choisi par exemple parmi des oxydes conducteurs d’ions lithium et des sul fures conducteurs d’ions lithium. L’électrolyte peut aussi être un polymère conducteur d'ions lithium, tel que le polyéthylène oxyde (PEO), le sulfure de polyphénylène (PPS) et le polycarbonate. As an alternative, the electrolyte can be solid. It may be a compound which conducts lithium ions, chosen for example from oxides which conduct lithium ions and sulphides which conduct lithium ions. The electrolyte can also be a polymer that conducts lithium ions, such as polyethylene oxide (PEO), polyphenylene sulfide (PPS) and polycarbonate.
[0052] L’électrolyte peut aussi être sous la forme d’un gel obtenu en imprégnant un polymère d’un mélange liquide comprenant au moins un sel de lithium et un solvant organique. The electrolyte can also be in the form of a gel obtained by impregnating a polymer with a liquid mixture comprising at least one lithium salt and an organic solvent.
[0053] Le séparateur peut être constitué d'une couche de polypropylène (PP), de polyéthylène (PE), de polytétrafluoroéthylène (PTFE), de polyacrylonitrile (PAN), de polyester tel que le polyéthylène téréphtalate (PET), le poly(butylène) téréphtalate (PBT), de cellulose, de po- lyimide, de fibres de verre ou d'un mélange de couches de natures différentes. Les poly mères cités peuvent être revêtus d'une couche céramique et/ou de difluorure de polyviny- lidène (PVdF) ou de poly(fluorure de vinylidène-hexafluoropropylène (PVdF-HFP) ou d’acrylates. The separator may consist of a layer of polypropylene (PP), polyethylene (PE), polytetrafluoroethylene (PTFE), polyacrylonitrile (PAN), polyester such as polyethylene terephthalate (PET), poly( butylene) terephthalate (PBT), cellulose, polyimide, glass fibers or a mixture of layers of different types. The polymers mentioned can be coated with a ceramic layer and/or polyvinylidene difluoride (PVdF) or poly(vinylidene fluoride-hexafluoropropylene (PVdF-HFP) or acrylates.
[0054] EXEMPLES [0054] EXAMPLES
[0055] Différents éléments électrochimiques ont été fabriqués. Ils diffèrent par la composition de leur cathode. Le tableau 1 indique la composition des différentes cathodes fabriquées. Dans tous les mélanges préparés, les proportions massiques de LMFP et de l’oxyde lithié de nickel, NMC ou NCA, sont respectivement de 85% et 15%. L’anode des éléments est du lithium métallique. [0055] Various electrochemical elements have been manufactured. They differ in the composition of their cathode. Table 1 indicates the composition of the various cathodes manufactured. In all the mixtures prepared, the mass proportions of LMFP and lithiated oxide of nickel, NMC or NCA, are respectively 85% and 15%. The anode of the cells is metallic lithium.
[0056] Tableau 1 [0056] Table 1
[0057] Les éléments 1 à 4 ont subi un cycle au régime de C/20. Le profil de charge et de dé charge a été représenté à la figure 2. La figure 3 est un agrandissement de la figure 2 pour des états de charge proches de la fin de la charge. Elements 1 to 4 underwent a cycle at C/20. The charging and discharging profile has been represented in FIG. 2. FIG. 3 is an enlargement of FIG. 2 for states of charge close to the end of charging.
[0058] On constate que le profil de charge des éléments 3 et 4 selon l’invention présente un pla teau situé entre la partie plate et la montée brusque de tension. Le plateau est visible pour les éléments 3 et 4, qu’il s’agisse de NMC monocristallin ou de NMC polycristallin. La pré sence de ce plateau peut être détectée à l’aide de moyens de mesure de la tension de l’élément couplés à des moyens électroniques de traitement des valeurs de tension mesu rées. Le changement de concavité du profil de charge est détectable par des moyens in formatiques. La détection du plateau déclenche un signal qui prévient un utilisateur de l’imminence de la fin de la charge. It can be seen that the load profile of elements 3 and 4 according to the invention has a plateau located between the flat part and the sudden rise in voltage. The plateau is visible for elements 3 and 4, whether it is monocrystalline NMC or polycrystalline NMC. The presence of this plateau can be detected using means for measuring the voltage of the element coupled to electronic means for processing the measured voltage values. The change in concavity of the load profile is detectable by computer means. The detection of the tray triggers a signal that warns a user of the imminence of the end of the charge.
[0059] On constate de plus en comparant le profil de charge des éléments 3 et 4 avec celui de l’élément 1 que l’ajout de NMC monocristallin ou polycristallin a pour effet d’augmenter la capacité de l’élément. [0059] It is further observed by comparing the charge profile of elements 3 and 4 with that of element 1 that the addition of monocrystalline or polycrystalline NMC has the effect of increasing the capacity of the element.
[0060] Enfin, on constate que pour l’élément 1 dont l’oxyde lithié NCA contient du nickel en une quantité correspondant à un indice stoechiométrique de 0,8 seulement, le profil de charge ne présente pas de plateau. Par comparaison, dans le cas de l’élément 2 dont l’oxyde li thié NCA contient du nickel avec un indice stoechiométrique de 0,87, le profil de charge présente un plateau. La comparaison entre le résultat obtenu avec l’exemple 2 et celui ob tenu avec l’exemple 1 met en évidence l’avantage d’utiliser un oxyde lithié riche en nickel. Finally, it can be seen that for element 1 whose lithiated oxide NCA contains nickel in an amount corresponding to a stoichiometric index of only 0.8, the charge profile does not show a plateau. By comparison, in the case of element 2 whose lithium oxide NCA contains nickel with a stoichiometric index of 0.87, the charge profile shows a plateau. The comparison between the result obtained with Example 2 and that obtained with Example 1 highlights the advantage of using a nickel-rich lithium oxide.

Claims

Revendications Claims
[Revendication 1] Mélange comprenant : [Claim 1] A mixture comprising:
- de plus de 50 à 99 % en masse d’un phosphate lithié de manganèse et de fer de formule : LixMni-y-zFeyMzP04 où 0,8<x<1 ,2 ; 0,5<1-y-z<1 ; 0<y<0,5 ; 0<z<0,2 et M est au moins un élément choisi dans le groupe constitué de B, Mg, Al, Si, Ca, Ti, V, Cr, Co, Ni, Cu, Zn, Y, Zr, Nb et Mo ; - more than 50 to 99% by weight of a lithiated manganese iron phosphate of formula: Li x Mni-y- z Fe y M z P0 4 where 0.8<x<1.2;0.5<1-yz<1;0<y<0.5;0<z<0.2 and M is at least one element selected from the group consisting of B, Mg, Al, Si, Ca, Ti, V, Cr, Co, Ni, Cu, Zn, Y, Zr, Nb and MB;
- de 1 à moins de 50 % en masse d’au moins un oxyde lithié de nickel choisi parmi : i) un oxyde lithié de nickel, de manganèse et de cobalt de formule Liw(NixMnyCozMt)02 où 0,9<w<1 ,1 ; 0,83<x ; 0<y ; 0<z ; 0<t ; M étant au moins un élément choisi dans le groupe constitué de Al, B, Mg, Si, Ca, Ti, V, Cr, Fe,- from 1 to less than 50% by mass of at least one lithiated nickel oxide chosen from: i) a lithiated oxide of nickel, manganese and cobalt of formula Li w (Ni x Mn y Co z M t )0 2 where 0.9<w<1.1;0.83<x;0<y;0<z;0<t; M being at least one element chosen from the group consisting of Al, B, Mg, Si, Ca, Ti, V, Cr, Fe,
Cu, Zn, Y, Zr, Nb, W, Mo, Sr, Ce, Ta, Ga, Nd, Pr et La, ii) un oxyde lithié de nickel, de cobalt et d’aluminium de formule Liw(NixCoyAlzMt)02 où 0,9<w<1 ,1 ; 0,80<x ; 0<y ; 0<z ; 0<t ; M étant au moins un élément choisi dans le groupe constitué de B, Mg, Si, Ca, Ti, V, Cr, Mn, Fe, Cu, Zn, Y, Zr, Nb, W, Mo, Sr, Ce, Ga, Ta, Nd, Pr et La, et iii) un mélange dudit oxyde lithié de nickel, de manganèse et de cobalt avec ledit oxyde lithié de nickel, de cobalt et d’aluminium. Cu, Zn, Y, Zr, Nb, W, Mo, Sr, Ce, Ta, Ga, Nd, Pr and La, ii) a lithiated oxide of nickel, cobalt and aluminum of the formula Li w (Ni x Co y Al z M t )0 2 where 0.9<w<1.1;0.80<x;0<y;0<z;0<t; M being at least one element selected from the group consisting of B, Mg, Si, Ca, Ti, V, Cr, Mn, Fe, Cu, Zn, Y, Zr, Nb, W, Mo, Sr, Ce, Ga, Ta, Nd, Pr and La, and iii) a mixture of said lithiated oxide of nickel, manganese and cobalt with said lithiated oxide of nickel, cobalt and aluminum.
[Revendication 2] Mélange selon la revendication 1, dans lequel ledit au moins un oxyde lithié de nickel est monocristallin. [Claim 2] A mixture according to claim 1, wherein said at least one lithiated nickel oxide is single crystal.
[Revendication 3] Mélange selon la revendication 1 ou 2, dans lequel ledit au moins un oxyde lithié de nickel se présente sous la forme de particules dont la distribution en taille est caractérisée par un diamètre médian en volume Dv5o inférieur ou égal à 7 pm, de préférence allant de 2 à 6 pm, le diamètre médian étant mesuré sur des particules ne faisant pas partie d’un agglomérat de particules.[Claim 3] Mixture according to Claim 1 or 2, in which the said at least one lithiated nickel oxide is in the form of particles whose size distribution is characterized by a volume median diameter Dv 5 o less than or equal to 7 pm, preferably ranging from 2 to 6 pm, the median diameter being measured on particles not forming part of an agglomerate of particles.
[Revendication 4] Mélange selon l’une des revendications précédentes, comprenant : [Claim 4] Mixture according to one of the preceding claims, comprising:
- de 60 à 90 % en masse de phosphate lithié de manganèse et de fer ; - from 60 to 90% by mass of lithiated manganese iron phosphate;
- de 10 à 40 % en masse dudit au moins un oxyde lithié de nickel. - From 10 to 40% by mass of said at least one lithiated nickel oxide.
[Revendication 5] Mélange selon la revendication 4, comprenant : [Claim 5] A mixture according to claim 4, comprising:
- de 70 à 80 % en masse de phosphate lithié de manganèse et de fer ; - from 70 to 80% by mass of lithiated manganese iron phosphate;
- de 20 à 30 % en masse dudit au moins un oxyde lithié de nickel. - From 20 to 30% by weight of said at least one lithiated nickel oxide.
[Revendication 6] Mélange selon l’une des revendications précédentes, dans lequel, dans l’oxyde lithié de nickel, l’indice x du nickel va de 0,84 à 0,90. [Claim 6] Mixture according to one of the preceding claims, in which, in the lithiated nickel oxide, the x index of the nickel ranges from 0.84 to 0.90.
[Revendication 7] Mélange selon l’une des revendications 1 à 5, dans lequel, dans l’oxyde lithié de nickel, l’indice x du nickel est inférieur ou égal à 0,98 ou inférieur ou égal à 0,90. [Claim 7] Mixture according to one of Claims 1 to 5, in which, in the lithiated nickel oxide, the x index of the nickel is less than or equal to 0.98 or less than or equal to 0.90.
[Revendication 8] Mélange selon l’une des revendications précédentes, dans lequel, dans le phosphate lithié de manganèse et de fer, l’indice 1-y-z du manganèse va de 0,6 à moins de 1. [Claim 8] Mixture according to one of the preceding claims, in which, in the lithiated manganese iron phosphate, the 1-y-z index of manganese ranges from 0.6 to less than 1.
[Revendication 9] Elément électrochimique comprenant : [Claim 9] Electrochemical element comprising:
- au moins une anode, - au moins une cathode comprenant le mélange selon l’une des revendications précédentes. - at least one anode, - at least one cathode comprising the mixture according to one of the preceding claims.
[Revendication 10] Procédé de détection de la fin de la charge d’un élément électrochimique lithium-ion, ledit procédé comprenant les étapes de : a) mise à disposition d’un élément électrochimique selon la revendication 9, b) charge de l’élément, c) pour un état de charge de l’élément supérieur à environ 70%, calcul à des instants périodiques ou prédéterminés de la valeur de la dérivée de la tension par rapport au temps dV/dt, d) envoi d’un signal indiquant l’imminence de la fin de la charge si la valeur de la dérivée dV/dt est inférieure à un seuil prédéterminé. [Claim 10] A method of detecting the end of charging of a lithium-ion electrochemical cell, said method comprising the steps of: a) providing an electrochemical cell according to claim 9, b) charging the element, c) for a state of charge of the element greater than about 70%, calculation at periodic or predetermined instants of the value of the derivative of the voltage with respect to time dV/dt, d) sending a signal indicating the imminence of the end of the charge if the value of the derivative dV/dt is lower than a predetermined threshold.
EP22721392.3A 2021-04-22 2022-04-08 Mixture of active materials for cathode of a lithium-ion element Pending EP4327377A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2104226A FR3122286B1 (en) 2021-04-22 2021-04-22 Mixture of active materials for cathode of lithium-ion element
PCT/EP2022/059488 WO2022223327A1 (en) 2021-04-22 2022-04-08 Mixture of active materials for cathode of a lithium-ion element

Publications (1)

Publication Number Publication Date
EP4327377A1 true EP4327377A1 (en) 2024-02-28

Family

ID=77021430

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22721392.3A Pending EP4327377A1 (en) 2021-04-22 2022-04-08 Mixture of active materials for cathode of a lithium-ion element

Country Status (5)

Country Link
US (1) US20240170645A1 (en)
EP (1) EP4327377A1 (en)
CN (1) CN117121227A (en)
FR (1) FR3122286B1 (en)
WO (1) WO2022223327A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2951331B1 (en) 2009-10-09 2011-12-16 Saft Groupe Sa SYSTEM AND METHOD FOR BATTERY CHARGE MANAGEMENT
CN110660961B (en) * 2018-06-28 2021-09-21 宁德时代新能源科技股份有限公司 Positive plate and lithium ion battery
CN109273684A (en) * 2018-09-07 2019-01-25 北京泰丰先行新能源科技有限公司 A kind of lithium ion battery composite cathode material and preparation method thereof
JPWO2020066909A1 (en) * 2018-09-25 2021-08-30 東レ株式会社 Secondary battery electrodes and lithium-ion secondary batteries
US11804601B2 (en) * 2019-09-12 2023-10-31 Saft America Cathode materials for lithium ion batteries

Also Published As

Publication number Publication date
US20240170645A1 (en) 2024-05-23
WO2022223327A1 (en) 2022-10-27
FR3122286B1 (en) 2023-06-02
CN117121227A (en) 2023-11-24
FR3122286A1 (en) 2022-10-28

Similar Documents

Publication Publication Date Title
JP6164578B2 (en) Lithium secondary battery
EP1828058B1 (en) Optimised positive electrode material for lithium cell batteries, method for the production thereof, electrode, and battery for implementing said method
EP1438761B1 (en) Lithium and vanadium oxide, a preparation method thereof and the use of same as an active electrode material
EP2418719A2 (en) Positive electrode active material and lithium battery including the same
WO2010100910A1 (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
FR2738673A1 (en) HIGH VOLTAGE INSERTION COMPOUNDS FOR LITHIUM BATTERIES
EP3298644B1 (en) Positive electrode for a lithium electrochemical generator
FR2932175A1 (en) POSITIVE ELECTRODE MATERIAL FORMED OF A LAMELLAR TYPE OXIDE FOR LITHIUM ACCUMULATOR.
JP7390786B2 (en) Lithium battery electrolyte additive, organic electrolyte containing the same, and lithium battery
KR101739294B1 (en) Positive electrode for lithium secondary battery and lithium secondary battery comprising the same
FR3096512A1 (en) ELECTROLYTE BASED ON LITHIUM SALTS
EP1831110A1 (en) LITHIUM AND VANDIUM OXIDE Li1+ V3O8 (0,1 0,25) METHOD FOR THE PREPARATION THEREOF
TWI335097B (en) Non-aqueous electrolyte and secondary battery comprising the same
WO2014102071A1 (en) Positive electrode for lithium accumulator
FR3137213A1 (en) CATHODE MATERIAL, PREPARATION METHOD AND APPLICATION THEREOF
EP1860713A1 (en) Lithium insertion compound as cathodic active material for a lithium rechargeable electrochemical generator
EP3331064B1 (en) Use of 4,5-imidazoledicarboxylic acid as an electrode active material
WO2023070216A1 (en) Inorganic compounds having a structure of argyrodite type, processes for the preparation thereof, and uses thereof in electrochemical applications
WO2022223327A1 (en) Mixture of active materials for cathode of a lithium-ion element
EP3647443B1 (en) Specific negative electrode made of lithium and lithium electrochemical generator including such a negative electrode
EP3571162B1 (en) Method for preparing non-agglomerated nanoparticles of a lithium lamellar oxide
FR3105242A1 (en) MANGANESE PHOSPHATE AND LITHI IRON ELECTRODE FOR LITHIUM-ION ELECTROCHEMICAL ELEMENT
US20190148710A1 (en) Lithium batteries
FR3019168A1 (en) POSITIVE ELECTRODE FOR LITHIUM-ION ELECTROCHEMICAL GENERATOR
EP3186846A1 (en) Battery including a negative electrode material which adheres to the anode current collector

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20231122

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR