EP4326269A1 - Compounds with improved cardiac safety for the treatment of cancer and neurodegenerative disorders - Google Patents

Compounds with improved cardiac safety for the treatment of cancer and neurodegenerative disorders

Info

Publication number
EP4326269A1
EP4326269A1 EP22792342.2A EP22792342A EP4326269A1 EP 4326269 A1 EP4326269 A1 EP 4326269A1 EP 22792342 A EP22792342 A EP 22792342A EP 4326269 A1 EP4326269 A1 EP 4326269A1
Authority
EP
European Patent Office
Prior art keywords
acceptable salt
pharmaceutically acceptable
subject
compound
effective amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22792342.2A
Other languages
German (de)
French (fr)
Inventor
Sanjay Malhotra
Mallesh Pandrala
Dhanir TAILOR
Arne A.N. BRUYNEEL
Mark Mercola
Anna P. HNATIUK HNATIUK
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oregon Health Science University
Leland Stanford Junior University
Original Assignee
Oregon Health Science University
Leland Stanford Junior University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oregon Health Science University, Leland Stanford Junior University filed Critical Oregon Health Science University
Publication of EP4326269A1 publication Critical patent/EP4326269A1/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/4709Non-condensed quinolines and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/496Non-condensed piperazines containing further heterocyclic rings, e.g. rifampin, thiothixene
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/50Pyridazines; Hydrogenated pyridazines
    • A61K31/5025Pyridazines; Hydrogenated pyridazines ortho- or peri-condensed with heterocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/506Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/64Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms, e.g. histidine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems

Definitions

  • CML chronic myeloid leukemia
  • CML chronic myeloid leukemia
  • the fusion protein product of the Philadelphia chromosome (Ph), BCR ⁇ ABL, 2 ⁇ 6 is associated with CML and a subset acute lymphoblastic leukemia (Ph+ ALL), thus, development of TKIs targeting the BCR ⁇ ABL oncogene constitute an effective approach to treating CML and/or ALL.
  • the kinase inhibitor imatinib (Gleevec, ST1571) is a first ⁇ line drug for patients diagnosed with CML, which inhibits the activity of the BCR ⁇ ABL kinase protein. The clinical success of imatinib paved the way to consider kinases as druggable targets.
  • the imatinib family member nilotinib (Tasigna; AMN107), the multitargeted kinase inhibitor dasatinib (SPRYCEL®; BMS354825) and bosutinib (BOSULIF®; SKI ⁇ 606) were approved for second ⁇ line use. 13, 16 ⁇ 17
  • the second generation inhibitors demonstrated superior potency over imatinib, however, none of them have inhibited all of the imatinib ⁇ resistant mutations 18 ⁇ 20 in particular the T315I “gatekeeper” mutation (replacement of threonine by isoleucine at 315 position in the ABL1 kinase domain).
  • the T315I gatekeeper mutations are reported in at least 20% of the CML patients. 15, 21 ⁇ 22 When threonine is mutated to isoleucine in position 315, the bulkier isoleucine side chain extends into the enzyme active site, which causes steric hindrance preventing ATP ⁇ competitive inhibitors from binding the ATP binding pocket, consequently the first and the second ⁇ generation inhibitors are ineffective against the T315I mutations. 17, 23 ⁇ 24 Furthermore, these inhibitors have shown adverse side effects on patients.
  • a first embodiment provides a compound of Formula (I): wherein R 1 is selected from the group of H, C 2 ⁇ C 6 alkyl, C 3 ⁇ C 6 cycloalkyl, and –CH 2 ⁇ C 3 ⁇ C 6 cycloalkyl; or a pharmaceutically acceptable salt thereof.
  • a second embodiment herein provides the compound of Formula (II), 4 ⁇ methyl ⁇ 3 ⁇ ((1 ⁇ methyl ⁇ 1H ⁇ imidazol ⁇ 4 ⁇ yl)ethynyl) ⁇ N ⁇ (4 ⁇ ((4 ⁇ methylpiperazin ⁇ 1 ⁇ yl)methyl) ⁇ 3 ⁇ (trifluoromethyl)phenyl)benzamide, having the structure: or a pharmaceutically acceptable salt thereof.
  • FIGURE 1A represents ponatinib binding interactions with native BCR ⁇ ABL protein.
  • FIGURE 1B represents ponatinib binding interactions with BCR ⁇ ABL T315I protein.
  • FIGURE 1C represents a potential binding mode of inhibitors 33a and 36a with BCR ⁇ ABL protein.
  • FIGURE 1D represents a potential binding mode of inhibitors 33a and 36a with BCR ⁇ ABL T315I protein.
  • FIGURE 2A represents binding interactions of ponatinib in superposition of both BCR ⁇ ABL and BCR ⁇ ABL T315I .
  • FIGURE 2B represents binding interactions of inhibitors 33a and 36a in superposition of both BCR ⁇ ABL and BCR ⁇ ABL T315I .
  • FIGURE 3A provides a graph of representative dose responses of Ponatinib, 33a, and 36a to assess relative cell viability in CML tumor cell line K562 cells.
  • FIGURE 3B provides a graph comparing representative dose responses of Ponatinib, 33a, and 36a to assess relative cell viability in the same CML tumor cell line carrying the T315I ‘gatekeeper’ mutation (K562 ⁇ T315I).
  • FIGURE 3C provides a graph comparing representative dose responses of Ponatinib, 33a, 36a and control for angiogenesis by measuring the number of loops that form in Human Microvascular Endothelial cell cultures.
  • FIGURE 3D provides a graph comparing representative dose responses of Ponatinib, 33a, 36a, and vehicle control (DMSO) on contractility (peak contraction amplitude) of cardiomyocytes (hiPSC ⁇ CMs, 15S1 ⁇ WT cell line).
  • FIGURE 3E provides a graph comparing representative dose responses of Ponatinib, 33a, 36a, and vehicle control (DMSO) on contractility (peak contraction amplitude) of cardiomyocytes (hiPSC ⁇ CMs, 273 ⁇ WT cell line).
  • FIGURE 4A presents a schematic representation of pharmacokinetic (PK) studies in mice for Ponatinib, 33a and 36a.
  • FIGURE 4B presents a table of PK parameters for Ponatinib, 33a and 36a: Cmax, t ⁇ max and t1/2.
  • FIGURE 4C presents a schematic representation of toxicity studies in mice over 30 days of compound treatment in increasing dose range up to maximum dose of 60mg/kg.
  • FIGURE 4D presents a Kaplan ⁇ Meier survival curve of the mice treated over 30 days with Vehicle, Ponatinib, 36a, and 33a.
  • FIGURE 4E presents a schematic representation of xenograft studies in mice followed for 3 weeks of treatment with 30mg/kg of Ponatinib, 67, and 84.
  • FIGURE 4F presents a bar graph of comparative mouse weights after 3 weeks of treatment.
  • FIGURE 4G presents comparative excised tumors from treated mice.
  • FIGURE 4H presents a bar graph representing comparative tumor weights in treated mice.
  • FIGURE 4I presents a bar graph representing comparative troponin serum levels in treated mice.
  • R 1 is selected from the group of H, C 2 ⁇ C 4 alkyl, cyclopropyl, and –CH 2 ⁇ cyclopropyl; or a pharmaceutically acceptable salt thereof.
  • a further embodiment provides a compound of Formula (I), wherein R 1 is selected from the group of H, ethyl, n ⁇ propyl, isopropyl and cyclopropyl; or a pharmaceutically acceptable salt thereof.
  • a further embodiment provides a compound of Formula (I), wherein R 1 is selected from the group of H, ethyl, isopropyl and cyclopropyl; or a pharmaceutically acceptable salt thereof.
  • a further embodiment provides a compound of Formula (I), above, or a pharmaceutically acceptable salt thereof, wherein R 1 is selected from the group of H, ethyl, and cyclopropyl.
  • Another embodiment provides a compound of Formula (I), above, or a pharmaceutically acceptable salt thereof, wherein R 1 is selected from the group of H and ethyl. Another embodiment provides a compound of Formula (I), above, or a pharmaceutically acceptable salt thereof, wherein R 1 is selected from the group of H and isopropyl. Another embodiment provides a compound of Formula (I), above, or a pharmaceutically acceptable salt thereof, wherein R 1 is selected from the group of H and cyclopropyl. Also provided is a method of treatment of chronic myeloid leukemia in a subject, the method comprising administering to the subject in need thereof a pharmaceutically effective amount of a compound of Formula (I), or a pharmaceutically acceptable salt thereof.
  • a method of inhibiting the activity of the BCR ⁇ ABL kinase protein in a subject the method comprising administering to the subject in need thereof a pharmaceutically effective amount of a compound of Formula (I), or a pharmaceutically acceptable salt thereof.
  • Provided is a method of inhibiting the activity of the BCR ⁇ ABL kinase protein in a subject the method comprising administering to the subject in need thereof a pharmaceutically effective amount of a compound of Formula (II), or a pharmaceutically acceptable salt thereof.
  • ICLUSIG® ponatinib
  • TASIGNA® nilotinib
  • imatinib GLEEVEC®
  • dasatinib SPRYCELL®
  • bosutinib BOSULIF®
  • rebastinib and interferon alfa
  • ponatinib ICLUSIG®
  • TASIGNA® nilotinib
  • imatinib GLEEVEC®
  • dasatinib SPRYCELL®
  • bosutinib BOSULIF®
  • rebastinib and interferon alf
  • Also provided is a method of treatment for chronic phase chronic myeloid leukemia in a subject comprising administering to the subject in need thereof a pharmaceutically effective amount of a compound of Formula (I), or a pharmaceutically acceptable salt thereof. Also provided is a method of treatment for chronic phase chronic myeloid leukemia in a subject, the method comprising administering to the subject in need thereof a pharmaceutically effective amount of a compound of Formula (II), or a pharmaceutically acceptable salt thereof.
  • ponatinib ICLUSIG®
  • TASIGNA® nilotinib
  • imatinib GLEEVEC®
  • SPRYCELL® dasatinib
  • BOSULIF® bosutinib
  • rebastinib or a
  • ponatinib ICLUSIG®
  • TASIGNA® nilotinib
  • imatinib GLEEVEC®
  • SPRYCELL® dasatinib
  • BOSULIF® bosutinib
  • rebastinib or
  • ponatinib ICLUSIG®
  • TASIGNA® nilotinib
  • imatinib GLEEVEC®
  • SPRYCELL® dasatinib
  • BOSULIF® bosutinib
  • rebastinib or
  • ponatinib ICLUSIG®
  • TASIGNA® nilotinib
  • imatinib GLEEVEC®
  • SPRYCELL® dasatinib
  • BOSULIF® bosutinib
  • rebastinib or
  • Another embodiment provides a method of treatment of blast phase chronic myeloid leukemia in a subject, the method comprising administering to the subject in need thereof: a) a pharmaceutically effective amount of a compound of Formula (I), or a pharmaceutically acceptable salt thereof; and b) a pharmaceutically effective amount of one or more tyrosine kinase inhibiting agents selected from the group of ponatinib (ICLUSIG®), nilotinib (TASIGNA®), imatinib (GLEEVEC®), dasatinib (SPRYCELL®), bosutinib (BOSULIF®), and rebastinib; or a pharmaceutically acceptable salt thereof.
  • ponatinib ICLUSIG®
  • TASIGNA® nilotinib
  • imatinib GLEEVEC®
  • SPRYCELL® dasatinib
  • BOSULIF® bosutinib
  • rebastinib or
  • Another embodiment provides a method of treatment of blast phase chronic myeloid leukemia in a subject, the method comprising administering to the subject in need thereof: a) a pharmaceutically effective amount of a compound of Formula (II), or a pharmaceutically acceptable salt thereof; and b) a pharmaceutically effective amount of one or more tyrosine kinase inhibiting agents selected from the group of ponatinib (ICLUSIG®), nilotinib (TASIGNA®), imatinib (GLEEVEC®), dasatinib (SPRYCELL®), bosutinib (BOSULIF®), and rebastinib; or a pharmaceutically acceptable salt thereof.
  • ponatinib ICLUSIG®
  • TASIGNA® nilotinib
  • imatinib GLEEVEC®
  • SPRYCELL® dasatinib
  • BOSULIF® bosutinib
  • rebastinib or
  • Also provided is a method of treatment of Philadelphia chromosome positive chronic myeloid leukemia in a subject comprising administering to the subject in need thereof: a) a pharmaceutically effective amount of a compound of Formula (II), or a pharmaceutically acceptable salt thereof; and b) a pharmaceutically effective amount of nilotinib (TASIGNA®); or a pharmaceutically acceptable salt thereof.
  • a method of treatment in a subject of chronic myeloid leukemia that is resistant or intolerant to prior tyrosine ⁇ kinase inhibitor (TKI) therapy the method comprising administering to the subject in need thereof a pharmaceutically effective amount of a compound of Formula (I), or a pharmaceutically acceptable salt thereof.
  • Another embodiment provides a method of treating a neurodegenerative condition in a subject, the method comprising administering to the subject in need thereof a pharmaceutically effective amount of a compound of Formula (I), or a pharmaceutically acceptable salt thereof.
  • Another embodiment provides a method of treating a neurodegenerative condition in a subject, the method comprising administering to the subject in need thereof a pharmaceutically effective amount of a compound of Formula (II), or a pharmaceutically acceptable salt thereof.
  • the neurodegenerative disease of the methods above can be selected from the group of Parkinson’s Disease, Alzheimer’s Disease, Down’s syndrome, frontotemporal dementia, progressive supranuclear palsy, Pick’s disease, Niemann ⁇ Pick disease, Parkinson’s disease, Huntington’s disease (HD), dentatorubropallidoluysian atrophy, Kennedy’s disease (also referred to as spinobulbar muscular atrophy), and spinocerebellar ataxia (e.g., type I, type 2, type 3 (also referred to as Machado ⁇ Joseph disease), type 6, type 7, and type 17)), fragile X (Rett’s) syndrome, fragile XE mental retardation, Friedreich’s ataxia, myotonic dystrophy, spinocere
  • the neurodegenerative condition is associated with, characterized by, or implicated by a mitochondrial dysfunction.
  • Such neurodegenerative conditions associated with a mitochondrial dysfunction include, but are not limited to, Friedrich’s ataxia, amyotrophic lateral sclerosis (ALS), mitochondrial myopathy, encephalopathy, lactacidosis, stroke (MELAS), myoclonic epilepsy with ragged red fibers (MERFF), epilepsy, Parkinson’s disease, Alzheimer’s disease, and Huntington’s Disease.
  • Another embodiment provides a pharmaceutical composition comprising a pharmaceutically effective amount of a compound of Formula (I), or a pharmaceutically acceptable salt thereof, and a pharmaceutically useful carrier or excipient.
  • Another embodiment provides a pharmaceutical composition
  • a pharmaceutical composition comprising a pharmaceutically effective amount of 4 ⁇ methyl ⁇ 3 ⁇ ((1 ⁇ methyl ⁇ 1H ⁇ imidazol ⁇ 4 ⁇ yl)ethynyl) ⁇ N ⁇ (4 ⁇ ((4 ⁇ methylpiperazin ⁇ 1 ⁇ yl)methyl) ⁇ 3 ⁇ (trifluoromethyl) phenyl)benzamide (Formula (II)), or a pharmaceutically acceptable salt thereof, and a pharmaceutically useful carrier or excipient.
  • a further embodiment provides the use of a compound of Formula (I), or a pharmaceutically acceptable salt thereof, in the preparation of a medicament.
  • the additional agents may be administered as determined by a medical professional based on the condition and the known and approved dosages and regimens for the additional agent(s) in question.
  • tyrosine kinase inhibitor ponatinib may be administered at a daily dosage of from about 5 mg to about 60 mg.
  • ponatinib is administered once daily.
  • ponatinib is administered at individual daily doses of 10 mg, 15 mg, 30 mg, and 45 mg.
  • the agent nilotinib (TASIGNA®) may be administered at a daily dose of from about 50 mg to about 500 mg.
  • Daily doses of 50 mg, 100 mg, 150 mg, 200 mg, 250 mg, 300 mg, 350 mg, 400 mg, 450 mg, and 500 mg may be given as an individual daily dose or divided into two (bid) or more separate doses.
  • the dosing of nilotinib may be at a daily dose of about 400 mg in as administration or divided into two administrations (bid).
  • the tyrosine kinase inhibiting agent imatinib may be administered at a daily dosage of from about 50 mg to about 800 mg per day in single (qd) or divided doses.
  • Daily doses determined by a medical professional may be selected from the group of about 50 mg, about 100 mg, about 200 mg, about 300 mg, about 400 mg, about 500 mg, about 600 mg, about 700 mg and about 800 mg.
  • the tyrosine kinase inhibiting agent dasatinib may be administered at a daily dose of from about 10 mg to about 160 mg.
  • Daily doses determined by a medical professional may be selected from the group of about 10 mg, about 20 mg, about 30 mg, about 40 mg, about 50 mg, about 60 mg, about 70 mg, about 80 mg, about 90 mg, about 100 mg, about 110 mg, about 120 mg, about 130 mg, about 140 mg, about 150 mg, and about 160 mg.
  • Such doses may be administered in single or divided daily doses.
  • Kinase inhibitor bosutinib (BOSULIF®) may be administered at daily doses of from about 50 mg to about 600 mg per day in single or divided doses.
  • Daily doses determined by a medical professional may be selected from the group of about 100 mg, about 200 mg, about 300 mg, about 400 mg, about 500 mg, and about 600 mg.
  • Rebastinib may be administered in the methods herein in daily doses of from about 50 mg to about 400 mg.
  • Immunomodulating agent interferon alfa ⁇ 2b may be administered at a weekly dosage of from about 1 million Units/m2 to about 60 million Units/m2 in two or three divided administrations.
  • Protein synthesis inhibitor omacetaxine (SYNRIBO®) may be administered at 1.25 mg/m2 administered subcutaneously twice daily at approximately 12 hour intervals for 7 consecutive days every 28 days, over a 28 ⁇ day cycle.
  • alkyl refers to a straight or branched hydrocarbon.
  • an alkyl group can include those having 1 to 6 carbon atoms (i.e, C 1 ⁇ C 6 alkyl), 1 to 4 carbon atoms (i.e., C 1 ⁇ C 4 alkyl), or 1 to 3 carbon atoms (i.e., C 1 ⁇ C 3 alkyl).
  • alkyl groups include, but are not limited to, methyl, ethyl, n ⁇ propyl, isopropyl ( ⁇ CH(CH 3 ) 2 ), 1 ⁇ butyl (n ⁇ Bu, n ⁇ butyl, ⁇ CH 2 CH 2 CH 2 CH 3 ), 2 ⁇ methyl ⁇ 1 ⁇ propyl (i ⁇ Bu, i ⁇ butyl, ⁇ CH 2 CH(CH 3 ) 2 ), 2 ⁇ butyl (s ⁇ Bu, s ⁇ butyl, ⁇ CH(CH 3 )CH 2 CH 3 ), 2 ⁇ methyl ⁇ 2 ⁇ propyl (t ⁇ Bu, t ⁇ butyl, ⁇ C(CH 3 ) 3 ), 1 ⁇ pentyl (n ⁇ pentyl, ⁇ CH 2 CH 2 CH 2 CH 2 CH 3 ), 2 ⁇ pentyl ( ⁇ CH(CH 3 )CH 2 CH 2 CH 3 ), 3 ⁇ pentyl ( ⁇ CH(CH 2 CH 3 ) 2 ), 2 ⁇ methyl ⁇ 2 ⁇ butyl ( ⁇ C(CH 3
  • cycloalkyl refers to a saturated ring having 3 to 6 carbon atoms as a monocycle, including cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl groups.
  • subject refers to an animal, such as a mammal, that has been or will be the object of treatment, observation or experiment. The methods described herein may be useful in both human therapy and veterinary applications.
  • the subject is a mammal; in some embodiments the subject is human; and in some embodiments the subject is chosen from cats and dogs.
  • Subject in need thereof or “human in need thereof” refers to a subject, such as a human, who may have or is suspected to have diseases or conditions that would benefit from certain treatment; for example treatment with a compound of Formula (I), Formula (II), or Formula (III), or a pharmaceutically acceptable salt or co ⁇ crystal thereof, as described herein.
  • the terms “effective amount,” “therapeutically effective amount,” or “pharmaceutically effective amount” refer to an amount that is sufficient to effect treatment, as defined below, when administered to a subject (e.g., a mammal, such as a human) in need of such treatment.
  • an “effective amount,” “therapeutically effective amount,” or a “pharmaceutically effective amount” of a compound of Formula (I), Formula (II), or Formula (III), or a pharmaceutically acceptable salt or co ⁇ crystal thereof is an amount sufficient to treat a subject (e.g., a human) suffering an indication, or to ameliorate or alleviate the existing symptoms of the indication.
  • a therapeutically or pharmaceutically effective amount may be an amount sufficient to chronic myeloid leukemia in a human subject.
  • an effective amount of a compound is an amount that ranges from about 50 ng/kg body weight to about 50 pg/kg body weight (e.g., from about 50 ng/kg body weight to about 40 pg/kg body weight, from about 30 ng/kg body weight to about 20 pg/kg body weight, from about 50 ng/kg body weight to about 10 pg/kg body weight, from about 50 ng/kg body weight to about 1 pg/kg body weight, from about 50 ng/kg body weight to about 800 ng/kg body weight, from about 50 ng/kg body weight to about 700 ng/kg body weight, from about 50 ng/kg body weight to about 600 ng/kg body weight, from about 50 ng/kg body weight to about 500 ng/kg body weight, from about 50 ng/kg body weight to about 400 ng/kg body weight, from about 60 ng/kg body weight to about 400
  • an effective amount of a compound is an amount that ranges from about 10 pg to about 100 mg, e.g., from about 10 pg to about 50 pg, from about 50 pg to about 150 pg, from about 150 pg to about 250 pg, from about 250 pg to about 500 pg, from about 500 pg to about 750 pg, from about 750 pg to about 1 ng, from about 1 ng to about 10 ng, from about 10 ng to about 50 ng, from about 50 ng to about 150 ng, from about 150 ng to about 250 ng, from about 250 ng to about 500 ng, from about 500 ng to about 750 ng, from about 750 ng to about 1 pg, from about 1 pg to about 10 pg, from about 10 pg to about 50 pg, from about 50 mg to about 150 gg, from about 150 gg to about 250 gg, from about 250 gg to about 500 gg, from about 500
  • the amount can be a single dose amount or can be a total daily amount.
  • the total daily amount can range from 10 pg to 100 mg, or can range from 100 mg to about 500 mg, or can range from 500 mg to about 1000 mg.
  • a single dose of a compound is administered.
  • multiple doses are administered. Where multiple doses are administered over a period of time, the compound can be administered twice daily (qid), daily (qd), every other day (qod), every third day, three times per week (tiw), or twice per week (biw) over a period of time.
  • a compound is administered qid, qd, qod, tiw, or biw over a period of from one day to about 2 years or more.
  • a compound is administered at any of the aforementioned frequencies for one week, two weeks, one month, two months, six months, one year, or two years, or more, depending on various factors.
  • pharmaceutical composition refers to a composition containing a pharmaceutically effective amount of one or more of the isotopic compounds described herein, or a pharmaceutically acceptable salt thereof, formulated with a pharmaceutically acceptable carrier, which can also include other additives, and manufactured or sold with the approval of a governmental regulatory agency as part of a therapeutic regimen for the treatment of disease in a mammal.
  • compositions can be formulated, for example, for oral administration in unit dosage form (e.g., a tablet, capsule, caplet, gelcap, or syrup); for topical administration (e.g., as a cream, gel, lotion, or ointment); for intravenous administration (e.g., as a sterile solution free of particulate emboli and in a solvent system suitable for intravenous use); or in any other formulation described herein.
  • unit dosage form e.g., a tablet, capsule, caplet, gelcap, or syrup
  • topical administration e.g., as a cream, gel, lotion, or ointment
  • intravenous administration e.g., as a sterile solution free of particulate emboli and in a solvent system suitable for intravenous use
  • pharmaceutically acceptable excipient is a pharmaceutically acceptable vehicle that includes, without limitation, any and all carriers, solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like. The use of such media and agents for pharmaceutically active substances is well known in the art.
  • compositions can also be incorporated into the compositions.
  • pharmaceutically acceptable carrier refers to any ingredient in a pharmaceutical composition other than the disclosed pharmaceutically active or therapeutic compounds, including those of Formulas (I) and (II), or a pharmaceutically acceptable salt thereof (e.g., a carrier capable of suspending or dissolving the active isotopic compound) and having the properties of being nontoxic and non ⁇ inflammatory in a patient.
  • Excipients may include, for example: antiadherents, antioxidants, binders, coatings, compression aids, disintegrants, dyes (colors), emollients, emulsifiers, fillers (diluents), film formers or coatings, flavors, fragrances, glidants (flow enhancers), lubricants, preservatives, printing inks, sorbents, suspensing or dispersing agents, sweeteners, or waters of hydration.
  • excipients include, but are not limited to: butylated hydroxytoluene (BHT), calcium carbonate, calcium phosphate (dibasic), calcium stearate, croscarmellose, crosslinked polyvinyl pyrrolidone, citric acid, crospovidone, cysteine, ethylcellulose, gelatin, hydroxypropyl cellulose, hydroxypropyl methylcellulose, lactose, magnesium stearate, maltitol, mannitol, methionine, methylcellulose, methyl paraben, microcrystalline cellulose, polyethylene glycol, polyvinyl pyrrolidone, povidone, pregelatinized starch, propyl paraben, retinyl palmitate, shellac, silicon dioxide, sodium carboxymethyl cellulose, sodium citrate, sodium starch glycolate, sorbitol, starch (corn), stearic acid, stearic acid, sucrose, talc, titanium dioxide, vitamin A, B
  • salts include, for example, salts with inorganic acids and salts with an organic acid.
  • salts may include hydrochloride, phosphate, diphosphate, hydrobromide, sulfate, sulfinate, nitrate, malate, maleate, fumarate, tartrate, succinate, citrate, acetate, lactate, methanesulfonate (mesylate), benzenesuflonate (besylate), p ⁇ toluenesulfonate (tosylate), 2 ⁇ hydroxyethylsulfonate, benzoate, salicylate, stearate, and alkanoate (such as acetate, HOOC ⁇ (CH 2 ) n ⁇ COOH where n is 0 ⁇ 4).
  • the free base can be obtained by basifying a solution of the acid salt.
  • an addition salt particularly a pharmaceutically acceptable addition salt, may be produced by dissolving the free base in a suitable organic solvent and treating the solution with an acid, in accordance with conventional procedures for preparing acid addition salts from base compounds.
  • Those skilled in the art will recognize various synthetic methodologies that may be used to prepare nontoxic pharmaceutically acceptable addition salts.
  • compositions of Formula (I) and Formula (II) described herein are the pharmaceutically acceptable salts, pharmaceutically acceptable co ⁇ crystals, pharmaceutically acceptable esters, pharmaceutically acceptable solvates, hydrates, isomers (including optical isomers, racemates, or other mixtures thereof), tautomers, isotopes, polymorphs, and pharmaceutically acceptable prodrugs of such compounds.
  • crystal forms and related terms herein refer to the various crystalline modifications of a given substance, including, but not limited to, polymorphs, solvates, hydrates, co ⁇ crystals, and other molecular complexes, as well as salts, solvates of salts, hydrates of salts, other molecular complexes of salts, and polymorphs thereof. Crystal forms of a substance can be obtained by a number of methods, as known in the art.
  • Such methods include, but are not limited to, melt recrystallization, melt cooling, solvent recrystallization, recrystallization in confined spaces such as, e.g., in nanopores or capillaries, recrystallization on surfaces or templates, such as, e.g., on polymers, recrystallization in the presence of additives, such as, e.g., co ⁇ crystal counter ⁇ molecules, desolvation, dehydration, rapid evaporation, rapid cooling, slow cooling, vapor diffusion, sublimation, grinding and solvent ⁇ drop grinding.
  • additives such as, e.g., co ⁇ crystal counter ⁇ molecules, desolvation, dehydration, rapid evaporation, rapid cooling, slow cooling, vapor diffusion, sublimation, grinding and solvent ⁇ drop grinding.
  • the newly designed inhibitors have exhibited similar efficacies as benchmark FDA drugs against the K ⁇ 562 cell line, a BCR ⁇ ABL positive CML line. In addition, they have also shown excellent efficacies against K ⁇ 562 cells expressing BCR ⁇ ABLT315I . Since the iPSC ⁇ CM cardiotoxicity assay is an integral part of our drug design, we identified cardiotoxic cores in the early stage and avoided using them in further studies. As a result, we finally identified cardiac ⁇ safe cores and studied SAR around the core for efficacies against both native and T315I mutant cell lines, while maintaining cardiac ⁇ safety.
  • ponatinib does not make H bond interactions with Thr315 in native BCR ⁇ ABL but makes a H bond interactions with Met318 with both native and T315I mutant BCR ⁇ ABL kinase (Fig 1 a ⁇ b), so subsequently it inhibits both native BCR ⁇ ABL and BCR ⁇ ABLT315I kinases, 29 and emerged as a unique treatment option for patients with the T315I mutation.
  • a hydrogen bond between the inhibitor and Met318 is crucial in order to show activity on both native BCR ⁇ ABL and BCR ⁇ ABLT315I kinases.
  • the hybrids that were designed using a core structure from ponatinib (the core structure similar to 8), occupied the ATP ⁇ pocket of the BCR ⁇ ABL T315I and showed a hydrogen bond interaction with the backbone of Met318.
  • the lead compounds 33a and 36a occupied the same binding region that ponatinib occupies in BCR ⁇ ABL T315I , thus they have shown the same distance between the N atom of the Met318 residue and the N atom of imidazo[1,2 ⁇ b]pyridazine moiety of inhibitors (Fig 1 c and d).
  • Figure 1 provides representations of lead compounds binding interactions with native BCR ⁇ ABL and BCR ⁇ ABL T315I protein.
  • PDB IDs for BCR ⁇ ABL and BCR ⁇ ABL T315I are 3OXZ and 3IK3, respectively.
  • the key residues, which will potentially make critical interactions with inhibitors, are shown in stick form and labeled. The distance between two atoms are indicated in yellow dashed lines and labeled in black.
  • Figure 2 provides a omparison of binding interactions of (a) ponatinib with (b) inhibitors 33a and 36a in superposition of both BCR ⁇ ABL and BCR ⁇ ABL T315I .
  • PDB IDs for BCR ⁇ ABL and BCR ⁇ ABL T315I are 3OXZ and 3IK3, respectively.
  • the key residues, which will potentially make critical interactions with inhibitors, are shown in stick form.
  • Chemistry The compound 3a was obtained from a commercial source (Ark Pharma). The synthesis of 2 ⁇ amino ⁇ N ⁇ (2 ⁇ chloro ⁇ 6 ⁇ methylphenyl)thiazole ⁇ 5 ⁇ carboxamide based inhibitors 3 b–d is shown in scheme ⁇ 1.
  • N ⁇ (2 ⁇ chloro ⁇ 6 ⁇ methylphenyl) ⁇ 2 ⁇ ((2 ⁇ methylpyrimidin ⁇ 4 ⁇ yl)amino)thiazole ⁇ 5 ⁇ carboxamide 3b was prepared according to the previously reported procedure for a similar analogue, 42 by the SNAr displacement of 4 ⁇ chloro ⁇ 2 ⁇ methylpyrimidine with 2 ⁇ amino ⁇ N ⁇ (2 ⁇ chloro ⁇ 6 ⁇ methylphenyl)thiazole ⁇ 5 ⁇ carboxamide 1.
  • 3 c ⁇ d were obtained by amide coupling in the presence of EDC.HCl and HOBt.
  • the inhibitors 11 a ⁇ c were synthesized based on the tandem Sonogashira strategy using a previously reported procedure for similar analogues.
  • Inhibitor 29 was prepared similar to 19, using the required starting materials for both the Sonogoshira reactions.
  • the structure of inhibitor 32 resembles 11b, however, the position of the amide group in 32, which was flipped over in between the two aryl groups, makes the difference in 32. It was prepared in two steps. In the initial step, amide condensation was performed between 3 ⁇ iodo ⁇ 4 ⁇ methylaniline 30 and 2d to obtain intermediate 31, which was then reacted with 5 via Sonogoshira reaction conditions to provide the inhibitor 32.
  • Scheme 6 illustrates the synthesis of inhibitors 33a ⁇ h compiled in Table 5.
  • the hybrids prepared from the dasatinib core showed significant efficacies against native K ⁇ 562 cells. Particularly, 3d, potently inhibited the growth of native K ⁇ 562 cells with a GI 50 values of 30 nM. Consistent with the cellular inhibition potency, it has effectively inhibited the activity of native BCR ⁇ ABL kinase (Table 2). However, similar to dasatinib, these hybrids were also ineffective against T315I mutation; they did not inhibit the activity of the BCR ⁇ ABL T315I kinase and growth of corresponding K ⁇ 562 cell lines. Table 1. Cellular activity of the hit finder compounds. a Overall maximum toxic dose, ND ⁇ No inhibition detected up to 10 ⁇ M concentration.
  • hybrids 21a and 29 were ineffective against K ⁇ 562 cells lines up to 10 ⁇ M, but they were found to be highly cardio ⁇ toxic at a dose of 1.45 and 1.34 ⁇ M, respectively.
  • 21b which is a hybrid molecule of imatinib and ponatinib had significantly instigated cardiotoxicity at 4.34 ⁇ M. These finding are clearly suggesting that the cardiotoxicity arises from fragment of 17. Because, imatinib did not exhibit cardiotoxicity up to 10 ⁇ M (table 5), whereas notable cardiotoxicity was observed for 21b at a much lower concentration than the imatinib safe dose concentration.
  • the new analogues could access ATP binding sites of both the BCR ⁇ ABL and BCR ⁇ ABL T315I , and therefore, they would make key H bond interactions with Met318, Glu286 and Asp381 in both native BCR ⁇ ABL and BCR ⁇ ABL T315I protein (Fig S ⁇ 1 top, bottom).
  • Relative to 15, most of the hybrids demonstrated improved efficacies in enzymatic and cellular assays (Table 5).
  • replacing the bromo group with imidazole or substituted imidazoles at the R 2 position has dramatically enhanced the activities for the inhibitors.
  • 33a ⁇ 33d and 36a have exhibited remarkably increased potencies over 15.
  • the hybrids 33a and 36a have shown dramatically increased potencies in both enzymatic and cellular assays, against BCR ⁇ ABL T315I , with a 6 ⁇ 7 fold improvement compared to 15 (table 5).
  • the bulkiness on the imidazole ring significantly affects the potency for these hybrids.
  • the hybrids 36a, 33b ⁇ 33d, 33g ⁇ h which contains alkyl groups or bulky aromatic groups at the C ⁇ 4 position of the imidazole ring were found to be less potent.
  • BCR ⁇ ABL T315I kinase activity for these hybrids was reduced by 2 ⁇ 3 ⁇ fold than the native BCR ⁇ ABL kinase activity, similar to that observed for ponatinib. 41
  • a slight outward displacement of the flag ⁇ methyl group containing phenyl ring of the hybrids from the hydrophobic pocket of BCR ⁇ ABL T315I would account for the reduction in potency against BCR ⁇ ABL T315I .
  • Such outward displacement was observed for ponatinib in complex with BCR ⁇ ABL T315I so that it had shown reduced potencies against BCR ⁇ ABL T315I kinase and corresponding cell lines.
  • hybrid 33f did not show improved efficacies over 33a. Despite similar efficacy between 33a and 33f against native BCR ⁇ ABL kinase, relative to 33a, 33f demonstrated 2 ⁇ fold decreased activity against BCR ⁇ ABL T315I kinase. Cellular inhibition efficacies for 33f was found to be consistent with biochemical assay results. Another hybrid 33e, with 3 ⁇ methyl ⁇ 1H ⁇ pyrrole, was also unable to compete with 33a.
  • the resulting inhibitor 40a displayed similar efficacies that 33a showed against native BCR ⁇ ABL kinase but the activity against BCR ⁇ ABL T315I and the corresponding cell lines were dramatically decreased.
  • the hybrids 40c and 36b which were derived from 33d and 36a, respectively, maintained similar efficacies that of the corresponding methyl group containing analogues, against both native BCR ⁇ ABL and BCR ⁇ ABL T315I kinases. However, their cellular potencies decreased by 2 ⁇ 10 ⁇ fold. We observed that large hydrophobic groups at the R 1 position were detrimental to the activities on both kinase and cellular levels.
  • the methoxy analogues 40b and 36c demonstrated 8 ⁇ 16 ⁇ fold and 35 ⁇ 100 fold potency loss against BCR ⁇ ABL T315I kinase and the corresponding K ⁇ 562 cell lines, respectively.
  • 43, 47 ⁇ 48 our results also clearly demonstrated the importance of the flag ⁇ methyl group’s role in selective inhibition of BCR ⁇ ABL.
  • 41 the flag ⁇ methyl in hybrids could favor desirable binding orientation with BCR ⁇ ABL.
  • Hybrids decreased adverse effects and cardiotoxicity:
  • the TKIs used in CML treatment primarily target BCR ⁇ ABL kinase activity. However, most of them have shown distinctive off ⁇ target activities, 29, 50 which result in adverse effects. 34 Cardiovascular complications are particularly restricting the use of the most potent TKIs. 33, 51 ⁇ 52 For example, ponatinib, the only drug that targets BCR ⁇ ABL T315I mutation has been restricted due to cardiovascular adverse events.
  • ponatinib was reported to be the most cardiotoxic TKI among the FDA approved TKIs. 33 Ponatinib cardio ⁇ toxic events were observed at a low dose of 470 nM in vitro (Tabel 5). Furthermore, ponatinib inhibited the growth of healthy HEK cells at 1.1 ⁇ M as demonstration of its toxicity and off ⁇ target effects. By contrast, most of the hybrids, which have shown excellent efficacies against both BCR ⁇ ABL T315I kinase and corresponding K ⁇ 562 cells lines were found to be safer compared to ponatinib. They did not inhibit the growth of HEK cells even at 10 ⁇ M.
  • the highly potent hybrids 33a and 36a have shown superior cardio ⁇ safety; we did not observe voltage transients, arrhythmia and decreasing in contractility up to 25 ⁇ M (Figure 3).
  • the compounds were assessed for cardiotoxic activity by measuring contractility of human cardiomyocytes derived from human induced pluripotent stem cells (hiPSC ⁇ CMs) (Fig. 3 C ⁇ E). Note that the new compounds showed substantially diminished potencies for inhibiting cardiomyocyte contractility.
  • hybrids cardiotoxicity was also dependent on substituents at C ⁇ 4 of the imidazole ring.
  • the hybrids with more bulky groups at this position were found to be highly cardiotoxic than the unsubstituted or small substitutions.
  • hybrids 33a, 36a and 33b, with H ⁇ , methyl ⁇ and ethyl ⁇ groups, respectively have shown cardiac ⁇ safety up to 10 ⁇ M, whereas, 33c with an isopropyl group demonstrated approximately 3 ⁇ fold increased cardiotoxicity (Table 5). It exhibited cardiotoxic effects at as low as 3.5 ⁇ M, suggesting that even a small modification on the imidazole ring could cause a drastic change in the cardiac ⁇ safety.
  • A,B Representative dose responses of Ponatinib, 33a and 36a to assess relative cell viability in CML tumor cell line K562 cells (A) and in the same line carrying the T315I ‘gatekeeper’ mutation (K562 ⁇ T315I) (B). Note that 33a and 36a, like Ponatinib, are potent inhibitors of T315I mutant tumor cell growth.
  • C Representative dose responses of Ponatinib, 33a, 36a and control for angiogenesis by measuring the number of loops that form in Human Microvascular Endothelial cell cultures. Ponatinib has a potent inhibitory effect against angiogenesis but 33a and 36a show markedly diminished anti ⁇ angiogenesis potency.
  • Troponin levels are an indication of cardiac damage. Note that ponatinib, but not the new compounds, increased troponin levels.
  • ponatinib but not the new compounds, increased troponin levels.
  • the hybrids maintain significant inhibition activities against K ⁇ 562 human CML cells including the most intractable gatekeeper T315I mutant associated with disease progression in CML.
  • the most potent compounds 33a and 36a strongly inhibited the kinase activities of both native BCR ⁇ ABL and BCR ⁇ ABL T315I with pharmacokinetics and achieved durable tumor regression in the K ⁇ 562 xenograft model in mice with oral administration.
  • Table 5 Cellular activity of the hit finder compounds. a Overall maximum toxic dose, ND ⁇ No inhibition detected up to 10 ⁇ M concentration.
  • Flash chromatography was carried out using a CombiFlash Rf+ Lumen chromatography system (Teledyne ISCO, Lincon, NE, USA). 1 H (400 MHz) and 13 C (101 MHz) NMR spectra were recorded either on an Agilent 400 ⁇ MR NMR or on a Bruker Avance 400 MHz spectrometer, using appropriate deuterated solvents, as needed. Chemical shifts ( ⁇ ) were reported in parts per million (ppm) upfield from tetramethylsilane (TMS) as an internal standard.
  • TMS tetramethylsilane
  • Compound 3a was prepared based on a literature procedure. 42 Sodium hydride (60% in mineral oil, 0.186 g, 4.67 mmol) was added to a stirred solution of 2 ⁇ amino ⁇ N ⁇ (2 ⁇ chloro ⁇ 6 ⁇ methylphenyl)thiazole ⁇ 5 ⁇ carboxamide 1 (0.5 g, 1.87 mmol) and 4 ⁇ chloro ⁇ 2 ⁇ methylpyrimidine 2b (0.28 g, 2.24 mmol) in DMF (20 mL).
  • the solution was heated at 100 °C overnight, cooled to room temperature (rt), and quenched by adding glacial acetic acid and water.
  • the crude product extracted into DCM (2 x 50 mL). The organic layers were combined, washed with water, followed by saturated NaCl solution (25 mL). The organic phase was dried over Na 2 SO 4 , filtered, and then evaporated to dryness using a rotatory evaporator.
  • the crude product was purified on a silica gel column with a 0 ⁇ 10% gradient of methanol in DCM to furnish the desired product as pale yellow solid (0.07 g, 10% yield).
  • 3 ⁇ ethynylimidazo[1,2 ⁇ b]pyridazine (5) Compound 5 was prepared according to the previously reported method, 43 with several modifications. To a solution of 3 ⁇ bromoimidazo[1,2 ⁇ b]pyridazine 4 (10.0 g, 50.5 mmol) in acetonitrile was added CuI (0.5 g, 2.63 mmol), Pd(PPh 3 ) 2 Cl 2 (1.8 g 2.63 mmol) and TEA (21.0 mL, 150.6 mmol). The solution was purged with a nitrogen flow for 10 min and then ethynyltrimethylsilane (21.0 mL, 151.8 mmol) was added. The mixture was heated to reflux overnight.
  • reaction mixture was filtered to remove undissolved solid.
  • the solid was washed with copious amounts of acetonitrile.
  • the filtrate was evaporated to dryness then taken into methanol (300 mL).
  • K 2 CO 3 (14.3 g, 103.5 mmol) was added at room temperature and then allowed to stir for 4 h. The progress of the reaction was monitored by TLC.
  • the reaction mixture was filtered in order to remove excess K 2 CO 3 .
  • the solid was washed with a minimal amounts of methanol.
  • the filtrate was concentrated to dryness and dissolved in excess EtOAc, and then washed with water followed by brine solution.
  • Methyl 3 ⁇ iodo ⁇ 4 ⁇ methylbenzoate 6 (1.85 g, 6.71 mmol) was added to a stirred solution of 3 ⁇ ethynylimidazo[1,2 ⁇ b]pyridazine 5 (0.8 g, 5.59 mmol) in DMF (10 mL).
  • the mixture underwent 3 cycles of vacuum/filling with nitrogen and then CuI (0.21 g, 1.11 mmol), Pd(PPh 3 ) 4 (0.64 g, 0.55 mmol) and diisopropylethylamine (1.94 mL, 11.17 mmol) were added.
  • the reaction mixture was stirred at 80 °C for 2h before it was cooled to rt.
  • Methyl 3 ⁇ (imidazo[1,2 ⁇ b]pyridazin ⁇ 3 ⁇ ylethynyl) ⁇ 4 ⁇ methylbenzoate 8 (0.81 g, 2.78 mmol) was taken into a 1:1 mixture of MeOH and THF (120 mL). To this mixture, a freshly prepared 1.0 M LiOH solution in water (15.0 mL) was added and stirred at rt for 24 h. The pH was adjusted to 2 before the volume was reduced to 15% on a rotatory evaporator. The off ⁇ white solid that had appeared was collected by filtration, washed with copious amounts of ether and dried under vacuum for 4 h to give the title compound (0.7 g, 91% yield).
  • Compound 11c was prepared from 3 ⁇ (imidazo[1,2 ⁇ b]pyridazin ⁇ 3 ⁇ ylethynyl) ⁇ 4 ⁇ methylbenzoic acid 9 (0.1 g, 0.36 mmol) and 2 ⁇ (4 ⁇ (6 ⁇ amino ⁇ 2 ⁇ methylpyrimidin ⁇ 4 ⁇ yl)piperazin ⁇ 1 ⁇ yl)ethan ⁇ 1 ⁇ ol (0.09 g, 0.36 mmol) as shown in scheme 2. Desired product was obtained as an off ⁇ white solid (0.04 g, 22% yield).
  • the acid chloride was dissolved in anhydrous THF (20 mL) and then added dropwise to a stirred mixture of 3 ⁇ bromo ⁇ 5 ⁇ (trifluoromethyl)aniline 13 (4.57 g, 19.08 mmol), diisopropylethylamine (3.97 mL, 22.8 mmol) and DMAP (0.23 g, 1.88 mmol) in THF at 0 °C.
  • the reaction mixture was warmed to rt and stirred overnight. The reaction was quenched with water, and the product was extracted into EtOAc (3 x 50 mL).
  • the title compound was prepared using the general procedure that was described for the synthesis of 3c, except for using 4 ⁇ ((4 ⁇ methylpiperazin ⁇ 1 ⁇ yl)methyl) ⁇ 3 ⁇ (trifluoromethyl)aniline 17 (1.0 g, 3.66 mmol) and 3 ⁇ ethynyl ⁇ 4 ⁇ methylbenzoic acid 16 (0.58 g, 3.66 mmol) as the starting materials, as depicted in scheme 4.
  • the desired compound was obtained as an off ⁇ white solid (0.9 g, 59% yield).
  • the title compound was prepared using a similar method that was described for the synthesis of 3c, except for using 4 ⁇ ((4 ⁇ methylpiperazin ⁇ 1 ⁇ yl)methyl)benzoic acid 2d (0.5 g, 2.14 mmol) and 3 ⁇ iodo ⁇ 4 ⁇ methylaniline 30 (0.6 g, 2.56 mmol) as the starting materials as shown in scheme 5.
  • the title compound was obtained as an off ⁇ white solid (0.72 g, 75% yield).
  • N ⁇ (3 ⁇ bromo ⁇ 5 ⁇ (trifluoromethyl)phenyl) ⁇ 3 ⁇ (imidazo[1,2 ⁇ b]pyridazin ⁇ 3 ⁇ ylethynyl) ⁇ 4 ⁇ methylbenzamide 15 (3.0 g, 6.00 mmol) and 1H ⁇ imidazole (0.45 g, 6.61 mmol) were taken in dry DMSO (50 mL) in a pressure tube. The solution was purged with a nitrogen flow for 10 min then CuI (0.17 g, 0.90 mmol), K 2 CO 3 (2.5 g, 18.0 mmol), and 8 ⁇ hydroxyquinoline(0.13 g, 0.90 mmol) were added and purging was continued for another 10 min.
  • the pressure tube was then sealed tightly and stirred at 100 °C for 18 h.
  • the reaction mixture was poured into ice ⁇ cold water ( ⁇ 50 mL) and allowed to stir for 30 min, during which time pale yellow solid was observed.
  • the solid was collected by filtration and then dissolved in 10% MeOH in DCM (100 mL). The undissolved solid was removed by filtration.
  • the filtrate was evaporated to dryness to afford crude product, which was purified on a silica gel column using a 0 ⁇ 10% gradient of methanol in DCM as an eluent to obtain the desired product as a pale yellow solid (1.67 g, 57% yield).
  • Compound 33c was prepared from 15 (0.1 g, 0.20 mmol) and 4 ⁇ isopropyl ⁇ 1H ⁇ imidazole (0.03 g, 2.40 mmol) using a similar method that was described for the synthesis of 33b.
  • the desired product was obtained as a pale yellow solid (0.03 g, 29% Yield).
  • coordination center of the search space for 3IK3 was set to 6.487, 1.061, 17.621 (x, y, z) and x, y, z dimension were set to 22, 30, 26.
  • a grid ⁇ point spacing 0f 0.375 ⁇ was applied.
  • the exhaustiveness was set to 48 and the maximum number of binding modes was set to 100.
  • Other docking parameters were kept to the default values. Docking calculations were performed with full flexibility of the ligand inside the search space.
  • K562 cells were cultured in suspension in RPMI1640 (ThermoFisher Scientific, USA) supplemented with 10% fetal bovine serum and Pen/Strep/L ⁇ Glutamine.
  • the K ⁇ 562 ⁇ T315I cell line was derived from the K562 line by CRISPR.
  • K562 cells were seeded in 6 ⁇ well plates and transfected with Lipofectamine 2000 and 1 ⁇ g of CRISPR/Cas9 vector (pSpCas9(BB) ⁇ 2A ⁇ GFP) incorporating the guide sequence (CTCAGTGATGATATAGAACG), and Lipofectamine RNAiMax and 4 ⁇ g of ssDNA donors (1 ⁇ g of each donor, Supplementary Table 1) for each well of a 6 ⁇ well plate.
  • the cells were left to recover and proliferate before being selected using 1 ⁇ M imatinib in RPMI supplemented with 10% FBS. When an enriched T315I polyclonal line was achieved, imatinib selection was stopped.
  • iPSC ⁇ CMs Human fibroblasts were reprogrammed to induced pluripotent stem cells (iPSCs) using Sendai viral vectors. All protocols were approved by the Stanford University Institutional Review Board. The obtained hiPSC clones were cultured in E8 cell culture media (Life Technologies) in plates coated growth factor ⁇ reduced Matrigel (Corning) until at least passage 20 before differentiation. hiPSC cells were differentiated into cardiomyocytes (CMs) utilizing a chemically defined cardiomyocyte differentiation protocol 55 and fatty acid rich maturation protocol. 56 HAECs: Cell viability and growth inhibition assay: Growth inhibitory activities were evaluated on K ⁇ 561 leukemia cancer cell lines.
  • the effects of the compounds on cell viability were evaluated using the AlamarBlue assay using the NCI60 methodology.
  • 57 Cells were harvested and plated in 384 ⁇ well plates (Greiner ⁇ Clear) at a concentration of 1250 cells/well in 40 ⁇ L, and incubated for 24 h at 37 °C.
  • test compounds were added to the cells as a 2x 40 ⁇ L solution, and incubated for 48 h at 37 °C.
  • the cells were treated with Resazurin (final concentration 10%) and incubated for 2 hours before measuring fluorescence on a plate reader (ex 544 nm, em 590 nm) to quantify the antiproliferative effects of the compounds.
  • Tube formation assay According to the previous procedure, (ref) matrigel (vender info) was thawed overnight at 4 °C. Each well of a prechilled 24 ⁇ well plate was coated with 300 uL matrigel and incubated at 37 °C for 2 h. HUVEC cells (1.3 X 10 5 cells) were added in 300 uL medium with compounds. After 20 h, the endothelial cell tube tube formation was assessed and imaged under an optical microscope. The tube formation numbers were counted and quantified by ImageJ software in three independent experiments.
  • kinase Activity Assays The kinase activity for ABL1 and ABL1T315I was performed using the SelectScreen TM Biochemical Kinase Profiling service of ThermoFisher Scientific (Madison, WI, USA). For each kinase, an IC 50 was calculated based on a 10 point concentration curve of the test article and converted to Ki values.
  • Cardiotoxicity assays hiPSC ⁇ CMs were plated on Matrigel coated 384 ⁇ well plates at 20,000 cells per well (Greiner ⁇ Clear) in 50 ⁇ l cardiomyocyte media (RMPI, B27) supplemented with 10% knock ⁇ out replacement serum.
  • Action potential kinetics and contractility was measured on the same cells sequentially.
  • action potential kinetics were recorded using the protocol as established by McKeithan et al. 58 Briefly, the cells were washed 5 times with FluoroBrite, loaded with VF2.1.Cl dye for 50 min at 37oC, and washed again 5 times with FluoroBrite. Voltage time series were acquired at a frequency of 33 Hz for a duration of 10 s on the IC200 Kinetic Imaging Platform (Vala Sciences).
  • Ben ⁇ Neriah, et al The chronic myelogenous leukemia ⁇ specific P210 protein is the product of the bcr/abl hybrid gene. Science 1986, 233 (4760), 212 ⁇ 214. 6. Shtivelman, et al, Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature 1985, 315 (6020), 550 ⁇ 554. 7. Druker, et al, Five ⁇ year follow ⁇ up of patients receiving imatinib for chronic myeloid leukemia. New England Journal of Medicine 2006, 355 (23), 2408 ⁇ 2417. 8.
  • Druker, et al Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr–Abl positive cells. Nature medicine 1996, 2 (5), 561 ⁇ 566. 9. Capdeville, et al, Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug. Nature reviews Drug discovery 2002, 1 (7), 493 ⁇ 502. 10. Cohen, P., Protein kinases—the major drug targets of the twenty ⁇ first century? Nature reviews Drug discovery 2002, 1 (4), 309 ⁇ 315. 11.

Abstract

Provided herein are compounds, pharmaceutical formulations, and methods for treatment of cancer, particularly including chronic myeloid leukemias, and neurodegenerative disorders in a subject.

Description

COMPOUNDS WITH IMPROVED CARDIAC SAFETY FOR THE TREATMENT OF CANCER AND  NEURODEGENERATIVE DISORDERS  FIELD OF THE INVENTION    The present disclosure concerns new compounds, pharmaceutical formulations, and methods of  treatment for cancer, particularly including chronic myeloid leukemia, and neurodegenerative disorders  with greater cardiac safety.  BACKGROUND OF THE INVENTION  Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm that accounts for  approximately 15% of newly diagnosed leukemia cases in adults and an estimated 61,090 new leukemia  cases will be diagnosed in the USA in 2021.1 The fusion protein product of the Philadelphia chromosome  (Ph), BCR‐ABL,2‐6 is associated with CML and a subset acute lymphoblastic leukemia (Ph+ ALL), thus,  development of TKIs targeting the BCR‐ABL oncogene constitute an effective approach to treating CML  and/or ALL. For example, the kinase inhibitor imatinib (Gleevec, ST1571) is a first‐line drug for patients  diagnosed with CML, which inhibits the activity of the BCR‐ABL kinase protein. The clinical success of  imatinib paved the way to consider kinases as druggable targets.7‐10 However, despite its durable initial  response in most of the CML patients, imatinib fails in up to 40% patients due to the intolerance of the  dose and drug resistance. Mutations within the kinase domain of BCR‐ABL constitute the most frequent  mechanism of drug resistance, 11‐14 as it causes ineffective inhibitor binding with the target.15 To date,  over 100 different point mutations have been identified in CML patients. To deal with these mutations,  second and third generation inhibitors were discovered. From second generation: the imatinib family  member nilotinib (Tasigna; AMN107), the multitargeted kinase inhibitor dasatinib (SPRYCEL®;  BMS354825) and bosutinib (BOSULIF®; SKI‐606) were approved for second‐line use.13, 16‐17 The second  generation inhibitors demonstrated superior potency over imatinib, however, none of them have  inhibited all of the imatinib‐resistant mutations 18‐20 in particular the T315I “gatekeeper” mutation  (replacement of threonine by isoleucine at 315 position in the ABL1 kinase domain). The T315I  gatekeeper mutations are reported in at least 20% of the CML patients.15, 21‐22 When threonine is  mutated to isoleucine in position 315, the bulkier isoleucine side chain extends into the enzyme active  site, which causes steric hindrance preventing ATP‐competitive inhibitors from binding the ATP binding  pocket, consequently the first and the second‐generation inhibitors are ineffective against the T315I  mutations.17, 23‐24 Furthermore, these inhibitors have shown adverse side effects on patients. Notably,  increased risk of accumulated vascular events on the therapy for nilotinib,25 pulmonary hypertension  and myelosuppression for dasatinib, and increased ALT and AST levels for bosutinib are some of the  adverse effects associated with these inhibitors.13, 26 Several approaches have been demonstrated to  address the T315I mutations; however, clinical development of these studies have been halted due to  toxicity concerns.21, 27 Nevertheless, a third generation multi‐kinase inhibitor ponatinib has been  approved in 2012 by the FDA with a broad label as a second‐line treatment option for the patients with  CML and Ph+ ALL.28 Ponatinib was shown to be most potent inhibitor among the TKIs that target BCR‐ ABL (Fig 1). In addition, it has been demonstrated to have excellent activity against T315I mutant  clones.29‐31 However, soon after its approval, ponatinib was found to have unaccepted levels of  cardiovascular toxicity and its use was restricted to only those CML patients with T315I mutations.  Notably, ponatinib is the only treatment option for the patients with the T315I mutation since the first  and second generation inhibitors are ineffective.32 Ponatinib is one of the most cardiotoxic TKI in all the  FDA approved TKIs.33 Presumably because it concurrently inhibits multiple kinase and possibly other  proteins involved in maintaining  the function and integrity of the cardiovascular system.34 Off‐target  effects caused by its binding to proteins with similar ATP pockets to that in BCR‐ABL35 result in adverse  toxic complications and hence account for the use restriction.34, 36  Therefore, the development of a new  TKI which works against the T315I mutation with improved safety to meet clinical needs is warranted.  Several potential approaches have been reported to address the challenges associated with ponatinib.  In most of the studies, the new inhibitor showed similar efficacies as ponatinib on native protein kinase  but did not show much effect on the mutant T315I protein kinase.37‐38   SUMMARY OF THE INVENTION  A first embodiment provides a compound of Formula (I):    wherein R1 is selected from the group of H, C2‐C6 alkyl, C3‐C6 cycloalkyl, and –CH2‐C3‐C6 cycloalkyl; or a  pharmaceutically acceptable salt thereof.    A second embodiment herein provides the compound of Formula (II), 4‐methyl‐3‐((1‐methyl‐1H‐ imidazol‐4‐yl)ethynyl)‐N‐(4‐((4‐methylpiperazin‐1‐yl)methyl)‐3‐(trifluoromethyl)phenyl)benzamide,  having the structure:     or a pharmaceutically acceptable salt thereof.  Also provided herein and discussed below are pharmaceutical formulations comprising a  pharmaceutically effective amount of a compound of Formula (I), or a pharmaceutically acceptable salt  thereof, and/or a compound of Formula (II), or a pharmaceutically acceptable salt thereof.  BRIEF DESCRIPTION OF THE MANY VIEWS OF THE DRAWINGS    FIGURE 1A represents ponatinib binding interactions with native BCR‐ABL protein.    FIGURE 1B represents ponatinib binding interactions with BCR‐ABLT315I protein.    FIGURE 1C represents a potential binding mode of inhibitors 33a and 36a with BCR‐ABL protein.  FIGURE 1D represents a potential binding mode of inhibitors 33a and 36a with BCR‐ABLT315I  protein.    FIGURE 2A represents binding interactions of ponatinib in superposition of both BCR‐ABL and  BCR‐ABLT315I.    FIGURE 2B represents binding interactions of inhibitors 33a and 36a in superposition of both  BCR‐ABL and BCR‐ABLT315I.    FIGURE 3A provides a graph of representative dose responses of Ponatinib, 33a, and 36a to  assess relative cell viability in CML tumor cell line K562 cells.    FIGURE 3B provides a graph comparing representative dose responses of Ponatinib, 33a, and  36a to assess relative cell viability in the same CML tumor cell line carrying the T315I ‘gatekeeper’  mutation (K562‐T315I).    FIGURE 3C provides a graph comparing representative dose responses of Ponatinib, 33a, 36a  and control for angiogenesis by measuring the number of loops that form in Human Microvascular  Endothelial cell cultures.  FIGURE 3D provides a graph comparing representative dose responses of Ponatinib, 33a, 36a,  and vehicle control (DMSO) on contractility (peak contraction amplitude) of cardiomyocytes (hiPSC‐CMs,  15S1‐WT cell line).  FIGURE 3E provides a graph comparing representative dose responses of Ponatinib, 33a, 36a,  and vehicle control (DMSO) on contractility (peak contraction amplitude) of cardiomyocytes (hiPSC‐CMs,  273‐WT cell line).  FIGURE 4A presents a schematic representation of pharmacokinetic (PK) studies in mice for  Ponatinib, 33a and 36a.   FIGURE 4B presents a table of PK parameters for Ponatinib, 33a and 36a: Cmax, t‐max and t1/2.   FIGURE 4C presents a schematic representation of toxicity studies in mice over 30 days of  compound treatment in increasing dose range up to maximum dose of 60mg/kg.  FIGURE 4D presents a Kaplan‐Meier survival curve of the mice treated over 30 days with Vehicle,  Ponatinib, 36a, and 33a.  FIGURE 4E presents a schematic representation of xenograft studies in mice followed for 3  weeks of treatment with 30mg/kg of Ponatinib, 67, and 84.  FIGURE 4F presents a bar graph of comparative mouse weights after 3 weeks of treatment.  FIGURE 4G presents comparative excised tumors from treated mice.  FIGURE 4H presents a bar graph representing comparative tumor weights in treated mice.  FIGURE 4I presents a bar graph representing comparative troponin serum levels in treated mice.      DETAILED DESCRIPTION OF THE INVENTION  Another embodiment provides a compound of Formula (I):    wherein R1 is selected from the group of H, C2‐C4 alkyl, cyclopropyl, and –CH2‐cyclopropyl; or a  pharmaceutically acceptable salt thereof.  A further embodiment provides a compound of Formula (I), wherein R1 is selected from the  group of H, ethyl, n‐propyl, isopropyl and cyclopropyl; or a pharmaceutically acceptable salt thereof.  A further embodiment provides a compound of Formula (I), wherein R1 is selected from the  group of H, ethyl, isopropyl and cyclopropyl; or a pharmaceutically acceptable salt thereof.    A further embodiment provides a compound of Formula (I), above, or a pharmaceutically  acceptable salt thereof, wherein R1 is selected from the group of H, ethyl, and cyclopropyl.    Another embodiment provides a compound of Formula (I), above, or a pharmaceutically  acceptable salt thereof, wherein R1 is selected from the group of H and ethyl.    Another embodiment provides a compound of Formula (I), above, or a pharmaceutically  acceptable salt thereof, wherein R1 is selected from the group of H and isopropyl.    Another embodiment provides a compound of Formula (I), above, or a pharmaceutically  acceptable salt thereof, wherein R1 is selected from the group of H and cyclopropyl.  Also provided is a method of treatment of chronic myeloid leukemia in a subject, the method  comprising administering to the subject in need thereof a pharmaceutically effective amount of a  compound of Formula (I), or a pharmaceutically acceptable salt thereof.  Also provided is a method of treatment of chronic myeloid leukemia in a subject, the method  comprising administering to the subject in need thereof a pharmaceutically effective amount of a  compound of Formula (II), or a pharmaceutically acceptable salt thereof.  Provided is a method of inhibiting the activity of the BCR‐ABL kinase protein in a subject, the  method comprising administering to the subject in need thereof a pharmaceutically effective amount of  a compound of Formula (I), or a pharmaceutically acceptable salt thereof.    Provided is a method of inhibiting the activity of the BCR‐ABL kinase protein in a subject, the  method comprising administering to the subject in need thereof a pharmaceutically effective amount of  a compound of Formula (II), or a pharmaceutically acceptable salt thereof.  Also provided is a method of treatment of chronic myeloid leukemia in a subject, the method  comprising administering to the subject in need thereof:  a)  a pharmaceutically effective amount of a compound of Formula (I), or a pharmaceutically  acceptable salt thereof; and  b) a pharmaceutically effective amount of one or more agents selected from the group of  ponatinib (ICLUSIG®), nilotinib (TASIGNA®), imatinib (GLEEVEC®), dasatinib (SPRYCELL®),  bosutinib (BOSULIF®), rebastinib, and interferon alfa‐2b; or a pharmaceutically acceptable  salt thereof.     Also provided is a method of treatment of chronic myeloid leukemia in a subject, the method  comprising administering to the subject in need thereof:  c)  a pharmaceutically effective amount of a compound of Formula (II), or a pharmaceutically  acceptable salt thereof; and  d) a pharmaceutically effective amount of one or more agents selected from the group of  ponatinib (ICLUSIG®), nilotinib (TASIGNA®), imatinib (GLEEVEC®), dasatinib (SPRYCELL®),  bosutinib (BOSULIF®), rebastinib, and interferon alfa‐2b; or a pharmaceutically acceptable  salt thereof.   Also provided is a method of treatment for chronic phase chronic myeloid leukemia in a subject,  the method comprising administering to the subject in need thereof a pharmaceutically effective  amount of a compound of Formula (I), or a pharmaceutically acceptable salt thereof.  Also provided is a method of treatment for chronic phase chronic myeloid leukemia in a subject,  the method comprising administering to the subject in need thereof a pharmaceutically effective  amount of a compound of Formula (II), or a pharmaceutically acceptable salt thereof.  Also provided is a method of treatment of chronic phase chronic myeloid leukemia in a subject,  the method comprising administering to the subject in need thereof:  a)  a pharmaceutically effective amount of a compound of Formula (I), or a pharmaceutically  acceptable salt thereof; and  b) a pharmaceutically effective amount of one or more tyrosine kinase inhibiting agents  selected from the group of ponatinib (ICLUSIG®), nilotinib (TASIGNA®), imatinib (GLEEVEC®),  dasatinib (SPRYCELL®), bosutinib (BOSULIF®), and rebastinib; or a pharmaceutically  acceptable salt thereof.  Also provided is a method of treatment of chronic phase chronic myeloid leukemia in a subject,  the method comprising administering to the subject in need thereof:  a)  a pharmaceutically effective amount of a compound of Formula (II), or a pharmaceutically  acceptable salt thereof; and  b) a pharmaceutically effective amount of one or more tyrosine kinase inhibiting agents selected  from the group of ponatinib (ICLUSIG®), nilotinib (TASIGNA®), imatinib (GLEEVEC®), dasatinib  (SPRYCELL®), bosutinib (BOSULIF®), and rebastinib; or a pharmaceutically acceptable salt  thereof.  Also provided is a method of treatment in a subject of chronic phase chronic myeloid leukemia  with resistance or intolerance to at least one prior tyrosine kinase inhibitor, the method comprising  administering to the subject in need thereof:  a)  a pharmaceutically effective amount of a compound of Formula (I), or a pharmaceutically  acceptable salt thereof; and  b) a pharmaceutically effective amount of ponatinib (ICLUSIG®); or a pharmaceutically acceptable  salt thereof.  Also provided is a method of treatment in a subject of chronic phase chronic myeloid leukemia  with resistance or intolerance to at least one prior tyrosine kinase inhibitor, the method comprising  administering to the subject in need thereof:  a)  a pharmaceutically effective amount of a compound of Formula (II), or a pharmaceutically  acceptable salt thereof; and  b) a pharmaceutically effective amount of ponatinib (ICLUSIG®); or a pharmaceutically acceptable  salt thereof.  Also provided is a method of treatment in a subject of chronic phase chronic myeloid leukemia  with resistance or intolerance to at least two prior tyrosine kinase inhibitors, the method comprising  administering to the subject in need thereof:  a)  a pharmaceutically effective amount of a compound of Formula (I), or a pharmaceutically  acceptable salt thereof; and  b) a pharmaceutically effective amount of ponatinib (ICLUSIG®); or a pharmaceutically acceptable  salt thereof.  Also provided is a method of treatment in a subject of chronic phase chronic myeloid leukemia  with resistance or intolerance to at least two prior tyrosine kinase inhibitors, the method comprising  administering to the subject in need thereof:  a) a pharmaceutically effective amount of a compound of Formula (II), or a pharmaceutically  acceptable salt thereof; and  b) a pharmaceutically effective amount of ponatinib (ICLUSIG®); or a pharmaceutically acceptable  salt thereof.  Also provided is a method of treatment of accelerated phase chronic myeloid leukemia in a  subject, the method comprising administering to the subject in need thereof:  a)  a pharmaceutically effective amount of a compound of Formula (I), or a pharmaceutically  acceptable salt thereof; and  b) a pharmaceutically effective amount of one or more tyrosine kinase inhibiting agents selected  from the group of ponatinib (ICLUSIG®), nilotinib (TASIGNA®), imatinib (GLEEVEC®), dasatinib  (SPRYCELL®), bosutinib (BOSULIF®), and rebastinib; or a pharmaceutically acceptable salt  thereof.  Also provided is a method of treatment of accelerated phase chronic myeloid leukemia in a  subject, the method comprising administering to the subject in need thereof:  a)  a pharmaceutically effective amount of a compound of Formula (II), or a pharmaceutically  acceptable salt thereof; and  b) a pharmaceutically effective amount of one or more tyrosine kinase inhibiting agents selected  from the group of ponatinib (ICLUSIG®), nilotinib (TASIGNA®), imatinib (GLEEVEC®), dasatinib  (SPRYCELL®), bosutinib (BOSULIF®), and rebastinib; or a pharmaceutically acceptable salt  thereof.  Another embodiment provides a method of treatment of blast phase chronic myeloid leukemia  in a subject, the method comprising administering to the subject in need thereof:  a)  a pharmaceutically effective amount of a compound of Formula (I), or a pharmaceutically  acceptable salt thereof; and  b) a pharmaceutically effective amount of one or more tyrosine kinase inhibiting agents selected  from the group of ponatinib (ICLUSIG®), nilotinib (TASIGNA®), imatinib (GLEEVEC®), dasatinib  (SPRYCELL®), bosutinib (BOSULIF®), and rebastinib; or a pharmaceutically acceptable salt  thereof.  Another embodiment provides a method of treatment of blast phase chronic myeloid leukemia  in a subject, the method comprising administering to the subject in need thereof:  a)  a pharmaceutically effective amount of a compound of Formula (II), or a  pharmaceutically acceptable salt thereof; and  b) a pharmaceutically effective amount of one or more tyrosine kinase inhibiting agents  selected from the group of ponatinib (ICLUSIG®), nilotinib (TASIGNA®), imatinib  (GLEEVEC®), dasatinib (SPRYCELL®), bosutinib (BOSULIF®), and rebastinib; or a  pharmaceutically acceptable salt thereof.  Also provided is a method of treatment of chronic myeloid leukemia with a T315l mutation in a  subject, the method comprising administering to the subject in need thereof:  a)  a pharmaceutically effective amount of a compound of Formula (I), or a  pharmaceutically acceptable salt thereof; and  b) a pharmaceutically effective amount of omacetaxine (SYNRIBO®); or a pharmaceutically  acceptable salt thereof.  Also provided is a method of treatment of chronic myeloid leukemia with a T315l mutation in a  subject, the method comprising administering to the subject in need thereof:  a)  a pharmaceutically effective amount of a compound of Formula (II), or a pharmaceutically  acceptable salt thereof; and  b) a pharmaceutically effective amount of omacetaxine (SYNRIBO®); or a pharmaceutically  acceptable salt thereof.  Also provided is a method of treatment of Philadelphia chromosome positive chronic myeloid  leukemia in a subject, the method comprising administering to the subject in need thereof:  a)  a pharmaceutically effective amount of a compound of Formula (I), or a pharmaceutically  acceptable salt thereof; and  b) a pharmaceutically effective amount of nilotinib (TASIGNA®); or a pharmaceutically acceptable  salt thereof.  Also provided is a method of treatment of Philadelphia chromosome positive chronic myeloid  leukemia in a subject, the method comprising administering to the subject in need thereof:  a) a pharmaceutically effective amount of a compound of Formula (II), or a  pharmaceutically acceptable salt thereof; and  b) a pharmaceutically effective amount of nilotinib (TASIGNA®); or a pharmaceutically  acceptable salt thereof.  Also provided is a method of treatment in a subject of chronic myeloid leukemia that is resistant  or intolerant to prior tyrosine‐kinase inhibitor (TKI) therapy, the method comprising administering to the  subject in need thereof a pharmaceutically effective amount of a compound of Formula (I), or a  pharmaceutically acceptable salt thereof.  Also provided is a method of treatment in a subject of chronic myeloid leukemia that is resistant  or intolerant to prior tyrosine‐kinase inhibitor (TKI) therapy, the method comprising administering to the  subject in need thereof a pharmaceutically effective amount of a compound of Formula (II), or a  pharmaceutically acceptable salt thereof.  Another embodiment provides a method of treating a neurodegenerative condition in a subject,  the method comprising administering to the subject in need thereof a pharmaceutically effective  amount of a compound of Formula (I), or a pharmaceutically acceptable salt thereof.  Another embodiment provides a method of treating a neurodegenerative condition in a subject,  the method comprising administering to the subject in need thereof a pharmaceutically effective  amount of a compound of Formula (II), or a pharmaceutically acceptable salt thereof.    The neurodegenerative disease of the methods above can be selected from the group of  Parkinson’s Disease, Alzheimer’s Disease, Down’s syndrome, frontotemporal dementia, progressive  supranuclear palsy, Pick’s disease, Niemann‐Pick disease, Parkinson’s disease, Huntington’s disease  (HD), dentatorubropallidoluysian atrophy, Kennedy’s disease (also referred to as spinobulbar muscular  atrophy), and spinocerebellar ataxia (e.g., type I, type 2, type 3 (also referred to as Machado‐Joseph  disease), type 6, type 7, and type 17)), fragile X (Rett’s) syndrome, fragile XE mental retardation,  Friedreich’s ataxia, myotonic dystrophy, spinocerebellar ataxia type 8, and spinocerebellar ataxia type  12, Alexander disease, Alper’s disease, amyotrophic lateral sclerosis, ataxia telangiectasia, Batten  disease (also referred to as Spielmeyer‐Vogt‐Sjogren‐Batten disease), Canavan disease, Cockayne  syndrome, corticobasal degeneration, Creutzfeldt‐ Jakob disease, ischemia stroke, Krabbe disease, Lewy  body dementia, multiple sclerosis, multiple system atrophy, Pelizaeus‐ Merzbacher disease, Pick’s  disease, primary lateral sclerosis, Adult Refsums Disease (ARD), Sandhoff disease, Schilder’s disease,  spinal cord injury, spinal muscular atrophy, Steele‐Richardson‐Olszewski disease, and Tabes dorsalis.    In some embodiments, the neurodegenerative condition is associated with, characterized by, or  implicated by a mitochondrial dysfunction.  Such neurodegenerative conditions associated with a  mitochondrial dysfunction include, but are not limited to, Friedrich’s ataxia, amyotrophic lateral  sclerosis (ALS), mitochondrial myopathy, encephalopathy, lactacidosis, stroke (MELAS), myoclonic  epilepsy with ragged red fibers (MERFF), epilepsy, Parkinson’s disease, Alzheimer’s disease, and  Huntington’s Disease.  Another embodiment provides a pharmaceutical composition comprising a pharmaceutically  effective amount of a compound of Formula (I), or a pharmaceutically acceptable salt thereof, and a  pharmaceutically useful carrier or excipient.    Another embodiment provides a pharmaceutical composition comprising a pharmaceutically  effective amount of 4‐methyl‐3‐((1‐methyl‐1H‐imidazol‐4‐yl)ethynyl)‐N‐(4‐((4‐methylpiperazin‐1‐ yl)methyl)‐3‐(trifluoromethyl) phenyl)benzamide (Formula (II)), or a pharmaceutically acceptable salt  thereof, and a pharmaceutically useful carrier or excipient.    A further embodiment provides the use of a compound of Formula (I), or a pharmaceutically  acceptable salt thereof, in the preparation of a medicament.  It is understood that included herein are  separate methods for preparation of a medicament for each of the subgeneric groups and individual  compounds described herein within Formula (I), or a pharmaceutically acceptable salt thereof.  A still further embodiment provides the use of a compound of Formula (II), or a  pharmaceutically acceptable salt thereof, in the preparation of a medicament.      It is understood that, in the methods herein concerning a combination therapy of a compound  of Formula (I) or Formula (II), or a pharmaceutically acceptable salt thereof, with an additional agent,  such as ponatinib (ICLUSIG®), nilotinib (TASIGNA®), imatinib (GLEEVEC®), dasatinib (SPRYCELL®),  bosutinib (BOSULIF®), rebastinib, interferon alfa‐2b, or omacetaxine (SYNRIBO®), the additional agents  may be administered as determined by a medical professional based on the condition and the known  and approved dosages and regimens for the additional agent(s) in question.    For example, tyrosine kinase inhibitor ponatinib (ICLUSIG®) may be administered at a daily  dosage of from about 5 mg to about 60 mg.  In some embodiments, ponatinib is administered once  daily.  In some embodiments, ponatinib is administered at individual daily doses of 10 mg, 15 mg, 30 mg,  and 45 mg.    The agent nilotinib (TASIGNA®) may be administered at a daily dose of from about 50 mg to  about 500 mg.  Daily doses of 50 mg, 100 mg, 150 mg, 200 mg, 250 mg, 300 mg, 350 mg, 400 mg, 450  mg, and 500 mg may be given as an individual daily dose or divided into two (bid) or more separate  doses.  In instances where the treatment is a secondary treatment after a subject has been resistant to  or intolerant of a prior treatment, such as with imatinib, the dosing of nilotinib may be at a daily dose of  about 400 mg in as administration or divided into two administrations (bid).    The tyrosine kinase inhibiting agent imatinib (GLEEVEC®) may be administered at a daily dosage  of from about 50 mg to about 800 mg per day in single (qd) or divided doses.  Daily doses determined by  a medical professional may be selected from the group of about 50 mg, about 100 mg, about 200 mg,  about 300 mg, about 400 mg, about 500 mg, about 600 mg, about 700 mg and about 800 mg.     The tyrosine kinase inhibiting agent dasatinib (SPRYCELL®) may be administered at a daily dose  of from about 10 mg to about 160 mg.  .  Daily doses determined by a medical professional may be  selected from the group of about 10 mg, about 20 mg, about 30 mg, about 40 mg, about 50 mg, about  60 mg, about 70 mg, about 80 mg, about 90 mg, about 100 mg, about 110 mg, about 120 mg, about 130  mg, about 140 mg, about 150 mg, and about 160 mg.  Such doses may be administered in single or  divided daily doses.    Kinase inhibitor bosutinib (BOSULIF®) may be administered at daily doses of from about 50 mg  to about 600 mg per day in single or divided doses.  Daily doses determined by a medical professional  may be selected from the group of about 100 mg, about 200 mg, about 300 mg, about 400 mg, about  500 mg, and about 600 mg.    Rebastinib may be administered in the methods herein in daily doses of from about 50 mg to  about 400 mg.    Immunomodulating agent interferon alfa‐2b may be administered at a weekly dosage of from  about 1 million Units/m² to about 60 million Units/m² in two or three divided administrations.    Protein synthesis inhibitor omacetaxine (SYNRIBO®) may be administered at 1.25 mg/m²  administered subcutaneously twice daily at approximately 12 hour intervals for 7 consecutive days every  28 days, over a 28‐day cycle.   Definitions  The wavy line ( ) in chemical structures indicates a bond through which the structure  shown is bound to another chemical moiety or group.  The term "alkyl" refers to a straight or branched hydrocarbon. For example, an alkyl group can  include those having 1 to 6 carbon atoms (i.e, C1‐C6 alkyl), 1 to 4 carbon atoms (i.e., C1‐C4 alkyl), or 1 to 3  carbon atoms (i.e., C1‐C3 alkyl). Examples of suitable alkyl groups include, but are not limited to, methyl,  ethyl, n‐propyl, isopropyl (‐CH(CH3)2), 1‐butyl (n‐Bu, n‐butyl, ‐‐CH2CH2CH2CH3), 2‐methyl‐1‐propyl (i‐Bu, i‐ butyl, ‐‐CH2CH(CH3)2), 2‐butyl (s‐Bu, s‐butyl, ‐‐CH(CH3)CH2CH3), 2‐methyl‐2‐propyl (t‐Bu, t‐butyl, ‐‐ C(CH3)3), 1‐pentyl (n‐pentyl, ‐‐CH2CH2CH2CH2CH3), 2‐pentyl (‐‐CH(CH3)CH2CH2CH3), 3‐pentyl (‐‐ CH(CH2CH3)2), 2‐methyl‐2‐butyl (‐C(CH3)2CH2CH3), 3‐methyl‐2‐butyl (‐‐CH(CH3)CH(CH3)2), 3‐methyl‐1‐ butyl (‐‐CH2CH2CH(CH3)2), 2‐methyl‐1‐butyl (‐CH2CH(CH3)CH2CH3), 1‐hexyl (‐‐CH2CH2CH2CH2CH2CH3), 2‐ hexyl (‐‐CH(CH3)CH2CH2CH2CH3), 3‐hexyl (‐CH(CH2CH3)(CH2CH2CH3)), 2‐methyl‐2‐pentyl (‐ C(CH3)2CH2CH2CH3), 3‐methyl‐2‐pentyl (‐CH(CH3)CH(CH3)CH2CH3), 4‐methyl‐2‐pentyl (‐ CH(CH3)CH2CH(CH3)2), 3‐methyl‐3‐pentyl (‐‐C(CH3)(CH2CH3)2), 2‐methyl‐3‐pentyl (‐CH(CH2CH3)CH(CH3)2),  2,3‐dimethyl‐2‐butyl (‐‐C(CH3)2CH(CH3)2), 3,3‐dimethyl‐2‐butyl (‐CH(CH3)C(CH3)3, and the like.  The term "cycloalkyl" refers to a saturated ring having 3 to 6 carbon atoms as a monocycle,  including cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl groups.  The term "subject" refers to an animal, such as a mammal, that has been or will be the object of  treatment, observation or experiment. The methods described herein may be useful in both human  therapy and veterinary applications. In some embodiments, the subject is a mammal; in some  embodiments the subject is human; and in some embodiments the subject is chosen from cats and  dogs. "Subject in need thereof" or "human in need thereof" refers to a subject, such as a human, who  may have or is suspected to have diseases or conditions that would benefit from certain treatment; for  example treatment with a compound of Formula (I), Formula (II), or Formula (III), or a pharmaceutically  acceptable salt or co‐crystal thereof, as described herein. This includes a subject who may be  determined to be at risk of or susceptible to such diseases or conditions, such that treatment would  prevent the disease or condition from developing.   The terms “effective amount,” "therapeutically effective amount," or "pharmaceutically  effective amount" refer to an amount that is sufficient to effect treatment, as defined below, when  administered to a subject (e.g., a mammal, such as a human) in need of such treatment. The  therapeutically or pharmaceutically effective amount will vary depending upon the subject and disease  condition being treated, the weight and age of the subject, the severity of the disease condition, the  manner of administration and the like, which can readily be determined by one of ordinary skill in the  art. For example, an “effective amount,” "therapeutically effective amount," or a "pharmaceutically  effective amount" of a compound of Formula (I), Formula (II), or Formula (III), or a pharmaceutically  acceptable salt or co‐crystal thereof, is an amount sufficient to treat a subject (e.g., a human) suffering  an indication, or to ameliorate or alleviate the existing symptoms of the indication. For example, a  therapeutically or pharmaceutically effective amount may be an amount sufficient to chronic myeloid  leukemia in a human subject.   In some embodiments, an effective amount of a compound, such a compound of Formula (I) or  Formula (II), or a pharmaceutically acceptable salt thereof, is an amount that ranges from about 50  ng/kg body weight to about 50 pg/kg body weight (e.g., from about 50 ng/kg body weight to about 40  pg/kg body weight, from about 30 ng/kg body weight to about 20 pg/kg body weight, from about 50  ng/kg body weight to about 10 pg/kg body weight, from about 50 ng/kg body weight to about 1 pg/kg  body weight, from about 50 ng/kg body weight to about 800 ng/kg body weight, from about 50 ng/kg  body weight to about 700 ng/kg body weight, from about 50 ng/kg body weight to about 600 ng/kg  body weight, from about 50 ng/kg body weight to about 500 ng/kg body weight, from about 50 ng/kg  body weight to about 400 ng/kg body weight, from about 60 ng/kg body weight to about 400 ng/kg  body weight, from about 70 ng/kg body weight to about 300 ng/kg body weight, from about 60 ng/kg  body weight to about 100 ng/kg body weight, from about 65 ng/kg body weight to about 85 ng/kg body  weight, from about 70 ng/kg body weight to about 90 ng/kg body weight, from about 200 ng/kg body  weight to about 900 ng/kg body weight, from about 200 ng/kg body weight to about 800 ng/kg body  weight, from about 200 ng/kg body weight to about 700 ng/kg body weight, from about 200 ng/kg body  weight to about 600 ng/kg body weight, from about 200 ng/kg body weight to about 500 ng/kg body  weight, from about 200 ng/kg body weight to about 400 ng/kg body weight, or from about 200 ng/kg  body weight to about 300 ng/kg body weight).   In some embodiments, an effective amount of a compound is an amount that ranges from  about 10 pg to about 100 mg, e.g., from about 10 pg to about 50 pg, from about 50 pg to about 150 pg,  from about 150 pg to about 250 pg, from about 250 pg to about 500 pg, from about 500 pg to about 750  pg, from about 750 pg to about 1 ng, from about 1 ng to about 10 ng, from about 10 ng to about 50 ng,  from about 50 ng to about 150 ng, from about 150 ng to about 250 ng, from about 250 ng to about 500  ng, from about 500 ng to about 750 ng, from about 750 ng to about 1 pg, from about 1 pg to about 10  pg, from about 10 pg to about 50 pg, from about 50 mg to about 150 gg, from about 150 gg to about  250 gg, from about 250 gg to about 500 gg, from about 500 gg to about 750 gg, from about 750 gg to  about 1 g, from about 1 mg to about 50 mg, from about 1 mg to about 100 mg, or from about 50 mg to  about 100 mg. The amount can be a single dose amount or can be a total daily amount. The total daily  amount can range from 10 pg to 100 mg, or can range from 100 mg to about 500 mg, or can range from  500 mg to about 1000 mg.   In some embodiments, a single dose of a compound is administered. In other embodiments,  multiple doses are administered. Where multiple doses are administered over a period of time, the  compound can be administered twice daily (qid), daily (qd), every other day (qod), every third day, three  times per week (tiw), or twice per week (biw) over a period of time. For example, a compound is  administered qid, qd, qod, tiw, or biw over a period of from one day to about 2 years or more. For  example, a compound is administered at any of the aforementioned frequencies for one week, two  weeks, one month, two months, six months, one year, or two years, or more, depending on various  factors.   The term “pharmaceutical composition” refers to a composition containing a pharmaceutically  effective amount of one or more of the isotopic compounds described herein, or a pharmaceutically  acceptable salt thereof, formulated with a pharmaceutically acceptable carrier, which can also include  other additives, and manufactured or sold with the approval of a governmental regulatory agency as  part of a therapeutic regimen for the treatment of disease in a mammal. Pharmaceutical compositions  can be formulated, for example, for oral administration in unit dosage form (e.g., a tablet, capsule,  caplet, gelcap, or syrup); for topical administration (e.g., as a cream, gel, lotion, or ointment); for  intravenous administration (e.g., as a sterile solution free of particulate emboli and in a solvent system  suitable for intravenous use); or in any other formulation described herein. Conventional procedures  and ingredients for the selection and preparation of suitable formulations are described, for example, in  Remington: The Science and Practice of Pharmacy, 21st Ed., Gennaro, Ed., Lippencott Williams & Wilkins  (2005) and in The United States Pharmacopeia: The National Formulary (USP 36 NF31), published in  2013.  As used herein, "pharmaceutically acceptable excipient" is a pharmaceutically acceptable  vehicle that includes, without limitation, any and all carriers, solvents, dispersion media, coatings,  antibacterial and antifungal agents, isotonic and absorption delaying agents and the like. The use of such  media and agents for pharmaceutically active substances is well known in the art. Except insofar as any  conventional media or agent is incompatible with the active ingredient, its use in the therapeutic  compositions is contemplated. Supplementary active ingredients can also be incorporated into the  compositions.     The term “pharmaceutically acceptable carrier” refers to any ingredient in a pharmaceutical  composition other than the disclosed pharmaceutically active or therapeutic compounds, including  those of Formulas (I) and (II), or a pharmaceutically acceptable salt thereof (e.g., a carrier capable of  suspending or dissolving the active isotopic compound) and having the properties of being nontoxic and  non‐inflammatory in a patient. Excipients may include, for example: antiadherents, antioxidants,  binders, coatings, compression aids, disintegrants, dyes (colors), emollients, emulsifiers, fillers (diluents),  film formers or coatings, flavors, fragrances, glidants (flow enhancers), lubricants, preservatives, printing  inks, sorbents, suspensing or dispersing agents, sweeteners, or waters of hydration. Exemplary  excipients include, but are not limited to: butylated hydroxytoluene (BHT), calcium carbonate, calcium  phosphate (dibasic), calcium stearate, croscarmellose, crosslinked polyvinyl pyrrolidone, citric acid,  crospovidone, cysteine, ethylcellulose, gelatin, hydroxypropyl cellulose, hydroxypropyl methylcellulose,  lactose, magnesium stearate, maltitol, mannitol, methionine, methylcellulose, methyl paraben,  microcrystalline cellulose, polyethylene glycol, polyvinyl pyrrolidone, povidone, pregelatinized starch,  propyl paraben, retinyl palmitate, shellac, silicon dioxide, sodium carboxymethyl cellulose, sodium  citrate, sodium starch glycolate, sorbitol, starch (corn), stearic acid, stearic acid, sucrose, talc, titanium  dioxide, vitamin A, vitamin E, vitamin C, and xylitol.  The term "pharmaceutically acceptable salt" includes, for example, salts with inorganic acids  and salts with an organic acid. Examples of salts may include hydrochloride, phosphate, diphosphate,  hydrobromide, sulfate, sulfinate, nitrate, malate, maleate, fumarate, tartrate, succinate, citrate, acetate,  lactate, methanesulfonate (mesylate), benzenesuflonate (besylate), p‐toluenesulfonate (tosylate), 2‐ hydroxyethylsulfonate, benzoate, salicylate, stearate, and alkanoate (such as acetate, HOOC‐(CH2)n‐ COOH where n is 0‐4). In addition, if the compounds described herein are obtained as an acid addition  salt, the free base can be obtained by basifying a solution of the acid salt. Conversely, if the product is a  free base, an addition salt, particularly a pharmaceutically acceptable addition salt, may be produced by  dissolving the free base in a suitable organic solvent and treating the solution with an acid, in  accordance with conventional procedures for preparing acid addition salts from base compounds. Those  skilled in the art will recognize various synthetic methodologies that may be used to prepare nontoxic  pharmaceutically acceptable addition salts.  Also included for the compounds of Formula (I) and Formula (II) described herein are the  pharmaceutically acceptable salts, pharmaceutically acceptable co‐crystals, pharmaceutically acceptable  esters, pharmaceutically acceptable solvates, hydrates, isomers (including optical isomers, racemates, or  other mixtures thereof), tautomers, isotopes, polymorphs, and pharmaceutically acceptable prodrugs of  such compounds.  For the sake of brevity, the list of forms in the prior sentence may not be listed in all  references to compounds herein, including those of Formula (I) and Formula (II), but each is understood  to be disclosed and included herein, even if only pharmaceutically acceptable salts are included in a  description applied anywhere herein, including in association with descriptions of chemical compounds,  pharmaceutical compositions, methods of use/treatment, or other references.  The term "crystal forms" and related terms herein refer to the various crystalline modifications  of a given substance, including, but not limited to, polymorphs, solvates, hydrates, co‐crystals, and other  molecular complexes, as well as salts, solvates of salts, hydrates of salts, other molecular complexes of  salts, and polymorphs thereof. Crystal forms of a substance can be obtained by a number of methods, as  known in the art. Such methods include, but are not limited to, melt recrystallization, melt cooling,  solvent recrystallization, recrystallization in confined spaces such as, e.g., in nanopores or capillaries,  recrystallization on surfaces or templates, such as, e.g., on polymers, recrystallization in the presence of  additives, such as, e.g., co‐crystal counter‐molecules, desolvation, dehydration, rapid evaporation, rapid  cooling, slow cooling, vapor diffusion, sublimation, grinding and solvent‐drop grinding.  The descriptions herein set forth exemplary methods, parameters and the like. It should be  recognized, however, that such descriptions are not intended as a limitation on the scope of the present  disclosure but is instead provided as a description of exemplary embodiments.   Drawing from the knowledge discussed above, we envisioned that if a TKI is effective against  both native and T315I mutant BCR‐ABL, and highly cardiac‐safe versus ponatinib, it would not only gain  a broader scope of utilization but it would become a huge relief to the CML patients with T315I  mutations. Given that imatinib and nilotinib are relatively cardiac‐safe compared to ponatinib,26, 33 we  hypothesized that it should be possible to discover a cardiac‐safe BCR‐ABL inhibitor by modifying the  structure of the existing BCR‐ABL inhibitors. We believe that H bond interactions between the TKIs and  Met318 residue in BCR‐ABL is essential for the TKIs to show efficacies against BCR‐ABL. Therefore, using  the core structure of each TKI that is responsible for H bond interaction with Met318, and study SAR  around that core for efficacies and cardiac safety would yield therapeutics more broadly applicable in  the clinic.  We speculated that the new inhibitors would possibly maintain the H bond interactions with  Met318, thus they could show similar efficacies as the parent TKI of the core structure. As a proof of  concept, we combined our drug design paradigm with iPSC‐CM models to predict the cardiotoxicities for  the new analogues in the early stage. As expected, the newly designed inhibitors have exhibited similar  efficacies as benchmark FDA drugs against the K‐562 cell line, a BCR‐ABL positive CML line. In addition,  they have also shown excellent efficacies against K‐562 cells expressing BCR‐ABLT315I . Since the iPSC‐ CM cardiotoxicity assay is an integral part of our drug design, we identified cardiotoxic cores in the early  stage and avoided using them in further studies. As a result, we finally identified cardiac‐safe cores and  studied SAR around the core for efficacies against both native and T315I mutant cell lines, while  maintaining cardiac‐safety. Extensive SAR studies led to the discovery of inhibitors 33a and 36a, which  have significantly improved cardiac‐safety over ponatinib, yet inhibited the kinase activity of BCR‐ ABLT315I, and potently inhibited proliferation of the corresponding K‐562 cell line.   Molecular Design and Computational Studies   The FDA approved BCR‐ABL inhibitors make H bond interactions with the backbone of Met318 in  the hinge region in native BCR‐ABL. In addition, inhibitors such as imatinib, dasatinib and nilotinib make  a key hydrogen bond to the side chain of the gatekeeper residue Thr315.17, 24, 39 Formation of this  hydrogen bond is critical for these inhibitors activity. Therefore, if the gatekeeper residue is mutated to  isoleucine (mutation T315I), this hydrogen bond is lost. Steric clashes of the more bulky isoleucine  residue blocks the inhibitor entry to the hydrophobic pocket, which can also cause loss of hydrogen  bond interaction with Met318. As a result, they are inactive against T315I mutation. The steric clashes of  isoleucine were also observed for bosutinib. Consequently, the only hydrogen bond that bosutinib  makes with Met318 in native BCR‐ABL is prohibited when threonine at the 315 position of BCR‐ABL is  mutated to isoleucine, and therefore it is inactive.40 In contrast, ponatinib does not make H bond  interactions with Thr315 in native BCR‐ABL but makes a H bond interactions with Met318 with both  native and T315I mutant BCR‐ABL kinase (Fig 1 a‐b), so subsequently it inhibits both native BCR‐ABL and  BCR‐ABLT315I kinases, 29 and emerged as a unique treatment option for patients with the T315I  mutation.32 Based on these observations, we understood that a hydrogen bond between the inhibitor  and Met318 is crucial in order to show activity on both native BCR‐ABL and BCR‐ABLT315I kinases.  Therefore, we hypothesized that designing a hybrid molecule using core structures of the known  BCRABL inhibitors, which make H bond interactions with Met318 and study their binding interactions  with native BCR‐ABL and BCR‐ABLT315I protein would be an ideal first step. Using core structures of  approved BCR‐ABL inhibitors, several hybrid molecules were designed and computational studies were  performed, to investigate the potential binding modes of the designed compounds. The computational  studies revealed that the majority of the hybrids possessed the key hydrogen interaction with the  backbone of Met318 in the hinge region in native BCR‐ABL. Moreover, some of the hybrids showed  hydrogen bond interactions with Met318 in BCR‐ABLT315I. Particularly, the hybrids that were designed  using a core structure from ponatinib (the core structure similar to 8), occupied the ATP‐pocket of the  BCR‐ABLT315I and showed a hydrogen bond interaction with the backbone of Met318. Furthermore, as  shown in figure 1 c‐d, the lead compounds 33a  and 36a occupied the same binding region that  ponatinib occupies in BCR‐ABLT315I, thus they have shown the same distance between the N atom of the  Met318 residue and the N atom of imidazo[1,2‐b]pyridazine moiety of inhibitors (Fig 1 c and d).  Moreover, the distance between the atoms of other key residues such as Glu286 and Asp381 and the  atoms of the lead compounds, which could potentially interact with these residues by H bond were also  similar to that observed for ponatinib with BCR‐ABLT315I. The superposition of both BCR‐ABL and BCR‐ ABLT315I kinase (Fig 2 a‐b) and the poses of lead compounds revealed that the ethyl linker in these  inhibitors would skirt the mutated gatekeeper residue Ile315, as similar to ponatinib.41 Therefore, these  compounds could possibly show similar efficacies as ponatinib in inhibiting BCR‐ABLT315I.  Figure 1 provides representations of lead compounds binding interactions with native BCR‐ABL  and BCR‐ABLT315I protein. a)  Ponatinib binding interactions with native BCR‐ABL; b) Ponatinib binding  interactions with BCR‐ABLT315I,  Potential binding mode of inhibitors 33a and 36a with BCR‐ABL (c) and  BCR‐ABLT315I (d). PDB IDs for BCR‐ABL and BCR‐ABLT315I are 3OXZ  and 3IK3, respectively. The key  residues, which will potentially make critical interactions with inhibitors, are shown in stick form and  labeled. The distance between two atoms are indicated in yellow dashed lines and labeled in black.  Figure 2 provides a omparison of binding interactions of (a) ponatinib with (b) inhibitors 33a and  36a in superposition of both BCR‐ABL and BCR‐ABLT315I. PDB IDs for BCR‐ABL and BCR‐ABLT315I are 3OXZ   and 3IK3, respectively. The key residues, which will potentially make critical interactions with inhibitors,  are shown in stick form.   Chemistry   The compound 3a was obtained from a commercial source (Ark Pharma). The synthesis of 2‐  amino‐N‐(2‐chloro‐6‐methylphenyl)thiazole‐5‐ carboxamide based inhibitors 3 b–d is shown in scheme‐ 1. N‐(2‐chloro‐6‐methylphenyl)‐2‐((2‐ methylpyrimidin‐4‐yl)amino)thiazole‐5‐carboxamide 3b, was  prepared according to the previously reported procedure for a similar analogue,42 by the SNAr  displacement of 4‐chloro‐2‐methylpyrimidine with 2‐amino‐N‐(2‐chloro‐6‐ methylphenyl)thiazole‐5‐ carboxamide 1. Alternatively, 3 c‐d were obtained by amide coupling in the presence of EDC.HCl and  HOBt. The inhibitors 11 a‐c were synthesized based on the tandem Sonogashira strategy using a  previously reported procedure for similar analogues.43 As illustrated in scheme 2, two general methods  (A and B) were explored using either the 3‐bromoimidazo[1,2‐b]pyridazine 4 or methyl 3‐iodo‐4‐  methylbenzoate 6 as coupling agents in the first Sonogashira reaction. The first Sonogashira reaction  was a straightforward reaction and occurred on both of the reagents 4 and 6, and the corresponding  products were isolated in good yields. However, the final Sonogashira reaction employed in method B  resulted in very low yields of the desired product, with debromination of 4 being the major impurity.  Therefore, method A was used to synthesize 8. Hydrolysis of 8 using 1M LiOH solution afforded 9, which  upon reaction with appropriate amines 10 a‐c in standard amide coupling conditions, using EDC and  HOBt, afforded the final compounds 11a‐c. The synthetic scheme 2 could also facilitate the synthesis of  inhibitor 15. However, it was synthesized using a convenient alternate route as out lined in scheme 3.  An amide coupling of the readily available 3‐iodo‐4‐methylbenzoic acid 12 with 3‐bromo‐5‐ (trifluoromethyl)aniline 13 in the presence of SOCl2 and DIPEA offered the intermediate 14. Subsequent  Sonogashira coupling of 14 with 5 provided inhibitor 15. Inhibitors 19, 20 21 a‐b and 24 were  synthesized according to the synthetic route outlined in scheme 4. Starting material 3‐ethynyl‐4‐ methylbenzoic acid 16 was obtained from hydrolysis of methyl 3‐ethynyl‐4‐methylbenzoate 7. Amide  coupling of 17 with 16 afforded 19, which underwent Sonogoshira coupling with 4‐iodo‐1‐methyl‐1H‐ imidazole to yield 20. Inhibitors 21 a‐b were prepared similarly to 19 using 18 a‐b instead of 16 as the  carboxylic acid precursors. Inhibitor 24 was prepared from 17 via an amide coupling followed by a  Sonogoshira reaction, with appropriate starting materials.    Scheme 1:  Synthesis of hit finder compounds. Conditions: a) 60% NaH, DMF, 0°C to rt, overnight; b)  EDC.HCl, HOBT, Diisopropylethylamine, THF, rt, 18 h.   
Scheme 2 Synthesis of HIT finder SAR. Trimethylsilylacetylene, [Pd(Ph3P)2Cl], CuI, K2CO3, Acetonitrile,  100°C, 24 h; b) CuI, [Pd(Ph3P)4], Diisopropylethylamine, DMF, seal tube, 100°C, 5 h; c) 1M LiOH Solution  in water, 1:1 THF:MeOH, room temperature, 24 h; d) EDC.HCl, HOBT Diisopropylethylamine, THF, rt,  18h.  Scheme 3: Synthesis of HIT compound. Conditions: a) SOCl2, Diisopropylethylamine, DMAP, THF, Reflux,  5 h, THF; b) CuI, [Pd(Ph3P)4], Diisopropylethylamine, DMF, seal tube, 100°C, 5h. 
Scheme 4 Synthesis of Inhibitors 19 ‐ 24. Conditions: a) (i) Trimethylsilylacetylene, [Pd(Ph3P)2Cl], CuI,  Triethylamine, THF, rt, 24 h, (ii) KOH, MeOH; b) EDC.HCl, HOBT Diisopropylethylamine, DMF, rt, 18 h; c)  4‐iodo‐1‐methyl‐1H‐imidazoleCuI, [Pd(Ph3P)2Cl], Diisopropylethylamine, DMF, seal tube, 100°C, 24h 
  Scheme 5; Synthesis of inhibitors 26, 29 and 32; Conditions: a) EDC.HCl, HOBT Diisopropylethylamine,  DMF, Rt, 18 h; b) CuI, [Pd(Ph3P)4], Diisopropylethylamine, DMF, seal tube, 100°C, 5 h; c) (i)  Trimethylsilylacetylene, [Pd(Ph3P)2Cl], CuI, Triethylamine, THF, rt, 24 h, (ii) KOH, MeOH;     Scheme 6: Synthesis of inhibitors 33 a‐h : Conditions: a) CuI, 8‐Quinolinol, K2CO3, DMSO    Scheme 7 Synthesis of inhibitors 36 a‐c. Conditions: a) SOCl2, Diisopropylethylamine, DMAP, THF, Reflux,  5 h, THF; c) CuI, [Pd(Ph3P)4],  Diisopropylethylamine, DMF, seal tube, 100 °C, 5h  Scheme 8. Synthesis of inhibitors 40 a‐c. Conditions: a) SOCl2, Diisopropylethylamine, DMAP, THF, Reflux,  5h, THF; c) CuI, [Pd(Ph3P)4],  Diisopropylethylamine, DMF, seal tube, 100 °C, 5h; c) CuI, 8‐Quinolinol,  K2CO3, DMSO  Synthesis of inhibitors 26, 29 and 32 were depicted in scheme 5. Inhibitor 26 was obtained by  reacting 3‐(4‐methyl‐1H‐imidazol‐1‐yl)‐5‐(trifluoromethyl)aniline 25 with 16 using standard EDC‐HOBt  amide coupling conditions. Inhibitor 29 was prepared similar to 19, using the required starting materials  for both the Sonogoshira reactions. The structure of inhibitor 32 resembles 11b, however, the position  of the amide group in 32, which was flipped over in between the two aryl groups, makes the difference  in 32. It was prepared in two steps. In the initial step, amide condensation was performed between 3‐ iodo‐4‐methylaniline 30 and 2d to obtain intermediate 31, which was then reacted with 5 via  Sonogoshira reaction conditions to provide the inhibitor 32.  Scheme 6 illustrates the synthesis of inhibitors 33a‐h compiled in Table 5. Briefly, a copper catalyzed N‐ arylation44‐46 of imidazole or substituted imidazoles or methyl pyrrole or methyl piperazine with 15  yielded corresponding compounds 33a–h. Notably, the coupling reaction worked well for all of the  substrates that were reported here, however, a slight decrease in isolated yields were observed for the  inhibitors 33e and 33f, with pyrrole and methyl piperazine moieties, respectively.  The synthetic protocols for inhibitors 36a‐c and 40a‐c are outlined in scheme 7 and 8,  respectively. They were prepared using the amide coupling and Sonogashira procedures outlined in  scheme 5.    Results and discussion  While the H bond interactions between the inhibitor and Met318 residue in BCR‐ABL play a  crucial role in the activity, we initially selected core fragments of the FDA approved TKIs, which make H  bond interactions with Met318 and designed hybrid molecules to identify a cardiac‐safe ‘HIT’ molecule.  The hybrids were evaluated for their kinase and cellular activities in vitro, against both BCR‐ABL and BCR‐ ABLT315I kinases and corresponding K‐562 cell lines. Additionally, their cardiotoxicities were also  evaluated by probing contractility and voltage transients in iPSC‐CMs to help guide template selection.  The inhibitors such as imatinib, dasatinib and ponatinib were used as controls to validate the screening  conditions.  As shown in Table 1, under the experimental conditions, the hybrids prepared from the dasatinib  core (fragment) showed significant efficacies against native K‐562 cells. Particularly, 3d, potently  inhibited the growth of native K‐562 cells with a GI50 values of 30 nM. Consistent with the cellular  inhibition potency, it has effectively inhibited the activity of native BCR‐ABL kinase (Table 2). However,  similar to dasatinib, these hybrids were also ineffective against T315I mutation; they did not inhibit the  activity of the BCR‐ABLT315I kinase and growth of corresponding K‐562 cell lines.  Table 1. Cellular activity of the hit finder compounds. aOverall maximum toxic dose, ND‐ No inhibition  detected up to 10 µM concentration.   
Table 2.  Kinase inhibition for the selected hit finder compounds.    Table 3.  Cellular activity of the hit finder compounds. aOverall maximum toxic dose, ND‐ No inhibition  detected up to 10 µM concentration.      However, 3a‐d appeared to be cardiac‐safe hybrids (Table 1), as we did not observe voltage transients  and arrhythmia up to 10µM concentration. Furthermore, we did not observe a decrease contractility up  to this dose.  Table 4. Cellular activity of the hit finder compounds. aOverall maximum toxic dose, ND‐ No inhibition  detected up to 10 µM concentration 
Earlier findings with the dasatinib core encouraged us to explore SAR using other inhibitor’s  cores, which binds with Met318 in hinge region of BCR‐ABL. In our next step, while we were selecting a  new core, we also considered H bond interactions of the core with Met318 in BCR‐ABLT315I. In this  context, we decided to study SAR against a ponatinib core (fragment), 3‐(imidazo[1,2‐b]pyridazin‐3‐ ylethynyl)‐4‐methylbenzoic acid, 9. As shown in table 3, significant improvement was observed in  inhibiting both native K‐256 cells and K‐562 cells expressing BCR‐ABLT315I for the hybrids made from the  ponatinib core. Particularly, 15 exhibited remarkable growth inhibition against native K‐562 cells and K‐ 562 cells expressing BCR‐ABLT315I, with GI50 values of 20 nM and 370 nM, respectively. Highly consistent  with its cellular activity, 15 also strongly inhibited the native BCR‐ABL and BCR‐ABLT315I kinases in a  biochemical kinase assay (Table‐2), with IC50 values of 150 nM and 361 nM, respectively. It appears that  15 can access the hydrophobic pocket of the BCR‐ABLT315I so that it can inhibit the growth of the BCR‐ ABLT315I. From docking studies, we observed that 15 could interact with the key residues, such as  Met318, Glu286 and Asp381 of BCR‐ABLT315I via H bond interactions (Fig S‐3), similar to that observed for  ponatinib with BCR‐ABLT315I.29 On the other hand 10a and 10c, the hybrids that were prepared from same  ponatinib core, were found to be inactive, as they did not exhibit efficacy against K‐562 cells up to 10  µM. However, except 10c, which has shown dose dependent cardiotoxicity, all of the compounds that  were studied using this ponatinib core moiety have shown improved cardiac‐safety over ponatinib. We  speculated that 10c cardiotoxicity could have arisen from its interaction with some other targets that  would potentially cause cardiotoxicity. Therefore, the fragment (R group) used to prepare 10c was  avoided in the subsequent studies.  Despite being less potent than panatinb, hybrids containing moiety have exhibited significantly  improved cardiac‐safety over ponatinib. Therefore, we speculated that the ponatinib fragment that  interacts with Met318 could be cardiac‐safe and the other part of the ponatinib molecule may be liable  for its cardiotoxicity. To understand further which part of the ponatinib molecule is liable for cardio‐ toxicity, in the next step, we decided to study SAR around the other core of ponatinib. Several diverse  hybrids were prepared using 4‐((4‐methylpiperazin‐1‐yl)methyl)‐3‐(trifluoromethyl)aniline 17 as a core.  Consistent with our hypothesis, the majority of hybrids (Table 4, 19‐20, 21a‐b, 24 and 29) have exhibited  cardiotoxicities within the measured concentrations. Furthermore, some of the hybrids were found to be  inactive against K‐562 cell lines, but they have exhibited significantly higher cardiotoxicities than the  hybrids that have exhibited activities in this series. For example, hybrids 21a and 29 were ineffective  against K‐562 cells lines up to 10 µM, but they were found to be highly cardio‐toxic at a dose of 1.45 and  1.34 µM, respectively. Moreover, 21b, which is a hybrid molecule of imatinib and ponatinib had  significantly instigated cardiotoxicity at 4.34 µM. These finding are clearly suggesting that the  cardiotoxicity arises from fragment of 17. Because, imatinib did not exhibit cardiotoxicity up to 10 µM  (table 5), whereas notable cardiotoxicity was observed for 21b at a much lower concentration than the  imatinib safe dose concentration.   Despite their cardiotoxicities, the hybrids that were generated from 17, such as 20, 21b and 24  exhibited noticeable efficacies against K‐562 cells, with GI50 values of 300 nM 3 nM and 3 nM,  respectively. Nevertheless, except 24, none of these hybrids has shown improved efficacies over 15,  against BCR‐ABLT315I kinase and the corresponding K‐562 cell lines. However, compound 15 exhibited  more favorable cardiac‐safety than 24, and so its SAR was further explored.  SAR around 15: The SAR around the lead compound 15 was explored by investigating the  influence of different R1 and R2 groups. Our computational investigation suggested that modifications at  the R1 and R2 position could preserve all elements of molecular recognition. The new analogues could  access ATP binding sites of both the BCR‐ABL and BCR‐ABLT315I, and therefore, they would make key H  bond interactions with Met318, Glu286 and Asp381 in both native BCR‐ABL and BCR‐ABLT315I protein (Fig  S‐1 top, bottom). Hence, we expected either similar or enhanced potencies for the designed hybrids  compared to 15. Relative to 15, most of the hybrids demonstrated improved efficacies in enzymatic and  cellular assays (Table 5). Particularly, replacing the bromo group with imidazole or substituted imidazoles  at the R2 position has dramatically enhanced the activities for the inhibitors. For example, as shown in  table 5, 33a ‐ 33d and 36a have exhibited remarkably increased potencies over 15. Notably, the hybrids  33a and 36a, have shown dramatically increased potencies in both enzymatic and cellular assays, against  BCR‐ABLT315I, with a 6‐7 fold improvement compared to 15 (table 5). It was noticed that the bulkiness on  the imidazole ring significantly affects the potency for these hybrids. For example, compared to 33a, the  hybrids 36a, 33b‐33d, 33g‐h, which contains alkyl groups or bulky aromatic groups at the C‐4 position of  the imidazole ring were found to be less potent. Moreover, activity was gradually decreased for the  hybrids by increasing alkyl chain length at this position. This phenomenon was clearly observed for both  BCR‐ABL and BCR‐ABLT315I protein inhibition, with 33d being exempt. For example, 33a with no  substitution on the imidazole showed superior activity among all of the hybrids, with an IC50 value of  20.1 nM and 43.7 nM for BCR‐ABL and BCR‐ABLT315I, respectively. Whereas, 36a, with a methyl group at  C‐4 of the imidazole ring, was found to be slightly less potent than 33a (IC50 values of 26.3 nM and 51.4  nM for BCR‐ABL and BCR‐ABLT315I, respectively). Moreover, while the length of the alkyl chain has  gradually increased in 33b and 33c by incorporating ethyl and isopropyl groups, respectively, their  potencies were decreased stepwise. Finally, 33c with an isopropyl group was found to be the least  potent among all n‐alkyl substituted analogues (IC50 values of 119 nM and 255 nM for BCR‐ABL and BCR‐ ABLT315I, respectively). Surprisingly, 33d, with a cyclopropyl substitution showed slightly better activity  (IC50s 88.4 nM for BCR‐ABL and 164 nM for BCR‐ABLT315I) than the isopropyl analogue 33c.   Overall, the BCR‐ABLT315I kinase activity for these hybrids was reduced by 2‐3‐fold than the native  BCR‐ABL kinase activity, similar to that observed for ponatinib.41  A slight outward displacement of the  flag‐methyl group containing phenyl ring of the hybrids from the hydrophobic pocket of BCR‐ABLT315I  would account for the reduction in potency against BCR‐ABLT315I. Such outward displacement was  observed for ponatinib in complex with BCR‐ABLT315I so that it had shown reduced potencies against BCR‐ ABLT315I kinase and corresponding cell lines.41    Next, the potency impact of the bulkiness on imidazole moiety was further explored using 1H‐ benzo[d]imidazole (33g) and 4‐phenyl‐1H‐imidazole (33h) moieties. As expected, both hybrids 33g and  33h showed markedly reduced kinase and cellular activities than 33a. Compared to 33a, these  compounds have exhibited a decrease in potency of 7‐16‐fold and 4‐9‐fold in BCR‐ABLT315I enzymatic and  cellular assays, respectively.  In further optimization, we sought to use the 1‐methylpiperazine moiety, which is a widely used  solubilizing group. We thought that its incorporation would improve cell permeability and help reduce  lipophilicity. However, hybrid 33f did not show improved efficacies over 33a. Despite similar efficacy  between 33a and 33f against native BCR‐ABL kinase, relative to 33a, 33f demonstrated 2‐fold decreased  activity against BCR‐ABLT315I kinase. Cellular inhibition efficacies for 33f was found to be consistent with  biochemical assay results. Another hybrid 33e, with 3‐methyl‐1H‐pyrrole, was also unable to compete  with 33a. Relative to 33a, 33e exhibited remarkably reduced BCR‐ABLT315I kinase and cellular potencies of  14‐fold and 6‐fold, respectively, which suggests that the 2nd nitrogen in the five member ring is essential  in order to improve the efficacies of the hybrids.  Next, the potency impact of the Flag‐methyl47 group (R1) was briefly investigated to evaluate its  impact on inhibitory activities. The hybrids 33a, 33d and 36a were selected for the study, and the results  were summarized in table 5. When the methyl group in 33a was replaced with H, the resulting inhibitor  40a displayed similar efficacies that 33a showed against native BCR‐ABL kinase but the activity against  BCR‐ABLT315I and the corresponding cell lines were dramatically decreased. Whereas, the hybrids 40c and  36b, which were derived from 33d and 36a, respectively, maintained similar efficacies that of the  corresponding methyl group containing analogues, against both native BCR‐ABL and BCR‐ABLT315I  kinases. However, their cellular potencies decreased by 2‐10‐fold. We observed that large hydrophobic  groups at the Rposition were detrimental to the activities on both kinase and cellular levels. For  instance, relative to 33d and 36a, the methoxy analogues 40b and 36c demonstrated 8‐16‐fold and 35‐ 100 fold potency loss against BCR‐ABLT315I kinase and the corresponding K‐562 cell lines, respectively. In  line with previous findings,43, 47‐48 our results also clearly demonstrated the importance of the flag‐ methyl group’s role in selective inhibition of BCR‐ABL. Furthermore, similar to that observed for  ponatinib binding with BCR‐ABL,41 the flag‐methyl in hybrids could favor desirable binding orientation  with BCR‐ABL. Therefore, replacing the flag‐methyl with either H or a large hydrophobic group could  result in loss of selectivity,49 thus the corresponding hybrids were found to be less potent than their  methyl group containing analogues.   Hybrids decreased adverse effects and cardiotoxicity:   The TKIs used in CML treatment primarily target BCR‐ABL kinase activity. However, most of  them have shown distinctive off‐target activities,29, 50 which result in adverse effects.34 Cardiovascular  complications are particularly restricting the use of the most potent TKIs.33, 51‐52  For example, ponatinib,  the only drug that targets BCR‐ABLT315I mutation has been restricted due to cardiovascular adverse  events.33, 51 In fact, ponatinib was reported to be the most cardiotoxic TKI among the FDA approved  TKIs.33 Ponatinib cardio‐toxic events were observed at a low dose of 470 nM in vitro (Tabel 5).  Furthermore, ponatinib inhibited the growth of healthy HEK cells at 1.1 µM as demonstration of its  toxicity and off‐target effects.  By contrast, most of the hybrids, which have shown excellent efficacies  against both BCR‐ABLT315I kinase and corresponding K‐562 cells lines were found to be safer compared to  ponatinib. They did not inhibit the growth of HEK cells even at 10 µM.  In addition, some of the hybrids found to be cardiac‐safe, which have not shown adverse cardio‐ toxic events up to 10 µM, potently inhibited BCR‐ABLT315I kinase and the corresponding K‐562 cell lines in  the nano molar range. Particularly, the highly potent hybrids 33a and 36a have shown superior cardio‐ safety; we did not observe voltage transients, arrhythmia and decreasing in contractility up to 25 µM  (Figure 3). The compounds were assessed for cardiotoxic activity by measuring contractility of human  cardiomyocytes derived from human induced pluripotent stem cells (hiPSC‐CMs) (Fig. 3 C‐E).  Note that  the new compounds showed substantially diminished potencies for inhibiting cardiomyocyte  contractility. Furthermore, we observed that the hybrids cardiotoxicity was also dependent on  substituents at C‐4 of the imidazole ring. The hybrids with more bulky groups at this position were found  to be highly cardiotoxic than the unsubstituted or small substitutions. For example, hybrids 33a, 36a and  33b, with H‐, methyl‐ and ethyl‐ groups, respectively, have shown cardiac‐safety up to 10 µM, whereas,  33c with an isopropyl group demonstrated approximately 3‐fold increased cardiotoxicity (Table 5). It  exhibited cardiotoxic effects at as low as 3.5 µM, suggesting that even a small modification on the  imidazole ring could cause a drastic change in the cardiac‐safety. The cardiotoxicities caused by the  bulkiness on the imidazole ring was clearly observed for the hybrids 33g and 33h. Particularly, 33h with  the more bulky phenyl group on the imidazole moiety was found to be the most cardiotoxic hybrid  among the hybrids that were studied under lead optimization. Notably, replacing the flag‐methyl group  with H or a methoxy group also resulted in cardiotoxicity. These findings are clearly suggest that a small  change in the inhibitor structure could alter its preference in interacting with targets and off‐targets,49  and such interactions may cause adverse effects. Therefore, cardiotoxicities observed for some of the  hybrids might result from their strong interactions with off‐targets rather than BCR‐ABL.  Figure 3 represents in vitro functional evaluation of Ponatinib and compounds 33a and 36a. A,B)  Representative dose responses of  Ponatinib, 33a and 36a to assess relative cell viability in CML tumor  cell line K562 cells (A) and in the same line carrying the T315I ‘gatekeeper’ mutation (K562‐T315I) (B).  Note that 33a and 36a, like Ponatinib, are potent inhibitors of T315I mutant tumor cell growth. C)  Representative dose responses of Ponatinib, 33a, 36a and control for angiogenesis by measuring the  number of loops that form in Human Microvascular Endothelial cell cultures. Ponatinib has a potent  inhibitory effect against angiogenesis but 33a and 36a show markedly diminished anti‐angiogenesis  potency. D, E) Representative dose responses of Ponatinib, 33a, 36a and vehicle control (DMSO) on  contractility (peak contraction amplitude) of cardiomyocytes (hiPSC‐CMs) generated from two different  healthy donors.  Each data point represents the average for 3 differentiation batches assessed each in  quadruplicate (n=12).  Note that Ponatinib potently suppresses cardiomyocyte contractility, whereas,  33a and 36a have substantially decreased inhibitory potencies.Considering the overall performance,  including in vitro kinase and cellular potencies as well as cardiac‐safety, the inhibitors 33a and 36a were  selected for evaluating their pharmacokinetic profiles and antitumor activities in vivo (Figure 4). Our  results suggest that these compounds have shown comparable efficacies similar to ponatinib in mouse  models of CML driven by the T315I mutation. The new compounds were assessed for PK and toxicity  (Fig. 4 A‐D).  The new compounds were found to have desirable PK and toxicity properties. When  evaluated for anti‐tumor effects in vivo, mice were implated with human K‐562 CML T315I mutant  tumors which were allowed to develop for 4 days (Fig. 4E).  At that time, compounds were administered  at 30 mg/kg daily by oral gavage.  Note that the new compounds and ponatinib effectively decreased  tumor burden, reflected by weight gain in the mice and decreased tumor size (Fig. 4F‐H).  Serum cardiac  troponin levels were assessed.  Troponin levels are an indication of cardiac damage.  Note that  ponatinib, but not the new compounds, increased troponin levels.     In summary, we have successfully designed and synthesized a series of hybrid molecules as  more selective BCR‐ABL inhibitors. The hybrids maintain significant inhibition activities against K‐562  human CML cells including the most intractable gatekeeper T315I mutant associated with disease  progression in CML. The most potent compounds 33a and 36a strongly inhibited the kinase activities of  both native BCR‐ABL and BCR‐ABLT315I with pharmacokinetics and achieved durable tumor regression in  the K‐562 xenograft model in mice with oral administration.  Table 5. Cellular activity of the hit finder compounds. aOverall maximum toxic dose, ND‐ No inhibition  detected up to 10 µM concentration.  
  Therefore, they could serve as promising lead compounds for further development of a new class of  BCR‐ABL inhibitors overcoming the T315I mutation and cardiotoxicity.   Experimental section  Chemical Synthesis  General methods:    All the reagents and solvents were obtained at the highest commercial quality  from sources such as Sigma‐Aldrich, Fisher Scientific, TCI International, Acros organics, Alfa‐Aesar,  Matrix Scientific, Chem‐Implex and Enamine and were used without further purification. Unless  otherwise mentioned, all the reactions were carried out under a nitrogen atmosphere with dry solvents.  The reactions were monitored by TLC using pre‐coted silica gel plates (Merck, silica gel 60 F254). Flash  chromatography was carried out using a CombiFlash Rf+ Lumen chromatography system (Teledyne ISCO,  Lincon, NE, USA). 1H (400 MHz) and 13C (101 MHz) NMR spectra were recorded either on an Agilent 400‐ MR NMR or on a Bruker Avance 400 MHz spectrometer, using appropriate deuterated solvents, as  needed. Chemical shifts (δ) were reported in parts per million (ppm) upfield from tetramethylsilane  (TMS) as an internal standard. Coupling constants (J) were reported in hertz (Hz), and s, br.s, d, t and m  are designated as singlet, broad singlet, doublet, triplet and multiplet, respectively. LC‐MS spectra were  recorded on an Agilent 6490 iFunnel Triple Quadrupole Mass Spectrometer from Agilent Technologies  Inc. (Santa Clara, CA, USA). An Agilent EclipsePlusC18 reverse phase column, 1.8 µm, 2.1 x 50 mm was  used with solvent A (0.1% formic acid in acetonitrile) and solvent B (0.1% formic acid in water) for LC‐MS  Fig 4. In vivo mice studies for evaluation of the pharmacological profile and tumor reduction efficacy of  Ponatinib and compounds 33a and 36a. A) Schematic representation of pharmacokinetic (PK) studies in  mice for Ponatinib, 33a and 36a. B) PK parameters for Ponatinib, 33a and 36a: Cmax, t‐max and t1/2. C)  Schematic representation of toxicity studies in mice over 30 days of compound treatment in increasing  dose range up to maximum dose of 60mg/kg. D) Kaplan‐Meier survival curve of the mice treated over 30  days. Doses were increased every 5 days. Note that animals treated with Ponatinib died after being  treated with 50mg/kg. All ponatinib‐treated animals died with 60mg/kg at the end of 30 days. In  contrast, all animals treated with compounds 33a and 36a survived the entire time (30 days). E)  Schematic representation of xenograft studies in mice followed for 3 weeks of treatment with 30mg/kg  of Ponatinib, 67 and 84. F) Mouse weights at the end of 3 weeks of treatment. The vehicle treated  animals had decreased weight due to tumor burden.  analysis. The ratio of solvent A and solvent B was 1:9 at the beginning and gradually changed to 9:1 at  the end. The purity of all the final compounds was >95% as indicated by LC‐MS.  N‐(2‐chloro‐6‐methylphenyl)‐2‐((2‐methylpyrimidin‐4‐yl)amino)thiazole‐5‐carboxamide (3b).  Compound 3a was prepared based on a literature procedure.42 Sodium hydride (60% in mineral oil,  0.186 g, 4.67 mmol) was added to a stirred solution of 2‐amino‐N‐(2‐chloro‐6‐methylphenyl)thiazole‐5‐ carboxamide 1 (0.5 g, 1.87 mmol) and 4‐chloro‐2‐methylpyrimidine 2b (0.28 g, 2.24 mmol) in DMF (20  mL). The solution was heated at 100 °C overnight, cooled to room temperature (rt), and quenched by  adding glacial acetic acid and water. The crude product extracted into DCM (2 x 50 mL). The organic  layers were combined, washed with water, followed by saturated NaCl solution (25 mL). The organic  phase was dried over Na2SO4, filtered, and then evaporated to dryness using a rotatory evaporator. The  crude product was purified on a silica gel column with a 0‐10% gradient of methanol in DCM to furnish  the desired product as pale yellow solid (0.07 g, 10% yield). 1H NMR (400 MHz, DMSO‐d6) δ 8.37 (d, J =  5.5 Hz, 1H), 8.12 (s, 1H), 7.58 – 7.48 (m, 1H), 7.47 – 7.37 (m, 2H), 6.90 (dd, J = 5.5, 0.7 Hz, 1H), 2.49 (s,  3H), 2.14 (s, 3H). 13C NMR (101 MHz, DMSO‐d6) δ 171.60, 167.08, 164.66, 159.64, 157.56, 156.38,  138.75, 132.04, 131.71, 131.34, 130.68, 128.57, 114.29, 98.62, 25.91, 17.76. LC‐MS (ESI‐QQQ): m/z  360.1 ([C16H14ClN5OS + H]calcd. 360.06). Purity 99% (RT 3.287 min).  General procedure for the synthesis of 3c‐d.   The following procedure is for N‐(2‐chloro‐6‐methylphenyl)‐2‐(4‐methyl‐3‐((4‐(pyridin‐3‐ yl)pyrimidin‐2‐yl)amino)benzamido)thiazole‐5‐carboxamide (3c). Under a nitrogen atmosphere, 2‐ amino‐N‐(2‐chloro‐6‐methylphenyl)thiazole‐5‐carboxamide 1 (0.5 g, 1.87 mmol) and 4‐methyl‐3‐((4‐ (pyridin‐3‐yl)pyrimidin‐2‐yl)amino)benzoic acid 2c (0.57 g, 1.87 mmol) were added to dry THF (100 mL)  at room temperature and stirred for 10 min, which resulted in a clear solution. EDC.HCl (0.54 g, 2.80  mmol), HOBt (0.38 g, 2.80 mmol) and DIPEA (0.65 mL, 3.74 mmol) were added and then heated at 40 °C  for 48h. The progress of the reaction was monitored by TLC. Water (25 mL) was added, followed by  EtOAc (25 mL). The organic phase was separated and the aqueous phase was extracted with EtOAc (2 x  50 mL). The combined organic phase was washed with water (25 mL) followed by brine solution (25 mL).  The organic phase was dried over Na2SO4, filtered and evaporated to dryness to afford crude product  that was purified on a silica gel column with a 0‐10% gradient of methanol in DCM as an eluent to obtain  the desired compound as an off‐white solid (0.08 g, 8% yield). 1H NMR (400 MHz, DMSO‐d6) δ 12.91 (s,  1H), 9.75 (s, 1H), 9.29 (s, 1H), 9.06 (s, 1H), 8.70 (d, J = 4.7 Hz, 1H), 8.53 (dd, J = 16.2, 6.6 Hz, 2H), 8.45 (s,  1H), 8.27 (s, 1H), 7.89 (d, J = 7.9 Hz, 1H), 7.56 (t, J = 6.5 Hz, 1H), 7.48 (d, J = 5.2 Hz, 1H), 7.38 (dd, J = 13.9,  7.8 Hz, 2H), 7.33 – 7.21 (m, 2H), 2.34 (s, 3H), 2.26 (s, 3H). 13C NMR (101 MHz, DMSO‐d6) δ 162.00,  161.58, 159.96, 151.85, 148.56, 139.29, 138.19, 134.87, 134.33, 132.92, 132.63, 130.44, 129.38, 128.41,  127.38, 125.38, 124.60, 124.36, 108.14, 40.58, 40.37, 40.16, 39.95, 39.74, 39.53, 39.33, 18.83, 18.68. LC‐ MS (ESI‐QQQ): m/z 556.20 ([C28H22ClN7O2S + H]calcd. 556.12). Purity 96.3% (RT 4.853 min).  N‐(2‐chloro‐6‐methylphenyl)‐2‐(4‐((4‐methylpiperazin‐1‐yl)methyl)benzamido)thiazole‐5‐ carboxamide (3d). The title compound was synthesized from 2‐amino‐N‐(2‐chloro‐6‐ methylphenyl)thiazole‐5‐carboxamide 1 (0.62 g, 2.34 mmol) and 4‐((4‐methylpiperazin‐1‐ yl)methyl)benzoic acid 2d (0.5 g, 2.13 mmol), as described for the synthesis of 3c. The crude product was  purified on a silica gel column using a 0‐10% gradient of methanol in DCM as an eluent to yield the  desired compound as an off‐white solid (0.2 g, 19% yield). 1H NMR (400 MHz, DMSO‐d6) δ 10.09 (s, 1H),  8.39 (s, 1H), 8.13 – 8.03 (m, 2H), 7.47 (d, J = 8.2 Hz, 2H), 7.41 (dd, J = 7.5, 2.0 Hz, 1H), 7.35 – 7.20 (m, 3H),  3.55 (s, 2H), 2.41 (bs, 8H), 2.25 (s, 3H), 2.21 (s, 3H). 13C NMR (101 MHz, DMSO‐d6) δ 165.82, 162.40,  159.97, 144.14, 141.02, 139.20, 133.75, 132.81, 130.82, 129.53, 129.27, 128.78, 127.50, 127.30, 123.75,  118.99, 110.92, 61.86, 54.93, 52.71, 45.83, 18.74. LC‐MS (ESI‐QQQ): m/z 484.10 ([C24H26ClN5O2S + H] calcd. 484.15). Purity 97.9% (RT 3.520 min).  3‐ethynylimidazo[1,2‐b]pyridazine (5). Compound 5 was prepared according to the previously  reported method,43 with several modifications. To a solution of 3‐bromoimidazo[1,2‐b]pyridazine 4 (10.0  g, 50.5 mmol) in acetonitrile was added CuI (0.5 g, 2.63 mmol), Pd(PPh3)2Cl(1.8 g 2.63 mmol) and TEA  (21.0 mL, 150.6 mmol). The solution was purged with a nitrogen flow for 10 min and then  ethynyltrimethylsilane (21.0 mL, 151.8 mmol) was added. The mixture was heated to reflux overnight.  After cooling to rt, the reaction mixture was filtered to remove undissolved solid. The solid was washed  with copious amounts of acetonitrile. The filtrate was evaporated to dryness then taken into methanol  (300 mL). To this mixture, K2CO3 (14.3 g, 103.5 mmol) was added at room temperature and then allowed  to stir for 4 h. The progress of the reaction was monitored by TLC. The reaction mixture was filtered in  order to remove excess K2CO3. The solid was washed with a minimal amounts of methanol. The filtrate  was concentrated to dryness and dissolved in excess EtOAc, and then washed with water followed by  brine solution. The organic phase was dried over Na2SO4, filtered and evaporated to dryness to afford  crude product, which was purified on a silica gel column using a 0‐50% gradient of EtOAc in hexane to  obtain the desired product as a pale‐brown solid (5.0 g, 69%). 1H NMR (400 MHz, CDCl3) δ 8.47 (dd, J =  4.4, 1.7 Hz, 1H), 8.03 – 7.96 (m, 2H), 7.12 (dd, J = 9.1, 4.5 Hz, 1H), 3.80 (s, 1H). 13C NMR (101 MHz, CDCl3)  δ 143.92, 138.97, 132.13, 132.03, 128.53, 128.41, 126.04, 117.86, 87.25, 70.61. LC‐MS (ESI‐QQQ): m/z  144.10 ([C8H5N3 + H]calcd. 144.05). Purity 99% (RT 2.680 min).  Methyl 3‐(imidazo[1,2‐b]pyridazin‐3‐ylethynyl)‐4‐methylbenzoate (8). Compound 8 was  prepared according to the literature procedure,53 with few modifications. Methyl 3‐iodo‐4‐ methylbenzoate 6 (1.85 g, 6.71 mmol) was added to a stirred solution of 3‐ethynylimidazo[1,2‐ b]pyridazine 5 (0.8 g, 5.59 mmol) in DMF (10 mL).  The mixture underwent 3 cycles of vacuum/filling  with nitrogen and then CuI (0.21 g, 1.11 mmol), Pd(PPh3)4 (0.64 g, 0.55 mmol) and  diisopropylethylamine (1.94 mL, 11.17 mmol) were added. The reaction mixture was stirred at 80 °C for  2h before it was cooled to rt. Water (25 mL) was added and the product extracted into EtOAc (3 x 25  mL). The organic layers were combined, washed with water (20 mL) followed by brine solution (20 mL).  The organic phase was dried over Na2SO4, filtered and then evaporated to dryness to afford a gummy  solid, which was then triturated with minimal acetonitrile to yield a solid. The solid was collected by  filtration, was washed with a minimal amount of acetonitrile and dried under vacuum for 2h to furnish  the desired compound as an off‐white solid (0.82 g, 50% yield). 1H NMR (400 MHz, CDCl3) δ 8.57 (d, J =  4.2 Hz, 1H), 8.27 (d, J = 1.8 Hz, 1H), 8.16 (s, 1H), 7.97 – 7.87 (m, 1H), 7.39 – 7.30 (m, 1H), 7.26 (s, 1H),  7.22 (s, 1H), 3.93 (d, J = 0.5 Hz, 3H), 2.63 (d, J = 0.7 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 166.37, 145.55,  144.26, 133.19, 129.90, 129.76, 127.99, 125.64, 122.47, 118.15, 94.49, 52.17, 21.06. LC‐MS (ESI‐QQQ):  m/z 292.00 ([C17H13N3O2 + H]calcd. 292.10). Purity 99% (RT 5.027 min).  3‐(imidazo[1,2‐b]pyridazin‐3‐ylethynyl)‐4‐methylbenzoic acid (9). Compound 9 was prepared  based on a literature procedure,53 with few modifications. Methyl 3‐(imidazo[1,2‐b]pyridazin‐3‐ ylethynyl)‐4‐methylbenzoate 8 (0.81 g, 2.78 mmol) was taken into a 1:1 mixture of MeOH and THF (120  mL). To this mixture, a freshly prepared 1.0 M LiOH solution in water (15.0 mL) was added and stirred at  rt for 24 h. The pH was adjusted to 2 before the volume was reduced to 15% on a rotatory evaporator.  The off‐white solid that had appeared was collected by filtration, washed with copious amounts of ether  and dried under vacuum for 4 h to give the title compound (0.7 g, 91% yield). 1H NMR (400 MHz, DMSO‐ d6) δ 13.08 (s, 1H), 8.70 (dd, J = 4.4, 1.6 Hz, 1H), 8.28 – 8.15 (m, 2H), 8.03 (d, J = 1.8 Hz, 1H), 7.87 (dd, J =  7.9, 1.9 Hz, 1H), 7.48 (d, J = 8.0 Hz, 1H), 7.37 (dd, J = 9.2, 4.4 Hz, 1H), 2.57 (s, 3H). 13C NMR (101 MHz,  DMSO‐d6) δ 166.92, 145.52, 144.85, 140.11, 138.74, 132.38, 130.68, 130.11, 129.33, 126.53, 122.48,  119.51, 112.14, 96.61, 81.55, 20.94. LC‐MS (ESI‐QQQ): m/z 277.9 ([C16H11N3O2 + H]calcd. 278.09). Purity  99% (RT 4.16 min).  Compounds 11a‐c were prepared from compound 9 and the corresponding reactant 10 using a  similar method that was described for the synthesis of 3d.   (3‐(imidazo[1,2‐b]pyridazin‐3‐ylethynyl)‐4‐methylphenyl)(4‐methylpiperazin‐1‐yl)methanone (11  a). Compound 11a was prepared using 3‐(imidazo[1,2‐b]pyridazin‐3‐ylethynyl)‐4‐methylbenzoic acid 9  (0.1 g, 0.36 mmol) and 1‐methylpiperazine (0.04 g, 0.54 mmol) as shown in scheme 2. Desired product  was obtained as an off‐white solid (0.05 g, 39% yield). 1H NMR (400 MHz, CDCl3) δ 8.46 (dd, J = 4.4, 1.6  Hz, 1H), 8.03 (s, 1H), 7.99 (dd, J = 9.2, 1.6 Hz, 1H), 7.62 (d, J = 1.3 Hz, 1H), 7.30 (d, J = 1.5 Hz, 2H), 7.12  (dd, J = 9.2, 4.4 Hz, 1H), 3.66 (m, 8H), 2.59 (s, 3H), 2.34 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 169.44,  143.84, 142.07, 139.69, 138.30, 133.28, 130.40, 129.77, 127.50, 125.90, 122.66, 117.65, 96.84, 80.55,  45.89, 20.78. LC‐MS (ESI‐QQQ): m/z 360.3 ([C21H21N5O + H]calcd. 360.17). Purity 99% (RT 3.06 min).  3‐(imidazo[1,2‐b]pyridazin‐3‐ylethynyl)‐4‐methyl‐N‐(4‐((4‐methylpiperazin‐1‐ yl)methyl)phenyl)benzamide (11 b). Compound 11 b was prepared using 3‐(imidazo[1,2‐b]pyridazin‐3‐ ylethynyl)‐4‐methylbenzoic acid 9 (0.1 g, 0.36 mmol) and 4‐((4‐methylpiperazin‐1‐yl)methyl)aniline (0.07  g, 0.36 mmol) as shown in scheme 2. Desired product was obtained as an off‐white solid (0.02 g, 12%  yield). 1H NMR (400 MHz, DMSO‐d6) δ 10.28 (s, 1H), 8.71 (dd, J = 4.4, 1.6 Hz, 1H), 8.31 – 8.11 (m, 3H),  7.91 (dd, J = 8.0, 2.0 Hz, 1H), 7.76 – 7.63 (m, 2H), 7.52 (dd, J = 8.0, 0.8 Hz, 1H), 7.38 (dd, J = 9.2, 4.5 Hz,  1H), 7.29 – 7.18 (m, 2H), 3.40 (s, 2H), 2.59 (s, 3H), 2.32 (d, J = 13.3 Hz, 8H), 2.15 (s, 3H). 13C NMR (101  MHz, DMSO‐d6) δ 145.52, 138.69, 138.31, 133.19, 130.60, 130.43, 129.54, 128.88, 126.56, 122.14,  120.66, 119.52, 62.07, 55.10, 52.82, 20.82. LC‐MS (ESI‐QQQ): m/z 465.0 ([C28H28N6O + H]calcd. 465.2).  Purity 99% (RT 3.557 min).  N‐(6‐(4‐(2‐hydroxyethyl)piperazin‐1‐yl)‐2‐methylpyrimidin‐4‐yl)‐3‐(imidazo[1,2‐b]pyridazin‐3‐ ylethynyl)‐4‐methylbenzamide (11c). Compound 11c was prepared from 3‐(imidazo[1,2‐b]pyridazin‐3‐ ylethynyl)‐4‐methylbenzoic acid 9 (0.1 g, 0.36 mmol) and 2‐(4‐(6‐amino‐2‐methylpyrimidin‐4‐ yl)piperazin‐1‐yl)ethan‐1‐ol (0.09 g, 0.36 mmol) as shown in scheme 2. Desired product was obtained as  an off‐white solid (0.04 g, 22% yield). 1H NMR (400 MHz, DMSO‐d6) δ 8.70 (dd, J = 4.5, 1.6 Hz, 1H), 8.28 –  8.16 (m, 2H), 8.09 – 8.00 (m, 1H), 7.89 (dd, J = 7.9, 1.9 Hz, 1H), 7.59 – 7.44 (m, 1H), 7.42 – 7.28 (m, 1H),  6.05 (s, 2H), 5.41 (s, 1H), 4.41 (t, J = 5.8 Hz, 2H), 3.39 (t, J = 4.8 Hz, 4H), 2.73 (t, J = 5.8 Hz, 2H), 2.58 (s,  3H), 2.51 (t, J = 5.9 Hz, 4H), 2.13 (s, 3H). 13C NMR (101 MHz, DMSO‐d6) δ 165.88, 165.37, 164.90, 163.17,  145.53, 145.42, 138.82, 132.13, 130.89, 129.96, 126.55, 119.56, 96.44, 81.82, 79.95, 62.80, 56.49, 53.00,  44.07, 26.09, 21.00. LC‐MS (ESI‐QQQ): m/z 497.40 ([C27H28N8O2 + H]calcd. 497.23). Purity 99% (RT 3.230  min).  N‐(3‐bromo‐5‐(trifluoromethyl)phenyl)‐3‐iodo‐4‐methylbenzamide (14). Under a nitrogen  atmosphere, 3‐iodo‐4‐methylbenzoic acid 12 (5.0 g, 19.08 mmol) was taken in SOCl2 (6.5 mL, 89.6 mmol)  and then two drops of DMF was added at rt. The reaction mixture was stirred at reflux for 5 h before it  was cooled to rt and the excess SOClwas carefully removed. The crude material was co‐evaporated  with benzene and dried under vacuum to afford the desired acid chloride. The acid chloride was  dissolved in anhydrous THF (20 mL) and then added dropwise to a stirred mixture of 3‐bromo‐5‐ (trifluoromethyl)aniline 13 (4.57 g, 19.08 mmol), diisopropylethylamine (3.97 mL, 22.8 mmol) and DMAP  (0.23 g, 1.88 mmol) in THF at 0 °C. Upon completion of the addition, the reaction mixture was warmed  to rt and stirred overnight. The reaction was quenched with water, and the product was extracted into  EtOAc (3 x 50 mL). The combined organic extracts were washed with brine solution (25 mL), dried over  Na2SO4, filtered and evaporated to dryness to afford a crude material that was purified on a silica gel  column using a 0‐50% gradient of EtOAc in hexane as eluent to obtain the desired product as an off‐ white solid (7.6 g, 82 % yield). 1H NMR (400 MHz, DMSO‐d6) δ 10.61 (s, 1H), 8.49 – 8.29 (m, 2H), 8.19 (s,  1H), 7.91 (dd, J = 7.9, 1.9 Hz, 1H), 7.67 (s, 1H), 7.50 (d, J = 7.9 Hz, 1H), 2.44 (s, 3H). 13C NMR (101 MHz,  DMSO‐d6) δ 164.63, 145.89, 141.74, 137.94, 133.53, 131.73, 131.41, 130.35, 128.34, 126.48, 124.98,  123.04, 123.00, 122.67, 115.92, 115.88, 101.63, 28.06.  LC‐MS (ESI‐QQQ): m/z 483.90 ([C15H10BrF3INO +  H]calcd. 483.89). Purity 99% (RT 6.410 min).  N‐(3‐bromo‐5‐(trifluoromethyl)phenyl)‐3‐(imidazo[1,2‐b]pyridazin‐3‐ylethynyl)‐4‐ methylbenzamide (15). This was prepared using N‐(3‐bromo‐5‐(trifluoromethyl)phenyl)‐3‐iodo‐4‐ methylbenzamide 14 (2.0 g, 4.13 mmol) and 3‐ethynylimidazo[1,2‐b]pyridazine 5 (0.62 g, 4.33 mmol) as  shown in scheme 3 using a similar method that was described for the synthesis of 8. The desired product  was obtained as an off‐white solid (1.42 g, 69% yield). 1H NMR (400 MHz, DMSO‐d6) δ 10.69 (s, 1H), 8.72  (dd, J = 4.4, 1.5 Hz, 1H), 8.39 (t, J = 1.9 Hz, 1H), 8.31 – 8.17 (m, 3H), 7.94 (dd, J = 8.0, 2.0 Hz, 1H), 7.69 –  7.52 (m, 3H), 7.39 (dd, J = 9.2, 4.4 Hz, 1H), 2.61 (s, 3H). 13C NMR (101 MHz, DMSO‐d6) δ 165.32, 145.51,  144.31, 141.81, 138.74, 132.20, 131.98, 131.88, 131.71, 131.39, 130.63, 130.61, 129.26, 129.14, 128.99,  126.56, 126.44, 122.66, 122.31, 119.54, 115.85, 96.76, 81.70, 20.87. LC‐MS (ESI‐QQQ): m/z 499.1   ([C23H14BrF3N4O + H]calcd. 499.03). Purity 95.8% (RT 6.040 min).  3‐ethynyl‐4‐methylbenzoic acid (16). Methyl 3‐iodo‐4‐methylbenzoate 6 (3.0 g, 10.86 mmol),  was taken in anhydrous THF (30 mL). The solution underwent 3 cycles of vacuum/filling with nitrogen  then CuI (0.17 g, 0.89 mmol), [Pd(PPh3)2Cl2] (0.4 g, 0.56 mmol) and ethynyltrimethylsilane (5.0 mL, 36.14  mmol) were added. The mixture was stirred overnight at rt. EtOAc (50 mL) was added followed by 0.5M  aqueous NH4OH solution (100.0 mL). Aqueous and organic phases were separated. The organic phase  was washed with 0.5N HCl (50 mL) followed by brine solution (25 mL), dried over Na2SO4, filtered and  evaporated to dryness to afford a brown oil that was dissolved in a freshly prepared methanolic KOH  solution (13 g of KOH flakes dissolved in 50 ml of MeOH) and stirred at rt for 2 h. EtOAc (100 mL) was  added and undissolved solid was removed by filtration. The solid was washed with copious amounts of  methanol. The filtrate was evaporated to dryness and taken in water (50 mL). The pH was adjusted to 5  using 0.5N HCl, during which time an off‐white solid was observed. The solid obtained was collected by  filtration and washed with cold water followed by hexane. The solid was dried under vacuum for 4 h to  obtain the desired compound as an off‐white solid (1.5 g, 86%). 1H NMR (400 MHz, DMSO‐d6) δ 13.10 (s,  1H), 7.92 (d, J = 1.8 Hz, 1H), 7.84 (dd, J = 8.0, 1.8 Hz, 1H), 7.42 (d, J = 8.0 Hz, 1H), 4.47 (d, J = 0.9 Hz, 1H),  2.44 (s, 3H). 13C NMR (101 MHz, DMSO‐d6) δ 166.97, 145.35, 133.15, 130.41, 129.99, 129.53, 122.31,  85.77, 81.77, 20.78.  3‐ethynyl‐4‐methyl‐N‐(4‐((4‐methylpiperazin‐1‐yl)methyl)‐3‐(trifluoromethyl)phenyl) benzamide (19).  The title compound was prepared using the general procedure that was described for the synthesis of  3c, except for using 4‐((4‐methylpiperazin‐1‐yl)methyl)‐3‐(trifluoromethyl)aniline 17 (1.0 g, 3.66 mmol)  and 3‐ethynyl‐4‐methylbenzoic acid 16 (0.58 g, 3.66 mmol) as the starting materials, as depicted in  scheme 4. The desired compound was obtained as an off‐white solid (0.9 g, 59% yield). 1H NMR (400  MHz, DMSO‐d6) δ 11.65 (s, 1H), 10.72 (s, 1H), 8.33 (d, J = 2.2 Hz, 1H), 8.17 (dd, J = 8.6, 2.2 Hz, 1H), 8.11  (d, J = 2.0 Hz, 1H), 7.95 (dd, J = 8.0, 2.0 Hz, 1H), 7.48 (d, J = 8.1 Hz, 1H), 4.53 (s, 1H), 4.22 (s, 2H), 3.46 (d, J  = 77.4 Hz, 8H), 2.79 (s, 3H), 2.46 (s, 3H). 13C NMR (101 MHz, DMSO‐d6) δ 165.32, 144.71, 132.30, 131.60,  130.34, 128.80, 123.90, 122.22, 117.87, 117.81, 85.99, 81.94, 20.70. LC‐MS (ESI‐QQQ): m/z 416.2  ([C23H24F3N3O + H]calcd. 416.19). Purity 99% (RT 4.273 min).  4‐methyl‐3‐((1‐methyl‐1H‐imidazol‐4‐yl)ethynyl)‐N‐(4‐((4‐methylpiperazin‐1‐yl)methyl)‐3‐ (trifluoromethyl)phenyl)benzamide (20). The title compound was prepared following the general  Sonogashira coupling, as described for the synthesis of 8, except for using 19 (0.25 g, 0.60 mmol) and 4‐ iodo‐1‐methyl‐1H‐imidazole (0.14 g, 0.66 mmol) as starting materials. Instead of Pd(PPh3)4,  [Pd(PPh3)2Cl2] was used as  a catalyst. The desired compound was obtained as an off‐white solid (0.05 g,  18% yield). 1H NMR (400 MHz, DMSO‐d6) δ 10.48 (s, 1H), 8.19 (d, J = 2.2 Hz, 1H), 8.09 (d, J = 1.9 Hz, 1H),  8.04 (dd, J = 8.5, 2.2 Hz, 1H), 7.85 (dd, J = 8.0, 2.0 Hz, 1H), 7.67 (q, J = 6.9, 5.2 Hz, 2H), 7.57 (d, J = 1.3 Hz,  1H), 7.46 (d, J = 8.1 Hz, 1H), 3.66 (s, 3H), 3.54 (s, 2H), 3.30 (s, 3H), 2.34 (d, J = 22.8 Hz, 8H), 2.14 (s, 3H).  13C NMR (101 MHz, DMSO‐d6) δ 165.15, 143.61, 139.35, 138.64, 132.49, 131.66, 130.54, 130.32, 128.12,  127.68, 126.00, 123.94, 123.14, 122.77, 89.80, 86.50, 57.89, 55.16, 53.12, 46.14, 33.66, 20.78. LC‐MS  (ESI‐QQQ): m/z 496.20 ([C27H28F3N5O + H]calcd. 496.22). Purity 99% (RT 3.610 min).   Compounds 21a‐b were prepared from 17 and the corresponding reactant 18 by a similar  method that was described for the synthesis of 3c.  4‐methyl‐N‐(4‐((4‐methylpiperazin‐1‐yl)methyl)‐3‐(trifluoromethyl)phenyl)benzamide (21a). The  title compound was obtained as an off‐white solid (59%). 1H NMR (400 MHz, DMSO‐d6) δ 10.39 (s, 1H),  8.19 (d, J = 2.2 Hz, 1H), 8.02 (dd, J = 8.5, 2.2 Hz, 1H), 7.92 – 7.78 (m, 2H), 7.67 (d, J = 8.5 Hz, 1H), 7.41 –  7.24 (m, 2H), 3.54 (d, J = 1.9 Hz, 2H), 2.37 (s, 8H), 2.14 (s, 3H). 13C NMR (101 MHz, DMSO‐d6) δ 166.03,  142.38, 138.78, 132.31, 132.01, 131.63, 129.42, 128.17, 127.96, 127.67, 126.17, 123.89, 117.65, 117.58,  57.89, 55.16, 53.11, 46.13, 21.47. LC‐MS (ESI‐QQQ): m/z 392.2 ([C21H24F3N3O + H]calcd. 392.19). Purity  99% (RT 4.020 min).   4‐methyl‐N‐(4‐((4‐methylpiperazin‐1‐yl)methyl)‐3‐(trifluoromethyl)phenyl)‐3‐((4‐(pyridin‐3‐yl)pyrimidin‐ 2‐yl)amino)benzamide (21b). The title compound was obtained as an off‐white solid (10%). 1H NMR (400  MHz, DMSO‐d6) δ 10.44 (s, 1H), 9.28 (dd, J = 2.3, 0.9 Hz, 1H), 9.16 (s, 1H), 8.69 (dd, J = 4.8, 1.7 Hz, 1H),  8.56 (d, J = 5.1 Hz, 1H), 8.46 (ddd, J = 8.0, 2.3, 1.7 Hz, 1H), 8.30 (d, J = 1.9 Hz, 1H), 8.21 (d, J = 2.2 Hz, 1H),  8.07 (dd, J = 8.5, 2.2 Hz, 1H), 7.79 – 7.61 (m, 2H), 7.56 – 7.46 (m, 2H), 7.44 (dd, J = 7.9, 0.8 Hz, 1H), 3.57  (d, J = 1.6 Hz, 2H), 2.38 (d, J = 13.7 Hz, 12H), 2.18 (s, 3H). 13C NMR (101 MHz, DMSO‐d6) δ 165.83, 162.02,  161.47, 160.02, 151.89, 148.57, 138.75, 138.52, 137.00, 134.71, 131.63, 130.76, 124.73, 124.24, 123.95,  108.34, 57.87, 55.13, 53.08, 46.10, 40.57, 40.36, 40.16, 39.95, 39.84, 39.74, 39.53, 39.32, 18.68. LC‐MS  (ESI‐QQQ): m/z 562.30 ([C30H30F3N7O + H]calcd. 562.25). Purity 97.7% (RT 3.863 min).  3‐iodo‐4‐methoxy‐N‐(4‐((4‐methylpiperazin‐1‐yl)methyl)‐3‐(trifluoromethyl)phenyl)benzamide  (23). The title compound was prepared using a similar method that was described for the synthesis of  3c, except for using 17 (0.5 g, 1.83 mmol) and 3‐iodo‐4‐methoxybenzoic acid 22 (0.53 g, 1.92 mmol) as  the starting materials as shown in scheme‐4. The desired product was obtained as an off‐white solid  (0.86 g, 89% yield). 1H NMR (400 MHz, DMSO‐d6) δ 10.40 (s, 1H), 8.42 (d, J = 2.2 Hz, 1H), 8.17 (d, J = 2.2  Hz, 1H), 8.03 (dt, J = 8.6, 2.5 Hz, 2H), 7.69 (d, J = 8.5 Hz, 1H), 7.15 (d, J = 8.7 Hz, 1H), 3.92 (s, 3H), 3.55 (s,  2H), 2.36 (d, J = 20.7 Hz, 8H), 2.15 (s, 3H). 13C NMR (101 MHz, DMSO‐d6) δ 164.16, 160.95, 138.72,  138.67, 132.38, 131.63, 130.50, 128.58, 127.95, 127.65, 126.16, 123.92, 117.69, 117.63, 111.46, 86.27,  57.89, 57.23, 55.16, 53.13, 46.15, 31.40, 22.51, 14.40. LC‐MS (ESI‐QQQ): m/z 534.1 ([C21H23F3IN3O2 + H] calcd. 534.08). Purity 94.2% (RT 4.237 min).   3‐(imidazo[1,2‐b]pyridazin‐3‐ylethynyl)‐4‐methoxy‐N‐(4‐((4‐methylpiperazin‐1‐yl)methyl)‐3‐ (trifluoromethyl)phenyl)benzamide (24). The title compound was prepared following the general  Sonogashira coupling, as described for the synthesis of 8, except for using 23 (0.2 g, 0.37 mmol) and 5  (0.05 g, 0.37 mmol) as the starting material as shown in scheme 4. The desired product was obtained as  an off‐white solid (0.04 g, 20% yield). 1H NMR (400 MHz, DMSO‐d6) δ 10.49 (s, 1H), 8.71 (dd, J = 4.5, 1.4  Hz, 1H), 8.39 – 8.14 (m, 4H), 8.07 (td, J = 9.2, 2.2 Hz, 2H), 7.70 (d, J = 8.6 Hz, 1H), 7.39 (dd, J = 9.2, 4.5 Hz,  1H), 7.31 (d, J = 8.9 Hz, 1H), 3.98 (s, 3H), 3.57 (s, 2H), 2.46 (d, J = 26.4 Hz, 7H), 2.23 (s, 3H). 13C NMR (101  MHz, DMSO‐d6) δ 164.65, 162.57, 145.35, 139.95, 138.76, 138.65, 132.80, 131.68, 131.54, 126.91,  126.51, 123.92, 119.42, 112.32, 111.95, 110.99, 94.54, 81.03, 57.78, 56.79, 54.92. LC‐MS (ESI‐QQQ): m/z  549.30 ([C29H27F3N6O2 + H]calcd. 549.21). Purity 99% (RT 3.943 min).  3‐ethynyl‐4‐methyl‐N‐(3‐(4‐methyl‐1H‐imidazol‐1‐yl)‐5‐(trifluoromethyl)phenyl)benzamide (26).  The title compound was prepared using a similar method that was described for the synthesis of 3c,  except for using 3‐(4‐methyl‐1H‐imidazol‐1‐yl)‐5‐(trifluoromethyl)aniline 25 (1.0 g, 4.14 mmol) and 3‐ ethynyl‐4‐methylbenzoic acid 16 (0.67 g, 4.14 mmol) as the starting materials as depicted in scheme 5.  The desired compound was obtained as an off‐white solid (0.4 g, 25% yield). 1H NMR (400 MHz, DMSO‐ d6) δ 10.65 (s, 1H), 8.26 (s, 1H), 8.18 (s, 1H), 8.15 – 8.07 (m, 2H), 7.91 (dd, J = 8.1, 1.8 Hz, 1H), 7.71 (s,  1H), 7.63 – 7.53 (m, 1H), 7.48 (t, J = 5.8 Hz, 1H), 4.53 (s, 1H), 2.45 (s, 3H), 2.16 (s, 3H). 13C NMR (101 MHz,  DMSO‐d6) δ 165.31, 144.87, 141.65, 138.38, 132.14, 131.98, 131.88, 131.51, 131.45, 131.13, 130.45,  129.26, 129.15, 128.76, 122.28, 115.40, 114.68, 86.04, 81.91, 20.71, 14.02. LC‐MS (ESI‐QQQ): m/z  384.10 ([C21H16F3N3O + H]calcd. 384.12). Purity 89.6% (RT 4.510 min).  3‐ethynyl‐4‐methoxybenzoic acid (28). The compound 28 was prepared according to the general  procedure described for the synthesis of 16 except for using methyl 3‐iodo‐4‐methoxybenzoate 27 (1.0  g, 3.42 mmol) as the starting material. The desired product was obtained as an off‐white solid (0.19 g,  32% yield). 1H NMR (400 MHz, DMSO‐d6) δ 12.83 (s, 1H), 7.95 (dd, J = 8.7, 2.3 Hz, 1H), 7.90 (d, J = 2.1 Hz,  1H), 7.17 (d, J = 8.8 Hz, 1H), 4.31 (d, J = 0.8 Hz, 1H), 3.90 (s, 3H). 13C NMR (101 MHz, DMSO‐d6) δ 166.67,  163.89, 134.99, 132.45, 123.40, 111.77, 111.26, 85.58, 79.53, 56.59.  3‐ethynyl‐4‐methoxy‐N‐(4‐((4‐methylpiperazin‐1‐yl)methyl)‐3‐ (trifluoromethyl)phenyl)benzamide (29). The title compound was prepared using a similar method that  was described for the synthesis of 3c, except for using 28 (0.19 g, 1.10 mmol) and 17 (0.3 g, 1.10 mmol)  as the starting materials as shown in scheme 5. The title compound was obtained as an off‐white solid  (0.15 g, 32% yield). 1H NMR (400 MHz, DMSO‐d6) δ 10.43 (s, 1H), 8.20 (d, J = 2.2 Hz, 1H), 8.12 (d, J = 2.3  Hz, 1H), 8.05 (ddd, J = 8.4, 5.1, 2.2 Hz, 2H), 7.70 (d, J = 8.6 Hz, 1H), 7.24 (d, J = 8.8 Hz, 1H), 4.40 (s, 1H),  3.93 (s, 3H), 3.58 (s, 2H), 2.51 – 2.29 (m, 8H), 2.23 (s, 3H). 13C NMR (101 MHz, DMSO‐d6) δ 164.65,  163.21, 138.74, 133.28, 131.66, 131.08, 126.68, 111.71, 110.99, 85.67, 79.82, 57.78, 56.58, 54.95, 52.76.  LC‐MS (ESI‐QQQ): m/z 432.2 ([C23H24F3N3O2 + H]calcd. 432.18). Purity 99% (RT 3.950 min).  N‐(3‐iodo‐4‐methylphenyl)‐4‐((4‐methylpiperazin‐1‐yl)methyl)benzamide (31). The title  compound was prepared using a similar method that was described for the synthesis of 3c, except for  using 4‐((4‐methylpiperazin‐1‐yl)methyl)benzoic acid 2d  (0.5 g, 2.14 mmol) and 3‐iodo‐4‐methylaniline  30 (0.6 g, 2.56 mmol) as the starting materials as shown in scheme 5. The title compound was obtained  as an off‐white solid (0.72 g, 75% yield). 1H NMR (400 MHz, CDCl3) δ 8.11 (d, J = 2.2 Hz, 1H), 7.81 (dd, J =  8.1, 6.4 Hz, 3H), 7.57 (dd, J = 8.2, 2.3 Hz, 1H), 7.48 – 7.37 (m, 2H), 7.20 (dd, J = 8.2, 0.8 Hz, 1H), 3.57 (s,  2H), 2.54 (s, 8H), 2.41 (s, 3H), 2.35 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 165.37, 142.59, 137.51, 136.49,  133.42, 130.19, 129.58, 129.34, 127.04, 120.12, 100.62, 62.32, 54.91, 52.63, 45.68, 27.38. LC‐MS (ESI‐ QQQ): m/z 450.1 ([C20H24IN3O + H]calcd. 450.19). Purity 99% (RT 3.843 min).  N‐(3‐(imidazo[1,2‐b]pyridazin‐3‐ylethynyl)‐4‐methylphenyl)‐4‐((4‐methylpiperazin‐1‐ yl)methyl)benzamide (32). The title compound was prepared following the general Sonogashira  coupling, as described for the synthesis of 8, except for using 31 (0.34 g, 0.768 mmol) and 5 (0.1 g, 0.70  mmol) as the starting materials as shown in scheme 5. The title compound was obtained as an off‐white  solid (0.062 g, 19% yields). 1H NMR (400 MHz, DMSO‐d6) δ 10.25 (s, 1H), 8.69 (dd, J = 4.5, 1.6 Hz, 1H),  8.28 – 8.16 (m, 2H), 8.06 (d, J = 2.2 Hz, 1H), 7.94 – 7.86 (m, 2H), 7.70 (dd, J = 8.3, 2.3 Hz, 1H), 7.45 – 7.40  (m, 2H), 7.36 (dd, J = 9.2, 4.4 Hz, 1H), 7.33 – 7.30 (m, 1H), 3.52 (s, 3H), 3.30 (s, 2H), 2.37 (bs, 8H), 2.17 (s,  3H). 13C NMR (101 MHz, DMSO‐d6) δ 165.85, 145.44, 142.75, 139.98, 138.50, 137.65, 134.91, 133.85,  130.45, 129.13, 128.08, 126.51, 122.98, 122.01, 121.57, 119.35, 112.38, 97.56, 80.52, 61.98, 55.03,  52.83, 45.98, 20.17. LC‐MS (ESI‐QQQ): m/z 465.40 ([C28H28N6O + H]calcd. 465.23). Purity 99% (RT 3.673  min).  General procedure for the synthesis of 33 a‐h. The following procedure is for N‐(3‐(1H‐imidazol‐ 1‐yl)‐5‐(trifluoromethyl)phenyl)‐3‐(imidazo[1,2‐b]pyridazin‐3‐ylethynyl)‐4‐methylbenzamide (33a).  Compound 33a was prepared according to the previously reported methods for similar compounds,44‐45  with several modifications. N‐(3‐bromo‐5‐(trifluoromethyl)phenyl)‐3‐(imidazo[1,2‐b]pyridazin‐3‐ ylethynyl)‐4‐methylbenzamide 15 (3.0 g, 6.00 mmol) and 1H‐imidazole (0.45 g, 6.61 mmol) were taken in  dry DMSO (50 mL) in a pressure tube. The solution was purged with a nitrogen flow for 10 min then CuI  (0.17 g, 0.90 mmol), K2CO3 (2.5 g, 18.0 mmol), and 8‐hydroxyquinoline(0.13 g, 0.90 mmol) were added  and purging was continued for another 10 min. The pressure tube was then sealed tightly and stirred at  100 °C for 18 h. Upon cooling to rt, the reaction mixture was poured into ice‐cold water (~50 mL) and  allowed to stir for 30 min, during which time pale yellow solid was observed. The solid was collected by  filtration and then dissolved in 10% MeOH in DCM (100 mL). The undissolved solid was removed by  filtration. The filtrate was evaporated to dryness to afford crude product, which was purified on a silica  gel column using a 0‐10% gradient of methanol in DCM as an eluent to obtain the desired product as a  pale yellow solid (1.67 g, 57% yield). 1H NMR (400 MHz, DMSO‐d6) δ 10.78 (s, 1H), 8.73 (dt, J = 4.5, 1.4  Hz, 1H), 8.34 (s, 2H), 8.30 – 8.19 (m, 4H), 7.98 (dd, J = 8.1, 1.9 Hz, 1H), 7.81 (d, J = 9.6 Hz, 2H), 7.59 (d, J =  8.1 Hz, 1H), 7.40 (ddd, J = 9.2, 4.5, 1.1 Hz, 1H), 7.18 (s, 1H), 2.63 (s, 3H). 13C NMR (101 MHz, DMSO‐d6) δ  165.32, 145.54, 144.33, 141.68, 138.75, 132.29, 130.70, 130.59, 129.02, 126.58, 122.33, 119.58, 116.04,  96.77, 81.72, 20.89. LC‐MS (ESI‐QQQ): m/z 487.20 ([C26H17F3N6O + H]calcd. 487.14). Purity 99% (RT  4.510 min).   N‐(3‐(4‐ethyl‐1H‐imidazol‐1‐yl)‐5‐(trifluoromethyl)phenyl)‐3‐(imidazo[1,2‐b]pyridazin‐3‐ ylethynyl)‐4‐methylbenzamide (33b). Compound 33b was synthesized from 15 (0.1 g, 0.20 mmol) and 4‐ ethyl‐1H‐imidazole (0.03 g, 0.30 mmol) according to the general procedure for the synthesis of 33 a‐h.  After completion of the reaction, the reaction mixture was cooled to rt and 10% NH4OH solution was  added. The product was extracted into EtOAc (3 x 25 mL). The combined organic layers were washed  with water followed by 10% NH4OH solution, dried over Na2SO4, filtered and evaporated to dryness. The  crude product was purified on a silica gel column using a 0‐10% gradient of methanol in DCM as an  eluent to yield the title compound as a pale yellow solid (3.0 mg, 3% yield). 1H NMR (400 MHz, DMSO‐d6)  δ 10.74 (s, 1H), 8.73 (dd, J = 4.4, 1.6 Hz, 1H), 8.34 – 8.17 (m, 6H), 7.98 (dd, J = 7.9, 2.0 Hz, 1H), 7.77 (q, J =  1.8, 1.3 Hz, 1H), 7.62 – 7.56 (m, 1H), 7.51 (s, 1H), 7.40 (dd, J = 9.2, 4.5 Hz, 1H), 2.63 (s, 3H), 2.60 – 2.54  (m, 2H), 1.21 (d, J = 7.5 Hz, 3H). LC‐MS (ESI‐QQQ): m/z 515.30 ([C28H21F3N6O + H]calcd. 515.17). Purity  87.5% (RT 4.663 min).  3‐(imidazo[1,2‐b]pyridazin‐3‐ylethynyl)‐N‐(3‐(4‐isopropyl‐1H‐imidazol‐1‐yl)‐5‐ (trifluoromethyl)phenyl)‐4‐methylbenzamide (33c). Compound 33c was prepared from 15 (0.1 g, 0.20  mmol) and 4‐isopropyl‐1H‐imidazole (0.03 g, 2.40 mmol) using a similar method that was described for  the synthesis of 33b. The desired product was obtained as a pale yellow solid (0.03 g, 29% Yield). 1H  NMR (400 MHz, DMSO‐d6) δ 10.74 (s, 1H), 8.74 (dt, J = 4.4, 1.5 Hz, 1H), 8.36 – 8.14 (m, 6H), 7.98 (dt, J =  8.0, 1.8 Hz, 1H), 7.81 – 7.73 (m, 1H), 7.59 (d, J = 8.0 Hz, 1H), 7.50 (s, 1H), 7.40 (ddd, J = 9.2, 4.5, 1.3 Hz,  1H), 2.85 (p, J = 6.7 Hz, 1H), 2.63 (d, J = 1.3 Hz, 3H), 1.24 (dd, J = 6.8, 1.4 Hz, 6H). 13C NMR (101 MHz,  DMSO‐d6) δ 165.28, 145.54, 144.31, 141.62, 138.75, 138.45, 132.30, 130.69, 130.57, 129.00, 126.58,  122.33, 119.57, 115.45, 96.77, 81.71, 27.80, 22.62, 20.88. LC‐MS (ESI‐QQQ): m/z 529.2  ([C29H23F3N6O +  H]calcd. 529.19). Purity 99% (RT 4.847 min).  N‐(3‐(4‐cyclopropyl‐1H‐imidazol‐1‐yl)‐5‐(trifluoromethyl)phenyl)‐3‐(imidazo[1,2‐b]pyridazin‐3‐ ylethynyl)‐4‐methylbenzamide (33d). Compound 33d was prepared from 15 (0.03 g, 0.06 mmol) and 4‐ cyclopropyl‐1H‐imidazole (8.0 mg, 0.07 mmol) using a similar method that was described for the  synthesis of 33b. The desired product was obtained as a pale yellow solid (20.0 mg, 29% Yield). 1H NMR  (400 MHz, DMSO‐d6) δ 10.75 (s, 1H), 8.73 (dd, J = 4.5, 1.6 Hz, 1H), 8.32 – 8.27 (m, 2H), 8.27 – 8.23 (m,  2H), 8.17 (s, 2H), 7.98 (dd, J = 7.9, 2.0 Hz, 1H), 7.75 (s, 1H), 7.63 – 7.57 (m, 1H), 7.55 (s, 1H), 7.40 (dd, J =  9.2, 4.5 Hz, 1H), 2.62 (s, 3H), 1.92 – 1.79 (m, 1H), 0.87 – 0.79 (m, 2H), 0.76 – 0.66 (m, 2H). LC‐MS (ESI‐ QQQ): m/z 527.30 ([C29H21F3N6O + H]calcd. 527.17). Purity 99% (RT 4.910 min).  3‐(imidazo[1,2‐b]pyridazin‐3‐ylethynyl)‐4‐methyl‐N‐(3‐(3‐methyl‐1H‐pyrrol‐1‐yl)‐5‐ (trifluoromethyl)phenyl)benzamide (33e). Compound 33e was prepared from 15 (0.1 g, 0.20 mmol) and  3‐methyl‐1H‐pyrrole (0.02 g, 0.30 mmol) using a similar method that was described for the synthesis of  33b. The desired product was obtained as a pale yellow solid (4.0 mg, 4% Yield). 1H NMR (400 MHz,  DMSO‐d6) δ 10.66 (s, 1H), 8.73 (dd, J = 4.5, 1.5 Hz, 1H), 8.29 – 8.20 (m, 4H), 8.08 (d, J = 1.9 Hz, 1H), 7.97  (dd, J = 8.0, 2.0 Hz, 1H), 7.62 – 7.55 (m, 2H), 7.40 (dd, J = 9.2, 4.5 Hz, 1H), 7.34 (t, J = 2.6 Hz, 1H), 7.21 (p,  J = 1.3 Hz, 1H), 6.18 (dd, J = 2.9, 1.7 Hz, 1H), 2.62 (s, 3H), 2.10 (d, J = 1.0 Hz, 3H). LC‐MS (ESI‐QQQ): m/z  500.30 ([C28H20F3N5O + H]calcd. 500.16). Purity 76.6% (RT 6.180 min).  3‐(imidazo[1,2‐b]pyridazin‐3‐ylethynyl)‐4‐methyl‐N‐(3‐(4‐methylpiperazin‐1‐yl)‐5‐ (trifluoromethyl)phenyl)benzamide (33f). Compound 33f was prepared from 15 (0.1 g, 0.20 mmol) and  1‐methylpiperazine (0.03 g, 0.30 mmol) using a similar method that was described for the synthesis of  33b. The desired product was obtained as a pale yellow solid (3.0 mg, 4% Yield). 1H NMR (400 MHz,  DMSO‐d6) δ 10.39 (s, 1H), 8.73 (d, J = 4.4 Hz, 1H), 8.24 (dd, J = 17.4, 10.6 Hz, 3H), 7.94 (d, J = 8.1 Hz, 1H),  7.67 (d, J = 19.8 Hz, 2H), 7.55 (d, J = 8.1 Hz, 1H), 7.40 (dd, J = 9.3, 4.5 Hz, 1H), 6.96 (s, 1H), 3.26 (d, J =  26.8 Hz, 8H), 2.61 (s, 3H), 2.24 (s, 3H). LC‐MS (ESI‐QQQ): m/z 519.30 ([C28H25F3N6O + H]calcd. 519.20).  Purity 93.5% (RT 4.247 min).  N‐(3‐(1H‐benzo[d]imidazol‐1‐yl)‐5‐(trifluoromethyl)phenyl)‐3‐(imidazo[1,2‐b]pyridazin‐3‐ ylethynyl)‐4‐methylbenzamide (33g). Compound 33g was prepared from 15 (0.1 g, 0.20 mmol) and 1H‐ benzo[d]imidazole (0.03 g, 0.24 mmol) using a similar method that was described for the synthesis of  33b. The desired product was obtained as a pale yellow solid (15.0 mg, 14% Yield). 1H NMR (400 MHz,  DMSO‐d6) δ 10.87 (d, J = 3.2 Hz, 1H), 8.81 – 8.61 (m, 2H), 8.49 (bs, 1H), 8.36 (bs, 1H), 8.26 (q, J = 3.8, 3.2  Hz, 3H), 8.00 (dd, J = 8.3, 3.1 Hz, 1H), 7.88 – 7.71 (m, 3H), 7.59 (dd, J = 8.3, 3.2 Hz, 1H), 7.48 – 7.28 (m,  3H), 2.63 (s, 3H). 13C NMR (101 MHz, DMSO‐d6) δ 165.47, 145.54, 144.35, 141.78, 138.76, 137.53,  132.34, 130.69, 130.63, 129.07, 126.58, 124.28, 123.33, 122.33, 120.64, 119.58, 118.48, 111.16, 96.77,  81.75, 20.89. LC‐MS (ESI‐QQQ): m/z 537.20 ([C30H19F3N6O + H]calcd. 537.16). Purity 92% (RT 5.613 min).     3‐(imidazo[1,2‐b]pyridazin‐3‐ylethynyl)‐4‐methyl‐N‐(3‐(4‐phenyl‐1H‐imidazol‐1‐yl)‐5‐ (trifluoromethyl)phenyl)benzamide (33h): Compound 33h was prepared from 15 (0.1 g, 0.20 mmol) and  4‐phenyl‐1H‐imidazole (0.03 g, 0.24 mmol) using a similar method that was described for the synthesis  of 33b. The desired product was obtained as a pale yellow solid (0.04 g, 36% Yield). 1H NMR (400 MHz,  DMSO‐d6) δ 10.81 (s, 1H), 8.79 – 8.68 (m, 1H), 8.47 – 8.33 (m, 3H), 8.31 – 8.18 (m, 4H), 8.00 (dd, J = 8.0,  2.0 Hz, 1H), 7.94 – 7.83 (m, 3H), 7.60 (d, J = 8.0 Hz, 1H), 7.49 – 7.34 (m, 3H), 7.28 (d, J = 7.2 Hz, 1H), 2.63  (s, 3H). 13C NMR (101 MHz, DMSO‐d6) δ 165.30, 145.54, 144.34, 142.67, 141.69, 140.14, 138.75, 138.22,  136.59, 134.16, 132.26, 130.70, 130.60, 129.06, 129.02, 127.37, 126.58, 125.01, 122.35, 119.57, 115.83,  114.62, 96.77, 81.72, 20.89. LC‐MS (ESI‐QQQ): m/z 563.2  ([C32H21F3N6O + H]calcd. 563.17). Purity 99%  (RT 5.793 min).  3‐iodo‐4‐methyl‐N‐(3‐(4‐methyl‐1H‐imidazol‐1‐yl)‐5‐(trifluoromethyl)phenyl)benzamide (35a).  The title compound was synthesized following the procedure described for the synthesis of 14 except  for using 3‐(4‐methyl‐1H‐imidazol‐1‐yl)‐5‐(trifluoromethyl)aniline 25 (2.0 g, 8.3 mmol) and 3‐iodo‐4‐ methylbenzoic acid 34a (2.5 g, 9.12 mmol) as the starting materials as depicted in scheme 7. The desired  product was obtained as an off‐white solid (3.83 g, 95% yield). 1H NMR (400 MHz, DMSO‐d6) δ 10.68 (s,  1H), 8.45 (s, 1H), 8.27 (s, 1H), 8.20 (s, 1H), 8.13 (s, 1H), 7.93 (d, J = 8.0 Hz, 1H), 7.72 (s, 1H), 7.55 – 7.40  (m, 2H), 2.44 (s, 3H), 2.18 (d, J = 2.4 Hz, 3H). 13C NMR (101 MHz, DMSO‐d6) δ 164.58, 145.82, 141.61,  139.39, 138.36, 137.94, 135.41, 133.60, 131.45, 131.12, 130.34, 128.32, 125.46, 122.75, 115.39, 114.64,  112.15, 112.11, 101.63, 28.05, 14.03. LC‐MS (ESI‐QQQ): m/z 486.00 ([C19H15F3IN3O + H]calcd. 486.02).  Purity 97.5% (RT 4.773 min).  3‐iodo‐N‐(3‐(4‐methyl‐1H‐imidazol‐1‐yl)‐5‐(trifluoromethyl)phenyl)benzamide (35b). The title  compound was synthesized following the procedure described for the synthesis of 14 except for using 3‐ (4‐methyl‐1H‐imidazol‐1‐yl)‐5‐(trifluoromethyl)aniline 25 (2.43 g, 10.07 mmol) and 3‐iodobenzoic acid  34b (2.5 g, 10.07 mmol) as the starting materials as depicted in scheme 7. The desired product was  obtained as an off‐white solid (4.06 g, 86% yield). 1H NMR (400 MHz, DMSO‐d6) δ 10.73 (s, 1H), 8.35 (q, J  = 1.8 Hz, 1H), 8.28 – 8.07 (m, 3H), 8.00 (dq, J = 7.8, 1.3 Hz, 2H), 7.74 (d, J = 1.9 Hz, 1H), 7.48 (q, J = 1.2 Hz,  1H), 7.38 (td, J = 7.8, 1.5 Hz, 1H), 2.22 – 2.13 (m, 3H). 13C NMR (101 MHz, DMSO‐d6) δ 164.91, 141.50,  141.10, 139.39, 138.39, 136.49, 136.39, 135.41, 131.46, 131.18, 127.75, 115.44, 114.79, 114.75, 114.63,  112.28, 95.28, 14.01. LC‐MS (ESI‐QQQ): m/z 472.00 ([C18H13F3IN3O + H]calcd. 472.01). Purity 99% (RT  4.457 min).  3‐iodo‐4‐methoxy‐N‐(3‐(4‐methyl‐1H‐imidazol‐1‐yl)‐5‐(trifluoromethyl)phenyl)benzamide (35c).  The title compound was synthesized following the procedure described for the synthesis of 14 except  for using 3‐(4‐methyl‐1H‐imidazol‐1‐yl)‐5‐(trifluoromethyl)aniline 25 (2.0 g, 7.2 mmol) and 3‐iodo‐4‐ methoxybenzoic acid 34c (1.73 g, 7.2 mmol) as the starting materials as depicted in scheme 7. The  desired product was obtained as an off‐white solid (2.63 g, 73% yield). 1H NMR (400 MHz, DMSO‐d6) δ  10.57 (s, 1H), 8.46 (dd, J = 2.3, 1.2 Hz, 1H), 8.27 (t, J = 1.9 Hz, 1H), 8.20 (t, J = 1.4 Hz, 1H), 8.13 (d, J = 1.8  Hz, 1H), 8.06 (ddd, J = 8.6, 2.3, 1.2 Hz, 1H), 7.74 – 7.67 (m, 1H), 7.47 (d, J = 1.5 Hz, 1H), 7.17 (dd, J = 8.8,  1.3 Hz, 1H), 3.93 (s, 3H), 2.18 (s, 3H). 13C NMR (101 MHz, DMSO‐d6) δ 164.41, 161.18, 141.74, 139.36,  138.74, 138.34, 135.40, 131.40, 131.08, 130.62, 128.16, 125.45, 122.74, 115.34, 114.64, 111.97, 111.56,  86.35, 57.26, 14.01. LC‐MS (ESI‐QQQ): m/z 502.00 ([C19H15F3IN3O2 + H]calcd. 502.02). Purity 99% (RT  4.450 min).  Compounds 36a‐c were prepared from 5 and the corresponding reactant 35 by a similar method  that was described for the synthesis of 8.  3‐(imidazo[1,2‐b]pyridazin‐3‐ylethynyl)‐4‐methyl‐N‐(3‐(4‐methyl‐1H‐imidazol‐1‐yl)‐5‐ (trifluoromethyl)phenyl)benzamide (36a). The title compound was obtained as a pale yellow solid (49%  yield). 1H NMR (400 MHz, DMSO‐d6) δ 10.72 (s, 1H), 8.71 (d, J = 4.4 Hz, 1H), 8.39 – 8.06 (m, 6H), 7.99 –  7.89 (m, 1H), 7.72 (s, 1H), 7.56 (d, J = 8.1 Hz, 1H), 7.48 (s, 1H), 7.38 (dd, J = 9.3, 4.4 Hz, 1H), 2.60 (s, 3H),  2.16 (s, 3H). 13C NMR (101 MHz, DMSO‐d6) δ 165.29, 145.53, 144.31, 141.66, 138.74, 138.39, 132.30,  130.68, 130.58, 129.00, 126.57, 122.32, 119.57, 115.43, 112.15, 110.00, 96.77, 81.71, 20.88, 14.02. LC‐ MS (ESI‐QQQ): m/z 501.30 ([C27H19F3N6O + H]calcd. 501.16). Purity 99% (RT 4.427 min).  3‐(imidazo[1,2‐b]pyridazin‐3‐ylethynyl)‐N‐(3‐(4‐methyl‐1H‐imidazol‐1‐yl)‐5‐ (trifluoromethyl)phenyl)benzamide (36b). The title compound was obtained as a pale yellow solid (61%  yield). 1H NMR (400 MHz, DMSO‐d6) δ 10.81 (s, 1H), 8.72 (dd, J = 4.4, 1.6 Hz, 1H), 8.33 – 8.20 (m, 5H),  8.17 (d, J = 1.7 Hz, 1H), 8.05 (dt, J = 7.9, 1.5 Hz, 1H), 7.86 (dt, J = 7.7, 1.4 Hz, 1H), 7.75 (t, J = 1.8 Hz, 1H),  7.67 (t, J = 7.8 Hz, 1H), 7.49 (s, 1H), 7.40 (dd, J = 9.2, 4.4 Hz, 1H), 2.18 (s, 3H). 13C NMR (101 MHz, DMSO‐ d6) δ 165.44, 145.46, 141.60, 140.13, 139.43, 139.00, 138.42, 135.10, 134.93, 131.50, 131.18, 130.46,  129.92, 129.12, 126.60, 125.46, 122.75, 122.48, 119.62, 115.46, 114.71, 112.30, 111.98, 97.78, 78.08,  14.04. LC‐MS (ESI‐QQQ): m/z 487.20 ([C26H17F3N6O + H]calcd. 487.14). Purity 99% (RT 4.197 min).  3‐(imidazo[1,2‐b]pyridazin‐3‐ylethynyl)‐4‐methoxy‐N‐(3‐(4‐methyl‐1H‐imidazol‐1‐yl)‐5‐ (trifluoromethyl)phenyl)benzamide (36c). The title compound was obtained as a pale yellow solid (55%  yield). 1H NMR (400 MHz, DMSO‐d6) δ 10.66 (s, 1H), 8.71 (dt, J = 4.5, 1.3 Hz, 1H), 8.32 – 8.18 (m, 5H),  8.16 (s, 1H), 8.11 (ddd, J = 8.8, 2.5, 1.0 Hz, 1H), 7.73 (s, 1H), 7.51 (s, 1H), 7.39 (ddd, J = 9.2, 4.4, 1.1 Hz,  1H), 7.34 (dd, J = 9.0, 1.1 Hz, 1H), 3.99 (d, J = 1.0 Hz, 3H), 2.18 (s, 3H). 13C NMR (101 MHz, DMSO‐d6) δ  164.92, 162.79, 145.38, 141.80, 138.71, 138.40, 132.82, 131.65, 131.43, 131.11, 126.54, 125.46, 122.75,  119.46, 115.39, 114.72, 112.11, 111.10, 94.46, 81.14, 56.84, 14.04. LC‐MS (ESI‐QQQ): m/z 517.20  ([C27H19F3N6O2 + H]calcd. 517.17). Purity 99% (RT 4.137 min).  Compounds 37a‐b were prepared from 13 and the corresponding reactant 34 by a similar  method that was described for the synthesis of 14.  N‐(3‐bromo‐5‐(trifluoromethyl)phenyl)‐3‐iodobenzamide (37a). The title compound was  obtained as an off‐white solid (76% yield). 1H NMR (400 MHz, DMSO‐d6) δ 10.68 (s, 1H), 8.34 (dd, J = 6.4,  1.8 Hz, 2H), 8.23 – 8.14 (m, 1H), 7.98 (ddt, J = 7.9, 5.6, 1.4 Hz, 2H), 7.73 – 7.62 (m, 1H), 7.36 (td, J = 7.8,  1.4 Hz, 1H). 13C NMR (101 MHz, DMSO‐d6) δ 164.92, 141.64, 141.10, 136.42, 136.40, 131.72, 131.40,  131.13, 127.76, 126.47, 124.93, 123.11, 123.07, 122.66, 122.22, 115.91, 115.87, 95.24. LC‐MS (ESI‐ QQQ): m/z 469.8 ([C14H8BrF3INO + H]calcd. 469.88). Purity 99% (RT 6.240 min).     N‐(3‐bromo‐5‐(trifluoromethyl)phenyl)‐3‐iodo‐4‐methoxybenzamide (37b). The title compound  was obtained as an off‐white solid (78% yield). 1H NMR (400 MHz, DMSO‐d6) δ 10.50 (s, 1H), 8.45 – 8.39  (m, 1H), 8.34 (d, J = 2.2 Hz, 1H), 8.19 (d, J = 2.2 Hz, 1H), 8.07 – 7.97 (m, 1H), 7.67 – 7.58 (m, 1H), 7.14 (d, J  = 8.8 Hz, 1H), 3.92 (s, 3H). 13C NMR (101 MHz, DMSO‐d6) δ 164.38, 161.17, 141.89, 138.77, 131.66,  131.34, 130.63, 128.05, 126.32, 124.96, 122.59, 115.78, 115.74, 111.47, 86.31, 57.24. LC‐MS (ESI‐QQQ):  m/z 599.9 ([C15H10BrF3INO2 + H]calcd. 499.89). Purity 98.8% (RT 6.197 min).  Compounds 38a‐b were prepared from 5 and the corresponding reactant 37 by a similar method  that was described for the synthesis of 8.  N‐(3‐bromo‐5‐(trifluoromethyl)phenyl)‐3‐(imidazo[1,2‐b]pyridazin‐3‐ylethynyl)benzamide (38a).  The title compound was obtained as a rust colored solid (63% yield). 1H NMR (400 MHz, DMSO‐d6) δ  10.79 (s, 1H), 8.73 (dd, J = 4.5, 1.6 Hz, 1H), 8.39 (s, 1H), 8.34 – 8.19 (m, 4H), 8.10 – 7.99 (m, 1H), 7.91 –  7.83 (m, 1H), 7.74 – 7.63 (m, 2H), 7.41 (dd, J = 9.2, 4.4 Hz, 1H). 13C NMR (101 MHz, DMSO‐d6) δ 165.49,  145.49, 141.75, 140.13, 139.00, 135.05, 134.95, 131.77, 131.45, 130.53, 129.91, 129.15, 126.61, 126.53,  123.13, 122.72, 122.46, 119.65, 115.97, 111.97, 97.77, 78.07.  LC‐MS (ESI‐QQQ): m/z 485.00  ([C22H12BrF3N4O + H]calcd. 485.01). Purity 89.2% (RT 5.850 min).  N‐(3‐bromo‐5‐(trifluoromethyl)phenyl)‐3‐(imidazo[1,2‐b]pyridazin‐3‐ylethynyl)‐4‐ methoxybenzamide (38b). The title compound was obtained as an off‐white solid (39% yield). LC‐MS  (ESI‐QQQ): m/z 515.00 ([C23H14BrF3N4O2 + H]calcd. 515.03). Purity 90% (RT 5.763 min).  Compounds 40a‐c were prepared following the general procedure described for 33a‐h.   N‐(3‐(1H‐imidazol‐1‐yl)‐5‐(trifluoromethyl)phenyl)‐3‐(imidazo[1,2‐b]pyridazin‐3‐ylethynyl)benzamide  (40a). Compound 40a was prepared from 38a (0.1 g, 0.20 mmol) and 1H‐imidazole (15 mg, 0.22 mmol)  as depicted in scheme 8. The desired product was obtained as a pale yellow solid (14 mg, 14% yield). 1H  NMR (400 MHz, DMSO‐d6) δ 10.86 (s, 1H), 8.73 (d, J = 4.5 Hz, 1H), 8.33 (s, 2H), 8.26 (dd, J = 15.8, 6.3 Hz,  4H), 8.06 (d, J = 7.8 Hz, 1H), 7.88 (d, J = 7.8 Hz, 1H), 7.82 (s, 2H), 7.69 (t, J = 7.8 Hz, 1H), 7.41 (dd, J = 9.3,  4.4 Hz, 1H), 7.18 (s, 1H). LC‐MS (ESI‐QQQ): m/z 473.20 ([C25H15F3N6O + H]calcd. 473.13). Purity 99% (RT  4.250 min).  N‐(3‐(4‐cyclopropyl‐1H‐imidazol‐1‐yl)‐5‐(trifluoromethyl)phenyl)‐3‐(imidazo[1,2‐b]pyridazin‐3‐ ylethynyl)‐4‐methoxybenzamide (40b). Compound 40b was prepared from 38b (85 mg, 0.16 mmol) and  4‐cyclopropyl‐1H‐imidazole (21 mg, 0.20 mmol) as depicted in scheme 8. The desired product was  obtained as a pale yellow solid (20 mg, 22% yield). 1H NMR (400 MHz, DMSO‐d6) δ 10.64 (s, 1H), 8.69 (d,  J = 4.4 Hz, 1H), 8.29 – 8.16 (m, 4H), 8.14 (s, 2H), 8.09 (d, J = 8.8 Hz, 1H), 7.71 (s, 1H), 7.52 (s, 1H), 7.41 –  7.27 (m, 2H), 3.97 (d, J = 1.8 Hz, 3H), 1.85 (s, 1H), 0.80 (d, J = 8.1 Hz, 2H), 0.73 – 0.65 (m, 2H). 1H NMR  (400 MHz, DMSO) δ 10.66 (s, 1H), 8.71 (dd, J = 4.4, 1.5 Hz, 1H), 8.32 – 8.19 (m, 4H), 8.16 (t, J = 1.8 Hz,  2H), 8.11 (dd, J = 8.8, 2.4 Hz, 1H), 7.73 (q, J = 1.8, 1.4 Hz, 1H), 7.54 (s, 1H), 7.39 (dd, J = 9.2, 4.4 Hz, 1H),  7.34 (d, J = 8.9 Hz, 1H), 3.99 (s, 3H), 1.87 (qd, J = 8.3, 7.8, 3.6 Hz, 1H), 0.89 – 0.76 (m, 2H), 0.71 (dd, J =  5.0, 2.2 Hz, 2H). 13C NMR (101 MHz, DMSO‐d6) δ 164.94, 162.82, 145.41, 141.79, 138.73, 138.37, 135.40,  132.84, 131.68, 131.44, 131.12, 126.57, 125.50, 122.79, 119.49, 115.34, 114.72, 113.22, 112.14, 112.02,  111.13, 94.48, 81.17, 56.87, 9.38, 7.51. LC‐MS (ESI‐QQQ): m/z 543.3 ([C29H21F3N6O2 + H]calcd. 543.17).  Purity 95.9% (RT 4.590 min).  N‐(3‐(4‐cyclopropyl‐1H‐imidazol‐1‐yl)‐5‐(trifluoromethyl)phenyl)‐3‐(imidazo[1,2‐b]pyridazin‐3‐ ylethynyl)benzamide (40c). Compound 40c was prepared from 38a (0.1 g, 0.20 mmol) and 4‐cyclopropyl‐ 1H‐imidazole (26 mg, 0.24 mmol) as depicted in scheme 8. The desired product was obtained as a pale  yellow solid (20 mg, 19% yields). 1H NMR (400 MHz, DMSO‐d6) δ 10.83 (s, 1H), 8.73 (dd, J = 4.5, 1.6 Hz,  1H), 8.32 – 8.22 (m, 4H), 8.17 (d, J = 1.4 Hz, 2H), 8.06 (ddd, J = 7.8, 1.9, 1.2 Hz, 1H), 7.87 (dt, J = 7.8, 1.3  Hz, 1H), 7.76 (d, J = 1.5 Hz, 1H), 7.72 – 7.64 (m, 1H), 7.54 (d, J = 1.5 Hz, 1H), 7.41 (dd, J = 9.2, 4.5 Hz, 1H),  1.87 (tt, J = 8.3, 5.0 Hz, 1H), 0.88 – 0.78 (m, 2H), 0.77 – 0.64 (m, 2H). 13C NMR (101 MHz, DMSO‐d6) δ  165.45, 145.71, 145.49, 141.58, 140.15, 139.02, 138.40, 135.35, 135.13, 134.96, 130.47, 129.97, 129.14,  126.62, 122.48, 119.66, 115.46, 114.82, 113.17, 97.78, 78.09, 9.37, 7.52, 0.58. LC‐MS (ESI‐QQQ): m/z  513.2 ([C28H19F3N6O + H]calcd. 513.16). Purity 92.5% (RT 4.670 min).  Docking studies: Molecular docking simulations were performed using AutoDock Vina 1.1.2. Pymol 2.3.1  was employed to analyze the docking results.54 The crystal structures of wild‐type BCR‐ABL and BCR‐ ABLT315I were taken from PDB ID 3OXZ and 3IK3, respectively. The protein structure was prepared by  adding polar hydrogens, deleting water molecules and adding charges. Grid box was prepared based on  the ligand sites that were defined in the crystal structure. The coordinate center of the search space for  3OXz was set to 12.110, ‐5.407, 15.591(x, y, z). The x, y and z dimension were set to 22, 24 and 34,  respectively. Whereas, coordination center of the search space for 3IK3 was set to 6.487, 1.061, 17.621  (x, y, z) and x, y, z dimension were set to 22, 30, 26. For both the structures, a grid‐point spacing 0f 0.375  Å was applied. The exhaustiveness was set to 48 and the maximum number of binding modes was set to  100. Other docking parameters were kept to the default values. Docking calculations were performed  with full flexibility of the ligand inside the search space.   Biological characterization of Compounds:  Cell lines:   K562 and K562‐T315I: The Leukemia cell lines K562 were purchased and maintained as recommended by  ATCC (Manassas, VA, USA). Briefly, K562 cells were cultured in suspension in RPMI1640 (ThermoFisher  Scientific, USA) supplemented with 10% fetal bovine serum and Pen/Strep/L‐Glutamine. The K‐562‐T315I  cell line was derived from the K562 line by CRISPR. Briefly, one million K562 cells were seeded in 6‐well  plates and transfected with Lipofectamine 2000 and 1μg of CRISPR/Cas9 vector (pSpCas9(BB)‐2A‐GFP)  incorporating the guide sequence (CTCAGTGATGATATAGAACG), and Lipofectamine RNAiMax and 4μg of  ssDNA donors (1µg of each donor, Supplementary Table 1) for each well of a 6‐well plate. The cells were  left to recover and proliferate before being selected using 1µM imatinib in RPMI supplemented with 10%  FBS. When an enriched T315I polyclonal line was achieved, imatinib selection was stopped.  iPSC‐CMs: Human fibroblasts were reprogrammed to induced pluripotent stem cells (iPSCs) using Sendai  viral vectors. All protocols were approved by the Stanford University Institutional Review Board. The  obtained hiPSC clones were cultured in E8 cell culture media (Life Technologies) in plates coated growth  factor‐reduced Matrigel (Corning) until at least passage 20 before differentiation. hiPSC cells were  differentiated into cardiomyocytes (CMs) utilizing a chemically defined cardiomyocyte differentiation  protocol55 and fatty acid rich maturation protocol.56  HAECs:    Cell viability and growth inhibition assay:  Growth inhibitory activities were evaluated on K‐561 leukemia cancer cell lines. The effects of the  compounds on cell viability were evaluated using the AlamarBlue assay using the NCI60 methodology.57  Cells were harvested and plated in 384‐well plates (Greiner µClear) at a concentration of 1250 cells/well  in 40µL, and incubated for 24 h at 37 °C. The next day, test compounds were added to the cells as a 2x  40µL solution, and incubated for 48 h at 37 °C. Then, the cells were treated with Resazurin (final  concentration 10%) and incubated for 2 hours before measuring fluorescence on a plate reader (ex 544  nm, em 590 nm) to quantify the antiproliferative effects of the compounds.  Tube formation assay: According to the previous procedure, (ref) matrigel (vender info) was thawed  overnight at 4 °C. Each well of a prechilled 24‐well plate was coated with 300 uL matrigel and incubated  at 37 °C for 2 h. HUVEC cells (1.3 X 10cells) were added in 300 uL medium with compounds. After 20 h,  the endothelial cell tube tube formation was assessed and imaged under an optical microscope. The  tube formation numbers were counted and quantified by ImageJ software in three independent  experiments.  Kinase Activity Assays: The kinase activity for ABL1 and ABL1T315I was performed using the  SelectScreenTM Biochemical Kinase Profiling service of ThermoFisher Scientific (Madison, WI, USA). For  each kinase, an IC50 was calculated based on a 10 point concentration curve of the test article and  converted to Ki values.  Cardiotoxicity assays:  hiPSC‐CMs were plated on Matrigel coated 384‐well plates at 20,000 cells per well (Greiner  µClear) in 50µl cardiomyocyte media (RMPI, B27) supplemented with 10% knock‐out replacement  serum. The subsequent day an additional 50µl of media was added and cells were grown for a minimum  of 5 days prior to analysis. Action potential kinetics and contractility was measured on the same cells  sequentially. First, action potential kinetics were recorded using the protocol as established by  McKeithan et al.58 Briefly, the cells were washed 5 times with FluoroBrite, loaded with VF2.1.Cl dye for  50 min at 37ºC, and washed again 5 times with FluoroBrite. Voltage time series were acquired at a  frequency of 33 Hz for a duration of 10 s on the IC200 Kinetic Imaging Platform (Vala Sciences). Then, the  cells were loaded with wheat germ agglutinin–Alexa Fluor 555 conjugate (5 μg/ml; Life Technologies) for  10 minutes at 37ºC, and then washed 4 times with FluoroBrite.59 Contractile time series were acquired at  a frequency of 50 Hz for a duration of 6.5 s. The resulting recordings were subsequently analyzed using  Vala Sciences and custom software, action potential kinetics, action potential durations and rates,58 or  contractile activity parameters (peak divergence, area under the curve) were used as measures of  cardiotoxicity.59  REFERENCES  1.  Siegel, et al, Cancer Statistics, 2021. CA: a Cancer Journal for Clinicians 2021, 71 (1), 7‐33.  2.  Rowley, A new consistent chromosomal abnormality in chronic myelogenous leukaemia  identified by quinacrine fluorescence and Giemsa staining. Nature 1973, 243 (5405), 290‐293.  3.  Daley, et al, Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the  Philadelphia chromosome. Science 1990, 247 (4944), 824‐830.  4.  Faderl, et al, Philadelphia chromosome‐positive acute lymphoblastic leukemia–current concepts  and future perspectives. Reviews in clinical and experimental hematology 2002, 6 (2), 142‐160.  5.  Ben‐Neriah, et al, The chronic myelogenous leukemia‐specific P210 protein is the product of the  bcr/abl hybrid gene. Science 1986, 233 (4760), 212‐214.  6.  Shtivelman, et al, Fused transcript of abl and bcr genes in chronic myelogenous leukaemia.  Nature 1985, 315 (6020), 550‐554.  7.  Druker, et al, Five‐year follow‐up of patients receiving imatinib for chronic myeloid leukemia.  New England Journal of Medicine 2006, 355 (23), 2408‐2417.  8.  Druker, et al, Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr–Abl  positive cells. Nature medicine 1996, 2 (5), 561‐566.  9.  Capdeville, et al, Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug.  Nature reviews Drug discovery 2002, 1 (7), 493‐502.  10.  Cohen, P., Protein kinases—the major drug targets of the twenty‐first century? Nature reviews  Drug discovery 2002, 1 (4), 309‐315.  11.  Deininger, et al, International randomized study of interferon vs STI571 (IRIS) 8‐year follow up:  sustained survival and low risk for progression or events in patients with newly diagnosed chronic  myeloid leukemia in chronic phase (CML‐CP) treated with imatinib. Blood 2009, 114 (22), 1126.  12.  Hochhaus, et al, Six‐year follow‐up of patients receiving imatinib for the first‐line treatment of  chronic myeloid leukemia. Leukemia 2009, 23 (6), 1054‐1061.  13.  Pophali, P. A.; Patnaik, M. M., The role of new tyrosine kinase inhibitors in chronic myeloid  leukemia. Cancer journal (Sudbury, Mass.) 2016, 22 (1), 40.  14.  Hughes, et al, Monitoring CML patients responding to treatment with tyrosine kinase inhibitors:  review and recommendations for harmonizing current methodology for detecting BCR‐ABL transcripts  and kinase domain mutations and for expressing results. Blood 2006, 108 (1), 28‐37.  15.  O'Hare, et al, Bcr‐Abl kinase domain mutations, drug resistance, and the road to a cure for  chronic myeloid leukemia. Blood 2007, 110 (7), 2242‐2249.  16.  Shah, et al, Overriding imatinib resistance with a novel ABL kinase inhibitor. Science 2004, 305  (5682), 399‐401.  17.  Weisberg, et al, Characterization of AMN107, a selective inhibitor of native and mutant Bcr‐Abl.  Cancer cell 2005, 7 (2), 129‐141.  18.  Saglio, et al, Nilotinib versus imatinib for newly diagnosed chronic myeloid leukemia. New  England Journal of Medicine 2010, 362 (24), 2251‐2259.  19.  Kantarjian, et al; Dasatinib versus imatinib in newly diagnosed chronic‐phase chronic myeloid  leukemia. New England Journal of Medicine 2010, 362 (24), 2260‐2270.  20.  Vener, et al, First‐line imatinib vs second‐and third‐generation TKIs for chronic‐phase CML: a  systematic review and meta‐analysis. Blood advances 2020, 4 (12), 2723‐2735.  21.  Quintás‐Cardama, et al, Therapeutic options against BCR‐ABL1 T315I‐positive chronic  myelogenous leukemia. Clinical Cancer Research 2008, 14 (14), 4392‐4399.  22.  O'Hare, et al, In vitro activity of Bcr‐Abl inhibitors AMN107 and BMS‐354825 against clinically  relevant imatinib‐resistant Abl kinase domain mutants. Cancer research 2005, 65 (11), 4500‐4505.  23.  Miller, et al, Resistant mutations in CML and Ph(+)ALL ‐ role of ponatinib. Biologics 2014, 8, 243‐ 54.  24.  Tokarski, et al, The structure of Dasatinib (BMS‐354825) bound to activated ABL kinase domain  elucidates its inhibitory activity against imatinib‐resistant ABL mutants. Cancer research 2006, 66 (11),  5790‐5797.  25.  Hughes, et al, Long‐term outcomes in patients with chronic myeloid leukemia in chronic phase  receiving frontline nilotinib versus imatinib: ENESTnd 10‐year analysis. American Society of Hematology  Washington, DC: 2019; pp 2924‐2924.  26.  Jabbour, et al, Chronic myeloid leukemia: 2020 update on diagnosis, therapy and monitoring. Am  J Hematol 2020, 95 (6), 691‐709.  27.  Giles, et al, MK‐0457, a novel kinase inhibitor, is active in patients with chronic myeloid leukemia  or acute lymphocytic leukemia with the T315I BCR‐ABL mutation. Blood 2007, 109 (2), 500‐502.  28.  FDA approves Ponatinib.  https://www.fda.gov/drugs/informationondrugs/approveddrugs/ucm381452.htm.  29.  O'Hare, et al, AP24534, a pan‐BCR‐ABL inhibitor for chronic myeloid leukemia, potently inhibits  the T315I mutant and overcomes mutation‐based resistance. Cancer Cell 2009, 16 (5), 401‐12.  30.  Cortes, et al; Investigators, P., A phase 2 trial of ponatinib in Philadelphia chromosome‐positive  leukemias. N Engl J Med 2013, 369 (19), 1783‐96.  31.  Cortes, et al, Long‐term follow‐up of ponatinib efficacy and safety in the phase 2 PACE trial.  American Society of Hematology Washington, DC: 2014.  32.  Gainor, et al, Ponatinib: accelerated disapproval. The oncologist 2015, 20 (8), 847.  33.  Singh, et al, Cardiotoxicity of the BCR‐ABL1 tyrosine kinase inhibitors: Emphasis on ponatinib. Int  J Cardiol 2020, 316, 214‐221.  34.  Moslehi, et al, Tyrosine Kinase Inhibitor‐Associated Cardiovascular Toxicity in Chronic Myeloid  Leukemia. J Clin Oncol 2015, 33 (35), 4210‐8.  35.  Ishoey, et al, Translation termination factor GSPT1 is a phenotypically relevant off‐target of  heterobifunctional phthalimide degraders. ACS chemical biology 2018, 13 (3), 553‐560.  36.  Latifi, et al, Thrombotic microangiopathy as a cause of cardiovascular toxicity from the BCR‐ABL1  tyrosine kinase inhibitor ponatinib. Blood 2019, 133 (14), 1597‐1606.  37.  Yang, et al, Global PROTAC Toolbox for Degrading BCR‐ABL Overcomes Drug‐Resistant Mutants  and Adverse Effects. J Med Chem 2020,  (63), 8567‐8585.  38.  Larocque, et al, Nicotinamide‐Ponatinib Analogues as Potent Anti‐CML and Anti‐AML  Compounds. ACS Omega 2020, 5 (6), 2690‐2698.  39.  Nagar, et al, Crystal structures of the kinase domain of c‐Abl in complex with the small molecule  inhibitors PD173955 and imatinib (STI‐571). Cancer research 2002, 62 (15), 4236‐4243.  40.  Levinson, et al, Structural and spectroscopic analysis of the kinase inhibitor bosutinib and an  isomer of bosutinib binding to the Abl tyrosine kinase domain. PloS one 2012, 7 (4), e29828.  41.  Zhou, et al, Structural mechanism of the Pan‐BCR‐ABL inhibitor ponatinib (AP24534): lessons for  overcoming kinase inhibitor resistance. Chem Biol Drug Des 2011, 77 (1), 1‐11.  42.  Chen, et al, Discovery of novel 2‐(aminoheteroaryl)‐thiazole‐5‐carboxamides as potent and orally  active Src‐family kinase p56Lck inhibitors. Bioorganic & medicinal chemistry letters 2004, 14 (24), 6061‐ 6066.  43.  Huang, et al, Discovery of 3‐[2‐(imidazo[1,2‐b]pyridazin‐3‐yl)ethynyl]‐4‐methyl‐N‐{4‐[(4‐ methylpiperazin‐1‐y l)methyl]‐3‐(trifluoromethyl)phenyl}benzamide (AP24534), a potent, orally active  pan‐inhibitor of breakpoint cluster region‐abelson (BCR‐ABL) kinase including the T315I gatekeeper  mutant. J Med Chem 2010, 53 (12), 4701‐19.  44.  Huang, et al, An efficient synthesis of nilotinib (AMN107). Synthesis 2007, 2007 (14), 2121‐2124.  45.  Wen, et al, An efficient D‐glucosamine‐based copper catalyst for C–X couplings and its  application in the synthesis of nilotinib intermediate. RSC advances 2015, 5 (2), 1522‐1528.  46.  Bhunia, et al, Selected Copper‐Based Reactions for C− N, C− O, C− S, and C− C Bond Formation.  Angewandte Chemie International Edition 2017, 56 (51), 16136‐16179.  47.  Zimmermann, et al, Potent and selective inhibitors of the Abl‐kinase: phenylamino‐pyrimidine  (PAP) derivatives. Bioorganic & Medicinal Chemistry Letters 1997, 7 (2), 187‐192.  48.  Li, et al, Design, synthesis, and biological evaluation of 3‐(1 H‐1, 2, 3‐triazol‐1‐yl) benzamide  derivatives as potent pan Bcr‐Abl inhibitors including the threonine315→ isoleucine315 mutant. Journal  of medicinal chemistry 2012, 55 (22), 10033‐10046.  49.  Wang, et al, Design, Synthesis, and Biological Evaluation of 3‐(Imidazo [1, 2‐a] pyrazin‐3‐ ylethynyl)‐4‐isopropyl‐N‐(3‐((4‐methylpiperazin‐1‐yl) methyl)‐5‐(trifluoromethyl) phenyl) benzamide as a  Dual Inhibitor of Discoidin Domain Receptors 1 and 2. Journal of medicinal chemistry 2018, 61 (17),  7977‐7990.  50.  Rix, et al, Chemical proteomic profiles of the BCR‐ABL inhibitors imatinib, nilotinib, and dasatinib  reveal novel kinase and nonkinase targets. Blood 2007, 110 (12), 4055‐4063.  51.  Singh, et al, Ponatinib‐induced cardiotoxicity: delineating the signalling mechanisms and  potential rescue strategies. Cardiovascular research 2019, 115 (5), 966‐977.  52.  Jin, et al, A comprehensive review of clinical cardiotoxicity incidence of FDA‐approved small‐ molecule kinase inhibitors. Frontiers in Pharmacology 2020, 11, 891.  53.  Najjar, et al, Structure guided design of potent and selective ponatinib‐based hybrid inhibitors  for RIPK1. Cell reports 2015, 10 (11), 1850‐1860.  54.  Trott, et al: improving the speed and accuracy of docking with a new scoring function, efficient  optimization, and multithreading. Journal of computational chemistry 2010, 31 (2), 455‐461.  55.  Lian, et al, Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal  modulation of canonical Wnt signaling. Proceedings of the National Academy of Sciences 2012, 109 (27),  E1848‐E1857.  56.  Feyen, et al, Metabolic maturation media improve physiological function of human iPSC‐derived  cardiomyocytes. Cell reports 2020, 32 (3), 107925.  57.  Shoemaker, R. H., The NCI60 human tumour cell line anticancer drug screen. Nature Reviews  Cancer 2006, 6 (10), 813‐823.  58.  McKeithan, et al, An automated platform for assessment of congenital and drug‐induced  arrhythmia with hiPSC‐derived cardiomyocytes. Frontiers in physiology 2017, 8, 766.  59.  Sharma, et al., High‐throughput screening of tyrosine kinase inhibitor cardiotoxicity with human  induced pluripotent stem cells. Science translational medicine 2017, 9 (377).       

Claims

What is claimed:
1. A compound of Formula (I): wherein Ri is selected from the group of H, C2-C6 alkyl, C3-C6 cycloalkyl, and -CH2-C3-C6 cycloalkyl; or a pharmaceutically acceptable salt thereof.
2. The compound of Claim 1, wherein Ri is selected from the group of H, ethyl, n-propyl, isopropyl and cyclopropyl; or a pharmaceutically acceptable salt thereof.
3. The compound of any of Claims 1 and 2, wherein Ri is selected from the group of H, ethyl, isopropyl and cyclopropyl; or a pharmaceutically acceptable salt thereof.
4. The compound of any of Claims 1, 2, and 3, or a pharmaceutically acceptable salt thereof, wherein Ri is selected from the group of H, ethyl, and cyclopropyl.
5. The compound of any of Claims 1, 2, 3, and 4, or a pharmaceutically acceptable salt thereof, wherein Ri is selected from the group of H and ethyl.
6. The compound of any of Claims 1, 2, 3, 4, and 5, or a pharmaceutically acceptable salt thereof, wherein Ri is selected from the group of H and isopropyl.
7. The compound of any of Claims 1, 2, 3, 4, 5, and 6, or a pharmaceutically acceptable salt thereof, wherein Ri is selected from the group of H and cyclopropyl.
8. The compound of any of Claims 1, 2, 3, 4, 5, 6, and 7, or a pharmaceutically acceptable salt thereof, having the structure:
9. The compound of any of Claims 1, 2, 3, 4, and 5, or a pharmaceutically acceptable salt thereof, having the structure:
10. The compound of any of Claims 1, 2, 3, and 6, or a pharmaceutically acceptable salt thereof, having the structure:
11. The compound of any of Claims 1, 2, 3, and 4, or a pharmaceutically acceptable salt thereof, having the structure:
12. A compound of Formula (II): or a pharmaceutically acceptable salt thereof.
13. A method of treatment of chronic myeloid leukemia in a subject, the method comprising administering to the subject in need thereof a pharmaceutically effective amount of a compound of any of Claims 1-11 (Claims 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and 11), or a pharmaceutically acceptable salt thereof.
14. A method of treatment of chronic myeloid leukemia in a subject, the method comprising administering to the subject in need thereof a pharmaceutically effective amount of a compound of Claim 12, or a pharmaceutically acceptable salt thereof.
15. A method of inhibiting the activity of the BCR-ABL kinase protein in a subject, the method comprising administering to the subject in need thereof a pharmaceutically effective amount of a compound of any of Claims 1-11, or a pharmaceutically acceptable salt thereof.
16. A method of inhibiting the activity of the BCR-ABL kinase protein in a subject, the method comprising administering to the subject in need thereof a pharmaceutically effective amount of a compound of Claim 12, or a pharmaceutically acceptable salt thereof.
17. A method of treatment of chronic myeloid leukemia in a subject, the method comprising administering to the subject in need thereof: a) a pharmaceutically effective amount of a compound of any of Claims 1-11, or a pharmaceutically acceptable salt thereof; and b) a pharmaceutically effective amount of one or more agents selected from the group of ponatinib, nilotinib, imatinib, dasatinib, bosutinib, rebastinib, and interferon alfa-2b; or a pharmaceutically acceptable salt thereof.
18. A method of treatment of chronic myeloid leukemia in a subject, the method comprising administering to the subject in need thereof: a) a pharmaceutically effective amount of a compound of Claim 12, or a pharmaceutically acceptable salt thereof; and b) a pharmaceutically effective amount of one or more agents selected from the group of ponatinib, nilotinib, imatinib, dasatinib, bosutinib, rebastinib, and interferon alfa-2b; or a pharmaceutically acceptable salt thereof.
19. A method of treatment for chronic phase chronic myeloid leukemia in a subject, the method comprising administering to the subject in need thereof a pharmaceutically effective amount of a compound of any of Claims 1-11, or a pharmaceutically acceptable salt thereof.
20. A method of treatment for chronic phase chronic myeloid leukemia in a subject, the method comprising administering to the subject in need thereof a pharmaceutically effective amount of a compound of Claim 12, or a pharmaceutically acceptable salt thereof.
21. A method of treatment of chronic phase chronic myeloid leukemia in a subject, the method comprising administering to the subject in need thereof: a) a pharmaceutically effective amount of a compound of any of Claims 1-11, or a pharmaceutically acceptable salt thereof; and b) a pharmaceutically effective amount of one or more tyrosine kinase inhibiting agents selected from the group of ponatinib, nilotinib, imatinib, dasatinib, bosutinib, and rebastinib; or a pharmaceutically acceptable salt thereof.
22. A method of treatment of chronic phase chronic myeloid leukemia in a subject, the method comprising administering to the subject in need thereof: a) a pharmaceutically effective amount of a compound of Claim 12, or a pharmaceutically acceptable salt thereof; and b) a pharmaceutically effective amount of one or more tyrosine kinase inhibiting agents selected from the group of ponatinib, nilotinib, imatinib, dasatinib, bosutinib, and rebastinib; or a pharmaceutically acceptable salt thereof.
23. A method of treatment in a subject of chronic phase chronic myeloid leukemia with resistance or intolerance to at least one prior tyrosine kinase inhibitor, the method comprising administering to the subject in need thereof: a) a pharmaceutically effective amount of a compound of any of Claims 1-11, or a pharmaceutically acceptable salt thereof; and b) a pharmaceutically effective amount of ponatinib; or a pharmaceutically acceptable salt thereof.
24. A method of treatment in a subject of chronic phase chronic myeloid leukemia with resistance or intolerance to at least one prior tyrosine kinase inhibitor, the method comprising administering to the subject in need thereof: a) a pharmaceutically effective amount of a compound of Claim 12, or a pharmaceutically acceptable salt thereof; and b) a pharmaceutically effective amount of ponatinib; or a pharmaceutically acceptable salt thereof.
25. A method of treatment in a subject of chronic phase chronic myeloid leukemia with resistance or intolerance to at least two prior tyrosine kinase inhibitors, the method comprising administering to the subject in need thereof: a) a pharmaceutically effective amount of a compound of any of Claims 1-11, or a pharmaceutically acceptable salt thereof; and b) a pharmaceutically effective amount of ponatinib; or a pharmaceutically acceptable salt thereof.
26. A method of treatment in a subject of chronic phase chronic myeloid leukemia with resistance or intolerance to at least two prior tyrosine kinase inhibitors, the method comprising administering to the subject in need thereof: a) a pharmaceutically effective amount of a compound of Claim 12, or a pharmaceutically acceptable salt thereof; and b) a pharmaceutically effective amount of ponatinib; or a pharmaceutically acceptable salt thereof.
27. A method of treatment of accelerated phase chronic myeloid leukemia in a subject, the method comprising administering to the subject in need thereof: a) a pharmaceutically effective amount of a compound of any of Claims 1-11, or a pharmaceutically acceptable salt thereof; and b) a pharmaceutically effective amount of one or more tyrosine kinase inhibiting agents selected from the group of ponatinib, nilotinib, imatinib, dasatinib, bosutinib, and rebastinib; or a pharmaceutically acceptable salt thereof.
28. A method of treatment of accelerated phase chronic myeloid leukemia in a subject, the method comprising administering to the subject in need thereof: a) a pharmaceutically effective amount of a compound of Claim 12, or a pharmaceutically acceptable salt thereof; and b) a pharmaceutically effective amount of one or more tyrosine kinase inhibiting agents selected from the group of ponatinib, nilotinib, imatinib, dasatinib, bosutinib, and rebastinib; or a pharmaceutically acceptable salt thereof.
29. A method of treatment of blast phase chronic myeloid leukemia in a subject, the method comprising administering to the subject in need thereof: a) a pharmaceutically effective amount of a compound of any of Claims 1-11, or a pharmaceutically acceptable salt thereof; and b) a pharmaceutically effective amount of one or more tyrosine kinase inhibiting agents selected from the group of ponatinib, nilotinib, imatinib, dasatinib, bosutinib, and rebastinib; or a pharmaceutically acceptable salt thereof.
30. A method of treatment of blast phase chronic myeloid leukemia in a subject, the method comprising administering to the subject in need thereof: a) a pharmaceutically effective amount of a compound of Claim 12, or a pharmaceutically acceptable salt thereof; and b) a pharmaceutically effective amount of one or more tyrosine kinase inhibiting agents selected from the group of ponatinib (ICLUSIG®), nilotinib (TASIGNA®), imatinib (GLEEVEC®), dasatinib (SPRYCELL®), bosutinib (BOSULIF®), and rebastinib; or a pharmaceutically acceptable salt thereof.
31. A method of treatment of chronic myeloid leukemia with a T315I mutation in a subject, the method comprising administering to the subject in need thereof: a) a pharmaceutically effective amount of a compound of any of Claims 1-11, or a pharmaceutically acceptable salt thereof; and b) a pharmaceutically effective amount of omacetaxine (SYNRIBO®); or a pharmaceutically acceptable salt thereof.
32. A method of treatment of chronic myeloid leukemia with a T315I mutation in a subject, the method comprising administering to the subject in need thereof: a) a pharmaceutically effective amount of a compound of Claim 12, or a pharmaceutically acceptable salt thereof; and b) a pharmaceutically effective amount of omacetaxine (SYNRIBO®); or a pharmaceutically acceptable salt thereof.
33. A method of treatment of Philadelphia chromosome positive chronic myeloid leukemia in a subject, the method comprising administering to the subject in need thereof: a) a pharmaceutically effective amount of a compound of any of Claims 1-11, or a pharmaceutically acceptable salt thereof; and b) a pharmaceutically effective amount of nilotinib (TASIGNA®); or a pharmaceutically acceptable salt thereof.
34. A method of treatment of Philadelphia chromosome positive chronic myeloid leukemia in a subject, the method comprising administering to the subject in need thereof: a) a pharmaceutically effective amount of a compound of Claim 12, or a pharmaceutically acceptable salt thereof; and b) a pharmaceutically effective amount of nilotinib (TASIGNA®); or a pharmaceutically acceptable salt thereof.
35. A method of treatment in a subject of chronic myeloid leukemia that is resistant or intolerant to prior tyrosine-kinase inhibitor (TKI) therapy, the method comprising administering to the subject in need thereof a pharmaceutically effective amount of a compound of any of Claims 1-11, or a pharmaceutically acceptable salt thereof.
36. A method of treatment in a subject of chronic myeloid leukemia that is resistant or intolerant to prior tyrosine-kinase inhibitor (TKI) therapy, the method comprising administering to the subject in need thereof a pharmaceutically effective amount of a compound of Claim 12, or a pharmaceutically acceptable salt thereof.
37. A method of treating a neurodegenerative condition in a subject, the method comprising administering to the subject in need thereof a pharmaceutically effective amount of a compound of any of Claims 1-11, or a pharmaceutically acceptable salt thereof.
38. A method of treating a neurodegenerative condition in a subject, the method comprising administering to the subject in need thereof a pharmaceutically effective amount of a compound of any of Claim 12, or a pharmaceutically acceptable salt thereof.
39. The method of any of Claims 36 and 37, wherein the neurodegenerative disease is selected from the group of Parkinson's Disease, Alzheimer's Disease, Down's syndrome, frontotemporal dementia, progressive supranuclear palsy, Pick's disease, Niemann-Pick disease, Parkinson's disease, Huntington's disease, dentatorubropallidoluysian atrophy, Kennedy's disease (also referred to as spinobulbar muscular atrophy), and spinocerebellar ataxia (e.g., type I, type 2, type 3 (also referred to as Machado- Joseph disease), type 6, type 7, and type 17)), fragile X (Rett's) syndrome, fragile XE mental retardation, Friedreich's ataxia, myotonic dystrophy, spinocerebellar ataxia type 8, and spinocerebellar ataxia type 12, Alexander disease, Alper's disease, amyotrophic lateral sclerosis, ataxia telangiectasia, Batten disease (also referred to as Spielmeyer-Vogt-Sjogren-Batten disease), Canavan disease, Cockayne syndrome, corticobasal degeneration, Creutzfeldt- Jakob disease, ischemia stroke, Krabbe disease, Lewy body dementia, multiple sclerosis, multiple system atrophy, Pelizaeus- Merzbacher disease, Pick's disease, primary lateral sclerosis, Adult Refsums Disease (ARD), Sandhoff disease, Schilder's disease, spinal cord injury, spinal muscular atrophy, Steele-Richardson-Olszewski disease, and Tabes dorsalis.
40. The method of any of Claims 37, 38, and 39, wherein the neurodegenerative condition is associated with, characterized by, or implicated by a mitochondrial dysfunction.
41. The method of Claim 40, wherein the neurodegenerative condition is selected from the group of Friedrich's ataxia, amyotrophic lateral sclerosis (ALS), mitochondrial myopathy, encephalopathy, lactacidosis, stroke (MELAS), myoclonic epilepsy with ragged red fibers (MERFF), epilepsy, Parkinson's disease, Alzheimer's disease, and Huntington's Disease.
42. A pharmaceutical composition comprising a pharmaceutically effective amount of a compound of any of Claims 1-11, or a pharmaceutically acceptable salt thereof, and a pharmaceutically useful carrier or excipient.
43. A pharmaceutical composition comprising a pharmaceutically effective amount of a compound of Claim 12, or a pharmaceutically acceptable salt thereof, and a pharmaceutically useful carrier or excipient.
44. The use of a compound selected from any of Claims 1-11, or a pharmaceutically acceptable salt thereof, in the preparation of a medicament.
45. The use of a compound selected from any of Claims 1-11, or a pharmaceutically acceptable salt thereof, in the preparation of a medicament for use in a method of treatment selected from those of any of Claims 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, and 42.
46. The use of a compound of Claim 12, or a pharmaceutically acceptable salt thereof, in the preparation of a medicament.
47. The use of a compound selected from Claim 12, or a pharmaceutically acceptable salt thereof, in the preparation of a medicament for use in a method of treatment selected from those of any of Claims 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 39, 41, and 42.
48. A compound of Formula (III), wherein Ri is selected from the group of H and -OCH3: ; or a pharmaceutically acceptable salt thereof.
EP22792342.2A 2021-04-19 2022-04-19 Compounds with improved cardiac safety for the treatment of cancer and neurodegenerative disorders Pending EP4326269A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163176774P 2021-04-19 2021-04-19
PCT/US2022/025400 WO2022225972A1 (en) 2021-04-19 2022-04-19 Compounds with improved cardiac safety for the treatment of cancer and neurodegenerative disorders

Publications (1)

Publication Number Publication Date
EP4326269A1 true EP4326269A1 (en) 2024-02-28

Family

ID=83723314

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22792342.2A Pending EP4326269A1 (en) 2021-04-19 2022-04-19 Compounds with improved cardiac safety for the treatment of cancer and neurodegenerative disorders

Country Status (2)

Country Link
EP (1) EP4326269A1 (en)
WO (1) WO2022225972A1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2761180T3 (en) * 2005-12-23 2020-05-19 Ariad Pharma Inc Bicyclic heteroaryl compounds
MX2013011591A (en) * 2011-04-07 2014-04-14 Ariad Pharma Inc Methods and compositions for treating neurodegenerative diseases.

Also Published As

Publication number Publication date
WO2022225972A1 (en) 2022-10-27

Similar Documents

Publication Publication Date Title
CA2969090C (en) Triazolopyrimidine compounds and uses thereof
US10640512B2 (en) Imidazopyrazinamine phenyl derivative and use thereof
TWI336694B (en) Phthalazinone derivatives
TW202115065A (en) Kras mutant protein inhibitor
JP5140854B2 (en) S1P3 receptor antagonist
AU2019264253B2 (en) Factor XIIa inhibitors
US6734203B2 (en) Fused imidazolium derivatives
NZ564908A (en) N-Phenyl-2-pyrimidine-amine derivatives and process for the preparation thereof
CA2903107A1 (en) Coumarin derivatives and methods of use in treating hyperproliferative diseases
US9738613B2 (en) Substituted 1,2,3-triazoles as antitumor agents
WO2017083756A1 (en) Heterocyclic compounds for the treatment of disease
US11834432B2 (en) Substituted amino six-membered nitric heterocyclic ring compound and preparation and use thereof
EP3044223B1 (en) 2,3-dihydro-1h-inden-1-one derivatives as retinoic acid-related orphan receptor gamma (ror gamma) antagonists for treating multiple sclerosis
CN105367565B (en) Piperazine (pyridine) cyclohexyl derivatives and its application for treating Mental disease
US11225474B2 (en) Crystalline salt forms of 3-(1,2,4-triazolo[4,3-a]pyridine-3-ylethynyl)-4-methyl-N-(4-((4-methylpiperazin-1-yl)methyl)-3-trifluoromethylphenyl)benzamide for medical application
WO2022225972A1 (en) Compounds with improved cardiac safety for the treatment of cancer and neurodegenerative disorders
JP6230626B2 (en) Formulations containing benzothiazolone compounds
US7943611B2 (en) Imidazo[1,2-A]pyridin-3-yl-acetic acid hydrazides, processes, for their preparation and pharmaceutical uses thereof
US10894768B2 (en) Salt of (R)-(1-methylpyrrolidine-3-yl)methyl(3′-chloro-4′-fluoro-[1,1′-biphenyl]-2-yl)carbamate and crystal form thereof
JP2008013446A (en) Treating or preventing agent of intractable disease having cell degeneration caused by oxidation stress as molecular background
AU2015201306A1 (en) Small molecule inhibitors of the pleckstrin homology domain and methods for using same
WO2020160537A1 (en) Bicyclic pyridine compositions and methods of using the same for cancer therapy
JPH01221361A (en) Piperazine compound

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20231026

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR