EP4323416A1 - Starch hybrid copolymers - Google Patents

Starch hybrid copolymers

Info

Publication number
EP4323416A1
EP4323416A1 EP21720410.6A EP21720410A EP4323416A1 EP 4323416 A1 EP4323416 A1 EP 4323416A1 EP 21720410 A EP21720410 A EP 21720410A EP 4323416 A1 EP4323416 A1 EP 4323416A1
Authority
EP
European Patent Office
Prior art keywords
starch
weight
monomers
ethylenically unsaturated
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21720410.6A
Other languages
German (de)
French (fr)
Inventor
Stefan Haid
Thomas Lehotkay
Constantin TIEMEYER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wacker Chemie AG
Original Assignee
Wacker Chemie AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wacker Chemie AG filed Critical Wacker Chemie AG
Publication of EP4323416A1 publication Critical patent/EP4323416A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D151/00Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • C09D151/02Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to polysaccharides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/32Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals
    • C08F220/325Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals containing glycidyl radical, e.g. glycidyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/04Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • C08F230/08Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
    • C08F230/085Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon the monomer being a polymerisable silane, e.g. (meth)acryloyloxy trialkoxy silanes or vinyl trialkoxysilanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F251/00Macromolecular compounds obtained by polymerising monomers on to polysaccharides or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/04Starch derivatives, e.g. crosslinked derivatives
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/01Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural macromolecular compounds or derivatives thereof
    • D06M15/03Polysaccharides or derivatives thereof
    • D06M15/11Starch or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/54Aqueous solutions or dispersions

Definitions

  • the invention relates to starch hybrid copolymers in the form of aqueous dispersions or water-redispersible powders, processes for their production and their use, in particular in coating materials such as paints and plasters, or for the production of fibers and textile fabrics.
  • Stär ke hybrid copolymers are based on polymers of ethylenically unsaturated monomers and starch, which can be linked to one another, for example via chemical bonds, or bonded to one another in some other way.
  • a particular challenge is to achieve the required mechanical strength with products containing starch, especially after the application products have been stored in water, which is also required in the case of polymer-bound textile fabrics, paints or plasters.
  • Coatings such as paints require high abrasion resistance, such as wet abrasion resistance, and textile fabrics require high adhesive tensile strengths, in particular high wet tensile strengths or wash permanences.
  • KR101473916B1 describes starch-based polymer particles with a core-shell structure, which are obtained by first forming the core through the polymerization of hard and soft monomers in the presence of starch degradation products, on which hard, soft and silane monomers are then applied as a shell be polymerized.
  • Homopolymers of the soft monomers of KR101473916B1 have a glass transition temperature of 10°C to -80°C.
  • ethylene homopolymers have a glass transition temperature of -85°C.
  • the graft polymers of US4301017 are made by polymerization of vinyl monomers in the presence of derivatized, water-insoluble starch.
  • starch was dissolved at 82° C., and then monomers were polymerized by emulsion polymerization methods in the presence of this starch solution.
  • WO15160794A1 describes bio-based nanoparticles of starch and vinyl monomers.
  • hydrophobically modified starch was produced by reacting water-soluble polysaccharides with hydrophilic monomers and hydrophobic monomers and subsequent polymerization with a further monomer mixture.
  • WO2015155159 teaches an aqueous emulsion polymerization of 70 to 95% by weight of vinyl acetate and 5 to 25% by weight of (meth)acrylic acid ester and specific amounts of specific other monomers in the presence of starch.
  • starch has also been recommended as a protective colloid for polymers, for example in US3632535.
  • US3769248 describes vinyl acetate polymer dispersions stabilized with up to 4% by weight of starch as a protective colloid.
  • the US4532295 teaches emulsion polymerization of ethylenically unsaturated monomers in the presence of 1 to 5% by weight, based on the monomers, of cyanoalkyl, hydroxyalkyl or carboxyalkyl starch as a protective colloid.
  • emulsifiers for US4532295 it is essential not to use emulsifiers during the polymerization.
  • Protective colloids are known to have the function of stabilizing polymers.
  • aqueous dispersions of water-insoluble polymers can be stabilized by protective colloids.
  • protective colloids water-insoluble polymers can also be converted into water-redispersible powders.
  • the water-insoluble polymers and the protective colloid starch are present as separate polymers. Compositions in which starch and other polymers coexist are also referred to as physical mixtures.
  • the task was to provide binders based on starch, with which textile fabrics with high adhesive tensile strengths and coatings, especially paints, with high wet abrasion resistance are accessible.
  • starch hybrid copolymers based on cold-water-soluble starch and defined amounts of certain ethylenically unsaturated monomers.
  • the invention relates to starch hybrid copolymers in the form of aqueous dispersions or water-redispersible powders obtainable by free-radically initiated polymerization in an aqueous medium of ethylenically unsaturated monomers in the presence of starch and optionally subsequent drying, characterized in that the starch Hybrid copolymers to> 20% by weight, based on the dry weight of the starch hybrid copolymers, based on cold-water-soluble starch and the ethylenically unsaturated monomers are either a) one or more vinyl esters, 1 to 40% by weight of ethylene, 0.1 to 10% by weight of one or more functional monomers and optionally one or more other ethylenically unsaturated monomers or b) styrene ,> 30% by weight of one or more (meth)acrylic acid esters, 0.1 to 10% by weight of one or more functional monomers and optionally one or more other ethylenically unsaturated monomers, the functional monomers
  • Examples of ethylenically unsaturated monomers bearing epoxy groups are glycidyl acrylate and glycidyl methacrylate.
  • N-alkylol-functional comonomers with C 1 -C 4 -alkylol radicals in particular N-methylol radicals, such as N-methylolacrylamide (NMA), N-methylolmethacrylamide , N-methylol allyl carbamate, C 1 to C 4 alkyl ethers of N-methylolacrylamide, N- methylol methacrylamide and N-methylol allyl carbamate, for example their isobutoxy ethers, and C 4 to C 4 alkyl esters of N-methylolacrylamide, N-methylol methacrylamide and N - Methylolallylcarbamate.
  • NMA N-methylolacrylamide
  • N-methylolmethacrylamide N-methylol allyl carbamate
  • C 1 to C 4 alkyl ethers of N-methylolacrylamide, N- methylol methacrylamide and N-methylol allyl carbamate for example
  • Ci to C4 alkyl ethers of N-methylolacrylamide such as the isobutoxy ether.
  • Ethylenically unsaturated monomers bearing silane groups include, for example, (meth)acryloxypropyltri(alkoxy)silanes or (meth)acryloxypropyldialkoxymethylsilanes, vinyltrialkoxysilanes or vinylmethyldialkoxysilanes, with alkoxy groups being for example methoxy, ethoxy, propoxy, butoxy, acetoxy and ethoxypropylene glycol ether radicals may be present.
  • Preferred ethylenically unsaturated silanes are vinyltrimethoxysilane, vinylmethyldimethoxysilane, vinyltriethoxysilane, vinylmethyldiethoxysilane, vinyltripropoxysilane, vinyltriisopropoxysilane, vinyltris-(1-methoxy)isopropoxysilane, vinyltributoxysilane, vinyltriacetoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, Methacryloxymethyltrimethoxysilane, 3-methacryloxypropyl-tris(2-methoxyethoxy)silane, vinyltrichlorosilane, vinylmethyldichlorosilane, vinyltris-(2-methoxyethoxy)silane, trisacetoxyvinylsilane, allylvinyltrimethoxysilane, allyltriacetoxysilane, vinyldimethyl
  • Particularly preferred ethylenically unsaturated silanes are vinyltrimethoxysilane, vinylmethyldimethoxysilane, vinyltriethoxysilane, vinylmethyldiethoxysilane, vinyltris-(1-methoxy)isopropoxysilane, methacryloxypropyltris(2-methoxyethoxy)silane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane and Me - thacryloxymethyltrimethoxysilane.
  • hybrid starch copolymers which contain units of ethylenically unsaturated monomers bearing epoxy groups and, in addition, ethylenically unsaturated monomers bearing silane groups.
  • the proportion of the functional monomers is 0.1 to 10% by weight, preferably 0.2 to 9% by weight and most preferably 0.5 to 7% by weight, based on the total weight of the ethylenically unsaturated monomers.
  • the proportion of ethylenically unsaturated monomers bearing N-methylol groups is preferably 0.1 to 10% by weight, particularly preferably 1 to 9% by weight and most preferably 3 to 7% by weight, based on the total weight of ethylenically unsaturated monomers.
  • the proportion of the epoxy-bearing, ethylenically unsaturated monomers is preferably 0.1 to 5% by weight, particularly preferably 0.2 to 2% by weight and most preferably 0.3 to 1% by weight, based based on the total weight of the ethylenically unsaturated monomers.
  • the proportion of ethylenically unsaturated monomers bearing silane groups is preferably 0.05 to 3% by weight, particularly preferably 0.1 to 1% by weight and most preferably 0.2 to 0.5% by weight. , based on the total weight of the ethylenically unsaturated monomers.
  • the total amount of ethylenically unsaturated monomers bearing epoxy groups and ethylenically unsaturated monomers bearing silane groups is preferably 0.15 to 8% by weight, more preferably 0.3 to 3% by weight and most preferably 0. 5 to 1.5% by weight, based on the total weight of the ethylenically unsaturated monomers.
  • the ethylenically unsaturated monomers comprise one or more vinyl esters, 1 to 40% by weight ethylene, 0.1 to 10% by weight of one or more functional monomers and optionally one or more further ethylenic unsaturated monomers.
  • the other ethylenically unsaturated monomers here are generally different from vinyl esters, ethylene and functional monomers.
  • Such starch hybrid copolymers a) are described below also referred to as starch-vinyl ester-ethylene hybrid copolymers a).
  • the ethylenically unsaturated monomers comprise styrene, >30% by weight of one or more (meth)acrylic acid esters, 0.1 to 10% by weight of one or more functional monomers and optionally a or more other ethylenically unsaturated monomers.
  • the other ethylenically unsaturated mono mers are generally different from styrene, (meth)acrylic esters and the functional monomers.
  • Such starch hybrid copolymers b) are also referred to below as starch-styrene-(meth)acrylic acid ester hybrid copolymers b).
  • vinyl esters are vinyl esters of unbranched or branched alkyl carboxylic acids having 1 to 18 carbon atoms, such as vinyl acetate, vinyl propionate, vinyl butyrate, vinyl 2-ethylhexanoate, vinyl laurate, 1-methyl vinyl acetate, vinyl pivalate and vinyl esters of a-branched monocarboxylic acids having 5 to 15 C atoms, for example VeoVa9 ⁇ or VeoValO ⁇ (trade name of Shell). Vinyl acetate is preferred.
  • Preferred starch-vinyl ester-ethylene hybrid copolymers a) are based to an extent of preferably 50 to 98% by weight, more preferably 60 to 95% by weight and most preferably 75 to 90% by weight of vinyl esters, based on the total weight the monomers.
  • Preferred starch-vinyl ester-ethylene hybrid copolymers a) are based to an extent of preferably 2 to 30% by weight, more preferably 5 to 20% by weight and most preferably 9 to 17% by weight of ethylene, based on the total weight of the monomers.
  • Examples of (meth)acrylic esters are acrylic esters or methacrylic esters of branched or unbranched alcohols having 1 to 15 carbon atoms.
  • Preferred methacrylic acid esters or Acrylic acid esters are methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, propyl acrylate, propyl methacrylate, n-butyl acrylate, n-butyl methacrylate, t-butyl acrylate, t-butyl methacrylate, 2-ethylhexyl acrylate, norbornyl acrylate.
  • Methyl acrylate, methyl methacrylate, n-butyl acrylate, 2-ethylhexyl acrylate and norbornyl acrylate are particularly preferred.
  • Preferred starch-styrene-(meth)acrylic acid ester hybrid copolymers b) are based to >30% by weight, preferably 31 to 80% by weight, particularly preferably 35 to 64% by weight and most preferably 40 to 55% by weight. -% on (meth)acrylic acid esters, based on the total weight of the monomers.
  • Preferred starch-styrene-(meth)acrylic acid ester hybrid copolymers b) are based to an extent of preferably 31 to 69% by weight, particularly preferably 35 to 64% by weight and most preferably 40 to 55% by weight, based on styrene the total weight of the monomers.
  • the starch-vinyl ester-ethylene hybrid copolymers a) are additionally based on one or more other ethylenically unsaturated monomers selected from the group comprising acrylic acid esters or methacrylic acid esters of branched or unbranched alcohols having 1 to 15 carbon atoms, dienes, Propene, vinyl aromatics and vinyl halides.
  • n-Butyl acrylate, n-butyl methacrylate, t-butyl acrylate, t-butyl methacrylate and vinyl chloride are preferred.
  • the starch-vinyl ester-ethylene hybrid copolymers are based on such other ethylenically unsaturated monomers a) to an extent of preferably 0 to 20% by weight, particularly preferably 0.1 to 15% by weight and most preferably 5 to 10% by weight, based on the total weight of the monomers.
  • the starch-styrene-(meth)acrylic acid ester hybrid copolymers b) are additionally based on one or more other ethylenically unsaturated monomers selected from the group consisting of vinyl esters, dienes, olefins, and vinyl toluene vinyl halides. Olefins are preferred here.
  • the starch-styrene (meth)acrylic acid ester hybrid copolymers b) are based on such other ethylenically unsaturated monomers, preferably in an amount of from 0 to 20% by weight, particularly preferably from 0.1 to 15% by weight and most preferably from 4 to 10% % by weight based on the total weight of the monomers.
  • dienes 1,3-butadiene or isoprene.
  • olefins are ethene or propene.
  • Styrene or vinyl toluene for example, can be copolymerized as vinyl aromatics.
  • Vinyl chloride is preferred as the vinyl halide.
  • the starch hybrid copolymers can also be based on one or more auxiliary monomers. Preference is given to 0 to 20% by weight, particularly preferably 0.5 to 10% by weight, of auxiliary monomers, based on the total weight of the monomers, being copolymerized.
  • auxiliary monomers are ethylenically unsaturated mono- and dicarboxylic acids, preferably acrylic acid, methacrylic acid, crotonic acid, fumaric acid and maleic acid; ethylenically unsaturated anhydrides, preferably maleic anhydride; acrylamide; ethylenically unsaturated carbonitriles, preferably acrylonitrile; mono- and diesters of fumaric acid and maleic acid such as the diethyl and diisopropyl esters; ethylenically unsaturated sulfonic acids or salts thereof, preferably vinylsulfonic acid, 2-acrylamido-2-methylpropanesulfonic acid.
  • mono- and diesters of fumaric acid and maleic acid such as the diethyl and diisopropyl esters
  • ethylenically unsaturated sulfonic acids or salts thereof preferably vinylsulfonic acid, 2-acrylamido-2-methylpropanesul
  • pre-crosslinking comonomers such as polyethylenically unsaturated comonomers, for example diallyl phthalate, divinyl adipate, diallyl maleate, allyl methacrylate or triallyl cyanurate, or post-crosslinking comonomers, for example acrylamidoglycolic acid (AGA), methylacrylamidoglycolic acid methyl ester (MAGME).
  • AGA acrylamidoglycolic acid
  • MAGME methylacrylamidoglycolic acid methyl ester
  • auxiliary monomers are ethylenically unsaturated mono- and dicarboxylic acids or their anhydrides and ethylenically unsaturated sulfonic acids or their salts.
  • the starch hybrid copolymers are based to an extent of preferably 20 to 80% by weight, more preferably 30 to 75% by weight and most preferably 50 to 70% by weight of ethylenically unsaturated monomers, based on the dry weight of the starch hybrid copolymers.
  • the proportion of ethylenically unsaturated monomers in the starch hybrid copolymers can be determined, for example, by means of NMR spectroscopy, preferably using calibration substances.
  • the starch-vinyl ester-ethylene hybrid copolymers a) preferably contain no (meth)acrylic ester unit.
  • the starch-styrene-(meth)acrylic ester hybrid copolymers b) preferably contain ⁇ 30% by weight of vinyl ester units, based on the total weight of the monomers, particularly preferably no vinyl ester unit.
  • the selection of monomers or the selection of the proportions by weight of the comonomers is carried out in such a way that the starch hybrid copolymers have a glass transition temperature Tg of -50.degree. C. to +120.degree. C., preferably -35.degree. C. to +45.degree.
  • the starch units generally do not exhibit a glass transition temperature.
  • the glass transition temperature Tg of the polymers can be determined in a known manner by means of differential scanning calorimetry (DSC).
  • Tgn glass transition temperature in Kelvin of the homopolymer of monomer n. Tg values for homopolymers are listed in Polymer Handbook 2nd Edition, J. Wiley & Sons, New York (1975).
  • the cold water soluble starch is soluble at 23°C to preferably >10g per liter of water, more preferably >100g per liter of water and most preferably ⁇ 500g per liter of water.
  • Typical sources for the cold-water-soluble starch are, for example, tubers or roots, such as potatoes, maranta (arrowroot), cassava (tapioca) or sweet potatoes (batata); Cereal seeds such as wheat, corn, rye, rice, barley, millet, oats, triticale or sorghum; Fruits such as bananas, chestnuts, acorns, peas, beans or other legumes, or pith such as sago.
  • the starch comes from tubers or roots, such as in particular potatoes or manioc (tapioca), or cereals, such as in particular wheat or corn.
  • the starch can also be obtained from waste, for example leftover potatoes or potato skins.
  • the cold-water-soluble starch can be native, degraded or chemically modified, for example.
  • Native starch generally contains amylose and/or amylopectin as the main component.
  • Native starch is generally not degraded and not chemically modified.
  • Degraded starch generally has a lower average molecular weight than native starch.
  • Starch can be degraded, for example, enzymatically, oxidatively or by the action of an acid or a base, in particular hydrolytically. This generally also leads to increased levels of oligosaccharides or dextrins.
  • Chemical modifications generally attach chemical groups to the starch via covalent attachment. Native or degraded starch, for example, can be used for chemical modification. Chemical modifications are thus generally different from degradation.
  • Examples of chemical modifications are esterifications or etherifications, such as carboxymethylation, oxidation reactions or nonionic, anionic or cationic modifications.
  • Examples of chemically modified starches are carboxymethyl, methyl, hydroxyethyl or hydroxypropyl starch, starch ethers or starch phosphate esters or their oxidation products.
  • the cold-water-soluble starch preferably contains no chemical modifications, in particular no cyano, hydroxy, carbonyl, aldehyde, ester and/or carboxyl groups. Native cold-water-soluble starch or, in particular, degraded cold-water-soluble starch is preferred.
  • the cold water soluble starch has molecular weights of preferably 500 to 1,000,000 g/mol, more preferably 1,000 to 500,000 g/mol and most preferably 5,000 to 200,000 g/mol.
  • Aqueous solutions of the cold-water-soluble starch have Brookfield viscosities of preferably 10 to 5000 mPas, particularly preferably 50 to 3000 mPas (determined using a Brookfield viscometer at 23° C. and 20 rpm with a solids content of the solutions of 50%).
  • the starch in particular the cold-water-soluble starch, has a weight-average particle diameter Dw between preferably 100 and 5000 nm, particularly preferably 200 to 3000 nm and most preferably 300 and 1000 nm. Dw is determined as described below for the starch hybrid copolymers .
  • the starch hybrid copolymers are based on preferably 20 to 80% by weight, more preferably 25 to 70% by weight and most preferably 30 to 50% by weight of cold water-soluble starch, based on the dry weight of the starch hybrid copolymers .
  • the starch content of the starch hybrid copolymers can be determined in a conventional manner using NMR spectroscopy.
  • the fraction of the cold-water-soluble starch is preferably >50% by weight and particularly preferably >90% by weight, each based on the total weight of the total starch present.
  • the starch most preferably contained is exclusively cold-water-soluble starch.
  • the cold-water-soluble starch contained in the starch-hybrid copolymers is preferably present in amorphous form.
  • native starch that is not soluble in cold water is generally present in crystalline form (method of determination: X-ray diffractometry).
  • Cold-water-soluble starch is also commercially available, for example under the trade names ARIC 50.070 from Agrana, Agenamalt 20.225 or Agenamalt 20.226 from Agrana.
  • the starch hybrid copolymers can optionally be protective colloid-stabilized or preferably emulsifier-stabilized. In a preferred embodiment, the starch hybrid copolymers are not stabilized with protective colloids.
  • protective colloids are polyvinyl alcohols, polyvinyl acetals, polyvinylpyrrolidones, copolymers of (meth)acrylates with carboxyl-functional comonomer units, poly(meth)acrylamide, polyvinylsulfonic acids and their copolymers, melamine formaldehyde sulfonates, naphthalene formaldehyde sulfonates, styrene maleic acid and vinyl ether maleic acid copolymers.
  • Preferred protective colloids are partially hydrolyzed polyvinyl alcohols, preferably with a degree of hydrolysis of 80 to 95 mol%, in particular 85 to 92 mol% and preferably a Höppler viscose tat, in a 4% aqueous solution of 1 to 30 mPas, in particular 3 to 15 mPas (Hoppler method at 20 ° C, DIN 53015).
  • the protective colloids mentioned are accessible by means of methods known to those skilled in the art.
  • the proportion of protective colloid is preferably 0 to 30% by weight, particularly preferably 0.1 to 25% by weight and most preferably 0.5 to 20% by weight, based on the total weight of the starch hybrid copolymers.
  • the starch hybrid copolymers are generally not stabilized with starch.
  • the starch contained in the starch hybrid copolymers generally does not function as a protective colloid.
  • starch-stabilized polymers the starch and the polymers are generally only present in the form of conglomerates and/or admixtures.
  • starch-stabilized polymers the starch is essentially unattached to the polymers.
  • the hybrid starch copolymers are generally not starch stabilized polymers.
  • Anionic, cationic or nonionic emulsifiers can be included.
  • Anionic emulsifiers are preferred, and nonionic emulsifiers are particularly preferred.
  • anionic emulsifiers are alkyl sulfates, sulfonates or carboxylates with a chain length of 8 to 18 carbon atoms, alkyl or alkylaryl ether sulfates, sulfonates or carboxylates with 8 to 18 carbon atoms in the hydrophobic radical and up to 40 ethylene - or propylene oxide units, alkyl or alkylaryl sulfonates having 8 to 18 carbon atoms, esters and half esters of sulfosuccinic acid with monohydric alcohols or alkylphenols, or phosphates, ether phosphates, phosphonates and ether phosphonates and combinations thereof.
  • nonionic emulsifiers examples include alkyl polyglycol ethers or alkylaryl polyglycol ethers with 8 to 40 ethylene oxide units or ethylene oxide/propylene oxide block copolymers with 2 to 40 EO or PO units or generally EO-PO copolymers, and alkyl polyglycosides with 1 to 20 C -Atoms and ether alkyl polyglycosides with 2 to 40 EO or PO units or their.
  • the emulsifier content is preferably 0 to 15% by weight, particularly preferably 0.1 to 5% by weight and most preferably 0.5 to 3% by weight, based on the total weight of the hybrid starch copolymers .
  • the starch hybrid copolymers in the form of aqueous dispersions have a solids content of preferably 10 to 70% and more preferably 40 to 60%.
  • the Brookfield viscosity of the aqueous dispersions of the starch hybrid copolymers is preferably 50 to 3000 mPas, particularly preferably 100 to 1000 mPas (determined with a Brookfield viscometer at 23° C. and 20 rpm with a solids content of the dispersions of 50 %).
  • Aqueous dispersions of the starch hybrid copolymers preferably have lower viscosities than mere blends of corresponding amounts of starch and corresponding copolymers.
  • the starch hybrid copolymers have weight-average particle diameters Dw between preferably 100 and 10000 nm, more preferably 200 and 8000 nm and most preferably 300 to 6000 nm.
  • the parameters Dw and Dn or the particle size distribution are determined by means of laser light diffraction and laser light scattering using the starch hybrid copolymers with the LS13320 measuring device with the optical model PVAC.RF780D, a then PIDS, from Beckmann-Coulter and in compliance with the device manufacturer's instructions after sufficient dilution of the aqueous polymer dispersions with deionized water.
  • the cold-water-soluble starch is preferably attached to the polymeric units of the ethylenically unsaturated monomers via covalent bonds.
  • the connection can take place, for example, by grafting in the course of the radically initiated polymerization or by condensation or addition reaction of the functional groups of the functional monomer units.
  • the starch hybrid copolymers preferably do not have a core-shell structure.
  • the monomers are preferably copolymerized in a random manner.
  • Starch is preferably randomly incorporated into the starch hybrid copolymers.
  • Another subject of the invention are processes for the preparation of starch hybrid copolymers in the form of aqueous dispersions or water-redispersible powders by means of free-radically initiated polymerization, in particular emulsion polymerization, in an aqueous medium of ethylenically unsaturated monomers in the presence of starch and optionally subsequent drying , characterized in that > 20 wt.
  • % ethylene 0.1 to 10% by weight of one or more functional monomers and optionally one or more other ethylenically unsaturated monomers or b) styrene, >30% by weight of one or more (meth)acrylic acid esters, 0.1 to 10% by weight of one or more functional Monomers and optionally one or more other ethylenically unsaturated monomers are used, the functional monomers being ethylenically unsaturated and carrying one or more epoxy, silane and/or N-methylol groups, the percentages by weight being the same to the monomers based on the total weight of the monomers.
  • the temperature for the polymerization is preferably 40°C to 120°C, more preferably 60°C to 95°C.
  • the copolymerization of gaseous comonomers such as ethylene, 1,3-butadiene or vinyl chloride can also be carried out under pressure, generally between 5 bar and 100 bar.
  • Suitable radical initiators are common oil-soluble or water-soluble initiators.
  • oil-soluble initiators are oil-soluble peroxides such as t-butyl peroxy-2-ethylhexanoate, t-butyl peroxypivalate, t-butyl peroxyneodecanoate, dibenzoyl peroxide, t-amyl peroxypivalate, di-(2-ethylhexyl) peroxydicarbonate, 1,1-bis(t-butylperoxy) -3,3,5-trimethylcyclohexane, di-(4-t-butylcyclohexyl) peroxydicarbonate, dilauroyl peroxide, cumyl hydroperoxide, or oil-soluble azo initiators such as azobisisobutyronitrile or dimethyl 2,2-azobis(2-methylpropionate).
  • water-soluble initiators are peroxodisulfates, such as potassium peroxodisulfate, hydrogen peroxide, water-soluble hydroperoxides, such as tert-butyl hydroperoxide, manganese(III) salts or cerium(IV) salts.
  • the initiators are generally used in an amount of from 0.005 to 3.0% by weight, preferably from 0.01 to 1.5% by weight, based in each case on the total weight of the ethylenically unsaturated monomers.
  • the use of redox initiators is preferred.
  • Combinations of the initiators mentioned in combination with reducing agents are used as redox initiators.
  • Suitable reducing agents are sodium sulfite, iron(II) salts, sodium hydroxymethanesulfinate and ascorbic acid.
  • Be preferred redox initiators are cerium (IV) salts such as ammonium umcerium (IV) nitrate, manganese (III) salts or peroxodisulfates and combinations of these initiators.
  • the amount of reducing agent is preferably from 0.01 to 0.5% by weight, based on the total weight of the ethylenically unsaturated monomers.
  • the reaction mixture can be stabilized, for example, by means of protective colloids and/or preferably emulsifiers.
  • the polymerization can be carried out with all or some of the components of the reaction mixture being initially taken, or with some of the components and subsequent metering of all or some of the components of the reaction mixture, or by the metering process without being initially charged.
  • the procedure is preferably such that at least part, preferably all, of the starch is initially introduced, in particular in water. All or preferably some of the ethylenically unsaturated monomers and the initiators are initially taken, and any remaining amount of ethylenically unsaturated monomers and initiators is metered in. All or part of the functional monomers can be initially taken, for example.
  • the functional monomers are preferably metered in as a whole. When carrying out a batch process, the monomers and the starch as well as part of the initiator are initially taken in water and the remainder of the initiator is metered in or added intermittently.
  • post-polymerization can be carried out using known methods to remove residual monomer. Volatile residual monomers and other volatile constituents can also be removed by means of distillation or stripping processes, preferably under reduced pressure.
  • Aqueous dispersions of the starch hybrid copolymers can be converted into starch hybrid copolymers in the form of dissolved in water by drying dispersible powders are converted.
  • drying aids are generally added to the aqueous dispersions, preferably from 0.5 to 30% by weight, in particular from 5 to 20% by weight, based on the solids content of the aqueous dispersion.
  • the total amount of drying aid and protective colloid before the drying process is preferably 1 to 30% by weight, based on the solids content of the aqueous dispersion.
  • the aqueous dispersions can be dried, for example, by means of fluidized bed drying, freeze drying or, preferably, spray drying.
  • Spray drying can be carried out in customary spray drying systems, with atomization being able to take place using single-, two- or multi-component nozzles or with a rotating disk.
  • the exit temperature is generally chosen in the range from 45°C to 120°C, preferably 60°C to 90°C, depending on the plant, Tg of the starch hybrid copolymer and the desired degree of drying.
  • the viscosity of the food to be atomized is adjusted via the solids content in such a way that a value of ⁇ 500 mPas (Brookfield viscosity at 20 revolutions and 23° C.), preferably ⁇ 250 mPas, is obtained.
  • the solids content of the dispersion to be atomized is preferably 30 to 75% by weight and particularly preferably 50 to 60% by weight.
  • Antifoam is preferably added during atomization.
  • the powder obtained can be equipped, for example, with one or more antiblocking agents (anticaking agents).
  • antiblock agents are preferably not the aqueous starch-hybrid copolymer dis- perions, ie preferably not before drying, but preferably during or after drying, in particular during drying, is added to the spray drying system.
  • Preferred powders contain antiblocking agents, in particular 1 to 30% by weight, based on the total weight of polymeric components.
  • antiblocking agents are Ca or Mg carbonate, talc, gypsum, silicic acid, kaolins such as metakaolin, silicates, preferably with particle sizes in the range from 10 nm to 10 ⁇ m.
  • the starch hybrid copolymers are generally suitable as binders for coating materials or adhesives, especially for paints, fibers, textiles, leather, paper or carpets. Particular preference is given to using the starch hybrid copolymers as binders for binding fiber materials, in particular for the production of textile fabrics, such as nonwovens, knitted and woven goods, leather and furs, or carpets, or as binders for construction coatings, especially aqueous dispersion paints or powder paints.
  • starch hybrid copolymers are also suitable for use in construction chemical products. They can be used alone or in combination with conventional polymer dispersions or dispersion powders, optionally in conjunction with hydraulically setting binders such as cements (Portland, aluminate, trass, slag, magnesia, phosphate cement), gypsum and water glass for the production of leveling compounds, construction adhesives, plasters, fillers, joint mortars, sealing sludge, thermal insulation composite systems or paints, such as powder paints.
  • binders such as cements (Portland, aluminate, trass, slag, magnesia, phosphate cement), gypsum and water glass
  • leveling compounds construction adhesives, plasters, fillers, joint mortars, sealing sludge, thermal insulation composite systems or paints, such as powder paints.
  • construction adhesives tile adhesives or full heat protection adhesives are preferred areas of application. Preferred areas of application are leveling compounds, preferred leveling compounds are self-level
  • starch hybrid copolymers according to the invention lead to advantageous mechanical properties in applications shafts, especially after water storage.
  • textile fabrics bonded with hybrid starch copolymers have high adhesive tensile strengths, particularly high wet tensile strengths.
  • Corresponding paint applications are characterized by high abrasion resistance, in particular high wet abrasion resistance.
  • the starch hybrid copolymers according to the invention are advantageously storage-stable in the form of aqueous dispersions, powders which can be redispersed in water or corresponding aqueous redispersions, have no tendency to separate and make homogeneous compositions accessible.
  • Aerosol A102 ethoxylated half succinate, disodium salt
  • Melon 20 sodium alkyl benzene sulfonate
  • NMA-LF low formaldehyde N-methylolacrylamide (48% in water);
  • Silfoam SE2 silicone-based antifoam emulsion
  • Genapol PF 40 block copolymer of propylene oxide and ethylene oxide with 40% ethylene oxide
  • Genapol X150 isotridecyl alcohol ethoxylate with 15 mol ethylene oxide
  • Mersolate Mixture of sodium secondary alkyl sulfonates with an average chain length of 15 carbon atoms;
  • PVOH 25/140 polyvinyl alcohol, degree of hydrolysis 88%, Hoppler viscosity 25 mPas;
  • Geniosil GF 56 triethoxyvinylsilane
  • GMA glycidyl methacrylate
  • Foamaster 2315 Mineral oil based defoamer
  • Acticide MBS mixture of methylisothiazolinone and benzisothiazolinone
  • TBHP tert-butyl hydroperoxide
  • Bruggolite FF6 2-hydroxy-2-sulfinoacetic acid, disodium salt
  • ARIC 50.070 enzymatically modified potato starch (M w ⁇
  • Agenamalt 20.225 maltodextrin from potato starch (M w ⁇ 9730 g/mol) from Agrana, in powder form
  • Agenamalt 20.226 maltodextrin from potato starch (M w ⁇ 95000 g/mol) from Agrana, in powder form
  • NMA-containing starch hybrid copolymer with 20.2% starch NMA-containing starch hybrid copolymer with 20.2% starch:
  • the pH was adjusted to 4.0 and 1.20 g of ferrous ammonium sulfate was added. It was then evacuated and pressurized with nitrogen. 1397 g of vinyl acetate were added, the reactor was heated to 40° C. and 300 g of ethylene were injected. Then an aqueous tert-butyl hydroperoxide solution (3%) was started at a rate of 45.3 g/h and an aqueous sodium isoascorbate solution (5.7%) at a rate of 45.0 g/h.
  • the initiator rates were reduced (TBHP 16.6 g/h, sodium isoscorbate 16.4 g/h) and 195 g NMA-LF, dissolved in 132 g deionized water, metered in at a rate of 109 g/h within 180 min.
  • the internal temperature was raised from 55°C to 60°C at a rate of 0.25°C/min.
  • the metering of 246 g of vinyl acetate started at a rate of 123 g/h.
  • the initiator metering continued for a further 60 minutes.
  • the batch was then cooled to 30° C. and let down. 0.854 g of Silfoam SE2 were added, followed by
  • the pH was adjusted to 4.0 and 1.06 g of ferrous ammonium sulfate was added. It was then evacuated and pressurized with nitrogen. 1230 g of vinyl acetate were added, the reactor was heated to 40° C. and 265 g of ethylene were injected. Then an aqueous tert-butyl hydroperoxide solution (3%) was started at a rate of 40.0 g/h and an aqueous sodium isoascorbate solution (5.7%) at a rate of 39.7 g/h .
  • the initiator rates were reduced (TBHP 14.6 g/h, sodium isoscorbate 14.5 g/h) and 172 g NMA-LF, dissolved in 116 g deionized water, were added metered in at a rate of 96.0 g/h within 180 min.
  • the internal temperature was raised from 55°C to 60°C at a rate of 0.25°C/min.
  • the metering of 217 g of vinyl acetate started at a rate of 108.5 g/h.
  • the initiator metering continued for a further 60 minutes.
  • the batch was then cooled to 30° C. and let down. 0.752 g of Silfoam SE2 were added, followed by
  • NMA-containing starch hybrid copolymer with 45.6% starch NMA-containing starch hybrid copolymer with 45.6% starch:
  • the pH was adjusted to 4.0 and 0.814 g of ferrous ammonium sulfate was added. It was then evacuated and pressurized with nitrogen. 947 g of vinyl acetate were added, the reactor was heated to 40° C. and 204 g of ethylene were forced in. Then an aqueous tert-butyl hydroperoxide solution (3%) was started at a rate of 30.7 g/h and an aqueous sodium isoascorbate solution (5.7%) at a rate of 30.8 g/h .
  • the initiator rates were reduced (TBHP 11.2 g/h, sodium isoscorbate 11.1 g/h) and 132 g NMA-LF, dissolved in 89.5 g ionized water at a rate of 70.7 g/h within 180 min.
  • the internal temperature was raised from 55°C to 60°C at a rate of 0.25°C/min.
  • 60 minutes after the start of the reaction 167 g of vinyl acetate were metered in at a rate of 83.5 g/h.
  • the initiator metering continued for a further 60 minutes. The batch was then cooled to 30° C. and let down.
  • the aqueous template was adjusted to a pH of 4.0 and 5.18 g of iron(II) ammonium sulfate (1%) were added. It was then evacuated and pressurized with nitrogen. 171 g of vinyl acetate were added, the reactor was heated to 70° C. and
  • the pH was adjusted to 4.0 and 1.77 g of ferrous ammonium sulfate was added. It was then evacuated and pressurized with nitrogen. 2065 g of vinyl acetate were added, the reactor was heated to 40° C. and 444 g of ethylene were forced in. Then an aqueous tert-butyl hydroperoxide solution (3%) started at a rate of 67.3 g/h and an aqueous sodium isoascorbate solution (5.7%) at a rate of 67.3 g/h.
  • the initiator rates were reduced (TBHP 24.6 g/h, sodium isoscorbate 25.6 g/h) and 288 g NMA-LF, dissolved in 195 g deionized water, metered in at a rate of 161 g/h within 180 min.
  • the internal temperature was raised from 55°C to 60°C at a rate of 0.25°C/min.
  • 60 min after the start of the reaction 364 g of vinyl acetate were metered in at a rate of 182 g/h.
  • the initiator metering continued for a further 60 minutes. The batch was then cooled to 30° C.
  • the NMA-containing copolymer dispersion from VBsp. 1 was subsequently moved with 20.2% ARIC 50.070.
  • the NMA-containing copolymer dispersion from VBsp. 1 was subsequently moved with 29.7% ARIC 50.070.
  • the aqueous template was adjusted to a pH of 4.0 and 7.63 g of iron(II) ammonium sulfate (1%) were added. It was then evacuated and pressurized with nitrogen. 252 g of vinyl acetate were added, the reactor was heated to 70° C. and 120 g of ethylene were injected. The initiator metering was started: TBHP (10%) was metered in at 3.40 g/h, Bruggolit FF6 (5%) at 12.8 g/h. After the start of the reaction, recognizable from an increase in the internal temperature, the internal temperature was increased to 80.degree. The rates of initiator dosing were then increased (TBHP: 7.40 g/h; FF6: 27.7 g/h) and the following dosing started:
  • the paint formulations were based on the ingredients listed in Table 2.
  • the color formulations were mixed using a dissolver. At the beginning, water was presented. Dispersing assistants, defoamers, thickeners and sodium hydroxide solution were then added individually and the mixture was stirred at 300 to 400 rpm for 5 minutes in each case. The speed was then increased to 800 to 1000 rpm and the pigments, fillers and dispersion from the respective (comparative) example were added individually. Here, the amount of dispersion was adjusted to the corresponding solids content. Finally, the form tion at least 30 minutes at 800 to 1,000 rpm dispersed.
  • Viscosities of the paint formulations The Brookfield viscosities of the paint formulations were determined experimentally at 1 rpm, 10 rpm and 100 rpm one day after their preparation. The ICI viscosity was determined using a cone and plate viscometer at a shear rate of 10,000 s -1 . Table 3 gives the results for the paint formulations with the dispersions of Examples 4 to 6 and Comparative Examples 5 to 6.
  • the gloss values were measured in accordance with DIN EN 13300.
  • the paint formulations were applied to a white Leneta foil in a wet layer thickness of 150 ⁇ m and then stored for 24 hours in a standard climate (23 ⁇ 2 °C and 50 ⁇ 5 % relative humidity).
  • the gloss value was determined using a 3-angle gloss meter.
  • Test method according to DIN EN 13300.
  • the paint formulations were applied to a PVC foil in a wet layer thickness of 300 ⁇ m.
  • the first drying took place for three days in a standard climate (23 ⁇ 2 °C and 50 ⁇ 5% relative humidity).
  • the samples were then stored in the oven at 50°C for 24 hours and stress-relieved for a further 24 hours in a standard climate (23 ⁇ 2°C and 50 ⁇ 5% relative humidity).
  • the loss of layer thickness was determined after 200 or 40 wet abrasion cycles using an abrasive fleece.
  • an aqueous binder composition was used in an amount of preferably 1 to 50% by weight, more preferably 10 to 30% by weight and most preferably 15 to 25% by weight, based in each case on the total weight of the fibers.
  • the proportion of fibers was preferably 40 to 99% by weight, particularly preferably 60 to 90% by weight and most preferably 70 to 80% by weight, in each case based on the total weight of the textile fabric.
  • the item was then thermally fixed at ⁇ 220°C for ⁇ 5 min.
  • Dispersions of the starch hybrid copolymers of Examples 1 to 3 were compared with dispersions of the blends of Comparative Examples 2 to 4 with regard to their storage stability. For this purpose, the dispersions were tested at the times given in Table 6 with regard to storage stability and phase separation.
  • the nonwovens with the starch hybrid copolymers according to the invention were surprisingly soft and exhibited the desired elasticity (elongation).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The invention relates to starch hybrid copolymers in the form of aqueous dispersions or powders which can be redispersed in water. The starch hybrid copolymers can be obtained by means of a radically initiated polymerization in an aqueous medium of ethylenically unsaturated monomers in the presence of starch and if necessary a subsequent drying process. The invention is characterized in that ≥ 20 of the starch hybrid copolymers, based on the dry weight of the starch hybrid copolymers, is based on cold water-soluble starches, and the ethylenically unsaturated monomers comprise either a) one or more vinyl esters, 1 to 40 wt.% of ethylene, 0.1 to 10 wt.% of one or more functional monomers, and optionally one or more additional ethylenically unsaturated monomers or b) styrene, ≥ 30 wt.% of one or more (meth)acrylic acid esters, 0.1 to 10 wt.% of one or more functional monomers, and optionally one or more additional ethylenically unsaturated monomers, wherein the functional monomers are ethylenically unsaturated and have one or more epoxy, silane, and/or N-methylol groups, and the specified weight by percentage of the monomers is based on the total weight of the monomers.

Description

Stärke-Hybridcopolymere Starch Hybrid Copolymers
Die Erfindung betrifft Stärke-Hybridcopolymere in Form von wässrigen Dispersionen oder in Wasser redispergierbaren Pul vern, Verfahren zu deren Herstellung sowie deren Verwendung insbesondere in Beschichtungsmitteln, wie Farben und Putzen, oder zur Herstellung von Fasern, textilen Flächengebilden. The invention relates to starch hybrid copolymers in the form of aqueous dispersions or water-redispersible powders, processes for their production and their use, in particular in coating materials such as paints and plasters, or for the production of fibers and textile fabrics.
Aus ökologischen Gründen besteht zunehmend das Bestreben, pe- trochemische Polymere vermehrt durch natürliche, nachwachsende Rohstoffe, wie Stärke, zu substituieren. Die anwendungstechni- schen Eigenschaften der Anwendungsprodukte sollen dadurch mög lichst nicht beeinträchtigt werden, was mit bloßen physikali schen Abmischungen von Stärke und Polymeren in der Regel nicht erreicht wird. Auch mit Stärke-Hybridcopolymeren bereitet es Probleme, das geforderte Eigenschaftsprofil zu erzielen. Stär ke-Hybridcopolymere basieren auf Polymeren von ethylenisch un gesättigten Monomeren und Stärke, die beispielsweise über che mische Bindungen miteinander verknüpft oder auf sonstige Weise aneinandergebunden sein können. For ecological reasons, there is an increasing attempt to increasingly substitute petrochemical polymers with natural, renewable raw materials such as starch. The application properties of the application products should not be impaired as far as possible, which is usually not achieved with mere physical mixtures of starch and polymers. Achieving the required property profile also causes problems with starch hybrid copolymers. Stär ke hybrid copolymers are based on polymers of ethylenically unsaturated monomers and starch, which can be linked to one another, for example via chemical bonds, or bonded to one another in some other way.
Eine besondere Herausforderung stellt es dar, mit Stärke ent haltenden Produkten die erforderlichen mechanischen Festigkei ten zu erreichen, insbesondere auch nach Wasserlagerung der An wendungsprodukte, was gerade auch im Falle von Polymer gebunde nen textilen Flächengebilden, Farben oder Putzen gefordert wird. So kommt es bei Beschichtungen, wie Farben, auf hohe Scheuerfestigkeiten an, wie Nassabriebsfestigkeiten, und bei textilen Flächengebilden sind hohe HaftZugfestigkeiten gefragt, insbesondere hohe Nasszugfestigkeiten oder Waschpermanenzen. A particular challenge is to achieve the required mechanical strength with products containing starch, especially after the application products have been stored in water, which is also required in the case of polymer-bound textile fabrics, paints or plasters. Coatings such as paints require high abrasion resistance, such as wet abrasion resistance, and textile fabrics require high adhesive tensile strengths, in particular high wet tensile strengths or wash permanences.
Ein weiteres Problem ergibt sich aus dem Umstand, dass Stärke und petrochemische Polymere chemisch ganz anders aufgebaut sind. Deswegen kann es bei Substitution von petrochemischen Po lymeren in etablierten Formulierungen durch Stärke zu Unver- träglichkeiten und zu Separation der unterschiedlichen Stoffe kommen, was das Eigenschaftsprofil der Anwendungsprodukte mas siv beeinträchtigt. Stärke muss also mit den weiteren Formulie rungsbestandteilen stabile Mischungen bilden. Another problem arises from the fact that starch and petrochemical polymers have very different chemical structures. For this reason, substituting petrochemical polymers in established formulations with starch can lead to tolerability and separation of the different substances, which massively impairs the property profile of the application products. Starch must therefore form stable mixtures with the other formulation components.
Verschiedene Ansätze zur Herstellung von Stärke-Hybridcopoly- meren sind bereits bekannt. So beschreibt die KR101473916B1 Stärke-basierte Polymerpartikel mit Kern-Schale-Struktur, die erhalten werden, indem durch Polymerisation von harten und wei chen Monomeren in Gegenwart von Stärkeabbauprodukten zunächst der Kern gebildet wird, auf den anschließend als Schale harte, weiche sowie Silan-Monomere aufpolymerisiert werden. Homopoly mere der weichen Monomere der KR101473916B1 haben eine Glas übergangstemperatur von 10°C bis -80°C. Ethylen-Homopolymere haben dagegen eine Glasübergangstemperatur von -85°C. Various approaches to the production of starch hybrid copolymers are already known. KR101473916B1 describes starch-based polymer particles with a core-shell structure, which are obtained by first forming the core through the polymerization of hard and soft monomers in the presence of starch degradation products, on which hard, soft and silane monomers are then applied as a shell be polymerized. Homopolymers of the soft monomers of KR101473916B1 have a glass transition temperature of 10°C to -80°C. In contrast, ethylene homopolymers have a glass transition temperature of -85°C.
Die Pfropfpolymere der US4301017 werden hergestellt durch Poly merisation von Vinylmonomeren in Gegenwart von derivatisierter, wasserunlöslicher Stärke. In EP1082370B1 wurde Stärke bei 82°C gelöst, und anschließend wurden in Gegenwart dieser Stärkelö sung Monomere nach Emulsionspolymerisationverfahren polymeri siert. Die W015160794A1 beschreibt biobasierte Nanopartikel von Stärke und Vinylmonomeren. In W011008272A1 wurde hydrophob mo difizierte Stärke hergestellt durch Umsetzen von wasserlösli chen Polysacchariden mit hydrophilen Monomeren sowie hydropho ben Monomeren und anschließender Polymerisation mit einer wei teren Monomermischung. Die WO2015155159 lehrt eine wässrige Emulsionspolymerisation von 70 bis 95 Gew.-% Vinylacetat und 5 bis 25 Gew.-% (Meth)Acrylsäureester sowie bestimmten Mengen an bestimmten weiteren Monomeren in Gegenwart von Stärke. The graft polymers of US4301017 are made by polymerization of vinyl monomers in the presence of derivatized, water-insoluble starch. In EP1082370B1, starch was dissolved at 82° C., and then monomers were polymerized by emulsion polymerization methods in the presence of this starch solution. WO15160794A1 describes bio-based nanoparticles of starch and vinyl monomers. In WO11008272A1, hydrophobically modified starch was produced by reacting water-soluble polysaccharides with hydrophilic monomers and hydrophobic monomers and subsequent polymerization with a further monomer mixture. WO2015155159 teaches an aqueous emulsion polymerization of 70 to 95% by weight of vinyl acetate and 5 to 25% by weight of (meth)acrylic acid ester and specific amounts of specific other monomers in the presence of starch.
Verschiedentlich ist Stärke auch als Schutzkolloid für Polymere empfohlen worden, beispielsweise in der US3632535. Die US3769248 beschreibt Vinylacetatpolymerdispersionen, die mit bis zu 4 Gew.-% Stärke als Schutzkolloid stabilisiert sind. Die US4532295 lehrt Emulsionspolymerisationen von ethylenisch unge sättigten Monomeren in Gegenwart von 1 bis 5 Gew.-%, bezogen auf die Monomere, an Cyanoalkyl-, Hydroxyalkyl- oder Carboxyal- kyl-Stärke als Schutzkolloid. Für US4532295 ist es wesentlich, bei der Polymerisation auf Emulgatoren zu verzichten. Schutz kolloide haben bekanntermaßen die Funktion, Polymere zu stabi lisieren. Beispielsweise können wässrige Dispersionen von was serunlöslichen Polymeren durch Schutzkolloide stabilisiert wer den. Mit Schutzkolloiden können wasserunlösliche Polymere auch in Wasser redispergierbare Pulver überführt werden. Die wasser unlöslichen Polymere und das Schutzkolloid Stärke liegen dabei als separate Polymere vor. Zusammensetzungen, in denen Stärke und sonstige Polymere nebeneinander vorliegen, werden auch als physikalische Mischungen bezeichnet. Variously, starch has also been recommended as a protective colloid for polymers, for example in US3632535. US3769248 describes vinyl acetate polymer dispersions stabilized with up to 4% by weight of starch as a protective colloid. the US4532295 teaches emulsion polymerization of ethylenically unsaturated monomers in the presence of 1 to 5% by weight, based on the monomers, of cyanoalkyl, hydroxyalkyl or carboxyalkyl starch as a protective colloid. For US4532295 it is essential not to use emulsifiers during the polymerization. Protective colloids are known to have the function of stabilizing polymers. For example, aqueous dispersions of water-insoluble polymers can be stabilized by protective colloids. With protective colloids, water-insoluble polymers can also be converted into water-redispersible powders. The water-insoluble polymers and the protective colloid starch are present as separate polymers. Compositions in which starch and other polymers coexist are also referred to as physical mixtures.
Vor diesem Hintergrund bestand die Aufgabe, Bindemittel auf Ba sis von Stärke bereitzustellen, mit denen textile Flächengebil de mit hohen HaftZugfestigkeiten und Beschichtungen, insbeson dere Farben, mit hohen Nassabriebsfestigkeiten zugänglich wer den. Against this background, the task was to provide binders based on starch, with which textile fabrics with high adhesive tensile strengths and coatings, especially paints, with high wet abrasion resistance are accessible.
Überraschenderweise wurde die Aufgabe mit Stärke-Hybridcopo- lymeren gelöst, die auf kaltwasserlöslicher Stärke und defi nierten Mengen an bestimmten ethylenisch ungesättigten Monome ren basieren. Surprisingly, the problem was solved with starch hybrid copolymers based on cold-water-soluble starch and defined amounts of certain ethylenically unsaturated monomers.
Ein Gegenstand der Erfindung sind Stärke-Hybridcopolymere in Form von wässrigen Dispersionen oder in Wasser redispergierba- ren Pulvern erhältlich durch radikalisch initiierte Polymerisa tion in wässrigem Medium von ethylenisch ungesättigten Monome ren in Gegenwart von Stärke und gegebenenfalls anschließender Trocknung, dadurch gekennzeichnet, dass die Stärke-Hybridcopolymere zu > 20 Gew.-%, bezogen auf das Trockengewicht der Stärke-Hybridcopolymere, auf kaltwasserlös licher Stärke basieren und die ethylenisch ungesättigten Monomere entweder a) ein oder mehrere Vinylester, 1 bis 40 Gew.-% Ethylen, 0,1 bis 10 Gew.-% an einem oder mehreren funktionellen Monomeren und gegebenenfalls ein oder mehrere weitere ethylenisch unge sättigte Monomere oder b) Styrol, > 30 Gew.-% an einem oder mehreren (Meth)acrylsäure- estern, 0,1 bis 10 Gew.-% an einem oder mehreren funktionellen Monomeren und gegebenenfalls ein oder mehrere weitere ethyle nisch ungesättigte Monomere umfassen, wobei die funktionellen Monomeren ethylenisch ungesättigt sind und eine oder mehrere Epoxy-, Silan- und/oder N-Methylol- Gruppen tragen, wobei sich die Gew.-%-Angaben zu den Monomeren auf das Gesamt gewicht der Monomere beziehen. The invention relates to starch hybrid copolymers in the form of aqueous dispersions or water-redispersible powders obtainable by free-radically initiated polymerization in an aqueous medium of ethylenically unsaturated monomers in the presence of starch and optionally subsequent drying, characterized in that the starch Hybrid copolymers to> 20% by weight, based on the dry weight of the starch hybrid copolymers, based on cold-water-soluble starch and the ethylenically unsaturated monomers are either a) one or more vinyl esters, 1 to 40% by weight of ethylene, 0.1 to 10% by weight of one or more functional monomers and optionally one or more other ethylenically unsaturated monomers or b) styrene ,> 30% by weight of one or more (meth)acrylic acid esters, 0.1 to 10% by weight of one or more functional monomers and optionally one or more other ethylenically unsaturated monomers, the functional monomers being ethylenically are unsaturated and carry one or more epoxy, silane and/or N-methylol groups, the percentages by weight of the monomers being based on the total weight of the monomers.
Beispiele für Epoxy-Gruppen tragende, ethylenisch ungesättigte Monomere sind Glycidylacrylat und Glycidylmethacrylat. Examples of ethylenically unsaturated monomers bearing epoxy groups are glycidyl acrylate and glycidyl methacrylate.
Beispiele für N-Methylol-Gruppen tragende, ethylenisch ungesät tigte Monomere sind N-Alkylol-funktionelle Comonomere mit Ci- bis C4-Alkylol-Rest, insbesondere N-Methylol-Rest, wie N-Methy- lolacrylamid (NMA), N-Methylolmethacrylamid, N-Methylol- allylcarbamat, Ci- bis C4-Alkylether von N-Methylolacrylamid, N- Methylolmethacrylamid und N-Methylolallylcarbamat, beispiels weise deren Isobutoxyether, sowie Ci- bis C4-Alkylester des N- Methylolacrylamids, des N-Methylolmethacrylamids und des N- Methylolallylcarbamats . Besonders bevorzugt sind N-Methylol acrylamid, N-Methylolmethacrylamid, N-Methylolallylcarbamat,Examples of ethylenically unsaturated monomers bearing N-methylol groups are N-alkylol-functional comonomers with C 1 -C 4 -alkylol radicals, in particular N-methylol radicals, such as N-methylolacrylamide (NMA), N-methylolmethacrylamide , N-methylol allyl carbamate, C 1 to C 4 alkyl ethers of N-methylolacrylamide, N- methylol methacrylamide and N-methylol allyl carbamate, for example their isobutoxy ethers, and C 4 to C 4 alkyl esters of N-methylolacrylamide, N-methylol methacrylamide and N - Methylolallylcarbamate. Particularly preferred are N-methylol acrylamide, N-methylol methacrylamide, N-methylol allyl carbamate,
Ci- bis C4-Alkylether von N-Methylolacrylamid wie der Isobutoxy ether. Ci to C4 alkyl ethers of N-methylolacrylamide such as the isobutoxy ether.
Silan-Gruppen tragende, ethylenisch ungesättigte Monomere um fassen beispielsweise (Meth)acryloxypropyltri(alkoxy)silane oder (Meth)acryloxypropyldialkoxymethylsilane, Vinyltrialkoxy- silane oder Vinylmethyldialkoxysilane, wobei als Alkoxygruppen beispielsweise Methoxy-, Ethoxy-, Propoxy-, Butoxy-, Acetoxy-, und Ethoxypropylenglykolether-Reste enthalten sein können. Be vorzugte ethylenisch ungesättigte Silane sind Vinyltrimethoxy- silan, Vinylmethyldimethoxysilan, Vinyltriethoxysilan, Vinylme- thyldiethoxysilan, Vinyltripropoxysilan, Vinyltriisopropoxy- silan, Vinyltris-(1-methoxy)-isopropoxysilan, Vinyltributoxy- silan, Vinyltriacetoxysilan, 3-Methacryloxypropyltrimethoxy- silan, 3-Methacryloxypropylmethyldimethoxysilan, Methacryl- oxymethyltrimethoxysilan, 3-Methacryloxypropyl-tris(2-meth- oxyethoxy)silan, Vinyltrichlorsilan, Vinylmethyldichlorsilan, Vinyltris- (2-methoxyethoxy)silan, Trisacetoxyvinylsilan, Al- lylvinyltrimethoxysilan, Allyltriacetoxysilan, Vinyldimethylme- thoxysilan, Vinyldimethylethoxysilan, Vinylmethyldiacetoxy- silan, Vinyldimethylacetoxysilan, Vinylisobutyldimethoxysilan, Vinyltriisopropyloxysilan, Vinylltributoxysilan, Vinyltrihexy- loxysilan, Vinylmethoxydihexyloxysilan, Vinyltrioctyloxysilan, Vinyldimethoxyoctyloxysilan, Vinylmethoxydioctyloxysilan, Vi- nylmethoxydilauryloxysilan, Vinyldimethoxylauryloxysilan sowie auch Polyethylenglykol-modifizierte Silane. Besonders bevorzug te ethylenisch ungesättigte Silane sind Vinyltrimethoxysilan, Vinylmethyldimethoxysilan, Vinyltriethoxysilan, Vinylmethyl- diethoxysilan, Vinyltris-(1-methoxy)-isopropoxysilan, Methacry- loxypropyl-tris (2-methoxyethoxy)silan, 3-Methacryloxypropyltri- methoxysilan, 3-Methacryloxypropylmethyldimethoxysilan und Me- thacryloxymethyltrimethoxysilan . Ethylenically unsaturated monomers bearing silane groups include, for example, (meth)acryloxypropyltri(alkoxy)silanes or (meth)acryloxypropyldialkoxymethylsilanes, vinyltrialkoxysilanes or vinylmethyldialkoxysilanes, with alkoxy groups being for example methoxy, ethoxy, propoxy, butoxy, acetoxy and ethoxypropylene glycol ether radicals may be present. Preferred ethylenically unsaturated silanes are vinyltrimethoxysilane, vinylmethyldimethoxysilane, vinyltriethoxysilane, vinylmethyldiethoxysilane, vinyltripropoxysilane, vinyltriisopropoxysilane, vinyltris-(1-methoxy)isopropoxysilane, vinyltributoxysilane, vinyltriacetoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, Methacryloxymethyltrimethoxysilane, 3-methacryloxypropyl-tris(2-methoxyethoxy)silane, vinyltrichlorosilane, vinylmethyldichlorosilane, vinyltris-(2-methoxyethoxy)silane, trisacetoxyvinylsilane, allylvinyltrimethoxysilane, allyltriacetoxysilane, vinyldimethylmethoxysilane, vinyldimethylethoxysilane, vinylmethyldiacetoxysilane, vinyldimethylacetoxysilane , vinylisobutyldimethoxysilane, vinyltriisopropyloxysilane, vinylltributoxysilane, vinyltrihexyloxysilane, vinylmethoxydihexyloxysilane, vinyltrioctyloxysilane, vinyldimethoxyoctyloxysilane, vinylmethoxydioctyloxysilane, vinylmethoxydilauryloxysilane, vinyldimethoxylauryloxysilane as well Polyethylene Glycol Modified Silanes. Particularly preferred ethylenically unsaturated silanes are vinyltrimethoxysilane, vinylmethyldimethoxysilane, vinyltriethoxysilane, vinylmethyldiethoxysilane, vinyltris-(1-methoxy)isopropoxysilane, methacryloxypropyltris(2-methoxyethoxy)silane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane and Me - thacryloxymethyltrimethoxysilane.
Bevorzugt sind auch Stärke-Hybridcopolymere, die Einheiten von Epoxy-Gruppen tragenden, ethylenisch ungesättigten Monomeren und zudem Silan-Gruppen tragenden, ethylenisch ungesättigten Monomeren enthalten. Also preferred are hybrid starch copolymers which contain units of ethylenically unsaturated monomers bearing epoxy groups and, in addition, ethylenically unsaturated monomers bearing silane groups.
Der Anteil der funktionellen Monomere beträgt 0,1 bis 10 Gew.-%, bevorzugt 0,2 bis 9 Gew.-% und am meisten bevorzugt 0,5 bis 7 Gew.-%, bezogen auf das Gesamtgewicht der ethylenisch un gesättigten Monomere. Der Anteil der N-Methylol-Gruppen tragenden, ethylenisch unge sättigten Monomere beträgt vorzugsweise 0,1 bis 10 Gew.-%, be sonders bevorzugt 1 bis 9 Gew.-% und am meisten bevorzugt 3 bis 7 Gew.-%, bezogen auf das Gesamtgewicht der ethylenisch unge sättigten Monomere. The proportion of the functional monomers is 0.1 to 10% by weight, preferably 0.2 to 9% by weight and most preferably 0.5 to 7% by weight, based on the total weight of the ethylenically unsaturated monomers. The proportion of ethylenically unsaturated monomers bearing N-methylol groups is preferably 0.1 to 10% by weight, particularly preferably 1 to 9% by weight and most preferably 3 to 7% by weight, based on the total weight of ethylenically unsaturated monomers.
Der Anteil der Epoxy-Gruppen tragenden, ethylenisch ungesättig ten Monomere beträgt vorzugsweise 0,1 bis 5 Gew.-%, besonders bevorzugt 0,2 bis 2 Gew.-% und am meisten bevorzugt 0,3 bis 1 Gew.-%, bezogen auf das Gesamtgewicht der ethylenisch ungesät tigten Monomere. The proportion of the epoxy-bearing, ethylenically unsaturated monomers is preferably 0.1 to 5% by weight, particularly preferably 0.2 to 2% by weight and most preferably 0.3 to 1% by weight, based based on the total weight of the ethylenically unsaturated monomers.
Der Anteil der Silan-Gruppen tragenden, ethylenisch ungesättig ten Monomere beträgt vorzugsweise 0,05 bis 3 Gew.-%, besonders bevorzugt 0,1 bis 1 Gew.-% und am meisten bevorzugt 0,2 bis 0,5 Gew.-%, bezogen auf das Gesamtgewicht der ethylenisch ungesät tigten Monomere. The proportion of ethylenically unsaturated monomers bearing silane groups is preferably 0.05 to 3% by weight, particularly preferably 0.1 to 1% by weight and most preferably 0.2 to 0.5% by weight. , based on the total weight of the ethylenically unsaturated monomers.
Die insgesamte Menge an Epoxy-Gruppen tragenden, ethylenisch ungesättigten Monomere und Silan-Gruppen tragenden, ethylenisch ungesättigten Monomere beträgt vorzugsweise 0,15 bis 8 Gew.-%, besonders bevorzugt 0,3 bis 3 Gew.-% und am meisten bevorzugt 0,5 bis 1,5 Gew.-%, bezogen auf das Gesamtgewicht der ethyle nisch ungesättigten Monomere. The total amount of ethylenically unsaturated monomers bearing epoxy groups and ethylenically unsaturated monomers bearing silane groups is preferably 0.15 to 8% by weight, more preferably 0.3 to 3% by weight and most preferably 0. 5 to 1.5% by weight, based on the total weight of the ethylenically unsaturated monomers.
In der Ausführungsform a) der vorliegenden Erfindung umfassen die ethylenisch ungesättigten Monomere ein oder mehrere Vi nylester, 1 bis 40 Gew.-% Ethylen, 0,1 bis 10 Gew.-% an einem oder mehreren funktionellen Monomeren und gegebenenfalls ein oder mehrere weitere ethylenisch ungesättigte Monomere. Die weiteren ethylenisch ungesättigten Monomere sind hierbei allge mein von Vinylestern, Ethylen und funktionellen Monomeren ver schieden. Solche Stärke-Hybridcopolymere a) werden im Folgenden auch als Stärke-Vinylester-Ethylen-Hybridcopolymere a) bezeich net. In embodiment a) of the present invention, the ethylenically unsaturated monomers comprise one or more vinyl esters, 1 to 40% by weight ethylene, 0.1 to 10% by weight of one or more functional monomers and optionally one or more further ethylenic unsaturated monomers. The other ethylenically unsaturated monomers here are generally different from vinyl esters, ethylene and functional monomers. Such starch hybrid copolymers a) are described below also referred to as starch-vinyl ester-ethylene hybrid copolymers a).
In der alternativen Ausführungsform b) der vorliegenden Erfin dung umfassen die ethylenisch ungesättigten Monomere Styrol, > 30 Gew.-% an einem oder mehreren (Meth)acrylsäureestern, 0,1 bis 10 Gew.-% an einem oder mehreren funktionellen Monomeren und gegebenenfalls ein oder mehrere weitere ethylenisch unge sättigte Monomere. Die weiteren ethylenisch ungesättigten Mono mere sind hierbei allgemein von Styrol, (Meth)acrylsäureestern und den funktionellen Monomeren verschieden. Solche Stärke- Hybridcopolymere b) werden im Folgenden auch als Stärke-Styrol- (Meth)acrylsäureester-Hybridcopolymere b) bezeichnet. In alternative embodiment b) of the present invention, the ethylenically unsaturated monomers comprise styrene, >30% by weight of one or more (meth)acrylic acid esters, 0.1 to 10% by weight of one or more functional monomers and optionally a or more other ethylenically unsaturated monomers. The other ethylenically unsaturated mono mers are generally different from styrene, (meth)acrylic esters and the functional monomers. Such starch hybrid copolymers b) are also referred to below as starch-styrene-(meth)acrylic acid ester hybrid copolymers b).
Beispiele für Vinylester sind Vinylester von unverzweigten oder verzweigten Alkylcarbonsäuren mit 1 bis 18 C-Atomen, wie Vinyl acetat, Vinylpropionat, Vinylbutyrat, Vinyl-2-ethylhexanoat, Vinyllaurat, 1-Methylvinylacetat, Vinylpivalat und Vinylester von a-verzweigten Monocarbonsäuren mit 5 bis 15 C-Atomen, bei spielsweise VeoVa9^·oder VeoValO^ (Handelsnamen der Firma Shell). Bevorzugt ist Vinylacetat. Examples of vinyl esters are vinyl esters of unbranched or branched alkyl carboxylic acids having 1 to 18 carbon atoms, such as vinyl acetate, vinyl propionate, vinyl butyrate, vinyl 2-ethylhexanoate, vinyl laurate, 1-methyl vinyl acetate, vinyl pivalate and vinyl esters of a-branched monocarboxylic acids having 5 to 15 C atoms, for example VeoVa9^ or VeoValO^ (trade name of Shell). Vinyl acetate is preferred.
Bevorzugte Stärke-Vinylester-Ethylen-Hybridcopolymere a) basie ren zu vorzugsweise 50 bis 98 Gew.-%, besonders bevorzugt 60 bis 95 Gew.-% und am meisten bevorzugt 75 bis 90 Gew.-% auf Vi nylestern, bezogen auf das Gesamtgewicht der Monomere. Preferred starch-vinyl ester-ethylene hybrid copolymers a) are based to an extent of preferably 50 to 98% by weight, more preferably 60 to 95% by weight and most preferably 75 to 90% by weight of vinyl esters, based on the total weight the monomers.
Bevorzugte Stärke-Vinylester-Ethylen-Hybridcopolymere a) basie ren zu vorzugsweise 2 bis 30 Gew.-%, besonders bevorzugt 5 bis 20 Gew.-% und am meisten bevorzugt 9 bis 17 Gew.-% auf Ethylen, bezogen auf das Gesamtgewicht der Monomere. Preferred starch-vinyl ester-ethylene hybrid copolymers a) are based to an extent of preferably 2 to 30% by weight, more preferably 5 to 20% by weight and most preferably 9 to 17% by weight of ethylene, based on the total weight of the monomers.
Beispiele für (Meth)acrylsäureester sind Acrylsäureester oder Methacrylsäureester von verzweigten oder unverzweigten Alkoho len mit 1 bis 15 C-Atomen. Bevorzugte Methacrylsäureester oder Acrylsäureester sind Methylacrylat, Methylmethacrylat, Ethylac- rylat, Ethylmethacrylat, Propylacrylat, Propylmethacrylat, n- Butylacrylat, n-Butylmethacrylat, t-Butylacrylat, t-Butyl- methacrylat, 2-Ethylhexylacrylat, Norbornylacrylat. Besonders bevorzugt sind Methylacrylat, Methylmethacrylat, n-Butylacry- lat, 2-Ethylhexylacrylat und Norbornylacrylat. Examples of (meth)acrylic esters are acrylic esters or methacrylic esters of branched or unbranched alcohols having 1 to 15 carbon atoms. Preferred methacrylic acid esters or Acrylic acid esters are methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, propyl acrylate, propyl methacrylate, n-butyl acrylate, n-butyl methacrylate, t-butyl acrylate, t-butyl methacrylate, 2-ethylhexyl acrylate, norbornyl acrylate. Methyl acrylate, methyl methacrylate, n-butyl acrylate, 2-ethylhexyl acrylate and norbornyl acrylate are particularly preferred.
Bevorzugte Stärke-Styrol-(Meth)acrylsäureester-Hybridcopolymere b) basieren zu > 30 Gew.-%, vorzugsweise 31 bis 80 Gew.-%, be sonders bevorzugt 35 bis 64 Gew.-% und am meisten bevorzugt 40 bis 55 Gew.-% auf (Meth)acrylsäureestern, bezogen auf das Ge samtgewicht der Monomere. Preferred starch-styrene-(meth)acrylic acid ester hybrid copolymers b) are based to >30% by weight, preferably 31 to 80% by weight, particularly preferably 35 to 64% by weight and most preferably 40 to 55% by weight. -% on (meth)acrylic acid esters, based on the total weight of the monomers.
Bevorzugte Stärke-Styrol-(Meth)acrylsäureester-Hybridcopolymere b) basieren zu vorzugsweise 31 bis 69 Gew.-%, besonders bevor zugt 35 bis 64 Gew.-% und am meisten bevorzugt 40 bis 55 Gew.-% auf Styrol, bezogen auf das Gesamtgewicht der Monomere. Preferred starch-styrene-(meth)acrylic acid ester hybrid copolymers b) are based to an extent of preferably 31 to 69% by weight, particularly preferably 35 to 64% by weight and most preferably 40 to 55% by weight, based on styrene the total weight of the monomers.
Gegebenenfalls basieren die Stärke-Vinylester-Ethylen-Hybrid- copolymere a) zusätzlich auf einem oder mehreren weiteren ethy- lenisch ungesättigten Monomeren ausgewählt aus der Gruppe um fassend Acrylsäureester oder Methacrylsäureester von verzweig ten oder unverzweigten Alkoholen mit 1 bis 15 C-Atomen, Diene, Propen, Vinylaromaten und Vinylhalogenide. Bevorzugt sind n-Bu- tylacrylat, n-Butylmethacrylat, t-Butylacrylat, t-Butyl- methacrylat und Vinylchlorid. Auf solchen weiteren ethylenisch ungesättigten Monomeren basieren die Stärke-Vinylester-Ethylen- Hybridcopolymere a) zu vorzugsweise 0 bis 20 Gew.-%, besonders bevorzugt 0,1 bis 15 Gew.-% und am meisten bevorzugt 5 bis 10 Gew.-%, bezogen auf das Gesamtgewicht der Monomere. If appropriate, the starch-vinyl ester-ethylene hybrid copolymers a) are additionally based on one or more other ethylenically unsaturated monomers selected from the group comprising acrylic acid esters or methacrylic acid esters of branched or unbranched alcohols having 1 to 15 carbon atoms, dienes, Propene, vinyl aromatics and vinyl halides. n-Butyl acrylate, n-butyl methacrylate, t-butyl acrylate, t-butyl methacrylate and vinyl chloride are preferred. The starch-vinyl ester-ethylene hybrid copolymers are based on such other ethylenically unsaturated monomers a) to an extent of preferably 0 to 20% by weight, particularly preferably 0.1 to 15% by weight and most preferably 5 to 10% by weight, based on the total weight of the monomers.
Gegebenenfalls basieren die Stärke-Styrol-(Meth)acrylsäure- ester-Hybridcopolymere b) zusätzlich auf einem oder mehreren weiteren ethylenisch ungesättigten Monomeren ausgewählt aus der Gruppe umfassend Vinylester, Diene, Olefine, Vinyltoluol und Vinylhalogenide. Bevorzugt sind hierbei Olefine. Auf solchen weiteren ethylenisch ungesättigten Monomeren basieren die Stär ke-Styrol- (Meth)acrylsäureester-Hybridcopolymere b) zu vorzugs weise 0 bis 20 Gew.-%, besonders bevorzugt 0,1 bis 15 Gew.-% und am meisten bevorzugt 4 bis 10 Gew.-%, bezogen auf das Ge samtgewicht der Monomere. If appropriate, the starch-styrene-(meth)acrylic acid ester hybrid copolymers b) are additionally based on one or more other ethylenically unsaturated monomers selected from the group consisting of vinyl esters, dienes, olefins, and vinyl toluene vinyl halides. Olefins are preferred here. The starch-styrene (meth)acrylic acid ester hybrid copolymers b) are based on such other ethylenically unsaturated monomers, preferably in an amount of from 0 to 20% by weight, particularly preferably from 0.1 to 15% by weight and most preferably from 4 to 10% % by weight based on the total weight of the monomers.
Geeignete Diene sind beispielsweise 1,3-Butadien oder Isopren. Beispiele für Olefine sind Ethen oder Propen. Als Vinylaromaten können beispielsweise Styrol oder Vinyltoluol copolymerisiert werden. Als Vinylhalogenide ist Vinylchlorid bevorzugt. Examples of suitable dienes are 1,3-butadiene or isoprene. Examples of olefins are ethene or propene. Styrene or vinyl toluene, for example, can be copolymerized as vinyl aromatics. Vinyl chloride is preferred as the vinyl halide.
Gegebenenfalls können die Stärke-Hybridcopolymere noch auf ei nem oder mehreren Hilfsmonomeren basieren. Bevorzugt sind 0 bis 20 Gew.-%, besonders bevorzugt 0,5 bis 10 Gew.-% Hilfsmonomere, bezogen auf das Gesamtgewicht der Monomere, copolymerisiert. Beispiele für Hilfsmonomere sind ethylenisch ungesättigte Mono- und Dicarbonsäuren, vorzugsweise Acrylsäure, Methacrylsäure, Crotonsäure, Fumarsäure und Maleinsäure; ethylenisch ungesät tigte Anhydride, vorzugsweise Maleinsäureanhydrid; Acrylamid; ethylenisch ungesättigte Carbonsäurenitrile, vorzugsweise Ac rylnitril; Mono- und Diester der Fumarsäure und Maleinsäure wie die Diethyl- und Diisopropylester; ethylenisch ungesättigte Sulfonsäuren bzw. deren Salze, vorzugsweise Vinylsulfonsäure, 2-Acrylamido-2-methyl-propansulfonsäure . Weitere Beispiele sind vorvernetzende Comonomere wie mehrfach ethylenisch ungesättigte Comonomere, beispielsweise Diallylphthalat, Divinyladipat, Dia- llylmaleat, Allylmethacrylat oder Triallylcyanurat, oder nach vernetzende Comonomere, beispielsweise Acrylamidoglykolsäure (AGA), Methylacrylamidoglykolsäuremethylester (MAGME). Genannt seien auch Monomere mit Hydroxy- oder CO-Gruppen, beispielswei se Methacrylsäure- und Acrylsäurehydroxyalkylester wie Hydroxy- ethyl-, Hydroxypropyl- oder Hydroxybutylacrylat oder -methacry- lat sowie Verbindungen wie Diacetonacrylamid und Acetylacetoxy- ethylacrylat oder -methacrylat. Bevorzugte Hilfsmonomere sind ethylenisch ungesättigte Mono- und Dicarbonsäuren oder deren Anhydride und ethylenisch unge sättigte Sulfonsäuren oder deren Salze. Optionally, the starch hybrid copolymers can also be based on one or more auxiliary monomers. Preference is given to 0 to 20% by weight, particularly preferably 0.5 to 10% by weight, of auxiliary monomers, based on the total weight of the monomers, being copolymerized. Examples of auxiliary monomers are ethylenically unsaturated mono- and dicarboxylic acids, preferably acrylic acid, methacrylic acid, crotonic acid, fumaric acid and maleic acid; ethylenically unsaturated anhydrides, preferably maleic anhydride; acrylamide; ethylenically unsaturated carbonitriles, preferably acrylonitrile; mono- and diesters of fumaric acid and maleic acid such as the diethyl and diisopropyl esters; ethylenically unsaturated sulfonic acids or salts thereof, preferably vinylsulfonic acid, 2-acrylamido-2-methylpropanesulfonic acid. Further examples are pre-crosslinking comonomers such as polyethylenically unsaturated comonomers, for example diallyl phthalate, divinyl adipate, diallyl maleate, allyl methacrylate or triallyl cyanurate, or post-crosslinking comonomers, for example acrylamidoglycolic acid (AGA), methylacrylamidoglycolic acid methyl ester (MAGME). Mention may also be made of monomers with hydroxyl or CO groups, for example hydroxyalkyl methacrylates and hydroxyalkyl acrylates such as hydroxyethyl, hydroxypropyl or hydroxybutyl acrylate or methacrylate, and compounds such as diacetoneacrylamide and acetylacetoxyethyl acrylate or methacrylate. Preferred auxiliary monomers are ethylenically unsaturated mono- and dicarboxylic acids or their anhydrides and ethylenically unsaturated sulfonic acids or their salts.
Die Stärke-Hybridcopolymere basieren zu vorzugsweise 20 bis 80 Gew.-%, besonders bevorzugt 30 bis 75 Gew.-% und am meisten be vorzugt 50 bis 70 Gew.-% auf ethylenisch ungesättigten Monome ren, je bezogen auf das Trockengewicht der Stärke- Hybridcopolymere . The starch hybrid copolymers are based to an extent of preferably 20 to 80% by weight, more preferably 30 to 75% by weight and most preferably 50 to 70% by weight of ethylenically unsaturated monomers, based on the dry weight of the starch hybrid copolymers.
Der Anteil der ethylenisch ungesättigten Monomeren an den Stär ke-Hybridcopolymeren kann beispielsweise mittels NMR-Spektros- kopie ermittelt werden, vorzugsweise unter Einsatz von Eichsub stanzen . The proportion of ethylenically unsaturated monomers in the starch hybrid copolymers can be determined, for example, by means of NMR spectroscopy, preferably using calibration substances.
Die Stärke-Vinylester-Ethylen-Hybridcopolymere a) enthalten vorzugsweise keine (Meth)acrylsäureester-Einheit. The starch-vinyl ester-ethylene hybrid copolymers a) preferably contain no (meth)acrylic ester unit.
Die Stärke-Styrol-(Meth)acrylsäureester-Hybridcopolymere b) enthalten vorzugsweise < 30 Gew.-% an Vinylester-Einheiten, be zogen auf das Gesamtgewicht der Monomere, besonders bevorzugt keine Vinylester-Einheit. The starch-styrene-(meth)acrylic ester hybrid copolymers b) preferably contain <30% by weight of vinyl ester units, based on the total weight of the monomers, particularly preferably no vinyl ester unit.
Die Monomerauswahl bzw. die Auswahl der Gewichtsanteile der Comonomere erfolgt dabei so, dass die Stärke-Hybridcopolymere eine Glasübergangstemperatur Tg von -50°C bis +120°C, vorzugs weise -35°C bis +45°C aufweisen. Die Stärke-Einheiten zeigen im Allgemeinen keine Glasübergangstemperatur. Die Glasübergangs temperatur Tg der Polymerisate kann in bekannter Weise mittels Differential Scanning Calorimetry (DSC) ermittelt werden. Die Tg kann auch mittels der Fox-Gleichung näherungsweise vorausbe rechnet werden. Nach Fox T. G., Bull. Am. Physics Soc. 1, 3, page 123 (1956) gilt: 1/Tg = xl/Tgl + x2/Tg2 + ... + xn/Tgn, wobei xn für den Massebruch (Gew.-%/100) des Monomeren n steht, und Tgn die Glasübergangstemperatur in Kelvin des Homopolymeren des Monomeren n ist. Tg-Werte für Homopolymerisate sind in Po lymer Handbook 2nd Edition, J. Wiley & Sons, New York (1975) aufgeführt . The selection of monomers or the selection of the proportions by weight of the comonomers is carried out in such a way that the starch hybrid copolymers have a glass transition temperature Tg of -50.degree. C. to +120.degree. C., preferably -35.degree. C. to +45.degree. The starch units generally do not exhibit a glass transition temperature. The glass transition temperature Tg of the polymers can be determined in a known manner by means of differential scanning calorimetry (DSC). The Tg can also be approximately predicted using the Fox equation. According to Fox TG, Bull. Am. Physics Soc. 1, 3, page 123 (1956): 1/Tg = xl/Tgl + x2/Tg2 + ... + xn/Tgn, where xn stands for the mass fraction (% by weight/100) of the monomer n, and Tgn is the glass transition temperature in Kelvin of the homopolymer of monomer n. Tg values for homopolymers are listed in Polymer Handbook 2nd Edition, J. Wiley & Sons, New York (1975).
Die kaltwasserlösliche Stärke ist bei 23°C zu vorzugsweise > 10 g pro Liter Wasser, besonders bevorzugt > 100 g pro Liter Was ser und am meisten bevorzugt k 500 g pro Liter Wasser löslich. The cold water soluble starch is soluble at 23°C to preferably >10g per liter of water, more preferably >100g per liter of water and most preferably <500g per liter of water.
Typische Quellen für die kaltwasserlösliche Stärke sind bei spielsweise Knollen oder Wurzeln, wie Kartoffeln, Maranta (Ar- rowroot), Maniok (Tapioka) oder Süßkartoffel (Batate); Getrei desamen, wie Weizen, Mais, Roggen, Reis, Gerste, Hirse, Hafer, Triticale oder Sorghum; Früchte, wie Bananen, Kastanien, Ei cheln, Erbsen, Bohnen oder anderen Leguminosen, oder Mark, wie Sago. Vorzugsweise stammt die Stärke aus Knollen oder Wurzeln, wie insbesondere Kartoffeln oder Maniok (Tapioka), oder Getrei de, wie insbesondere Weizen oder Mais. Die Stärke kann auch aus Abfällen, beispielsweise Kartoffelresten oder Kartoffelschalen, gewonnen werden. Typical sources for the cold-water-soluble starch are, for example, tubers or roots, such as potatoes, maranta (arrowroot), cassava (tapioca) or sweet potatoes (batata); Cereal seeds such as wheat, corn, rye, rice, barley, millet, oats, triticale or sorghum; Fruits such as bananas, chestnuts, acorns, peas, beans or other legumes, or pith such as sago. Preferably, the starch comes from tubers or roots, such as in particular potatoes or manioc (tapioca), or cereals, such as in particular wheat or corn. The starch can also be obtained from waste, for example leftover potatoes or potato skins.
Die kaltwasserlösliche Stärke kann beispielsweise nativ, degra diert oder chemisch modifiziert sein. Native Stärke enthält allgemein als Hauptbestandteil Amylose und/oder Amylopektin. Native Stärke ist im Allgemeinen nicht degradiert und nicht chemisch modifiziert. Degradierte Stärke hat generell ein nied rigeres durchschnittliches Molekulargewicht als native Stärke. Degradierung von Stärke kann beispielsweise enzymatisch, oxida tiv oder durch Einwirkung einer Säure oder einer Base, insbe sondere hydrolytisch, erfolgen. Dies führt allgemein auch zu erhöhten Gehalten an Oligosacchariden oder Dextrinen. Durch chemische Modifizierungen werden allgemein chemische Gruppen über kovalente Anlagerung an die Stärke angebunden. Zur chemi schen Modifizierung können beispielsweise native oder degra dierte Stärke eingesetzt werden. Chemische Modifizierungen sind also allgemein von der Degradierung verschieden. Beispiele für chemische Modifizierungen sind Veresterungen oder Veretherun- gen, wie Carboxymethylierung, Oxidationsreaktionen oder nicht ionische, anionische oder kationische Modifizierungen. Beispie le für chemisch modifizierte Stärken sind Carboxymethyl-, Me thyl-, Hydroxyethyl- oder Hydroxypropyl-Stärke, Stärke-Ether oder Stärke-Phosphatester oder deren Oxidationsprodukte. Die kaltwasserlösliche Stärke enthält vorzugsweise keine chemische Modifizierungen, insbesondere keine Cyano-, Hydroxy-, Carbonyl- , Aldehyd-, Ester- und/oder Carboxyl-Gruppen. Bevorzugt ist na tive kaltwasserlösliche Stärke oder insbesondere degradierte kaltwasserlösliche Stärke. The cold-water-soluble starch can be native, degraded or chemically modified, for example. Native starch generally contains amylose and/or amylopectin as the main component. Native starch is generally not degraded and not chemically modified. Degraded starch generally has a lower average molecular weight than native starch. Starch can be degraded, for example, enzymatically, oxidatively or by the action of an acid or a base, in particular hydrolytically. This generally also leads to increased levels of oligosaccharides or dextrins. Chemical modifications generally attach chemical groups to the starch via covalent attachment. Native or degraded starch, for example, can be used for chemical modification. Chemical modifications are thus generally different from degradation. Examples of chemical modifications are esterifications or etherifications, such as carboxymethylation, oxidation reactions or nonionic, anionic or cationic modifications. Examples of chemically modified starches are carboxymethyl, methyl, hydroxyethyl or hydroxypropyl starch, starch ethers or starch phosphate esters or their oxidation products. The cold-water-soluble starch preferably contains no chemical modifications, in particular no cyano, hydroxy, carbonyl, aldehyde, ester and/or carboxyl groups. Native cold-water-soluble starch or, in particular, degraded cold-water-soluble starch is preferred.
Die kaltwasserlösliche Stärke hat Molekulargewichte von vor zugsweise 500 bis 1.000.000 g/mol, besonders bevorzugt 1.000 bis 500.000 g/mol und am meisten bevorzugt 5.000 bis 200.000 g/mol. The cold water soluble starch has molecular weights of preferably 500 to 1,000,000 g/mol, more preferably 1,000 to 500,000 g/mol and most preferably 5,000 to 200,000 g/mol.
Wässrige Lösungen der kaltwasserlöslichen Stärke haben Brook- field-Viskositäten von vorzugsweise 10 bis 5000 mPas, besonders bevorzugt 50 bis 3000 mPas (bestimmt mit einem Brookfield- Viskosimeter bei 23°C bei 20 UPM bei einem Feststoffgehalt der Lösungen von 50%). Aqueous solutions of the cold-water-soluble starch have Brookfield viscosities of preferably 10 to 5000 mPas, particularly preferably 50 to 3000 mPas (determined using a Brookfield viscometer at 23° C. and 20 rpm with a solids content of the solutions of 50%).
Die Stärke, insbesondere die kaltwasserlösliche Stärke, hat ge- wichtsmittlere Partikeldurchmesser Dw zwischen vorzugsweise 100 und 5000 nm, besonders bevorzugt 200 bis 3000 nm und am meisten bevorzugt 300 und 1000 nm. Die Bestimmung von Dw erfolgt wie weiter unten für die Stärke-Hybridcopolymere beschrieben. The starch, in particular the cold-water-soluble starch, has a weight-average particle diameter Dw between preferably 100 and 5000 nm, particularly preferably 200 to 3000 nm and most preferably 300 and 1000 nm. Dw is determined as described below for the starch hybrid copolymers .
Die Stärke-Hybridcopolymere basieren zu vorzugsweise 20 bis 80 Gew.-%, besonders bevorzugt 25 bis 70 Gew.-% und am meisten be vorzugt 30 bis 50 Gew.-% auf kaltwasserlöslicher Stärke, je be zogen auf das Trockengewicht der Stärke-Hybridcopolymere. Der Stärkegehalt der Stärke-Hybridcopolymere kann auf herkömmliche Weise mittels NMR-Spektroskopie ermittelt werden. The starch hybrid copolymers are based on preferably 20 to 80% by weight, more preferably 25 to 70% by weight and most preferably 30 to 50% by weight of cold water-soluble starch, based on the dry weight of the starch hybrid copolymers . Of the The starch content of the starch hybrid copolymers can be determined in a conventional manner using NMR spectroscopy.
Der Anteil der kaltwasserlöslichen Stärke ist vorzugsweise > 50 Gew.-% und besonders bevorzugt > 90 Gew.-%, je bezogen auf das Gesamtgewicht der insgesamt enthaltenen Stärke. Am meisten be vorzugt ist als Stärke ausschließlich kaltwasserlösliche Stärke enthalten . The fraction of the cold-water-soluble starch is preferably >50% by weight and particularly preferably >90% by weight, each based on the total weight of the total starch present. The starch most preferably contained is exclusively cold-water-soluble starch.
Die in den Stärke-Hybridcopolymeren enthaltene kaltwasserlösli chen Stärke liegt vorzugsweise in amorpher Form vor. Nicht- kaltwasserlösliche native Stärke liegt dagegen im Allgemeinen in kristalliner Form vor (Bestimmungsmethode: Röntgendiffrakto- metrie) . The cold-water-soluble starch contained in the starch-hybrid copolymers is preferably present in amorphous form. In contrast, native starch that is not soluble in cold water is generally present in crystalline form (method of determination: X-ray diffractometry).
Zur Herstellung der kaltwasserlöslichen Stärke können die hier für gängigen Verfahren Einsatz finden. Kaltwasserlösliche Stär ke ist auch kommerziell verfügbar, beispielsweise unter den Handelsnamen ARIC 50.070 der Firma Agrana, Agenamalt 20.225 oder Agenamalt 20.226 der Firma Agrana. For the production of the cold-water-soluble starch, the processes common here can be used. Cold-water-soluble starch is also commercially available, for example under the trade names ARIC 50.070 from Agrana, Agenamalt 20.225 or Agenamalt 20.226 from Agrana.
Die Stärke-Hybridcopolymere können gegebenenfalls Schutzkollo- id-stabilisiert oder vorzugsweise Emulgator-stabilisiert sein. In einer bevorzugten Ausführungsform sind die Stärke-Hybridco- polymere nicht Schutzkolloid-stabilisiert. The starch hybrid copolymers can optionally be protective colloid-stabilized or preferably emulsifier-stabilized. In a preferred embodiment, the starch hybrid copolymers are not stabilized with protective colloids.
Beispiele für Schutzkolloide sind Polyvinylalkohole, Polyvi nylacetale, Polyvinylpyrrolidone, Copolymerisate von (Meth)- acrylaten mit carboxylfunktionellen Comonomereinheiten, Poly- (meth)acrylamid, Polyvinylsulfonsäuren und deren Copolymere, Melaminformaldehydsulfonate, Naphtha1informaldehydsulfonate, Styrolmaleinsäure- und Vinylethermaleinsäure-Copolymere. Bevor zugte Schutzkolloide sind teilverseifte Polyvinylalkohole vor zugsweise mit einem Hydrolysegrad von 80 bis 95 Mol-%, insbe sondere 85 bis 92 Mol-% und vorzugsweise einer Höpplerviskosi- tat, in 4 %-iger wässriger Lösung von 1 bis 30 mPas, insbeson dere 3 bis 15 mPas (Methode nach Höppler bei 20°C, DIN 53015). Die genannten Schutzkolloide sind mittels dem Fachmann bekann ten Verfahren zugänglich. Examples of protective colloids are polyvinyl alcohols, polyvinyl acetals, polyvinylpyrrolidones, copolymers of (meth)acrylates with carboxyl-functional comonomer units, poly(meth)acrylamide, polyvinylsulfonic acids and their copolymers, melamine formaldehyde sulfonates, naphthalene formaldehyde sulfonates, styrene maleic acid and vinyl ether maleic acid copolymers. Preferred protective colloids are partially hydrolyzed polyvinyl alcohols, preferably with a degree of hydrolysis of 80 to 95 mol%, in particular 85 to 92 mol% and preferably a Höppler viscose tat, in a 4% aqueous solution of 1 to 30 mPas, in particular 3 to 15 mPas (Hoppler method at 20 ° C, DIN 53015). The protective colloids mentioned are accessible by means of methods known to those skilled in the art.
Der Schutzkolloid-Anteil beträgt vorzugsweise 0 bis 30 Gew.-%, besonders bevorzugt 0,1 bis 25 Gew.-% und am meisten bevorzugt 0,5 bis 20 Gew.-%, bezogen auf das Gesamtgewicht der Stärke-Hy bridcopolymere . The proportion of protective colloid is preferably 0 to 30% by weight, particularly preferably 0.1 to 25% by weight and most preferably 0.5 to 20% by weight, based on the total weight of the starch hybrid copolymers.
Die Stärke-Hybridcopolymere sind allgemein nicht mit Stärke stabilisiert. Die in den Stärke-Hybridcopolymeren enthaltene Stärke fungiert allgemein nicht als Schutzkolloid. In Stärke stabilisierten Polymeren liegen die Stärke und die Polymere im Allgemeinen bloß in Form von Konglomeraten und/oder Abmischun gen vor. In Stärke stabilisierten Polymeren ist die Stärke im Wesentlichen nicht an die Polymere angebunden. Die Stärke- Hybridcopolymere sind also allgemein keine Stärke stabilisier ten Polymere. The starch hybrid copolymers are generally not stabilized with starch. The starch contained in the starch hybrid copolymers generally does not function as a protective colloid. In starch-stabilized polymers, the starch and the polymers are generally only present in the form of conglomerates and/or admixtures. In starch-stabilized polymers, the starch is essentially unattached to the polymers. Thus, the hybrid starch copolymers are generally not starch stabilized polymers.
Es können anionische, kationische oder nichtionische Emulgato ren enthalten sein. Bevorzugt sind anionische Emulgatoren, be sonders bevorzugt sind nichtionische Emulgatoren. Anionic, cationic or nonionic emulsifiers can be included. Anionic emulsifiers are preferred, and nonionic emulsifiers are particularly preferred.
Beispiele für anionische Emulgatoren sind Alkylsulfate, -sul- fonate oder -carboxylate mit einer Kettenlänge von 8 bis 18 C- Atomen, Alkyl- oder Alkylarylethersulfate, -sulfonate oder -carboxylate mit 8 bis 18 C-Atomen im hydrophoben Rest und bis zu 40 Ethylen- oder Propylenoxideinheiten, Alkyl- oder Alkyla- rylsulfonate mit 8 bis 18 C-Atomen, Ester und Halbester der Sulfobernsteinsäure mit einwertigen Alkoholen oder Alkylpheno len, oder Phosphate, Etherphosphate, Phosphonate und Etherphos- phonate sowie deren Kombinationen. Beispiele für nichtionische Emulgatoren sind Alkylpolyglykol ether oder Alkylarylpolyglykolether mit 8 bis 40 Ethylenoxid- Einheiten oder Ethylenoxid/Propylenoxid-Blockcopolymere mit 2 bis 40 EO- bzw. PO-Einheiten oder allgemein EO-PO-Copolymeri- sate, sowie Alkylpolyglycoside mit 1 bis 20 C-Atomen sowie Etheralkylpolyglycoside mit 2 bis 40 EO- bzw. PO-Einheiten oder deren. Examples of anionic emulsifiers are alkyl sulfates, sulfonates or carboxylates with a chain length of 8 to 18 carbon atoms, alkyl or alkylaryl ether sulfates, sulfonates or carboxylates with 8 to 18 carbon atoms in the hydrophobic radical and up to 40 ethylene - or propylene oxide units, alkyl or alkylaryl sulfonates having 8 to 18 carbon atoms, esters and half esters of sulfosuccinic acid with monohydric alcohols or alkylphenols, or phosphates, ether phosphates, phosphonates and ether phosphonates and combinations thereof. Examples of nonionic emulsifiers are alkyl polyglycol ethers or alkylaryl polyglycol ethers with 8 to 40 ethylene oxide units or ethylene oxide/propylene oxide block copolymers with 2 to 40 EO or PO units or generally EO-PO copolymers, and alkyl polyglycosides with 1 to 20 C -Atoms and ether alkyl polyglycosides with 2 to 40 EO or PO units or their.
Der Emulgator-Anteil beträgt vorzugsweise 0 bis 15 Gew.-%, be sonders bevorzugt 0,1 bis 5 Gew.-% und am meisten bevorzugt 0,5 bis 3 Gew.-%, bezogen auf das Gesamtgewicht der Stärke-Hybrid- copolymere . The emulsifier content is preferably 0 to 15% by weight, particularly preferably 0.1 to 5% by weight and most preferably 0.5 to 3% by weight, based on the total weight of the hybrid starch copolymers .
Die Stärke-Hybridcopolymere in Form von wässrigen Dispersionen haben einen Festgehalt von vorzugsweise 10 bis 70% und beson ders bevorzugt 40 bis 60%. The starch hybrid copolymers in the form of aqueous dispersions have a solids content of preferably 10 to 70% and more preferably 40 to 60%.
Die Brookfield-Viskosität der wässrigen Dispersionen der Stär ke-Hybridcopolymere beträgt vorzugsweise 50 bis 3000 mPas, be sonders bevorzugt 100 bis 1000 mPas (bestimmt mit einem Brook- field-Viskosimeter bei 23°C bei 20 UPM bei einem Feststoffge halt der Dispersionen von 50%). Wässrige Dispersionen der Stär ke-Hybridcopolymere haben vorzugsweise niedrigere Viskositäten als bloße Abmischungen entsprechender Mengen an Stärke und ent sprechenden Copolymeren. The Brookfield viscosity of the aqueous dispersions of the starch hybrid copolymers is preferably 50 to 3000 mPas, particularly preferably 100 to 1000 mPas (determined with a Brookfield viscometer at 23° C. and 20 rpm with a solids content of the dispersions of 50 %). Aqueous dispersions of the starch hybrid copolymers preferably have lower viscosities than mere blends of corresponding amounts of starch and corresponding copolymers.
Die Stärke-Hybridcopolymere haben gewichtsmittlere Partikel durchmesser Dw zwischen vorzugsweise 100 und 10000 nm, beson ders bevorzugt 200 und 8000 nm und am meisten bevorzugt 300 bis 6000 nm. The starch hybrid copolymers have weight-average particle diameters Dw between preferably 100 and 10000 nm, more preferably 200 and 8000 nm and most preferably 300 to 6000 nm.
Die Bestimmung der Parameter Dw und Dn beziehungsweise der Teilchengrößenverteilung erfolgt mittels Laserlichtbeugung und Laserlichtstreuung anhand der Stärke-Hybridcopolymere mit dem Messgerät LS13320 mit dem optischen Modell PVAC.RF780D, ein- schließend PIDS, der Firma Beckmann-Coulter und unter Beachtung der Vorschrift des Geräteherstellers nach hinreichender Verdün nung der wässrigen Polymerdispersionen mit vollentsalztem Was ser. The parameters Dw and Dn or the particle size distribution are determined by means of laser light diffraction and laser light scattering using the starch hybrid copolymers with the LS13320 measuring device with the optical model PVAC.RF780D, a then PIDS, from Beckmann-Coulter and in compliance with the device manufacturer's instructions after sufficient dilution of the aqueous polymer dispersions with deionized water.
In den Stärke-Hybridcopolymeren ist die kaltwasserlösliche Stärke vorzugsweise über kovalente Bindungen an die Polymerein heiten der ethylenisch ungesättigten Monomere angebunden. Die Anbindung kann beispielsweise durch Pfropfung im Zuge der radi kalisch initiierten Polymerisation erfolgen oder durch Konden sations- oder Additionsreaktion der funktionellen Gruppen der funktionellen Monomer-Einheiten. In the starch hybrid copolymers, the cold-water-soluble starch is preferably attached to the polymeric units of the ethylenically unsaturated monomers via covalent bonds. The connection can take place, for example, by grafting in the course of the radically initiated polymerization or by condensation or addition reaction of the functional groups of the functional monomer units.
Die Stärke-Hybridcopolymere haben vorzugsweise keine Kern- Schale-Struktur . Die Monomere sind vorzugsweise in statisti scher Weise einpolymerisiert. Stärke ist vorzugsweise statis tisch in die Stärke-Hybridcopolymere eingebunden. The starch hybrid copolymers preferably do not have a core-shell structure. The monomers are preferably copolymerized in a random manner. Starch is preferably randomly incorporated into the starch hybrid copolymers.
Ein weiterer Gegenstand der Erfindung sind Verfahren zur Her stellung von Stärke-Hybridcopolymeren in Form von wässrigen Dispersionen oder in Wasser redispergierbaren Pulvern mittels radikalisch initiierter Polymerisation, insbesondere Emulsions polymerisation, in wässrigem Medium von ethylenisch ungesättig ten Monomeren in Gegenwart von Stärke und gegebenenfalls an schließendem Trocknen, dadurch gekennzeichnet, dass > 20 Gew.-%, bezogen auf das insgesamte Trockengewicht der Stärke und der ethylenisch ungesättigten Monomere, an kaltwas serlöslicher Stärke eingebracht werden und als ethylenisch ungesättigte Monomere entweder a) ein oder mehrere Vinylester, 1 bis 40 Gew.-% Ethylen, 0,1 bis 10 Gew.-% an einem oder mehreren funktionellen Monomeren und gegebenenfalls ein oder mehrere weitere ethylenisch unge sättigte Monomere oder b) Styrol, > 30 Gew.-% an einem oder mehreren (Meth)acrylsäure- estern, 0,1 bis 10 Gew.-% an einem oder mehreren funktionellen Monomeren und gegebenenfalls ein oder mehrere weitere ethyle- nisch ungesättigte Monomere eingesetzt werden, wobei die funktionellen Monomeren ethylenisch ungesättigt sind und eine oder mehrere Epoxy-, Silan- und/oder N-Methylol- Gruppen tragen, wobei sich die Gew.-%-Angaben zu den Monomeren auf das Gesamt gewicht der Monomere beziehen. Another subject of the invention are processes for the preparation of starch hybrid copolymers in the form of aqueous dispersions or water-redispersible powders by means of free-radically initiated polymerization, in particular emulsion polymerization, in an aqueous medium of ethylenically unsaturated monomers in the presence of starch and optionally subsequent drying , characterized in that > 20 wt. % ethylene, 0.1 to 10% by weight of one or more functional monomers and optionally one or more other ethylenically unsaturated monomers or b) styrene, >30% by weight of one or more (meth)acrylic acid esters, 0.1 to 10% by weight of one or more functional Monomers and optionally one or more other ethylenically unsaturated monomers are used, the functional monomers being ethylenically unsaturated and carrying one or more epoxy, silane and/or N-methylol groups, the percentages by weight being the same to the monomers based on the total weight of the monomers.
Die Temperatur für die Polymerisation beträgt vorzugsweise 40°C bis 120°C, besonders bevorzugt 60°C bis 95°C. Bei der Copoly merisation von gasförmigen Comonomeren wie Ethylen, 1,3-Buta- dien oder Vinylchlorid kann auch unter Druck, im Allgemeinen zwischen 5 bar und 100 bar, gearbeitet werden. The temperature for the polymerization is preferably 40°C to 120°C, more preferably 60°C to 95°C. The copolymerization of gaseous comonomers such as ethylene, 1,3-butadiene or vinyl chloride can also be carried out under pressure, generally between 5 bar and 100 bar.
Geeignete Radikalinitiatoren sind gängige öllösliche oder was serlösliche Initiatoren. Beispiele für öllösliche Initiatoren sind öllösliche Peroxide, wie t-Butylperoxy-2-ethylhexanoat, t- Butylperoxypivalat, t-Butylperoxyneodecanoat, Dibenzoylperoxid, t-Amylperoxypivalat, Di-(2-ethylhexyl)peroxydicarbonat, 1,1- Bis (t-Butylperoxy)-3,3,5-trimethylcyclohexan, Di-(4-t-Butylcy- clohexyl)peroxydicarbonat , Dilauroylperoxid, Cumylhydroperoxid, oder öllösliche Azoinitiatoren, wie Azobisisobutyronitril oder Dimethyl-2,2 -Azobis(2-methylpropionat). Beispiele für wasser lösliche Initiatoren sind Peroxodisulfate, wie Kaliumperoxodi- sulfat, Wasserstoffperoxid, wasserlösliche Hydroperoxide wie tert.-Butylhydroperoxid, Mangan (III)-Salze oder Cer(IV)-Salze. Die Initiatoren werden im Allgemeinen in einer Menge von 0,005 bis 3,0 Gew.-%, bevorzugt 0,01 bis 1,5 Gew.-%, jeweils bezogen auf Gesamtgewicht der ethylenisch ungesättigten Monomere, ein gesetzt. Bevorzugt ist der Einsatz von Redox-Initiatoren. Als Redox-Initiatoren verwendet man Kombinationen aus den genannten Initiatoren in Kombination mit Reduktionsmitteln. Geeignete Re duktionsmittel sind beispielsweise Natriumsulfit, Eisen (II)- Salze, Natriumhydroxymethansulfinat und Ascorbinsäure. Be vorzugte Redox-Initiatoren sind Cer(IV)-Salze, wie Ammoni- umcer (IV)-nitrat, Mangan (III)-Salze oder Peroxodisulfate sowie Kombinationen dieser Initiatoren. Bei Einsatz von Reduktions mitteln beträgt die Reduktionsmittelmenge vorzugsweise 0,01 bis 0,5 Gew.-%, bezogen auf das Gesamtgewicht der ethylenisch unge sättigten Monomere. Suitable radical initiators are common oil-soluble or water-soluble initiators. Examples of oil-soluble initiators are oil-soluble peroxides such as t-butyl peroxy-2-ethylhexanoate, t-butyl peroxypivalate, t-butyl peroxyneodecanoate, dibenzoyl peroxide, t-amyl peroxypivalate, di-(2-ethylhexyl) peroxydicarbonate, 1,1-bis(t-butylperoxy) -3,3,5-trimethylcyclohexane, di-(4-t-butylcyclohexyl) peroxydicarbonate, dilauroyl peroxide, cumyl hydroperoxide, or oil-soluble azo initiators such as azobisisobutyronitrile or dimethyl 2,2-azobis(2-methylpropionate). Examples of water-soluble initiators are peroxodisulfates, such as potassium peroxodisulfate, hydrogen peroxide, water-soluble hydroperoxides, such as tert-butyl hydroperoxide, manganese(III) salts or cerium(IV) salts. The initiators are generally used in an amount of from 0.005 to 3.0% by weight, preferably from 0.01 to 1.5% by weight, based in each case on the total weight of the ethylenically unsaturated monomers. The use of redox initiators is preferred. Combinations of the initiators mentioned in combination with reducing agents are used as redox initiators. Examples of suitable reducing agents are sodium sulfite, iron(II) salts, sodium hydroxymethanesulfinate and ascorbic acid. Be preferred redox initiators are cerium (IV) salts such as ammonium umcerium (IV) nitrate, manganese (III) salts or peroxodisulfates and combinations of these initiators. When using reducing agents, the amount of reducing agent is preferably from 0.01 to 0.5% by weight, based on the total weight of the ethylenically unsaturated monomers.
Die Stabilisierung des Reaktionsansatzes kann beispielsweise durch Schutzkolloide und/oder vorzugsweise Emulgatoren erfol gen. The reaction mixture can be stabilized, for example, by means of protective colloids and/or preferably emulsifiers.
Die Polymerisation kann unter Vorlage aller oder einzelner Be standteile des Reaktionsgemisches oder unter teilweiser Vorlage und Nachdosierung aller oder einzelner Bestandteile des Reakti onsgemisches oder nach dem Dosierverfahren ohne Vorlage durch geführt werden. Vorzugsweise wird so vorgegangen, dass zumin dest ein Teil, vorzugsweise die gesamte Menge an Stärke vorge legt wird, insbesondere in Wasser. Die ethylenisch ungesättig ten Monomere und die Initiatoren werden ganz oder vorzugsweise teilweise vorgelegt und die gegebenenfalls verbleibende Menge an ethylenisch ungesättigten Monomeren und Initiatoren wird zu dosiert. Die funktionellen Monomeren können beispielsweise ganz oder teilweise vorgelegt werden. Vorzugsweise werden die funk tioneilen Monomeren insgesamt zudosiert. Bei Durchführung eines Batch-Verfahrens werden die Monomere und die Stärke sowie ein Teil des Initiators in Wasser vorgelegt, und der Initiatorrest wird zudosiert oder stoßweise zugegeben. The polymerization can be carried out with all or some of the components of the reaction mixture being initially taken, or with some of the components and subsequent metering of all or some of the components of the reaction mixture, or by the metering process without being initially charged. The procedure is preferably such that at least part, preferably all, of the starch is initially introduced, in particular in water. All or preferably some of the ethylenically unsaturated monomers and the initiators are initially taken, and any remaining amount of ethylenically unsaturated monomers and initiators is metered in. All or part of the functional monomers can be initially taken, for example. The functional monomers are preferably metered in as a whole. When carrying out a batch process, the monomers and the starch as well as part of the initiator are initially taken in water and the remainder of the initiator is metered in or added intermittently.
Nach Abschluss der Polymerisation kann zur Restmonomerentfer nung in Anwendung bekannter Methoden nachpolymerisiert werden. Flüchtige Restmonomere und weitere flüchtige Bestandteile kön nen auch mittels Destillation oder Strippverfahren, vorzugswei se unter reduziertem Druck, entfernt werden. After completion of the polymerization, post-polymerization can be carried out using known methods to remove residual monomer. Volatile residual monomers and other volatile constituents can also be removed by means of distillation or stripping processes, preferably under reduced pressure.
Wässrige Dispersionen der Stärke-Hybridcopolymere können durch Trocknen in Stärke-Hybridcopolymere in Form von in Wasser re- dispergierbaren Pulvern überführt werden. Dazu werden den wäss rigen Dispersionen im Allgemeinen Trocknungshilfsmittel zuge setzt, vorzugsweise 0,5 bis 30 Gew.-%, insbesondere 5 bis 20 Gew.-%, bezogen auf den Feststoffgehalt der wässrigen Dispersi on. Die Gesamtmenge an Trocknungshilfsmittel und Schutzkolloid vor dem Trocknungsvorgang beträgt vorzugsweise 1 bis 30 Gew.-%, bezogen auf den Feststoffgehalt der wässrigen Dispersion. Aqueous dispersions of the starch hybrid copolymers can be converted into starch hybrid copolymers in the form of dissolved in water by drying dispersible powders are converted. For this purpose, drying aids are generally added to the aqueous dispersions, preferably from 0.5 to 30% by weight, in particular from 5 to 20% by weight, based on the solids content of the aqueous dispersion. The total amount of drying aid and protective colloid before the drying process is preferably 1 to 30% by weight, based on the solids content of the aqueous dispersion.
Das Trocknen der wässrigen Dispersionen kann beispielsweise mittels Wirbelschichttrocknung, Gefriertrocknung oder vorzugs weise Sprühtrocknung erfolgen. Die Sprühtrocknung kann in übli chen Sprühtrocknungsanlagen durchgeführt werden, wobei die Zer stäubung mittels Ein-, Zwei- oder Mehrstoffdüsen oder mit einer rotierenden Scheibe erfolgen kann. Die Austrittstemperatur wird im Allgemeinen im Bereich von 45°C bis 120°C, bevorzugt 60°C bis 90°C, je nach Anlage, Tg des Stärke-Hybridcopolymers und gewünschtem Trocknungsgrad, gewählt. Die Viskosität der zu ver- düsenden Speise wird über den Feststoffgehalt so eingestellt, dass ein Wert von < 500 mPas (Brookfield-Viskosität bei 20 Um drehungen und 23°C), bevorzugt < 250 mPas, erhalten wird. Der Feststoffgehalt der zu verdüsenden Dispersion beträgt vorzugs weise 30 bis 75 Gew.-% und besonders bevorzugt 50 bis 60 Gew.—%. The aqueous dispersions can be dried, for example, by means of fluidized bed drying, freeze drying or, preferably, spray drying. Spray drying can be carried out in customary spray drying systems, with atomization being able to take place using single-, two- or multi-component nozzles or with a rotating disk. The exit temperature is generally chosen in the range from 45°C to 120°C, preferably 60°C to 90°C, depending on the plant, Tg of the starch hybrid copolymer and the desired degree of drying. The viscosity of the food to be atomized is adjusted via the solids content in such a way that a value of <500 mPas (Brookfield viscosity at 20 revolutions and 23° C.), preferably <250 mPas, is obtained. The solids content of the dispersion to be atomized is preferably 30 to 75% by weight and particularly preferably 50 to 60% by weight.
Vielfach hat sich ein Gehalt von bis zu 1,5 Gew.-% Antischaum- mittel, bezogen auf das Stärke-Hybridcopolymer, als günstig er wiesen. Antischaummittei wird vorzugsweise bei der Verdüsung zugegeben. In many cases, a content of up to 1.5% by weight of antifoam, based on the starch hybrid copolymer, has proven to be favorable. Antifoam is preferably added during atomization.
Zur Erhöhung der Lagerfähigkeit durch Verbesserung der Verblo ckungsstabilität, insbesondere bei Stärke-Hybridcopolymer-Pul- vern mit niedriger Glasübergangstemperatur, kann das erhaltene Pulver beispielsweise mit einem oder mehreren Antiblockmitteln (Antibackmittel) ausgerüstet werden. Die Antiblockmittel werden vorzugsweise nicht den wässerigen Stärke-Hybridcopolymer-Dis- persionen, also vorzugsweise nicht vor der Trocknung, sondern vorzugsweise während oder nach der Trocknung, insbesondere wäh rend der Trocknung in die Sprühtrocknungsanlage zugegeben. Be vorzugte Pulver enthalten Antiblockmittel, insbesondere 1 bis 30 Gew.-%, bezogen auf das Gesamtgewicht polymerer Bestandtei le. Beispiele für Antiblockmittel sind Ca- bzw. Mg-Carbonat, Talk, Gips, Kieselsäure, Kaoline wie Metakaolin, Silicate, vor zugsweise mit Teilchengrößen im Bereich von 10 nm bis 10 pm. To increase the shelf life by improving the blocking stability, particularly in the case of starch-hybrid copolymer powders with a low glass transition temperature, the powder obtained can be equipped, for example, with one or more antiblocking agents (anticaking agents). The antiblock agents are preferably not the aqueous starch-hybrid copolymer dis- perions, ie preferably not before drying, but preferably during or after drying, in particular during drying, is added to the spray drying system. Preferred powders contain antiblocking agents, in particular 1 to 30% by weight, based on the total weight of polymeric components. Examples of antiblocking agents are Ca or Mg carbonate, talc, gypsum, silicic acid, kaolins such as metakaolin, silicates, preferably with particle sizes in the range from 10 nm to 10 μm.
Die Stärke-Hybridcopolymere eignen sich allgemein als Bindemit tel für Beschichtungsmittel oder Klebemittel, insbesondere für Farben, Fasern, Textilien, Leder, Papier oder Teppiche. Beson ders bevorzugt ist der Einsatz der Stärke-Hybridcopolymere als Bindemittel zur Bindung von Fasermaterialien, insbesondere für die Herstellung von textilen Flächengebilden, wie Vliesstoffe (Nonwovens), Wirk- und Webwaren, Leder und Pelze, oder Teppi chen, oder als Bindemittel für Baubeschichtungen, insbesondere wässrige Dispersionsfarben oder Pulverfarben. The starch hybrid copolymers are generally suitable as binders for coating materials or adhesives, especially for paints, fibers, textiles, leather, paper or carpets. Particular preference is given to using the starch hybrid copolymers as binders for binding fiber materials, in particular for the production of textile fabrics, such as nonwovens, knitted and woven goods, leather and furs, or carpets, or as binders for construction coatings, especially aqueous dispersion paints or powder paints.
Ferner eignen sich die Stärke-Hybridcopolymere auch zum Einsatz in bauchemischen Produkten. Sie können alleine oder in Kombina tion mit herkömmlichen Polymerdispersionen oder Dispersionspul vern eingesetzt werden, gegebenenfalls in Verbindung mit hyd raulisch abbindenden Bindemitteln wie Zementen (Portland-, Alu- minat-, Trass-, Hütten-, Magnesia-, Phosphatzement), Gips und Wasserglas für die Herstellung von Verlaufsmassen, Bauklebern, Putzen, Spachtelmassen, Fugenmörteln, Dichtschlämmen, Wärme dämmverbundsysteme oder Farben, beispielsweise Pulverfarben. Unter Bauklebern sind Fliesenkleber oder Vollwärmeschutzkleber bevorzugte Einsatzgebiete. Bevorzugte Anwendungsgebiete sind auch Verlaufsmassen, bevorzugte Verlaufsmassen sind selbst verlaufende Bodenspachtelmassen und Estriche. Furthermore, the starch hybrid copolymers are also suitable for use in construction chemical products. They can be used alone or in combination with conventional polymer dispersions or dispersion powders, optionally in conjunction with hydraulically setting binders such as cements (Portland, aluminate, trass, slag, magnesia, phosphate cement), gypsum and water glass for the production of leveling compounds, construction adhesives, plasters, fillers, joint mortars, sealing sludge, thermal insulation composite systems or paints, such as powder paints. Among construction adhesives, tile adhesives or full heat protection adhesives are preferred areas of application. Preferred areas of application are leveling compounds, preferred leveling compounds are self-leveling floor fillers and screeds.
Überraschenderweise führen die erfindungsgemäßen Stärke-Hybrid- copolymere in Anwendungen zu vorteilhaften mechanischen Eigen- schäften, insbesondere auch nach Wasserlagerung. So haben mit Stärke-Hybridcopolymeren gebundene textile Flächengebilde bei spielsweise hohe HaftZugfestigkeiten, insbesondere hohe Nass zugfestigkeiten. Entsprechende Farbanwendungen sind durch hohe Scheuerfestigkeiten, insbesondere hohe Nassabriebsbeständigkei ten ausgezeichnet. Surprisingly, the starch hybrid copolymers according to the invention lead to advantageous mechanical properties in applications shafts, especially after water storage. For example, textile fabrics bonded with hybrid starch copolymers have high adhesive tensile strengths, particularly high wet tensile strengths. Corresponding paint applications are characterized by high abrasion resistance, in particular high wet abrasion resistance.
Vorteilhafterweise sind die erfindungsgemäßen Stärke-Hybrid- copolymere in Form von wässrigen Dispersionen, in Wasser redis- pergierbaren Pulvern oder entsprechenden wässrigen Redispersio- nen lagerstabil, neigen nicht zur Separation und machen homoge ne Zusammensetzungen zugänglich. The starch hybrid copolymers according to the invention are advantageously storage-stable in the form of aqueous dispersions, powders which can be redispersed in water or corresponding aqueous redispersions, have no tendency to separate and make homogeneous compositions accessible.
Neben dem Ziel vermehrt nachwachsende Rohstoffe in Polymeran wendungen einzubringen, wird mit den erfindungsgemäßen Stärke- Hybridcopolymeren auch eine verbesserte Bioabbaubarkeit der An wendungsprodukte erreicht, was ein weiteres wichtiges ökologi sches Kriterium darstellt. In addition to the goal of introducing more renewable raw materials into polymer applications, improved biodegradability of the application products is also achieved with the starch hybrid copolymers according to the invention, which represents another important ecological criterion.
Die nachfolgenden Beispiele dienen der weiteren Erläuterung der Erfindung : The following examples serve to further explain the invention:
In den Beispielen verwendete Zusatzstoffe: Additives used in the examples:
Aerosol A102: ethoxylierter Bernsteinsäurehalbester, Dina- triumsalz; Aerosol A102: ethoxylated half succinate, disodium salt;
Melon 20: Natriumalkylbenzolsulfonat ; Melon 20: sodium alkyl benzene sulfonate;
NMA-LF: N-Methylolacrylamid mit niedrigem Formalde hydgehalt (48%ig in Wasser); NMA-LF: low formaldehyde N-methylolacrylamide (48% in water);
Silfoam SE2: Siliconbasierte Antischaumemulsion; Silfoam SE2: silicone-based antifoam emulsion;
Genapol PF 40: Blockcopolymer aus Propylenoxid und Ethylen oxid mit 40% Ethylenoxid; Genapol PF 40: block copolymer of propylene oxide and ethylene oxide with 40% ethylene oxide;
Genapol X150: Isotridecylalkoholethoxylat mit 15 mol Ethy lenoxid; Mersolat : Mischung sekundärer Natriumalkylsulfonate mit einer mittleren Kettenlänge von 15 Kohlen stoffatomen; Genapol X150: isotridecyl alcohol ethoxylate with 15 mol ethylene oxide; Mersolate : Mixture of sodium secondary alkyl sulfonates with an average chain length of 15 carbon atoms;
PVOH 25/140: Polyvinylalkohol, Hydrolysegrad 88%, Höppler- viskosität 25 mPas; PVOH 25/140: polyvinyl alcohol, degree of hydrolysis 88%, Hoppler viscosity 25 mPas;
Geniosil GF 56: Triethoxyvinylsilan; Geniosil GF 56: triethoxyvinylsilane;
GMA: Glycidylmethacrylat; GMA: glycidyl methacrylate;
Foamaster 2315: Mineralölbasierter Entschäumer; Foamaster 2315: Mineral oil based defoamer;
Acticide MBS: Gemisch von Methylisothiazolinon und Benziso- thiazolinon; Acticide MBS: mixture of methylisothiazolinone and benzisothiazolinone;
TBHP: tert-Butylhydroperoxid; TBHP: tert-butyl hydroperoxide;
Brüggolit FF6: 2-Hydroxy-2-sulfinoessigsäure, Dinatriumsalz; ARIC 50.070: enzymatisch modifizierte Kartoffelstärke (Mw ~ Bruggolite FF6: 2-hydroxy-2-sulfinoacetic acid, disodium salt; ARIC 50.070: enzymatically modified potato starch (M w ~
146000 g/mol) der Firma Agrana, pulvertörmig; Agenamalt 20.225:Maltodextrin aus Kartoffelstärke (Mw ~ 9730 g/mol) der Firma Agrana, pulvertörmig; Agenamalt 20.226:Maltodextrin aus Kartoffelstärke (Mw ~ 95000 g/mol) der Firma Agrana, pulvertörmig; 146000 g/mol) from Agrana, in powder form; Agenamalt 20.225: maltodextrin from potato starch (M w ~ 9730 g/mol) from Agrana, in powder form; Agenamalt 20.226: maltodextrin from potato starch (M w ~ 95000 g/mol) from Agrana, in powder form;
Dynaplak 2020: nicht kaltwasserlösliche Kartoffelstärke (MwDynaplak 2020: potato starch not soluble in cold water (Mw
~ 14000 g/mol) der Firma Dynaplak, 35%ige Suspension. ~ 14000 g/mol) from Dynaplak, 35% suspension.
Beispiel 1: Example 1:
NMA-haltiges Stärke-Hybridcopolymer mit 20,2% Stärke: NMA-containing starch hybrid copolymer with 20.2% starch:
In einem Laborautoklav (5 L) wurden unter Rühren vorgelegt: A laboratory autoclave (5 L) was charged with stirring:
1545 g entionisiertes Wasser, 1545 g deionized water,
4,36 g Zitronensäure, 4.36 g citric acid,
0,764 g Natriumcitrat, 0.764 g sodium citrate,
75,9 g Aerosol A102 (30%ig), 75.9 g aerosol A102 (30%),
80,8 g Melon 20 (20%ig), 80.8 g Melon 20 (20%),
16,4 g Natriumvinylsulfonat (25%ig) und 493 g ARIC 50.070. 16.4 g sodium vinyl sulfonate (25%) and 493 g ARIC 50.070.
Der pH-Wert wurde auf 4,0 eingestellt und 1,20 g Eisen (II)ammo- niumsulfat zugegeben. Anschließend wurde evakuiert und mit Stickstoff beaufschlagt. 1397 g Vinylacetat wurden zugegeben, der Reaktor auf 40°C aufgeheizt und 300 g Ethylen aufgedrückt. Dann wurden eine wässrige tert-Butylhydroperoxid-Lösung (3%) mit einer Rate von 45,3 g/h und eine wässrige Natriumisoascor- bat-Lösung (5,7%ig) mit einer Rate von 45,0 g/h gestartet. Nach Reaktionsbeginn, erkennbar an einem Anstieg der Innentempera tur, wurden die Initiatorraten reduziert (TBHP 16,6 g/h, Natri- umisoscorbat 16,4 g/h) und 195 g NMA-LF, gelöst in 132 g entio- nisiertem Wasser, mit einer Rate von 109 g/h innerhalb von 180 min zudosiert. Ab Reaktionsbeginn wurde die Innentemperatur von 55°C auf 60°C mit einer Rate von 0,25°C/min erhöht. 60 min nach Reaktionsbeginn startete die Dosierung von 246 g Vinylacetat mit einer Rate von 123 g/h. Nach Beendigung der Monomerdosie rungen liefen die Initiatordosierungen noch 60 min nach. Anschließend wurde der Ansatz auf 30°C abgekühlt und entspannt. Es wurden 0,854 g Silfoam SE2 zugegeben, anschließend wurde mitThe pH was adjusted to 4.0 and 1.20 g of ferrous ammonium sulfate was added. It was then evacuated and pressurized with nitrogen. 1397 g of vinyl acetate were added, the reactor was heated to 40° C. and 300 g of ethylene were injected. Then an aqueous tert-butyl hydroperoxide solution (3%) was started at a rate of 45.3 g/h and an aqueous sodium isoascorbate solution (5.7%) at a rate of 45.0 g/h. After the start of the reaction, recognizable by an increase in the internal temperature, the initiator rates were reduced (TBHP 16.6 g/h, sodium isoscorbate 16.4 g/h) and 195 g NMA-LF, dissolved in 132 g deionized water, metered in at a rate of 109 g/h within 180 min. From the start of the reaction, the internal temperature was raised from 55°C to 60°C at a rate of 0.25°C/min. 60 minutes after the start of the reaction, the metering of 246 g of vinyl acetate started at a rate of 123 g/h. After the end of the monomer metering, the initiator metering continued for a further 60 minutes. The batch was then cooled to 30° C. and let down. 0.854 g of Silfoam SE2 were added, followed by
11.5 g TBHP (10%ig) und 22,6 g Natriumisoascorbat (6,25%ig) nachpolymerisiert. Der Ansatz wurde mit Ammoniak (12,5%ig) auf pH 6,0 eingestellt und mit Wasserstoffperoxid (10%ig) konserviert . 11.5 g TBHP (10%) and 22.6 g sodium isoascorbate (6.25%) post-polymerized. The batch was adjusted to pH 6.0 with ammonia (12.5%) and preserved with hydrogen peroxide (10%).
Beispiel 2: Example 2:
NMA-haltiges Stärke-Hybridcopolymer mit 29,7% Stärke: NMA-containing starch hybrid copolymer with 29.7% starch:
In einem Laborautoklav (5 L) wurden unter Rühren vorgelegt:A laboratory autoclave (5 L) was charged with stirring:
1597 g entionisiertes Wasser, 1597 g deionized water,
3,84 g Zitronensäure, 3.84 g citric acid,
0,672 g Natriumcitrat, 0.672 g sodium citrate,
66.6 g Aerosol A102 (30%ig), 66.6 g aerosol A102 (30%),
71,1 g Melon 20 (20%ig), 71.1 g Melon 20 (20%),
14,4 g Natriumvinylsulfonat (25%ig) und 723 g ARIC 50.070. 14.4 g sodium vinyl sulfonate (25%) and 723 g ARIC 50.070.
Der pH-Wert wurde auf 4,0 eingestellt und 1,06 g Eisen (II)ammo- niumsulfat zugegeben. Anschließend wurde evakuiert und mit Stickstoff beaufschlagt. 1230 g Vinylacetat wurden zugegeben, der Reaktor auf 40°C aufgeheizt und 265 g Ethylen aufgedrückt. Dann wurden eine wässrige tert-Butylhydroperoxid-Lösung (3%ig) mit einer Rate von 40,0 g/h und eine wässrige Natriumisoascor- bat-Lösung (5,7%ig) mit einer Rate von 39,7 g/h gestartet. Nach Reaktionsbeginn, erkennbar an einem Anstieg der Innentempera tur, wurden die Initiatorraten reduziert (TBHP 14,6 g/h, Natri- umisoscorbat 14,5 g/h) und 172 g NMA-LF, gelöst in 116 g entio- nisiertem Wasser, mit einer Rate von 96,0 g/h innerhalb von 180 min zudosiert. Ab Reaktionsbeginn wurde die Innentemperatur von 55°C auf 60°C mit einer Rate von 0,25°C/min erhöht. 60 min nach Reaktionsbeginn startete die Dosierung von 217 g Vinylacetat mit einer Rate von 108,5 g/h. Nach Beendigung der Monomerdo sierungen liefen die Initiatordosierungen noch 60 min nach. Anschließend wurde der Ansatz auf 30°C abgekühlt und entspannt. Es wurden 0,752 g Silfoam SE2 zugegeben, anschließend wurde mitThe pH was adjusted to 4.0 and 1.06 g of ferrous ammonium sulfate was added. It was then evacuated and pressurized with nitrogen. 1230 g of vinyl acetate were added, the reactor was heated to 40° C. and 265 g of ethylene were injected. Then an aqueous tert-butyl hydroperoxide solution (3%) was started at a rate of 40.0 g/h and an aqueous sodium isoascorbate solution (5.7%) at a rate of 39.7 g/h . To At the start of the reaction, recognizable by an increase in the internal temperature, the initiator rates were reduced (TBHP 14.6 g/h, sodium isoscorbate 14.5 g/h) and 172 g NMA-LF, dissolved in 116 g deionized water, were added metered in at a rate of 96.0 g/h within 180 min. From the start of the reaction, the internal temperature was raised from 55°C to 60°C at a rate of 0.25°C/min. 60 minutes after the start of the reaction, the metering of 217 g of vinyl acetate started at a rate of 108.5 g/h. After the end of the monomer metering, the initiator metering continued for a further 60 minutes. The batch was then cooled to 30° C. and let down. 0.752 g of Silfoam SE2 were added, followed by
10.1 g TBHP (10%ig) und 19,9 g Natriumisoascorbat (6,25%ig) nachpolymerisiert. Der Ansatz wurde mit Ammoniak (12,5%ig) auf pH 6,0 eingestellt und mit Wasserstoffperoxid (10%ig) konserviert . 10.1 g TBHP (10%) and 19.9 g sodium isoascorbate (6.25%) post-polymerized. The batch was adjusted to pH 6.0 with ammonia (12.5%) and preserved with hydrogen peroxide (10%).
Beispiel 3: Example 3:
NMA-haltiges Stärke-Hybridcopolymer mit 45,6% Stärke: NMA-containing starch hybrid copolymer with 45.6% starch:
In einem Laborautoklav (5 L) wurden unter Rühren vorgelegt:A laboratory autoclave (5 L) was charged with stirring:
1686 g entionisiertes Wasser, 1686 g deionized water,
2,96 g Zitronensäure, 2.96 g citric acid,
0,518 g Natriumcitrat, 0.518 g sodium citrate,
51,5 g Aerosol A102 (30%ig), 51.5 g aerosol A102 (30%),
54,8 g Melon 20 (20%ig), 54.8 g Melon 20 (20%),
11.1 g Natriumvinylsulfonat (25%ig) und 1115 g ARIC 50.070. 11.1 g sodium vinyl sulfonate (25%) and 1115 g ARIC 50.070.
Der pH-Wert wurde auf 4,0 eingestellt und 0,814 g Eisen (II)am- moniumsulfat zugegeben. Anschließend wurde evakuiert und mit Stickstoff beaufschlagt. 947 g Vinylacetat wurden zugegeben, der Reaktor auf 40°C aufgeheizt und 204 g Ethylen aufgedrückt. Dann wurden eine wässrige tert-Butylhydroperoxid-Lösung (3%ig) mit einer Rate von 30,7 g/h und eine wässrige Natriumisoascor- bat-Lösung (5,7%ig) mit einer Rate von 30,8 g/h gestartet. Nach Reaktionsbeginn, erkennbar an einem Anstieg der Innentempera tur, wurden die Initiatorraten reduziert (TBHP 11,2 g/h, Natri- umisoscorbat 11,1 g/h) und 132 g NMA-LF, gelöst in 89,5 g ent- ionisiertem Wasser, mit einer Rate von 70,7 g/h innerhalb von 180 min zudosiert. Ab Reaktionsbeginn wurde die Innentemperatur von 55°C auf 60°C mit einer Rate von 0,25°C/min erhöht. 60 min nach Reaktionsbeginn startete die Dosierung von 167 g Vinylace tat mit einer Rate von 83,5 g/h. Nach Beendigung der Monomerdo sierungen liefen die Initiatordosierungen noch 60 min nach. Anschließend wurde der Ansatz auf 30°C abgekühlt und entspannt. Es wurden 0,580 g Silfoam SE2 zugegeben, anschliessend wurde mit 7,8 g TBHP (10%ig) und 15,3 g Natriumisoascorbat (6,25%ig) nachpolymerisiert. Der Ansatz wurde mit Ammoniak (12,5%ig) auf pH 6,0 eingestellt und mit Wasserstoffperoxid (10%ig) konser viert. The pH was adjusted to 4.0 and 0.814 g of ferrous ammonium sulfate was added. It was then evacuated and pressurized with nitrogen. 947 g of vinyl acetate were added, the reactor was heated to 40° C. and 204 g of ethylene were forced in. Then an aqueous tert-butyl hydroperoxide solution (3%) was started at a rate of 30.7 g/h and an aqueous sodium isoascorbate solution (5.7%) at a rate of 30.8 g/h . After the start of the reaction, recognizable by an increase in the internal temperature, the initiator rates were reduced (TBHP 11.2 g/h, sodium isoscorbate 11.1 g/h) and 132 g NMA-LF, dissolved in 89.5 g ionized water at a rate of 70.7 g/h within 180 min. From the start of the reaction, the internal temperature was raised from 55°C to 60°C at a rate of 0.25°C/min. 60 minutes after the start of the reaction, 167 g of vinyl acetate were metered in at a rate of 83.5 g/h. After the end of the monomer metering, the initiator metering continued for a further 60 minutes. The batch was then cooled to 30° C. and let down. 0.580 g of Silfoam SE2 were added, followed by post-polymerization with 7.8 g of TBHP (10%) and 15.3 g of sodium isoascorbate (6.25%). The batch was adjusted to pH 6.0 with ammonia (12.5%) and preserved with hydrogen peroxide (10%).
Beispiel 4: Example 4:
GMA- und Silanhaltiges Stärke-Hybridcopolymer mit 30,5% Stärke: GMA and silane containing starch hybrid copolymer with 30.5% starch:
In einem Laborautoklav (5 L) wurden unter Rühren vorgelegt:A laboratory autoclave (5 L) was charged with stirring:
863 g ARIC 50.070, 863g ARIC 50.070,
43.2 g Genapol PF 40 (20%ig), 43.2 g Genapol PF 40 (20%),
75.5 g Genapol X150 (40%ig), 75.5 g Genapol X150 (40%),
31.7 g Mersolat (30%ig), 31.7 g Mersolat (30%),
13.8 g Natriumvinylsulfonat (25%ig) und 13.8 g sodium vinyl sulfonate (25%) and
86.3 g PVOH 25/140 (10%ig). 86.3 g PVOH 25/140 (10%).
Die wässrige Vorlage wurde auf einen pH von 4,0 eingestellt und 5,18 g Eisen (II)ammoniumsulfat (l%ig) zugegeben. Anschließend wurde evakuiert und mit Stickstoff beaufschlagt. 171 g Vinyl acetat wurden zugegeben, der Reaktor auf 70°C aufgeheizt undThe aqueous template was adjusted to a pH of 4.0 and 5.18 g of iron(II) ammonium sulfate (1%) were added. It was then evacuated and pressurized with nitrogen. 171 g of vinyl acetate were added, the reactor was heated to 70° C. and
81.5 g Ethylen aufgedrückt. Die Initiatordosierungen wurden ge startet: TBHP (10%ig) wurde mit 2,37 g/h dosiert, Brüggolit FF6 (5%ig) mit 8,39 g/h. Nach Reaktionsbeginn, erkennbar an einem81.5 g of ethylene injected. The initiator feeds were started: TBHP (10%) was fed in at 2.37 g/h, Bruggolit FF6 (5%) at 8.39 g/h. After the start of the reaction, recognizable by a
Anstieg der Innentemperatur, wurde die Innentemperatur auf 80°C erhöht. Anschließend wurden die Raten der Initiatordosierungen erhöht (TBHP: 5,13 g/h; FF6: 18,7 g/h) und folgende Dosierungen gestartet : Increase in internal temperature, the internal temperature was increased to 80°C. The rates of initiator dosing were then increased (TBHP: 5.13 g/h; FF6: 18.7 g/h) and the following dosing started:
1204 g Vinylacetat in 135 min, 1204 g vinyl acetate in 135 min,
2,76 g Ameisensäure (50%ig), gelöst in 173 g entionisiertem Wasser, in 180 min, 142 g Ethylen, so dass der Reaktionsdruck bei 35 bar lag. 2.76 g formic acid (50%), dissolved in 173 g deionized water, in 180 min, 142 g ethylene, so that the reaction pressure was 35 bar.
Ab Dosierende des Vinylacetats wurden 5,18 g Geniosil GF 56, gelöst in 261 g Vinylacetat, innerhalb von 30 min zudosiert. Dann wurden 9,49 g GMA, gelöst in 79,4 g Vinylacetat, innerhalb von 10 min zudosiert. Anschließend wurden 10,4 g Vinylacetat zugegeben und die Initiatoren weitere 40 min mit Raten von 6,25 g/h (TBHP) bzw. 22,8 g/h (FF6) zudosiert. Der Ansatz wurde ab gekühlt, enstpannt und 0,218 g Foamaster 2315 zugegeben. Die Dispersion wurde mit Acticide MBS konserviert. From the end of the vinyl acetate metering, 5.18 g of Geniosil GF 56 dissolved in 261 g of vinyl acetate were metered in within 30 minutes. Then 9.49 g of GMA dissolved in 79.4 g of vinyl acetate were metered in over the course of 10 minutes. 10.4 g of vinyl acetate were then added and the initiators were metered in for a further 40 minutes at rates of 6.25 g/h (TBHP) and 22.8 g/h (FF6). The batch was cooled, decompressed and 0.218 g of Foamaster 2315 added. The dispersion was preserved with Acticide MBS.
Beispiel 5: Example 5:
GMA- und Silan-haltiges Stärke-Hybridcopolymer mit 30,5% Maltodextrin : GMA and silane containing starch hybrid copolymer with 30.5% maltodextrin :
Reaktionsführung und Mengen wie in Bsp. 4, aber an Stelle von ARIC 50.070 wurde Agenamalt 20.225 eingesetzt. Reaction procedure and amounts as in Example 4, but instead of ARIC 50.070 Agenamalt 20.225 was used.
Beispiel 6: Example 6:
GMA- und Silan-haltiges Stärke-Hybridcopolymer mit 30,5%GMA and silane containing starch hybrid copolymer at 30.5%
Stärke : Strength :
Reaktionsführung und Mengen wie in Bsp. 4, aber an Stelle von ARIC 50.070 wurde Agenamalt 20.226 eingesetzt. Reaction procedure and amounts as in Example 4, but instead of ARIC 50.070 Agenamalt 20.226 was used.
Vergleichsbeispiel 1: Comparative example 1:
NMA-haltige Copolymerdispersion: NMA-containing copolymer dispersion:
In einem Laborautoklaven (5 L) wurden unter Rühren vorgelegt: 901 g entionisiertes Wasser, A laboratory autoclave (5 L) was charged with stirring: 901 g deionized water,
6,45 g Zitronensäure, 6.45 g citric acid,
1,13 g Natriumcitrat, 1.13 g sodium citrate,
112 g Aerosol A102 (30%ig), 112 g aerosol A102 (30%),
119 g Melon 20 (20%ig) und 119 g Melon 20 (20%) and
24,2 g Natriumvinylsulfonat (25%ig). 24.2 g sodium vinyl sulfonate (25%).
Der pH-Wert wurde auf 4,0 eingestellt und 1,77 g Eisen (II)ammo- niumsulfat zugegeben. Anschließend wurde evakuiert und mit Stickstoff beaufschlagt. 2065 g Vinylacetat wurden zugegeben, der Reaktor auf 40°C aufgeheizt und 444 g Ethylen aufgedrückt. Dann wurden eine wässrige tert-Butylhydroperoxid-Lösung (3%ig) mit einer Rate von 67,3 g/h und eine wässrige Natriumisoascor- bat-Lösung (5,7%ig) mit einer Rate von 67,3 g/h gestartet. Nach Reaktionsbeginn, erkennbar an einem Anstieg der Innentempera tur, wurden die Initiatorraten reduziert (TBHP 24,6 g/h, Natri- umisoscorbat 25,6 g/h) und 288 g NMA-LF, gelöst in 195 g ent- ionisiertem Wasser, mit einer Rate von 161 g/h innerhalb von 180 min zudosiert. Ab Reaktionsbeginn wurde die Innentemperatur von 55°C auf 60°C mit einer Rate von 0,25°C/min erhöht. 60 min nach Reaktionsbeginn startete die Dosierung von 364 g Vinylace tat mit einer Rate von 182 g/h. Nach Beendigung der Monomerdo sierungen liefen die Initiatordosierungen noch 60 min nach. Anschließend wurde der Ansatz auf 30°C abgekühlt und entspannt. Es wurden 1,26 g Silfoam SE2 zugegeben, anschließend wurde mit 17,0 g TBHP (10%ig) und 33,4 g Natriumisoascorbat (6,25%ig) nachpolymerisiert. Der Ansatz wurde mit Ammoniak (12,5%ig) auf pH 6,0 eingestellt und mit Wasserstoffperoxid (10%ig) konser viert . The pH was adjusted to 4.0 and 1.77 g of ferrous ammonium sulfate was added. It was then evacuated and pressurized with nitrogen. 2065 g of vinyl acetate were added, the reactor was heated to 40° C. and 444 g of ethylene were forced in. Then an aqueous tert-butyl hydroperoxide solution (3%) started at a rate of 67.3 g/h and an aqueous sodium isoascorbate solution (5.7%) at a rate of 67.3 g/h. After the start of the reaction, recognizable by an increase in the internal temperature, the initiator rates were reduced (TBHP 24.6 g/h, sodium isoscorbate 25.6 g/h) and 288 g NMA-LF, dissolved in 195 g deionized water, metered in at a rate of 161 g/h within 180 min. From the start of the reaction, the internal temperature was raised from 55°C to 60°C at a rate of 0.25°C/min. 60 min after the start of the reaction, 364 g of vinyl acetate were metered in at a rate of 182 g/h. After the end of the monomer metering, the initiator metering continued for a further 60 minutes. The batch was then cooled to 30° C. and let down. 1.26 g of Silfoam SE2 were added, followed by post-polymerization with 17.0 g of TBHP (10%) and 33.4 g of sodium isoascorbate (6.25%). The batch was adjusted to pH 6.0 with ammonia (12.5%) and preserved with hydrogen peroxide (10%).
Vergleichsbeispiel 2: Comparative example 2:
Blend einer NMA-haltigen Copolymerdispersion mit 20,2% ARIC 50.070: Blend of an NMA-containing copolymer dispersion with 20.2% ARIC 50.070:
Die NMA-haltige Copolymerdispersion aus VBsp. 1 wurde nachträg lich mit 20,2% ARIC 50.070 versetzt. The NMA-containing copolymer dispersion from VBsp. 1 was subsequently moved with 20.2% ARIC 50.070.
Vergleichsbeispiel 3: Comparative example 3:
Blend einer NMA-haltigen Copolymerdispersion mit 29,7% ARIC 50.070: Blend of an NMA-containing copolymer dispersion with 29.7% ARIC 50.070:
Die NMA-haltige Copolymerdispersion aus VBsp. 1 wurde nachträg lich mit 29,7% ARIC 50.070 versetzt. The NMA-containing copolymer dispersion from VBsp. 1 was subsequently moved with 29.7% ARIC 50.070.
Vergleichsbeispiel 4: Comparative example 4:
Blend einer NMA-haltigen Copolymerdispersion mit 45,6% ARIC 50.070: Blend of an NMA-containing copolymer dispersion with 45.6% ARIC 50.070:
Die NMA-haltige Copolymerdispersion aus VBsp. 1 wurde nachträg lich mit 45,6% ARIC 50.070 versetzt. Vergleichsbeispiel 5: The NMA-containing copolymer dispersion from VBsp. 1 was subsequently moved with 45.6% ARIC 50.070. Comparative example 5:
GMA- und Vinylsilan-haltige Copolymerdispersion: Copolymer dispersion containing GMA and vinyl silane:
In einem Laborautoklaven (5 L) wurden unter Rühren vorgelegt:A laboratory autoclave (5 L) was charged with stirring:
63.6 g Genapol PF 40 (20%ig), 63.6 g Genapol PF 40 (20%),
111 g Genapol X150 (40%ig), 111 g Genapol X150 (40%),
46.6 g Mersolat (30%ig), 46.6 g Mersolat (30%),
20,4 g Natriumvinylsulfonat (25%ig) und 246 g PVOH 25/140 (10%ig). 20.4 g sodium vinyl sulfonate (25%) and 246 g PVOH 25/140 (10%).
Die wässrige Vorlage wurde auf einen pH von 4,0 eingestellt und 7,63 g Eisen (II)ammoniumsulfat (l%ig) zugegeben. Anschließend wurde evakuiert und mit Stickstoff beaufschlagt. 252 g Vinyl acetat wurden zugegeben, der Reaktor auf 70°C aufgeheizt und 120 g Ethylen aufgedrückt. Die Initiatordosierungen wurden ge startet: TBHP (10%ig) wurde mit 3,40 g/h dosiert, Brüggolit FF6 (5%ig) mit 12,8 g/h. Nach Reaktionsbeginn, erkennbar an einem Anstieg der Innentemperatur, wurde die Innentemperatur auf 80°C erhöht. Anschließend wurden die Raten der Initiatordosierungen erhöht (TBHP: 7,40 g/h; FF6: 27,7 g/h) und folgende Dosierungen gestartet : The aqueous template was adjusted to a pH of 4.0 and 7.63 g of iron(II) ammonium sulfate (1%) were added. It was then evacuated and pressurized with nitrogen. 252 g of vinyl acetate were added, the reactor was heated to 70° C. and 120 g of ethylene were injected. The initiator metering was started: TBHP (10%) was metered in at 3.40 g/h, Bruggolit FF6 (5%) at 12.8 g/h. After the start of the reaction, recognizable from an increase in the internal temperature, the internal temperature was increased to 80.degree. The rates of initiator dosing were then increased (TBHP: 7.40 g/h; FF6: 27.7 g/h) and the following dosing started:
1775 g Vinylacetat in 135 min, 1775 g vinyl acetate in 135 min,
4,07 g Ameisensäure (50%ig), gelöst in 254 g entionisiertem Wasser, in 180 min, 4.07 g formic acid (50%), dissolved in 254 g deionized water, in 180 min,
210 g Ethylen, so dass der Reaktionsdruck bei 35 bar lag. 210 g ethylene, so that the reaction pressure was 35 bar.
Ab Dosierende des Vinylacetats wurden 7,63 g Geniosil GF 56, gelöst in 385 g Vinylacetat, innerhalb von 30 min zudosiert. Dann wurden 14,0 g GMA, gelöst in 117 g Vinylacetat, innerhalb von 10 min zudosiert. Anschließend wurden 15,3 g Vinylacetat zugegeben und die Initiatoren weitere 40 min mit Raten von 9,11 g/h (TBHP) bzw. 33,8 g/h (FF6) zudosiert. Der Ansatz wurde ab gekühlt, enstpannt und 0,321 g Foamaster 2315 zugegeben. Die Dispersion wurde mit Acticide MBS konserviert. From the end of the vinyl acetate metering, 7.63 g of Geniosil GF 56 dissolved in 385 g of vinyl acetate were metered in within 30 minutes. Then 14.0 g of GMA dissolved in 117 g of vinyl acetate were metered in over the course of 10 minutes. 15.3 g of vinyl acetate were then added and the initiators were metered in for a further 40 minutes at rates of 9.11 g/h (TBHP) and 33.8 g/h (FF6). The batch was cooled, decompressed and 0.321 g of Foamaster 2315 added. The dispersion was preserved with Acticide MBS.
Vergleichsbeispiel 6: Comparative example 6:
Copolymerdispersion mit 30,5% Stärke, ohne GMA/Silan: Copolymer dispersion with 30.5% strength, without GMA/silane:
Reaktionsführung und Mengen wie in Bsp. 4, aber ohne Verwendung von GMA und Geniosil GF 56. Vergleichsbeispiel 7: Reaction procedure and quantities as in Example 4, but without using GMA and Geniosil GF 56. Comparative example 7:
GMA- und Vinylsilan-haltige Copolymerdispersion mit 30,5% nicht kaltwasserlöslicher Stärke: Reaktionsführung und Mengen wie in Bsp. 4, aber an Stelle von ARIC 50.070 wurde Dynaplak 2020 eingesetzt. Die Dispersion war extrem schaumig und enthielt sehr viele Stippen. Sie war völlig ungeeignet zur Herstellung einer Farbe. Tabelle 1: Charakterisierung der Dispersionen der Beispiele und Vergleichsbeispiele: Anwendungstechnische Ausprüfung in Farbanwendungen Innenfarbe mit einer Pigment-Volumen-Konzentration (PVK) 70% Farbformulierungen : GMA and vinylsilane-containing copolymer dispersion with 30.5% starch that is not soluble in cold water: reaction procedure and amounts as in example 4, but Dynaplak 2020 was used instead of ARIC 50.070. The dispersion was extremely foamy and contained a large number of specks. It was totally unsuitable for making a paint. Table 1: Characterization of the dispersions of the examples and comparative examples: Application testing in paint applications Interior paint with a pigment volume concentration (PVK) of 70% paint formulations:
Die Farbformulierungen basierten auf den in Tabelle 2 angegebe nen Einsatzstoffen. The paint formulations were based on the ingredients listed in Table 2.
Tabelle 2: Farbformulierungen: Table 2: Color formulations:
Das Anmischen der Farbformulierungen wurde mittels Dissolver durchgeführt. Zu Beginn wurde Wasser vorgelegt. Anschließend wurden Dispergierhilfsmittel, Entschäumer, Verdicker und Natri- umhydroxid-Lösung einzeln hinzugefügt und jeweils 5 Minuten bei 300 bis 400 U/min gerührt. Anschließend wurde die Drehzahl auf 800 bis 1.000 U/min erhöht und die Pigmente, Füllstoffe und Dispersion aus dem jeweiligen (Vergleichs)Beispiel einzeln hin zugegeben. Hierbei wurde die Menge an Dispersion an den ent- sprechenden Feststoffgehalt angepasst. Zuletzt wurde die Formu- lierung mindesten 30 Minuten bei 800 bis 1.000 U/min disper giert. The color formulations were mixed using a dissolver. At the beginning, water was presented. Dispersing assistants, defoamers, thickeners and sodium hydroxide solution were then added individually and the mixture was stirred at 300 to 400 rpm for 5 minutes in each case. The speed was then increased to 800 to 1000 rpm and the pigments, fillers and dispersion from the respective (comparative) example were added individually. Here, the amount of dispersion was adjusted to the corresponding solids content. Finally, the form tion at least 30 minutes at 800 to 1,000 rpm dispersed.
Viskositäten der Farbformulierungen: Die Brookfield-Viskositäten der Farbformulierungen wurden einen Tag nach ihrer Herstellung experimentell bei 1 U/min, 10 U/min und 100 U/min ermittelt. Die Bestimmung der ICI-Viskosität er folgte mittels Kegel-Platte-Viskosimeter bei einer Scherrate von 10000 s_1. In Tabelle 3 sind die Ergebnisse für die Farbformulierungen mit den Dispersionen der Beispiele 4 bis 6 und Vergleichsbeispiele 5 bis 6 angegeben. Viscosities of the paint formulations: The Brookfield viscosities of the paint formulations were determined experimentally at 1 rpm, 10 rpm and 100 rpm one day after their preparation. The ICI viscosity was determined using a cone and plate viscometer at a shear rate of 10,000 s -1 . Table 3 gives the results for the paint formulations with the dispersions of Examples 4 to 6 and Comparative Examples 5 to 6.
Tabelle 3: Brookfield-Viskositäten der Farbformulierungen: Table 3: Brookfield viscosities of the paint formulations:
Glanzwerte der Farbformulierungen: Gloss values of the color formulations:
Die Messung der Glanzwerte erfolgte nach DIN EN 13300. Hierfür wurden die Farbformulierungen in einer Nassschichtdicke von 150 pm auf eine weiße Leneta-Folie aufgetragen und anschließend 24 Stunden bei Normklima (23 ± 2 °C und 50 ± 5 % relativer Luft feuchte) gelagert. Die Bestimmung des Glanzwertes erfolgte mit tels 3-Winkel-Glanzmessgerät. The gloss values were measured in accordance with DIN EN 13300. For this purpose, the paint formulations were applied to a white Leneta foil in a wet layer thickness of 150 μm and then stored for 24 hours in a standard climate (23 ± 2 °C and 50 ± 5 % relative humidity). The gloss value was determined using a 3-angle gloss meter.
Die Ergebnisse der Austestung sind in Tabelle 4 zusammenge- fasst. Tabelle 4: Glanzwerte der Farbformulierungen: The results of the testing are summarized in Table 4. Table 4: Gloss values of the color formulations:
Nassabrieb der Farbformulierungen: Die Messung des Nassabriebs erfolgte mittels modifizierterWet abrasion of the paint formulations: Wet abrasion was measured using a modified
Prüfmethode nach DIN EN 13300. Hierfür wurden die Farbformu- lierungen in einer Nassschichtdicke von 300 pm auf eine PVC-Fo- lie aufgetragen. Die erste Trocknung erfolgte für drei Tage bei Normklima (23 ± 2 °C und 50 ± 5 % relativer Luftfeuchte). An- schließend wurden die Proben für 24 Stunden bei 50°C im Ofen gelagert und für weitere 24 Stunden bei Normklima (23 ± 2 °C und 50 ± 5 % relativer Luftfeuchte) entspannt. Der Verlust der Schichtdicke wurde nach 200 beziehungsweise 40 Nassabriebszyk len unter Verwendung eines abrasiven Vlieses ermittelt. Test method according to DIN EN 13300. For this purpose, the paint formulations were applied to a PVC foil in a wet layer thickness of 300 μm. The first drying took place for three days in a standard climate (23 ± 2 °C and 50 ± 5% relative humidity). The samples were then stored in the oven at 50°C for 24 hours and stress-relieved for a further 24 hours in a standard climate (23±2°C and 50±5% relative humidity). The loss of layer thickness was determined after 200 or 40 wet abrasion cycles using an abrasive fleece.
Tabelle 5: Nassabrieb der Farbproben: Table 5: Wet abrasion of the paint samples:
Die Nassabriebswerte für die Beispiele 4 bis 6 (Tabelle 5) ver- deutlichen, dass mit silangruppenhaltigen Monomeren Stärkehyb ride mit besonders guten Nassabriebswerten erhalten werden.The wet abrasion values for Examples 4 to 6 (Table 5) make it clear that starch hybrids with particularly good wet abrasion values are obtained with monomers containing silane groups.
Die stärkehaltige Dispersion ohne Silan (VBsp. 6) versagte da gegen völlig. Anwendungstechnische Ausprüfung auf textilen Flächengebilden In contrast, the starchy dispersion without silane (CE 6) failed completely. Technical application testing on textile fabrics
Herstellung von textilen Flächengebilden: Production of textile fabrics:
Zur Herstellung von textilen Flächengebilden wurde eine wässri ge Bindemittelzusammensetzung in einer Menge von vorzugsweise 1 bis 50 Gew.-%, besonders bevorzugt 10 bis 30 Gew.-% und am meisten bevorzugt 15 bis 25 Gew.-% eingesetzt, jeweils bezogen auf das Gesamtgewicht der Fasern. Der Anteil der Fasern betrug vorzugsweise 40 bis 99 Gew.-%, besonders bevorzugt 60 bis 90 Gew.-% und am meisten bevorzugt 70 bis 80 Gew.-%, jeweils bezo gen auf das Gesamtgewicht der textilen Flächengebilde. Der Ar tikel wurde anschließend thermisch bei < 220°C für < 5 min fi xiert . To produce textile fabrics, an aqueous binder composition was used in an amount of preferably 1 to 50% by weight, more preferably 10 to 30% by weight and most preferably 15 to 25% by weight, based in each case on the total weight of the fibers. The proportion of fibers was preferably 40 to 99% by weight, particularly preferably 60 to 90% by weight and most preferably 70 to 80% by weight, in each case based on the total weight of the textile fabric. The item was then thermally fixed at < 220°C for < 5 min.
Verträglichkeit und Lagerstabilität der Stärke-Hybridcopolymer- Dispersionen im Vergleich zu Stärke-Copolymer-Mischungen: Dispersionen der Stärke-Hybridcopolymere der Beispiele 1 bis 3 wurden mit Dispersionen der Blends der Vergleichsbeispiele 2 bis 4 hinsichtlich ihrer Lagerstabilität verglichen. Hierzu wurden die Dispersionen zu den in Tabelle 6 angegebenen Zeit punkten hinsichtlich Lagerstabilität beziehungsweise Phasense paration geprüft. Compatibility and Storage Stability of the Starch Hybrid Copolymer Dispersions Compared to Starch Copolymer Mixtures: Dispersions of the starch hybrid copolymers of Examples 1 to 3 were compared with dispersions of the blends of Comparative Examples 2 to 4 with regard to their storage stability. For this purpose, the dispersions were tested at the times given in Table 6 with regard to storage stability and phase separation.
Die Ergebnisse sind in Tabelle 6 zusammengefasst. The results are summarized in Table 6.
Es wurde überraschend festgestellt, dass die Dispersionen der erfindungsgemäßen Stärke-Hybridcopolymere deutlich lagerstabi ler waren als die Vergleichsdispersionen, die Stärke und Copo lymere in Form von physikalischen Mischungen enthielten. Tabelle 6: Lagerstabilität der Dispersionen: It was surprisingly found that the dispersions of the starch hybrid copolymers according to the invention were significantly more storage-stable than the comparison dispersions, which contained starch and copolymers in the form of physical mixtures. Table 6: Storage stability of the dispersions:
Bestimmung der biologischen Abbaubarkeit: Die erfindungsgemäßen Stärke-Hybridcopolymere von Bsp. 1 und die Referenzsubstanz von VBsp. 1 wurden je auf Cellulosepulver aufgetragen und gemäß ISO 14855-1 auf aerobe Bioabbaubarkeit getestet (Tabelle 7). Im Vergleich zum reinen Polymerbinder von VBsp. 1 zeigen die Stärke-Hybridcopolymere von Bsp. 1 eine deutlich höhere Bioab baubarkeit und erreichen eine relative Abbaubarkeitsrate von etwa 90 %, wie Tabelle 7 zu entnehmen ist. Tabelle 7: biologische Abbaubarkeit: Determination of the Biodegradability: The starch hybrid copolymers according to the invention from Ex. 1 and the reference substance from VBsp. 1 were each applied to cellulose powder and tested for aerobic biodegradability according to ISO 14855-1 (Table 7). Compared to the pure polymer binder of VBsp. 1, the starch hybrid copolymers of Ex. 1 show a significantly higher biodegradability and achieve a relative degradability rate of about 90%, as can be seen in Table 7. Table 7: Biodegradability:
Bestimmung der Festigkeitswerte des Vliesstoffes: Auf ein thermisch vorgebundenes Airlaidvlies (75 g/m2; 88% Fluff pulp und 12% PP/PE-Bikomponentenfasern; 0,85 mm Dicke) wurde die mit Wasser auf einen Festgehalt von 20% verdünnte Dispersion des jeweiligen (Vergleichs-)Beispiels mittels einer Sprühflotte mit einem halbautomatischen Sprühaggregat nach dem Airlessverfahren (Schlitzdüsen Unijet 8001 E; 5 bar) homogen beidseitig besprüht und anschließend in einem Labor- Durchlufttrockner (Mathis LTF; Fa. Mathis / CH) für 3 min bei 160°C getrocknet (Auftragungsmenge: 20 Gew.-% Polymer bezogen auf das Gesamtgewicht aus Polymer und Vlies). Determination of the strength values of the non-woven fabric : The dispersion of the respective (comparative) example by means of a Spray liquor is sprayed homogeneously on both sides with a semi-automatic spray unit using the airless method (slit nozzles Unijet 8001 E; 5 bar) and then dried in a laboratory through-air dryer (Mathis LTF; from Mathis / CH) for 3 minutes at 160°C (amount applied: 20 wt % polymer based on the total weight of polymer and fleece).
Pro Reißfestigkeitsprüfung wurden je 10 Vliesstreifen (20 cm Einspannlänge; 5 cm Einspannlänge) in Querrichtung zur Maschi nenproduktionsrichtung angefertigt. Die Festigkeiten wurden analog der DIN EN 29073 (Teil 3: Prüf verfahren für Vliesstoffe, 1992) bestimmt und die Messproben mittels einer HöchstZugkraftmessung an einer Zwick® 1445- Prüfmaschine (100 N Messdose) mit einer TestXpert®-Software Version 11.02 (Fa. Zwick Roell) bei einer Einspannlänge von lOOil mm, einer Einspannbreite von 15±1 mm und bei einer Defor mationsgeschwindigkeit von 150 mm/min durchgeführt. For each tear strength test, 10 fleece strips (20 cm clamped length; 5 cm clamped length) were produced in the direction transverse to the machine production direction. The strengths were determined analogously to DIN EN 29073 (Part 3: Test methods for non-woven fabrics, 1992) and the test specimens were measured using a maximum tensile force measurement on a Zwick® 1445 testing machine (100 N load cell) with TestXpert® software version 11.02 (Zwick Roell) with a clamping length of 1001 mm, a clamping width of 15±1 mm and a deformation speed of 150 mm/min.
Die Ergebnisse der Austestung sind in der Tabelle 8 zusammenge fasst. Tabelle 8: Festigkeit von Vliesstoffen: The results of the testing are summarized in Table 8. Table 8: Strength of non-woven fabrics:
Die Ergebnisse zeigen, dass die erfindungsgemäßen Stärke-Hy bridcopolymere der Beispiele 1 und 2 zu besseren Nasszugfestig- keiten führen als die Mischungen der Vergleichsbeispiele 2 undThe results show that the inventive starch hybrid copolymers of Examples 1 and 2 lead to better wet tensile strengths than the mixtures of Comparative Examples 2 and
3. Die Vliesstoffe mit den erfindungsgemäßen Stärke-Hybridcopoly- meren waren trotz des Stärkegehalts, der üblicherweise verhär tend wirkt, angenehm weich und zeigten die gewünschte Elastizi tät (Elongation). 3. Despite the starch content, which usually has a hardening effect, the nonwovens with the starch hybrid copolymers according to the invention were pleasantly soft and exhibited the desired elasticity (elongation).

Claims

Patentansprüche patent claims
1. Stärke-Hybridcopolymere in Form von wässrigen Dispersionen oder in Wasser redispergierbaren Pulvern erhältlich durch radikalisch initiierte Polymerisation in wässrigem Medium von ethylenisch ungesättigten Monomeren in Gegenwart von Stärke und gegebenenfalls anschließender Trocknung, dadurch gekennzeichnet, dass die Stärke-Hybridcopolymere zu > 20 Gew.-%, bezogen auf das Trockengewicht der Stärke-Hybridcopolymere, auf kaltwasser löslicher Stärke basieren und die ethylenisch ungesättigten Monomere entweder a) ein oder mehrere Vinylester, 1 bis 40 Gew.-% Ethylen,1. Starch hybrid copolymers in the form of aqueous dispersions or water-redispersible powders obtainable by free-radically initiated polymerization in an aqueous medium of ethylenically unsaturated monomers in the presence of starch and optionally subsequent drying, characterized in that the starch hybrid copolymers are >20% by weight %, based on the dry weight of the starch hybrid copolymers, are based on cold-water-soluble starch and the ethylenically unsaturated monomers are either a) one or more vinyl esters, 1 to 40% by weight ethylene,
0,1 bis 10 Gew.-% an einem oder mehreren funktionellen Mo nomeren und gegebenenfalls ein oder mehrere weitere ethyle nisch ungesättigte Monomere oder b) Styrol, > 30 Gew.-% an einem oder mehreren 0.1 to 10% by weight of one or more functional monomers and optionally one or more other ethylenically unsaturated monomers or b) styrene, >30% by weight of one or more
(Meth)acrylsäureestern, 0,1 bis 10 Gew.-% an einem oder mehreren funktionellen Monomeren und gegebenenfalls ein o- der mehrere weitere ethylenisch ungesättigte Monomere um fassen, wobei die funktionellen Monomeren ethylenisch ungesättigt sind und eine oder mehrere Epoxy-, Silan- und/oder N- Methylol-Gruppen tragen, wobei sich die Gew.-%-Angaben zu den Monomeren auf das Ge samtgewicht der Monomere beziehen. (Meth)acrylic acid esters, 0.1 to 10% by weight of one or more functional monomers and optionally one or more other ethylenically unsaturated monomers, where the functional monomers are ethylenically unsaturated and contain one or more epoxy, silane and/or carry N-methylol groups, the percentages by weight of the monomers being based on the total weight of the monomers.
2. Stärke-Hybridcopolymere in Form von wässrigen Dispersionen oder in Wasser redispergierbaren Pulvern nach Anspruch 1, dadurch gekennzeichnet, dass ein oder mehrere Epoxy-Gruppen tragende, funktionelle Monomere ausgewählt werden aus der Gruppe umfassend Glycidylacrylat und Glycidylmethacrylat; ein oder mehrere N-Methylol-Gruppen tragende, funktionelle Monomere ausgewählt werden aus der Gruppe umfassend N-Me- thylolacrylamid, N-Methylolmethacrylamid, N-Methylol- allylcarbamat, Ci- bis C4-Alkylether von N-Methylolacryl- amid, N-Methylolmethacrylamid und N-Methylolallylcarbamat, sowie Ci- bis C4-Alkylester des N-Methylolacrylamids, des N- Methylolmethacrylamids und des N-Methylolallylcarbamats; und/oder ein oder mehrere Silan-Gruppen tragende, funktionelle Mono mere ausgewählt werden aus der Gruppe umfassend (Meth)- acryloxypropyltri (alkoxy)silane, (Meth)acryloxypropyl- dialkoxymethylsilane, Vinyltrialkoxysilane und Vinylmethyl- dialkoxysilane, wobei als Alkoxygruppen Methoxy-, Ethoxy-, Propoxy-, Butoxy-, Acetoxy- und Ethoxypropylenglykolether- Reste enthalten sind. 2. Starch hybrid copolymers in the form of aqueous dispersions or water-redispersible powders according to claim 1, characterized in that one or more functional monomers carrying epoxy groups are selected from the group consisting of glycidyl acrylate and glycidyl methacrylate; functional monomers carrying one or more N-methylol groups are selected from the group consisting of N-methylolacrylamide, N-methylolmethacrylamide, N-methylol- allyl carbamate, C 1 to C 4 alkyl ethers of N-methylolacrylamide, N-methylol methacrylamide and N-methylol allyl carbamate, and C 1 to C 4 alkyl esters of N-methylol acrylamide, N-methylol methacrylamide and N-methylol allyl carbamate; and/or carrying one or more silane groups, functional mono mers are selected from the group consisting of (meth)acryloxypropyltri(alkoxy)silanes, (meth)acryloxypropyldialkoxymethylsilanes, vinyltrialkoxysilanes and vinylmethyldialkoxysilanes, with methoxy, ethoxy as alkoxy groups -, Propoxy, butoxy, acetoxy and ethoxypropylene glycol ether radicals are included.
3. Stärke-Hybridcopolymere in Form von wässrigen Dispersionen oder in Wasser redispergierbaren Pulvern nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die ethylenisch unge sättigten Monomere a) 50 bis 98 Gew.-% an einem oder mehre ren Vinylestern, 1 bis 40 Gew.-% Ethylen, 0,1 bis 10 Gew.-% an einem oder mehreren funktionellen Monomeren und gegebe nenfalls ein oder mehrere weitere ethylenisch ungesättigte Monomere umfassen, je bezogen auf das Gesamtgewicht der Mo nomere. 3. Starch hybrid copolymers in the form of aqueous dispersions or water-redispersible powders according to claim 1 or 2, characterized in that the ethylenically unsaturated monomers a) contain 50 to 98% by weight of one or more vinyl esters, 1 to 40% by weight % ethylene, 0.1 to 10% by weight of one or more functional monomers and optionally one or more other ethylenically unsaturated monomers, each based on the total weight of the monomers.
4. Stärke-Hybridcopolymere in Form von wässrigen Dispersionen oder in Wasser redispergierbaren Pulvern nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die ethylenisch unge sättigten Monomere b) 31 bis 69 Gew.-% Styrol, > 30 Gew.-% an einem oder mehreren (Meth)acrylsäureestern, 0,1 bis 10 Gew.-% an einem oder mehreren funktionellen Monomeren und gegebenenfalls ein oder mehrere weitere ethylenisch unge sättigte Monomere umfassen, je bezogen auf das Gesamtge wicht der Monomere. 4. Starch hybrid copolymers in the form of aqueous dispersions or water-redispersible powders according to claim 1 or 2, characterized in that the ethylenically unsaturated monomers b) 31 to 69 wt .-% styrene,> 30 wt .-% of one or several (meth)acrylic acid esters, 0.1 to 10% by weight of one or more functional monomers and optionally one or more further ethylenically unsaturated monomers, each based on the total weight of the monomers.
5. Stärke-Hybridcopolymere in Form von wässrigen Dispersionen oder in Wasser redispergierbaren Pulvern nach Anspruch 1 bis 4, dadurch gekennzeichnet, dass die weiteren ethyle- nisch ungesättigten Monomere ein oder mehrere ethylenisch ungesättigte Mono- oder Dicarbonsäuren oder deren Anhydride oder deren Salze und/oder ein oder mehrere ethylenisch un gesättigte Sulfonsäuren oder deren Salze umfassen. 5. Starch hybrid copolymers in the form of aqueous dispersions or water-redispersible powders according to claims 1 to 4, characterized in that the further ethyl nically unsaturated monomers comprise one or more ethylenically unsaturated mono- or dicarboxylic acids or their anhydrides or their salts and/or one or more ethylenically unsaturated sulfonic acids or their salts.
6. Stärke-Hybridcopolymere in Form von wässrigen Dispersionen oder in Wasser redispergierbaren Pulvern nach Anspruch 1 bis 5, dadurch gekennzeichnet, dass die Stärke-Hybridcopo- lymere zu 20 bis 80 Gew.-% auf ethylenisch ungesättigten Monomeren basieren, bezogen auf das Trockengewicht der Stärke-Hybridcopolymere. 6. Starch hybrid copolymers in the form of aqueous dispersions or water-redispersible powders according to Claim 1 to 5, characterized in that the starch hybrid copolymers are 20 to 80% by weight based on ethylenically unsaturated monomers, based on the dry weight of the Starch Hybrid Copolymers.
7. Stärke-Hybridcopolymere in Form von wässrigen Dispersionen oder in Wasser redispergierbaren Pulvern nach Anspruch 1 bis 6, dadurch gekennzeichnet, dass die kaltwasserlösliche Stärke bei 23°C zu M O g pro Liter Wasser löslich ist.7. Starch hybrid copolymers in the form of aqueous dispersions or water-redispersible powders according to Claims 1 to 6, characterized in that the cold-water-soluble starch is soluble at 23°C to MO g per liter of water.
8. Stärke-Hybridcopolymere in Form von wässrigen Dispersionen oder in Wasser redispergierbaren Pulvern nach Anspruch 1 bis 7, dadurch gekennzeichnet, dass die kaltwasserlösliche Stärke Brookfield-Viskositäten von 10 bis 5000 mPas hat (bestimmt mit einem Brookfield-Viskosimeter bei 23°C, 20 UPM und einem Feststoffgehalt in Wasser von 50%). 8. Starch hybrid copolymers in the form of aqueous dispersions or water-redispersible powders according to Claims 1 to 7, characterized in that the cold-water-soluble starch has Brookfield viscosities of 10 to 5000 mPas (determined with a Brookfield viscometer at 23°C, 20 RPM and a solids content in water of 50%).
9. Stärke-Hybridcopolymere in Form von wässrigen Dispersionen oder in Wasser redispergierbaren Pulvern nach Anspruch 1 bis 8, dadurch gekennzeichnet, dass der Anteil der kaltwas serlöslichen Stärke, bezogen auf das Gesamtgewicht der ins gesamt enthaltenen Stärke, > 50 Gew.-% ist. 9. Starch hybrid copolymers in the form of aqueous dispersions or water-redispersible powders according to claims 1 to 8, characterized in that the proportion of cold-water-soluble starch, based on the total weight of the total starch contained, is >50% by weight.
10. Verfahren zur Herstellung von Stärke-Hybridcopolymeren in Form von wässrigen Dispersionen oder in Wasser redisper gierbaren Pulvern mittels radikalisch initiierter Polymeri sation, insbesondere Emulsionspolymerisation, in wässrigem Medium von ethylenisch ungesättigten Monomeren in Gegenwart von Stärke und gegebenenfalls anschließendem Trocknen, dadurch gekennzeichnet, dass > 20 Gew.-%, bezogen auf das insgesamte Trockengewicht der Stärke und der ethylenisch ungesättigten Monomere, an kalt wasserlöslicher Stärke eingebracht werden und als ethylenisch ungesättigte Monomere entweder a) ein oder mehrere Vinylester, 1 bis 40 Gew.-% Ethylen,10. Process for the production of starch hybrid copolymers in the form of aqueous dispersions or powders redispersible in water by means of free-radically initiated polymerization, in particular emulsion polymerization, in an aqueous medium of ethylenically unsaturated monomers in the presence of starch and optionally subsequent drying, characterized in that > 20 wt.
0,1 bis 10 Gew.-% an einem oder mehreren funktionellen Mo nomeren und gegebenenfalls ein oder mehrere weitere ethyle nisch ungesättigte Monomere oder b) Styrol, > 30 Gew.-% an einem oder mehreren 0.1 to 10% by weight of one or more functional monomers and optionally one or more other ethylenically unsaturated monomers or b) styrene, >30% by weight of one or more
(Meth)acrylsäureestern, 0,1 bis 10 Gew.-% an einem oder mehreren funktionellen Monomeren und gegebenenfalls ein o- der mehrere weitere ethylenisch ungesättigte Monomere ein gesetzt werden, wobei die funktionellen Monomeren ethylenisch ungesättigt sind und eine oder mehrere Epoxy-, Silan- und/oder N- Methylol-Gruppen tragen, wobei sich die Gew.-%-Angaben zu den Monomeren auf das Ge samtgewicht der Monomere beziehen. (Meth)acrylic acid esters, 0.1 to 10% by weight of one or more functional monomers and optionally one or more other ethylenically unsaturated monomers are used, the functional monomers being ethylenically unsaturated and one or more epoxy, silane - and/or carry N-methylol groups, the percentages by weight of the monomers being based on the total weight of the monomers.
11. Verwendung der Stärke-Hybridcopolymere in Form von wässrigen Dispersionen oder in Wasser redispergierbaren Pulvern aus Anspruch 1 bis 9 als Bindemittel für Beschichtungsmittel oder Klebemittel, insbesondere für Farben, Textilien, Papier o- der Teppiche. 11. Use of the starch hybrid copolymers in the form of aqueous dispersions or water-redispersible powders from Claims 1 to 9 as binders for coating compositions or adhesives, in particular for paints, textiles, paper or carpets.
12. Verwendung der Stärke-Hybridcopolymere in Form von wässrigen Dispersionen oder in Wasser redispergierbaren Pulvern aus Anspruch 1 bis 9 in Verlaufsmassen, Bauklebern, Fliesenklebern, Vollwärmeschutzklebern, Putzen, Spachtelmassen, Fugenmörteln, Dichtschlämmen oder Farben. 12. Use of the starch-hybrid copolymers in the form of aqueous dispersions or water-redispersible powders from Claims 1 to 9 in self-levelling compounds, building adhesives, tile adhesives, thermal insulation adhesives, plasters, fillers, joint mortars, sealing slurries or paints.
EP21720410.6A 2021-04-16 2021-04-16 Starch hybrid copolymers Pending EP4323416A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2021/059882 WO2022218539A1 (en) 2021-04-16 2021-04-16 Starch hybrid copolymers

Publications (1)

Publication Number Publication Date
EP4323416A1 true EP4323416A1 (en) 2024-02-21

Family

ID=75625544

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21720410.6A Pending EP4323416A1 (en) 2021-04-16 2021-04-16 Starch hybrid copolymers

Country Status (4)

Country Link
US (1) US20240158556A1 (en)
EP (1) EP4323416A1 (en)
CN (1) CN117157339A (en)
WO (1) WO2022218539A1 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3632535A (en) 1967-09-20 1972-01-04 Cpc International Inc Emulsion polymerization method and resultant aqueous latex
US3769248A (en) 1971-10-06 1973-10-30 Anheuser Busch Starch derivative protective colloids in emulsion polymer systems
US4301017A (en) 1980-04-28 1981-11-17 Standard Brands Incorporated Stable, liquid starch graft copolymer composition
DE3323851A1 (en) 1983-07-01 1985-01-03 Wacker-Chemie GmbH, 8000 München METHOD FOR PRODUCING AQUEOUS POLYMER DISPERSIONS AND THEIR USE
US5705563A (en) * 1991-10-07 1998-01-06 Basf Aktiengesellschaft Aqueous polymer dispersions
US6090884A (en) 1998-05-07 2000-07-18 S. C. Johnson Commercial Markets, Inc. Starch degradation/graft polymerization composition, process, and uses thereof
CN101981062B (en) * 2008-04-01 2013-01-30 关西涂料株式会社 Aqueous dispersion, water-based coating composition and method of forming coating film
MX2012000638A (en) 2009-07-14 2012-04-30 Sherwin Williams Co Starch hybrid polymers.
KR101473916B1 (en) 2012-12-28 2014-12-17 대상 주식회사 Starch-based polymer particle with core-shell structure and paint composition comprising the same
ES2962240T3 (en) 2014-04-11 2024-03-18 Basf Se Aqueous polymer dispersion for paper with a copolymer of vinyl acetate and an acrylate monomer prepared in the presence of a starch derivative
WO2015160794A1 (en) 2014-04-14 2015-10-22 Ecosynthetix Ltd. Bio-based nanoparticle and composite materials derived therefrom

Also Published As

Publication number Publication date
WO2022218539A1 (en) 2022-10-20
US20240158556A1 (en) 2024-05-16
CN117157339A (en) 2023-12-01

Similar Documents

Publication Publication Date Title
EP2088162B1 (en) Method for manufacturing polymer dispersions, dispersions created thereby and their application
EP1262465B1 (en) Use of polymers comprising vinylester, (meth)acryl acid ester and optionally ethylene as additives in building materials
DE102006007282A1 (en) Process for the preparation of cationically stabilized and water-redispersible polymer powder compositions
DE10004319C2 (en) Crosslinkable polymer composition, process for making and using the same
EP1174447B1 (en) Process for preparing aqueous dispersions of biphasic polymers and polymer powders redispersibles in water
DE102005054905A1 (en) Protective colloid-stabilized dispersion powder
EP1110978A1 (en) Process for preparing copolymers of vinylester and (meth)acrylic ester
WO1997032904A9 (en) Cross-linkable protective colloids
EP2202251A1 (en) Vinyl acetate/vinyl 2-ethylhexanoate co-polymer binder resins
DE102011076407A1 (en) Process for the preparation of protective colloid-stabilized polymers
EP3230519B1 (en) Water redispersible polymeric powder for carpet coating compositions
EP1593721A1 (en) Use of protective colloid-stabilised copolymers in cementless or low cement content coating compositions
WO2020007467A1 (en) Water-soluble copolymers
EP3068805B1 (en) Process for producing water-redispersible polymer powder compositions having cationic functionality
DE10035589A1 (en) Process for the production of polymer dispersions with a high solids content
EP4323416A1 (en) Starch hybrid copolymers
WO2005035645A2 (en) Polymeric compositions containing modified polyvinyl alcohols
DE10227589A1 (en) Process for reducing odor emissions in aqueous polymer dispersions and in polymer powders
DE19742678A1 (en) Process for the preparation of aqueous, protective colloid-stabilized vinyl ester homo- and co-polymer dispersions
WO2013150001A1 (en) Method for producing vinyl ester polymers having specifically settable dispersity and low polydispersity
EP3230394B1 (en) Aqueous polymer dispersions for adhesives
WO2024061448A1 (en) Copolymers of cyclic ketene acetal monomers
WO1998042772A1 (en) Method for producing block-stable polymer powders which can be redispersed in water
WO2014076154A1 (en) Process for preparing polyvinyl alcohol-stabilized polymers by means of emulsion polymerization
EP4146714A1 (en) Polyvinyl-alcohol-stabilized (meth)acrylic acid ester polymers

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20231004

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR