EP4252341A1 - Power supply circuit, controlling method, lighting device driver and lighting equipment - Google Patents

Power supply circuit, controlling method, lighting device driver and lighting equipment

Info

Publication number
EP4252341A1
EP4252341A1 EP21918513.9A EP21918513A EP4252341A1 EP 4252341 A1 EP4252341 A1 EP 4252341A1 EP 21918513 A EP21918513 A EP 21918513A EP 4252341 A1 EP4252341 A1 EP 4252341A1
Authority
EP
European Patent Office
Prior art keywords
power
input
direct current
power supply
supply circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21918513.9A
Other languages
German (de)
French (fr)
Other versions
EP4252341A4 (en
Inventor
Jiaqi Yang
Xiongwu ZHANG
Li Zhou
Qiuxiang MAO
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tridonic GmbH and Co KG
Original Assignee
Tridonic GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tridonic GmbH and Co KG filed Critical Tridonic GmbH and Co KG
Publication of EP4252341A1 publication Critical patent/EP4252341A1/en
Publication of EP4252341A4 publication Critical patent/EP4252341A4/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • H02M1/0035Control circuits allowing low power mode operation, e.g. in standby mode using burst mode control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4258Arrangements for improving power factor of AC input using a single converter stage both for correction of AC input power factor and generation of a regulated and galvanically isolated DC output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/355Power factor correction [PFC]; Reactive power compensation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/32Pulse-control circuits
    • H05B45/327Burst dimming
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • Embodiments of the present disclosure generally relate to the field of lighting, and more particularly, to a power supply circuit, a controlling method, a lighting device driver and a lighting equipment.
  • the lighting device is LED (Light Emitting Diode) for example.
  • input power is input to a power supply circuit, and the power supply circuit generates direct current (DC) power.
  • the direct current (DC) power is input to a lighting device to drive the lighting device.
  • a dimming signal may also be input to the power supply circuit to regulate the direct current (DC) power.
  • the DC power can rise from minimum to maximum value according to dimming signal.
  • DALI Digital Addressable Lighting Interface
  • NFC Near Field Communication
  • an output power of the lighting device rises from minimum to maximum value.
  • the power supply circuit usually includes a PFC (Power Factor Correction) circuit. Switching frequency of a switch in the PFC circuit will be designed to around 50kHZ to 100kHZ at full load.
  • PFC Power Factor Correction
  • the power supply circuit may include independent hardware to for each function, thus multiple independent hardware are needed to implement multifunction, cost of the power supply circuit could be high.
  • embodiments of the present disclosure provide a power supply circuit, a controlling method, a lighting device driver and a lighting equipment.
  • a controller of a power supply circuit may output multiple controlling signals via a single output pin, therefore multifunction can be realized by using the single output pin, and cost of the power supply circuit could be lowered down.
  • a power supply circuit includes:
  • an input circuit configured to receive input power and convert the input power into a first direct current (DC) power
  • the input circuit including an input PFC (Power Factor Correction) circuit and a transformer, the input PFC circuit receiving the input power, a primary winding of the transformer being connected to the input PFC circuit, a secondary winding of the transformer outputting the first direct current power;
  • DC direct current
  • an output regulator configured to convert the first direct current power into a second direct current power, the second direct current power being used to drive an electric equipment
  • a controller configured to output a controlling signal via an output pin according to a first detecting signal or a second detecting signal, the controlling signal being used to generate a feedback signal which is inputted to a feedback pin of a PFC chip of the PFC circuit;
  • the first detecting signal being generated according to status of the input power
  • the second detecting signal being generated according to status of the output regulator, when failure status of the output regulator is detected, the PFC chip is controlled to lower down the second direct current power, when the input power is DC power, the PFC chip is controlled to lead the second direct current power into a jitter mode.
  • the controlling signal outputted via the output pin is a constant level.
  • a voltage on bus line that is connected between the output regulator and the secondary winding of the transformer is pulled down and kept to be lower than a shutdown level, until mains that provides the input power restarts.
  • the controlling signal outputted via the output pin includes multiple groups of pulses with a predetermined interval between time adjacent groups.
  • pulse duty cycle in each group is set as 1% ⁇ 5%.
  • the predetermined interval is set as 5 ⁇ 10 millisecond (ms) .
  • the power supply circuit further includes an output trigger circuit and a first optical coupler
  • the output trigger circuit is configured to receive the controlling signal, and output a driving signal to the first optical coupler
  • the first optical coupler is configured to output the feedback signal to the feedback pin of the PFC chip.
  • the power supply circuit further includes a mains detection circuit and a second optical coupler
  • the mains detection circuit is configured to detect status of the input power
  • the second optical coupler is configured to generate the first detecting signal according to a detecting result of the mains detection circuit, and send the first detecting signal to the controller.
  • the power supply circuit further includes:
  • control gear configured to control the output regulator and detect status of the output regulator
  • control gear when failure status of the output regulator is detected, the control gear generates and sends the second detecting signal to the controller.
  • a lighting device driver which includes the power supply circuit according to the first aspect of embodiment, the lighting device driver providing the second direct current (DC) power to a lighting device.
  • the lighting device driver is an LED (Light Emitting Diode) driver.
  • a lighting equipment including a lighting device, and the power supply circuit according to the first aspect of embodiment, the power supply circuit providing the second direct current (DC) power to the lighting device.
  • DC direct current
  • the controlling method includes: outputting a controlling signal via an output pin according to a first detecting signal or a second detecting signal, the controlling signal being used to generate a feedback signal which is inputted to a feedback pin of a PFC chip of the PFC circuit, when failure status of the output regulator is detected, the PFC chip is controlled to stop work, when the input power is DC power, the PFC chip is controlled to lower down the second direct current power.
  • a controller of a power supply circuit may output multiple controlling signals via a single output pin, therefore multifunction can be realized by using the single output pin, and cost of the power supply circuit could be lowered down.
  • Fig. 1 is a diagram of a power supply circuit in accordance with an embodiment of the present disclosure
  • Fig. 2 is a sequence chart of signals in the power supply circuit in accordance with an embodiment of the present disclosure
  • Fig. 3 is another sequence chart of signals in the power supply circuit in accordance with an embodiment of the present disclosure
  • FIG. 4 shows a flowchart of a controlling method 40 of the power supply circuit 10Fig. 1 is a diagram of a power supply circuit in accordance with an embodiment of the present disclosure.
  • the terms “first” and “second” refer to different elements.
  • the singular forms “a” and “an” are intended to include the plural forms as well, unless the context clearly indicates otherwise.
  • the term “based on” is to be read as “based at least in part on. ”
  • the term “one embodiment” and “an embodiment” are to be read as “at least one embodiment. ”
  • the term “another embodiment” is to be read as “at least one other embodiment. ”
  • Other definitions, explicit and implicit, may be included below.
  • a power supply circuit is provided in a first embodiment.
  • Fig. 1 is a diagram of a power supply circuit in accordance with an embodiment of the present disclosure.
  • a power supply circuit 10 includes an input circuit 100, an output regulator 200 and a controller 300.
  • the input circuit 100 is configured to receive input power and convert the input power into a first direct current (DC) power.
  • the input power may be alternating current (AC) power or direct current (DC) power.
  • the input power may be provided by mains denoted as L (Live line) and N (Neutral line) .
  • the input circuit 100 includes an input PFC (Power Factor Correction) circuit 110 and a transformer 120.
  • the input PFC circuit 110 receives the input power
  • a primary winding P1 of the transformer 120 is connected to the input PFC circuit 110 and a secondary winding S1 of the transformer 120 outputs the first direct current power.
  • the output regulator 200 is configured to convert the first direct current power into a second direct current power, which is used to drive an electric equipment 20.
  • the electric equipment 20 may be LED (Light Emitting Diode) .
  • the output regulator 200 may be connected to the secondary winding S1 of the transformer 120 via a pair of bus lines denoted as Bus+ and Bus-in FIG. 1.
  • the second direct current power may be DC voltage, which is outputted via a pair of driving pins denoted as VOUT+ and VOUT-in FIG. 1.
  • the output regulator 200 may be buck topology. In other embodiment, the output regulator 200 may be other kind of topology, such as boost topology, etc.
  • the controller 300 is configured to output a controlling signal via an output pin 301 according to a first detecting signal or a second detecting signal.
  • the controlling signal is used to generate a feedback signal which is inputted to a feedback pin 1111 of a PFC chip 111 of the PFC circuit 110.
  • the feedback pin 1111 may be a Comp pin of the PFC chip 111.
  • the first detecting signal S1 may be generated according to status of the input power. For example, when the input power is DC power, the first detecting signal S1 is generated, and the output pin 301 outputs the controlling signal CS according to the first detecting signal S1, so as to control the PFC chip 111 to lead the second direct current power into a jitter mode.
  • the second detecting signal S2 may be generated according to status of the output regulator. For example, when failure status of the output regulator 200 is detected, the second detecting signal S2 is generated, and the output pin 301 outputs the controlling signal CS according to the second detecting signal S2, so as to control the PFC chip 111 to lower down the second direct current power.
  • the controller of the power supply circuit outputs controlling signal with multifunction via a single output pin 301, therefore multifunction can be realized by using the single output pin, and cost of the power supply circuit could be lowered down.
  • the controlling signal CS outputted via the output pin 301 is a constant level.
  • the constant level may be a high level or a low level.
  • the failure status of the output regulator 200 may include over-voltage on bus lines, LED over-current on electric equipment 20, short circuit of a transistor (such as MOSFET) , etc..
  • a voltage on bus line (such as Bus+) will be pulled down and kept to be lower than a shutdown level, until mains that provides the input power restarts.
  • the shutdown level may be set in the controller 300. Therefore, a latch protection is performed on the power supply circuit 10.
  • the controlling signal CS outputted via the output pin 301 may comprise multiple groups of pulses with a predetermined interval between time adjacent groups.
  • pulse duty cycle in each group is set as 1% ⁇ 5%
  • the predetermined interval may be set as 5 ⁇ 10 millisecond (ms) .
  • the pulse duty cycle and the predetermined interval may be set in the controller 300.
  • the power supply circuit 10 further includes an output trigger circuit 400 and a first optical coupler 500.
  • the output trigger circuit 400 is configured to receive the controlling signal, and output a driving signal to the first optical coupler 500.
  • the first optical coupler 500 is configured to output the feedback signal FBS to the feedback pin 1111 of the PFC chip 111. For example, when the driving signal is at a high level, an LED in the first optical coupler 500 will conduct, a transistor in the first optical coupler 500 is turned on, and the feedback pin 1111 is electrically connected to ground level via the transistor in the first optical coupler 500, a feedback signal FBS of low level is sent to the feedback pin 1111.
  • the power supply circuit 10 further includes a mains detection circuit 600 and a second optical coupler 700.
  • the mains detection circuit 600 is configured to detect status of the input power, for example, the mains detection circuit 600 is connected to the mains.
  • the second optical coupler 700 is configured to generate the first detecting signal according to a detecting result of the mains detection circuit, and send the first detecting signal to the controller. For example, when the input power is DC power, the mains detection circuit 600 outputs a signal with high level, and an LED in the second optical coupler 700 will conduct, a transistor in the second optical coupler 700 is turned on, the first detecting signal S1 is generated and sent to the controller 300.
  • the power supply circuit 10 further includes a control gear 800.
  • the control gear 800 is configured to control the output regulator 200 and detect status of the output regulator 200. When failure status of the output regulator is detected, the control gear 800 generates and sends the second detecting signal S2 to the controller.
  • control gear 800 may include dividing resistors to detect voltage on bus lines (such as Bus+, Bus-) , voltage or current on driving pins (such as VOUT+, VPUT-) or transistor, so as to detect over-voltage on bus lines, over-current on electric equipment 20, short circuit of a transistor (such as MOSFET) , etc.
  • bus lines such as Bus+, Bus-
  • driving pins such as VOUT+, VPUT-
  • transistor so as to detect over-voltage on bus lines, over-current on electric equipment 20, short circuit of a transistor (such as MOSFET) , etc.
  • Fig. 2 is a sequence chart of signals in the power supply circuit in accordance with an embodiment of the present disclosure.
  • failure status of the output regulator 200 is detected, and the second detecting signal S2 is generated and sent to controller 300 at T1.
  • the controlling signal CS with high level is outputted via the output pin 301 and keeps high level from T1.
  • the feedback signal FBS, voltage on bus line and current on driving pin VOUT+ are pulled down from T1. Voltage on bus line reaches the shutdown level at T2, and keeps lower than the shutdown level. Current on driving pin VOUT+ is pulled down to a minimum value at T2. Therefore, a latch protection is performed on the power supply circuit 10.
  • Fig. 3 is another sequence chart of signals in the power supply circuit in accordance with an embodiment of the present disclosure.
  • the input power is DC power
  • the first detecting signal S1 is generated and sent to controller 300 at T3.
  • the controlling signal CS including multiple groups of pulses is outputted via the output pin 301 from T3.
  • Each group includes multiple pulses (such as 5 as shown in Fig. 3) , pulse duty cycle in each group is set as 1% ⁇ 5%.
  • the predetermined interval between time adjacent groups is set as 5 ⁇ 10 millisecond (ms) .
  • DC current jitter is performed on the driving pin of the power supply circuit 10, i.e. the power supply circuit 10 is working under a DC jitter mode.
  • Cost saving using one output pin 301 to achieve multi functions
  • EMI improving with DC jitter mode, not only jittering secondary side switching frequency, but also being helpful to jitter primary side switching frequency;
  • a controlling method of a power supply circuit is provided in the first aspect of embodiments.
  • the same contents as those in the first aspect of embodiments are omitted.
  • Fig. 4 shows a flowchart of a controlling method 40 of the power supply circuit 10.
  • the method 40 includes:
  • Block 41 when failure status of the output regulator is detected, the PFC chip is controlled to stop work, and when the input power is DC power, the PFC chip is controlled to lower down the second direct current power.
  • the controlling signal outputted via the output pin when failure status of the output regulator is detected, is a constant level.
  • the controlling signal outputted via the output pin is the constant level, a voltage on bus line that is connected between the output regulator and the secondary winding of the transformer is pulled down and kept to be lower than a shutdown level, until mains that provides the input power restarts.
  • the controlling signal outputted via the output pin comprises multiple groups of pulses with a predetermined interval between time adjacent groups.
  • the pulse duty cycle in each group is set as 1% ⁇ 5%.
  • the predetermined interval is set as 5 ⁇ 10 millisecond (ms) .
  • the controller of the power supply circuit outputs controlling signal with multifunction via a single output pin 301, therefore multifunction can be realized by using the single output pin, and cost of the power supply circuit could be lowered down.
  • a lighting equipment is provided in an embodiment.
  • the lighting equipment includes a power supply circuit and a lighting device.
  • the power supply circuit is provided in the first aspect of embodiments.
  • the lighting device maybe LED.
  • the power supply circuit 10 (shown in Fig. 1) provides direct current (DC) power to the lighting device.
  • the lighting device driver includes the power supply circuit 10 (shown in Fig. 1) according to the first aspect of embodiments.
  • the lighting device driver may supply direct current (DC) power to a lighting device.
  • the lighting device driver may be an LED driver, the lighting device may be an LED device.
  • An output power, output voltage or output current of the lighting device may be changed from a minimum to maximum value according to dimming signal, e.g. 1-10V, which is received via DALI (Digital Addressable Lighting Interface) , NFC (Near Field Communication) , Bluetooth etc..
  • the DC-DC-converter supplying the lighting device will change its output parameters (current and/or voltage) depending on the dimming signal. This change may lead to a change of loading of the power supply circuit 10 (shown in Fig. 1) .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dc-Dc Converters (AREA)

Abstract

A power supply circuit, a controlling method and a lighting equipment. an input circuit, configured to receive input power and convert the input power into a first direct current (DC) power, the input circuit comprising an input PFC (Power Factor Correction) circuit and a transformer, the input PFC circuit receiving the input power, a primary winding of the transformer being connected to the input PFC circuit, a secondary winding of the transformer outputting the first direct current power; an output regulator, configured to convert the first direct current power into a second direct current power, the second direct current power being used to drive an electric equipment; a controller, configured to output a controlling signal via an output pin according to a first detecting signal or a second detecting signal, the controlling signal being used to generate a feedback signal which is inputted to a feedback pin of a PFC chip of the PFC circuit, the first detecting signal being generated according to status of the input power, the second detecting signal being generated according to status of the output regulator, when failure status of the output regulator is detected, the PFC chip is controlled to lower down the second direct current power, when the input power is DC power, the PFC chip is controlled to lead the second direct current power into a jitter mode.

Description

    POWER SUPPLY CIRCUIT, CONTROLLING METHOD, LIGHTING DEVICE DRIVER AND LIGHTING EQUIPMENT TECHNICAL FIELD
  • Embodiments of the present disclosure generally relate to the field of lighting, and more particularly, to a power supply circuit, a controlling method, a lighting device driver and a lighting equipment.
  • BACKGROUND
  • This section introduces aspects that may facilitate better understanding of the present disclosure. Accordingly, the statements of this section are to be read in this light and are not to be understood as admissions about what is in the prior art or what is not in the prior art.
  • In the field of lighting technology, it is often needed to configure a driving current, which is used to drive a lighting device. The lighting device is LED (Light Emitting Diode) for example.
  • In related art, input power is input to a power supply circuit, and the power supply circuit generates direct current (DC) power. The direct current (DC) power is input to a lighting device to drive the lighting device. A dimming signal may also be input to the power supply circuit to regulate the direct current (DC) power.
  • The DC power can rise from minimum to maximum value according to dimming signal. DALI (Digital Addressable Lighting Interface) , NFC (Near Field Communication) , etc., may be used to regulate the DC power, thus an output power of the lighting device rises from minimum to maximum value.
  • The power supply circuit usually includes a PFC (Power Factor Correction) circuit. Switching frequency of a switch in the PFC circuit will be designed to around 50kHZ to 100kHZ at full load.
  • SUMMARY
  • Inventor of this disclosure found: in related art, the power supply circuit may include independent hardware to for each function, thus multiple independent hardware are needed to implement multifunction, cost of the power supply circuit could be high.
  • In general, embodiments of the present disclosure provide a power supply circuit, a controlling method, a lighting device driver and a lighting equipment. In the embodiments, a controller of a power supply circuit may output multiple controlling signals via a single output pin, therefore multifunction can be realized by using the single output pin, and cost of the power supply circuit could be lowered down.
  • In a first aspect, there is provided a power supply circuit, includes:
  • an input circuit, configured to receive input power and convert the input power into a first direct current (DC) power, the input circuit including an input PFC (Power Factor Correction) circuit and a transformer, the input PFC circuit receiving the input power, a primary winding of the transformer being connected to the input PFC circuit, a secondary winding of the transformer outputting the first direct current power;
  • an output regulator, configured to convert the first direct current power into a second direct current power, the second direct current power being used to drive an electric equipment;
  • a controller, configured to output a controlling signal via an output pin according to a first detecting signal or a second detecting signal, the controlling signal being used to generate a feedback signal which is inputted to a feedback pin of a PFC chip of the PFC circuit;
  • the first detecting signal being generated according to status of the input power, the second detecting signal being generated according to status of the output regulator, when failure status of the output regulator is detected, the PFC chip is controlled to lower down the second direct current power, when the input power is DC power, the PFC chip is controlled to lead the second direct current power into a jitter mode.
  • In an embodiment, when failure status of the output regulator is detected, the  controlling signal outputted via the output pin is a constant level.
  • In an embodiment, when the controlling signal outputted via the output pin is the constant level,
  • a voltage on bus line that is connected between the output regulator and the secondary winding of the transformer is pulled down and kept to be lower than a shutdown level, until mains that provides the input power restarts.
  • In an embodiment, when the input power is DC power,
  • the controlling signal outputted via the output pin includes multiple groups of pulses with a predetermined interval between time adjacent groups.
  • In an embodiment, pulse duty cycle in each group is set as 1%~5%.
  • In an embodiment, the predetermined interval is set as 5~10 millisecond (ms) .
  • In an embodiment, the power supply circuit further includes an output trigger circuit and a first optical coupler,
  • the output trigger circuit is configured to receive the controlling signal, and output a driving signal to the first optical coupler,
  • the first optical coupler is configured to output the feedback signal to the feedback pin of the PFC chip.
  • In an embodiment, the power supply circuit further includes a mains detection circuit and a second optical coupler,
  • the mains detection circuit is configured to detect status of the input power,
  • the second optical coupler is configured to generate the first detecting signal according to a detecting result of the mains detection circuit, and send the first detecting signal to the controller.
  • In an embodiment, the power supply circuit further includes:
  • a control gear, configured to control the output regulator and detect status of the output regulator,
  • when failure status of the output regulator is detected, the control gear generates and sends the second detecting signal to the controller.
  • In a second aspect, there is provided a lighting device driver which includes the power supply circuit according to the first aspect of embodiment, the lighting device driver providing the second direct current (DC) power to a lighting device.
  • In an embodiment, the lighting device driver is an LED (Light Emitting Diode) driver.
  • In a third aspect, there is provided a lighting equipment, including a lighting device, and the power supply circuit according to the first aspect of embodiment, the power supply circuit providing the second direct current (DC) power to the lighting device.
  • In a fourth aspect, there is provided a controlling method of a power supply circuit according to the first aspect, the controlling method includes: outputting a controlling signal via an output pin according to a first detecting signal or a second detecting signal, the controlling signal being used to generate a feedback signal which is inputted to a feedback pin of a PFC chip of the PFC circuit, when failure status of the output regulator is detected, the PFC chip is controlled to stop work, when the input power is DC power, the PFC chip is controlled to lower down the second direct current power.
  • According to various embodiments of the present disclosure, a controller of a power supply circuit may output multiple controlling signals via a single output pin, therefore multifunction can be realized by using the single output pin, and cost of the power supply circuit could be lowered down.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above and other aspects, features, and benefits of various embodiments of the disclosure will become more fully apparent, by way of example, from the following detailed description with reference to the accompanying drawings, in which like reference numerals or letters are used to designate like or equivalent elements. The drawings are  illustrated for facilitating better understanding of the embodiments of the disclosure and not necessarily drawn to scale, in which:
  • Fig. 1 is a diagram of a power supply circuit in accordance with an embodiment of the present disclosure
  • Fig. 2 is a sequence chart of signals in the power supply circuit in accordance with an embodiment of the present disclosure
  • Fig. 3 is another sequence chart of signals in the power supply circuit in accordance with an embodiment of the present disclosure
  • Fig. 4 shows a flowchart of a controlling method 40 of the power supply circuit 10Fig. 1 is a diagram of a power supply circuit in accordance with an embodiment of the present disclosure.
  • Detailed Description
  • The present disclosure will now be discussed with reference to several example embodiments. It should be understood that these embodiments are discussed only for the purpose of enabling those skilled persons in the art to better understand and thus implement the present disclosure, rather than suggesting any limitations on the scope of the present disclosure.
  • As used herein, the terms “first” and “second” refer to different elements. The singular forms “a” and “an” are intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises, ” “comprising, ” “has, ” “having, ” “includes” and/or “including” as used herein, specify the presence of stated features, elements, and/or components and the like, but do not preclude the presence or addition of one or more other features, elements, components and/or combinations thereof. The term “based on” is to be read as “based at least in part on. ” The term “one embodiment” and “an embodiment” are to be read as “at least one embodiment. ” The term “another embodiment” is to be read as “at least one other embodiment. ” Other definitions, explicit and implicit, may be included below.
  • First aspect of embodiments
  • A power supply circuit is provided in a first embodiment.
  • Fig. 1 is a diagram of a power supply circuit in accordance with an embodiment of the present disclosure. As shown in Fig. 1, a power supply circuit 10 includes an input circuit 100, an output regulator 200 and a controller 300.
  • The input circuit 100 is configured to receive input power and convert the input power into a first direct current (DC) power. The input power may be alternating current (AC) power or direct current (DC) power. The input power may be provided by mains denoted as L (Live line) and N (Neutral line) .
  • As shown in Fig. 1, the input circuit 100 includes an input PFC (Power Factor Correction) circuit 110 and a transformer 120. The input PFC circuit 110 receives the input power, a primary winding P1 of the transformer 120 is connected to the input PFC circuit 110 and a secondary winding S1 of the transformer 120 outputs the first direct current power.
  • The output regulator 200 is configured to convert the first direct current power into a second direct current power, which is used to drive an electric equipment 20. The electric equipment 20 may be LED (Light Emitting Diode) .
  • In at least one embodiment, the output regulator 200 may be connected to the secondary winding S1 of the transformer 120 via a pair of bus lines denoted as Bus+ and Bus-in FIG. 1. The second direct current power may be DC voltage, which is outputted via a pair of driving pins denoted as VOUT+ and VOUT-in FIG. 1. The output regulator 200 may be buck topology. In other embodiment, the output regulator 200 may be other kind of topology, such as boost topology, etc.
  • The controller 300 is configured to output a controlling signal via an output pin 301 according to a first detecting signal or a second detecting signal. The controlling signal is used to generate a feedback signal which is inputted to a feedback pin 1111 of a PFC chip 111 of the PFC circuit 110. For example, the feedback pin 1111 may be a Comp  pin of the PFC chip 111.
  • In at least one embodiment, the first detecting signal S1 may be generated according to status of the input power. For example, when the input power is DC power, the first detecting signal S1 is generated, and the output pin 301 outputs the controlling signal CS according to the first detecting signal S1, so as to control the PFC chip 111 to lead the second direct current power into a jitter mode.
  • In at least one embodiment, the second detecting signal S2 may be generated according to status of the output regulator. For example, when failure status of the output regulator 200 is detected, the second detecting signal S2 is generated, and the output pin 301 outputs the controlling signal CS according to the second detecting signal S2, so as to control the PFC chip 111 to lower down the second direct current power.
  • According to the first aspect of the embodiments, the controller of the power supply circuit outputs controlling signal with multifunction via a single output pin 301, therefore multifunction can be realized by using the single output pin, and cost of the power supply circuit could be lowered down.
  • In at least one embodiment, when failure status of the output regulator 200 is detected, the controlling signal CS outputted via the output pin 301 is a constant level. The constant level may be a high level or a low level. The failure status of the output regulator 200 may include over-voltage on bus lines, LED over-current on electric equipment 20, short circuit of a transistor (such as MOSFET) , etc..
  • Furthermore, when the controlling signal CS outputted via the output pin 301 is the constant level, a voltage on bus line (such as Bus+) will be pulled down and kept to be lower than a shutdown level, until mains that provides the input power restarts. The shutdown level may be set in the controller 300. Therefore, a latch protection is performed on the power supply circuit 10.
  • In at least one embodiment, when the input power is DC power, the controlling signal CS outputted via the output pin 301 may comprise multiple groups of pulses with a predetermined interval between time adjacent groups. For example, pulse duty cycle in  each group is set as 1%~5%, the predetermined interval may be set as 5~10 millisecond (ms) . The pulse duty cycle and the predetermined interval may be set in the controller 300.
  • As shown in Fig. 1, the power supply circuit 10 further includes an output trigger circuit 400 and a first optical coupler 500. The output trigger circuit 400 is configured to receive the controlling signal, and output a driving signal to the first optical coupler 500. The first optical coupler 500 is configured to output the feedback signal FBS to the feedback pin 1111 of the PFC chip 111. For example, when the driving signal is at a high level, an LED in the first optical coupler 500 will conduct, a transistor in the first optical coupler 500 is turned on, and the feedback pin 1111 is electrically connected to ground level via the transistor in the first optical coupler 500, a feedback signal FBS of low level is sent to the feedback pin 1111.
  • As shown in Fig. 1, the power supply circuit 10 further includes a mains detection circuit 600 and a second optical coupler 700. The mains detection circuit 600 is configured to detect status of the input power, for example, the mains detection circuit 600 is connected to the mains. The second optical coupler 700 is configured to generate the first detecting signal according to a detecting result of the mains detection circuit, and send the first detecting signal to the controller. For example, when the input power is DC power, the mains detection circuit 600 outputs a signal with high level, and an LED in the second optical coupler 700 will conduct, a transistor in the second optical coupler 700 is turned on, the first detecting signal S1 is generated and sent to the controller 300.
  • As shown in Fig. 1, the power supply circuit 10 further includes a control gear 800. The control gear 800 is configured to control the output regulator 200 and detect status of the output regulator 200. When failure status of the output regulator is detected, the control gear 800 generates and sends the second detecting signal S2 to the controller.
  • Topology of the control gear 800 can be referred to the related art. For example, the control gear 800 may include dividing resistors to detect voltage on bus lines (such as Bus+, Bus-) , voltage or current on driving pins (such as VOUT+, VPUT-) or transistor, so as to detect over-voltage on bus lines, over-current on electric equipment 20, short circuit of a transistor (such as MOSFET) , etc.
  • Fig. 2 is a sequence chart of signals in the power supply circuit in accordance with an embodiment of the present disclosure. As shown in Fig. 2, failure status of the output regulator 200 is detected, and the second detecting signal S2 is generated and sent to controller 300 at T1. The controlling signal CS with high level is outputted via the output pin 301 and keeps high level from T1. The feedback signal FBS, voltage on bus line and current on driving pin VOUT+ are pulled down from T1. Voltage on bus line reaches the shutdown level at T2, and keeps lower than the shutdown level. Current on driving pin VOUT+ is pulled down to a minimum value at T2. Therefore, a latch protection is performed on the power supply circuit 10.
  • Fig. 3 is another sequence chart of signals in the power supply circuit in accordance with an embodiment of the present disclosure. As shown in Fig. 3, the input power is DC power, the first detecting signal S1 is generated and sent to controller 300 at T3. The controlling signal CS including multiple groups of pulses is outputted via the output pin 301 from T3. Each group includes multiple pulses (such as 5 as shown in Fig. 3) , pulse duty cycle in each group is set as 1%~5%. The predetermined interval between time adjacent groups is set as 5~10 millisecond (ms) . As shown in Fig. 3, DC current jitter is performed on the driving pin of the power supply circuit 10, i.e. the power supply circuit 10 is working under a DC jitter mode.
  • According to the first aspect of embodiments of the present disclosure, the following advantages can be achieved:
  • 1. Cost saving: using one output pin 301 to achieve multi functions;
  • 2. EMI improving: with DC jitter mode, not only jittering secondary side switching frequency, but also being helpful to jitter primary side switching frequency;
  • 3. Convenient to implementation: just to toggle the feedback pin of primary side controller (analog or digital could be possible) . If the controller 300 is in primary, it is needed to toggle the feedback pin of secondary side.
  • Second aspect of embodiments
  • A controlling method of a power supply circuit. The power supply circuit is provided in the first aspect of embodiments. The same contents as those in the first aspect of embodiments are omitted.
  • Fig. 4 shows a flowchart of a controlling method 40 of the power supply circuit 10.
  • As shown in Fig. 4, the method 40 includes:
  • Block 41: when failure status of the output regulator is detected, the PFC chip is controlled to stop work, and when the input power is DC power, the PFC chip is controlled to lower down the second direct current power.
  • In at least one embodiment, when failure status of the output regulator is detected, the controlling signal outputted via the output pin is a constant level. When the controlling signal outputted via the output pin is the constant level, a voltage on bus line that is connected between the output regulator and the secondary winding of the transformer is pulled down and kept to be lower than a shutdown level, until mains that provides the input power restarts.
  • In at least one embodiment, when the input power is DC power, the controlling signal outputted via the output pin comprises multiple groups of pulses with a predetermined interval between time adjacent groups. The pulse duty cycle in each group is set as 1%~5%. The predetermined interval is set as 5~10 millisecond (ms) .
  • According to the first aspect of the embodiments, the controller of the power supply circuit outputs controlling signal with multifunction via a single output pin 301, therefore multifunction can be realized by using the single output pin, and cost of the power supply circuit could be lowered down.
  • Third aspect of embodiments
  • A lighting equipment is provided in an embodiment. The lighting equipment includes a power supply circuit and a lighting device. The power supply circuit is provided  in the first aspect of embodiments. The lighting device maybe LED.
  • In the embodiment, the power supply circuit 10 (shown in Fig. 1) provides direct current (DC) power to the lighting device.
  • Fourth aspect of embodiments
  • A lighting device driver is provided in an embodiment. The lighting device driver includes the power supply circuit 10 (shown in Fig. 1) according to the first aspect of embodiments.
  • The lighting device driver may supply direct current (DC) power to a lighting device. The lighting device driver may be an LED driver, the lighting device may be an LED device.
  • An output power, output voltage or output current of the lighting device may be changed from a minimum to maximum value according to dimming signal, e.g. 1-10V, which is received via DALI (Digital Addressable Lighting Interface) , NFC (Near Field Communication) , Bluetooth etc.. Preferably the DC-DC-converter supplying the lighting device will change its output parameters (current and/or voltage) depending on the dimming signal. This change may lead to a change of loading of the power supply circuit 10 (shown in Fig. 1) .
  • Further, while operations are depicted in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Likewise, while several specific implementation details are contained in the above discussions, these should not be construed as limitations on the scope of the present disclosure, but rather as descriptions of features that may be specific to particular embodiments. Certain features that are described in the context of separate embodiments may also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment may also be implemented  in multiple embodiments separately or in any suitable sub-combination.
  • Although the present disclosure has been described in language specific to structural features and/or methodological acts, it is to be understood that the present disclosure defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.

Claims (13)

  1. A power supply circuit, comprising:
    an input circuit, configured to receive input power and convert the input power into a first direct current (DC) power, the input circuit comprising an input PFC (Power Factor Correction) circuit and a transformer, the input PFC circuit receiving the input power, a primary winding of the transformer being connected to the input PFC circuit, a secondary winding of the transformer outputting the first direct current power;
    an output regulator, configured to convert the first direct current power into a second direct current power, the second direct current power being used to drive an electric equipment;
    a controller, configured to output a controlling signal via an output pin according to a first detecting signal or a second detecting signal, the controlling signal being used to generate a feedback signal which is inputted to a feedback pin of a PFC chip of the PFC circuit,
    wherein,
    the first detecting signal being generated according to status of the input power,
    the second detecting signal being generated according to status of the output regulator,
    when failure status of the output regulator is detected, the PFC chip is controlled to lower down the second direct current power,
    when the input power is DC power, the PFC chip is controlled to lead the second direct current power into a jitter mode.
  2. The power supply circuit according to claim 1, wherein,
    when failure status of the output regulator is detected,
    the controlling signal outputted via the output pin is a constant level.
  3. The power supply circuit according to claim 2, wherein,
    when the controlling signal outputted via the output pin is the constant level,
    a voltage on bus line that is connected between the output regulator and the secondary winding of the transformer is pulled down and kept to be lower than a shutdown level, until mains that provides the input power restarts.
  4. The power supply circuit according to claim 1, wherein,
    when the input power is DC power,
    the controlling signal outputted via the output pin comprises multiple groups of pulses with a predetermined interval between time adjacent groups.
  5. The power supply circuit according to claim 4, wherein,
    pulse duty cycle in each group is set as 1%~5%.
  6. The power supply circuit according to claim 5, wherein,
    the predetermined interval is set as 5~10 millisecond (ms) .
  7. The power supply circuit according to claim 1, wherein,
    the power supply circuit further comprises an output trigger circuit and a first optical coupler,
    the output trigger circuit is configured to receive the controlling signal, and output a driving signal to the first optical coupler,
    the first optical coupler is configured to output the feedback signal to the feedback pin of the PFC chip.
  8. The power supply circuit according to claim 1, wherein,
    the power supply circuit further comprises a mains detection circuit and a second optical coupler,
    the mains detection circuit is configured to detect status of the input power,
    the second optical coupler is configured to generate the first detecting signal according to a detecting result of the mains detection circuit, and send the first detecting signal to the controller.
  9. The power supply circuit according to claim 1, wherein,
    the power supply circuit further comprises:
    a control gear, configured to control the output regulator and detect status of the output regulator,
    when failure status of the output regulator is detected, the control gear generates and sends the second detecting signal to the controller.
  10. A lighting device driver, comprising the power supply circuit according to any one of claims 1-9, wherein, the lighting device driver providing the second direct current (DC) power to a lighting device.
  11. The lighting device driver according to claim 10, wherein,
    the lighting device driver is an LED (Light Emitting Diode) driver.
  12. A lighting equipment, comprising a lighting device, and the power supply circuit according to any one of claims 1-9, wherein,
    the power supply circuit providing the second direct current (DC) power to the lighting device.
  13. A controlling method of a power supply circuit, the power supply circuit comprising:
    an input circuit, configured to receive input power and convert the input power into a first direct current (DC) power, the input circuit comprising an input PFC (Power Factor Correction) circuit and a transformer, the input PFC circuit receiving the input power, a primary winding of the transformer being connected to the input PFC circuit, a secondary winding of the transformer outputting the first direct current power;
    an output regulator, configured to convert the first direct current power into a second direct current power, the second direct current power being used to drive an electric equipment;
    a controller, configured to output a controlling signal via an output pin according to a first detecting signal or a second detecting signal, the controlling signal being used to generate a feedback signal which is inputted to a feedback pin of a PFC chip of the PFC circuit,
    wherein,
    the first detecting signal being generated according to status of the input power,
    the second detecting signal being generated according to status of the output regulator,
    the controlling method comprising:
    when failure status of the output regulator is detected, the PFC chip is controlled to stop work,
    when the input power is DC power, the PFC chip is controlled to lower down the second direct current power.
EP21918513.9A 2021-01-15 2021-01-15 Power supply circuit, controlling method, lighting device driver and lighting equipment Pending EP4252341A4 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/071997 WO2022151305A1 (en) 2021-01-15 2021-01-15 Power supply circuit, controlling method, lighting device driver and lighting equipment

Publications (2)

Publication Number Publication Date
EP4252341A1 true EP4252341A1 (en) 2023-10-04
EP4252341A4 EP4252341A4 (en) 2024-02-14

Family

ID=82446760

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21918513.9A Pending EP4252341A4 (en) 2021-01-15 2021-01-15 Power supply circuit, controlling method, lighting device driver and lighting equipment

Country Status (3)

Country Link
EP (1) EP4252341A4 (en)
CN (1) CN116711201A (en)
WO (1) WO2022151305A1 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2930191Y (en) * 2005-08-25 2007-08-01 陈亮 AC-to-DC current tramsformer power source with power factor regulating function for lamp
JP5080424B2 (en) * 2008-11-10 2012-11-21 富士通テレコムネットワークス株式会社 Power supply
EP2315497A1 (en) * 2009-10-09 2011-04-27 Nxp B.V. An LED driver circuit having headroom/dropout voltage control and power factor correction
DE102010031244B4 (en) * 2010-03-19 2023-01-12 Tridonic Ag Modular LED lighting system
JP5939848B2 (en) * 2012-03-14 2016-06-22 ミネベア株式会社 Power supply
GB2502992B (en) * 2012-06-12 2015-08-26 Ikon Semiconductor Ltd A constant current switched mode power supply controller
CN102740562B (en) * 2012-06-13 2014-11-05 青岛海信电器股份有限公司 Power control circuit, backlight module and liquid crystal display device
US20140091720A1 (en) * 2012-09-28 2014-04-03 Power Systems Technologies, Ltd. Controller for Use with a Power Converter and Method of Operating the Same
US9621029B2 (en) * 2015-03-18 2017-04-11 Stmicroelectronics S.R.L. Method and device for high-power-factor flyback converter
DE102018203599B4 (en) * 2018-03-09 2024-02-22 Inventronics Gmbh CIRCUIT ARRANGEMENT FOR OPERATING A LOAD PREFERABLY HAVING LAMPS
CN114072998A (en) * 2019-06-21 2022-02-18 昕诺飞控股有限公司 Isolated converter and LED driver using the same
CN211240163U (en) * 2019-12-09 2020-08-11 广州市珠江灯光科技有限公司 Stage lamp photoelectronic ballast

Also Published As

Publication number Publication date
EP4252341A4 (en) 2024-02-14
CN116711201A (en) 2023-09-05
WO2022151305A1 (en) 2022-07-21

Similar Documents

Publication Publication Date Title
US9473032B2 (en) Power converter system with synchronous rectifier output stage and reduced no-load power consumption
US8111014B2 (en) Drive circuit for driving a load with constant current
KR102062566B1 (en) Led emitting device and driving method thereof
US9648677B2 (en) LED driving circuit and method using single inductor
US10356856B2 (en) Capacitor step-down LED driver and driving method using the same
US10051704B2 (en) LED dimmer circuit and method
KR20120038466A (en) Low cost power supply circuit and method
KR20120111341A (en) Apparatus and method for driving light emitting diode
KR20120080907A (en) Light emitting diode emitting device
US10104728B2 (en) LED driving circuit, LED device comprising the same, and driving method of LED
CN102906797A (en) Dynamic loading of power supplies
JP6332629B2 (en) LED power supply and LED lighting device
JP6249167B2 (en) LED lighting device and LED lighting device
CN102752906B (en) Lighting device and illumination apparatus having the same
WO2022151305A1 (en) Power supply circuit, controlling method, lighting device driver and lighting equipment
US11496052B2 (en) Insulated power supply circuit
JP5671940B2 (en) Lighting device and lighting fixture equipped with the lighting device
US10624163B1 (en) Lighting device with output buffer circuit for stability during no-load or standby operation
EP3016478B1 (en) Joint control of output power in a multichannel LED driver
CN114466481B (en) Circuit and method for detecting no-load of LED constant-voltage driving power supply and LED driver
WO2022032632A1 (en) Control circuit, led driver and control method
KR102062567B1 (en) Led emitting device and driving method thereof
JP5150742B2 (en) LED drive circuit
US20240172345A1 (en) Light turn-off fade time control
WO2022217480A1 (en) Power supply circuit, controlling method, lighting device driver and lighting equipment

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230628

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Free format text: PREVIOUS MAIN CLASS: H02M0007120000

Ipc: H02M0001420000

A4 Supplementary search report drawn up and despatched

Effective date: 20240116

RIC1 Information provided on ipc code assigned before grant

Ipc: H04B 1/69 20110101ALI20240110BHEP

Ipc: H02M 1/44 20070101ALI20240110BHEP

Ipc: H05B 45/382 20200101ALI20240110BHEP

Ipc: H02M 1/00 20060101ALI20240110BHEP

Ipc: H02M 3/335 20060101ALI20240110BHEP

Ipc: H02M 1/42 20070101AFI20240110BHEP

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)