EP4237740A1 - Cuve étanche et thermiquement isolante - Google Patents

Cuve étanche et thermiquement isolante

Info

Publication number
EP4237740A1
EP4237740A1 EP21793972.7A EP21793972A EP4237740A1 EP 4237740 A1 EP4237740 A1 EP 4237740A1 EP 21793972 A EP21793972 A EP 21793972A EP 4237740 A1 EP4237740 A1 EP 4237740A1
Authority
EP
European Patent Office
Prior art keywords
channel
thermally insulating
sealed
tank
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21793972.7A
Other languages
German (de)
English (en)
Inventor
Bruno Deletre
Alain Tessier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gaztransport et Technigaz SA
Original Assignee
Gaztransport et Technigaz SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaztransport et Technigaz SA filed Critical Gaztransport et Technigaz SA
Publication of EP4237740A1 publication Critical patent/EP4237740A1/fr
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/025Bulk storage in barges or on ships
    • F17C3/027Wallpanels for so-called membrane tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/24Arrangement of ship-based loading or unloading equipment for cargo or passengers of pipe-lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/30Arrangement of ship-based loading or unloading equipment for transfer at sea between ships or between ships and off-shore structures
    • B63B27/34Arrangement of ship-based loading or unloading equipment for transfer at sea between ships or between ships and off-shore structures using pipe-lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0157Polygonal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0358Thermal insulations by solid means in form of panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0648Alloys or compositions of metals
    • F17C2203/0651Invar
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/03Dealing with losses
    • F17C2260/031Dealing with losses due to heat transfer
    • F17C2260/033Dealing with losses due to heat transfer by enhancing insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • F17C2270/0107Wall panels

Definitions

  • the invention relates to the field of sealed and thermally insulating tanks, with membranes, for the storage and/or transport of fluid, such as a cryogenic fluid.
  • Sealed and thermally insulating membrane tanks are used in particular for the storage of liquefied natural gas (LNG), which is stored at atmospheric pressure at around -162°C. These tanks can be installed on land or on a floating structure. In the case of a floating structure, the tank may be intended for the transport of liquefied natural gas or to receive liquefied natural gas used as fuel for the propulsion of the floating structure.
  • LNG liquefied natural gas
  • sealed and thermally insulating tanks are known for the storage of liquefied natural gas, integrated into a supporting structure, such as the double hull of a ship intended for the transport of liquefied natural gas.
  • a supporting structure such as the double hull of a ship intended for the transport of liquefied natural gas.
  • such tanks comprise a multilayer structure having successively, in the direction of the thickness, from the outside towards the inside of the tank, a secondary thermal insulation barrier retained on the load-bearing structure, a sealing membrane secondary thermal insulation barrier resting against the secondary thermal insulation barrier, a primary thermal insulation barrier resting against the secondary sealing membrane and a primary sealing membrane resting against the primary thermal insulation barrier and intended to be in contact with the liquefied natural gas contained in the tank.
  • WO2016/046487 describes a secondary thermal insulation barrier and a primary thermal insulation barrier formed of juxtaposed insulating panels.
  • the secondary sealing membrane consists of a plurality of metal sheets comprising corrugations projecting outward from the tank and thus allowing the secondary sealing membrane to deform under the effect of thermal and mechanical stresses generated by the fluid stored in the tank.
  • An internal face of the insulating panels of the secondary thermal insulation barrier has grooves receiving the corrugations of the corrugated metal sheets of the secondary waterproof membrane. These undulations and these grooves form a mesh of channels developing along the walls of the tank.
  • the document WO2014167214 A2 describes a sealed and thermally insulating multilayer tank corner structure in which the secondary thermally insulating barrier at the level of an angle between two walls of the tank comprises two insulating panels forming an edge, the secondary sealed membrane comprising at right of said edge a flexible waterproof film connecting portions of secondary waterproof membrane of said two tank walls.
  • a central portion of this flexible waterproof film that is to say inserted between the portions of said flexible waterproof film anchored on the secondary waterproof membrane portions of the two vessel walls, is not anchored on the secondary thermally insulating barrier and is therefore free relative to said secondary thermally insulating barrier.
  • the thermal contraction of the insulating panels forming the edge and of the sealed membrane is absorbed by a deformation of the central portion of the flexible sealed film, typically said flexible sealed film is suitable to stretch to absorb the stresses associated with this contraction.
  • the flexible film stretches, a space appears or increases between said central portion of the flexible waterproof film and the thermally insulating barrier. This space develops along the entire length of the ridge.
  • Such a space forms a channel favoring convection and is therefore likely to degrade the thermal insulation performance of the vessel, in particular in the context of edges presenting a component parallel to the direction of earth gravity.
  • One idea underlying the invention is to provide a sealed and thermally insulating tank in which convection phenomena are reduced.
  • an idea underlying the invention is to provide a sealed and thermally insulating tank limiting the presence of continuous circulation channels in the thermally insulating barriers, and more particularly between the thermally insulating barriers and the sealed membranes, in order to limit natural convection phenomena in said thermally insulating barriers.
  • the invention provides a leaktight and thermally insulating fluid storage tank, said tank comprising a thermally insulating barrier and a leaktight membrane, the tank comprising a channel developing in a longitudinal direction, said channel extending along the waterproof membrane and being delimited on the one hand by the thermally insulating barrier and, on the other hand, by an outer face of the waterproof membrane, the thermally insulating barrier forming a bottom of the channel, the vessel further comprising a shutter arranged in the channel, said shutter comprising a flexible film, said flexible film comprising a first fixing zone and a second fixing zone, the first attachment zone extending transversely to the longitudinal direction of the channel, the first attachment zone of said flexible film being fixed to the bottom of the channel, the second attachment zone extending transversely to the longitudinal direction of the channel, the second attachment zone being fixed to the outer face of the waterproof membrane delimiting the channel, the flexible film comprising a closure portion extending from the first attachment zone to the second attachment zone, said closure portion extending across the channel between the
  • attachment zone extending transversely to the longitudinal direction of the channel is meant a zone of the flexible film extending secantly, preferably perpendicularly, to the longitudinal direction of the channel.
  • the obturator makes it possible to generate a pressure drop in a flux flow that may occur in the channel while allowing the circulation of gas, for example inert gas.
  • the closure portion develops between the bottom of the channel and the external face of the waterproof membrane, thus allowing good sealing of the channel.
  • the second attachment zone being attached to the waterproof membrane, said second attachment zone follows the deformations of the waterproof membrane so that this sealing portion is present including during deformation of the waterproof membrane.
  • such a sealed and thermally insulating tank may comprise one or more of the following characteristics.
  • the first attachment zone and the second attachment zone are offset in the longitudinal direction of the channel.
  • the first attachment zone and the second attachment zone are not contiguous so that the closure portion develops with a component parallel to the longitudinal direction of the channel.
  • the closure portion is movable relative to the bottom of the channel. According to one embodiment, the closure portion is movable relative to the waterproof membrane. In other words, according to one embodiment, the closure portion is free relative to the bottom of the channel and to the sealed membrane. Thus, the closure portion closes the channel in a non-sealed manner and therefore allows the circulation of inert gas in the channel while creating the pressure drop in the flow.
  • the closure portion is deformable between the bottom of the channel and the sealed membrane. This deformability of the obturation portion can be obtained in many ways.
  • the flexible film is made of an elastically deformable material.
  • the closure portion has a length, when said closure portion is arranged in a plane, greater than the distance between a fixing surface of the first fixing zone on the bottom of the channel and a surface for fixing the second fixing zone to the waterproof membrane. In other words, according to one embodiment, the closure portion is in a loose state in the channel, in particular at ambient temperature.
  • the closure portion located between the bottom of the channel and the sealed membrane is deformable and comprises at least one folding along an axis transverse to the longitudinal direction of the channel.
  • the first attachment zone and the second attachment zone are located at two opposite ends of the flexible film and are arranged at the same level in the longitudinal direction of the channel.
  • the shutter then has, for example, a particularly advantageous U-shape and is suitable for installation in situ in the tank.
  • Such an obturator can be installed with a tool, for example a blade allowing the insertion of the obturator in the channel without damaging it.
  • the obturator comprises a compressible element which is prestressed and housed in the folding between the first and the second fixing zone so as to exert a reaction force pressing the first fixing zone against the bottom of the channel and the second fixing zone against the outer face of the sealed membrane delimiting the channel.
  • the compressible element is made of a material chosen from wadding, felt, glass wool, rock wool, polymer foams, polyethylene wadding or others and extending in the direction of the thickness between the first attachment zone and the second attachment zone. Thanks to this characteristic, fixing by gluing is facilitated.
  • an anti-adhesive film is inserted in the folding to avoid sticking together the two sides of the flexible film folded over one another, for example under the effect of any overflows of adhesive.
  • the release film can be a sheet of polyethylene or PTFE.
  • the anti-adhesive film inserted in the folding has one end located in the folding and a second end located outside the folding. This feature facilitates the installation of the stopper in the tank and prevents any spillage of adhesive from disturbing the installation of the stopper.
  • the release film can be inserted alone or in combination with a compressible element. To facilitate the installation of the obturator in the tank, the non-stick film and the flexible film can be successively folded around the end edge of the blade in order to push them into the channel.
  • the closure portion comprises two mutually spaced folds in the longitudinal direction of the channel, each fold being made along an axis transverse to the longitudinal direction of the channel, the first fixing zone and the second zone fixing being located at two opposite ends of the flexible film and offset in the longitudinal direction of the channel.
  • the shutter has for example a Z shape.
  • the shutter has a direction of elongation extending between the first attachment zone and the second attachment zone, the flexible film being made of woven textile material and comprising yarns oriented between 35° and 55° ° (degrees) relative to the direction of elongation, preferably, the yarns are oriented at 45° relative to the direction of elongation. Thanks to this characteristic, the shutter obtains flexibility by the deformation of the weft threads and the warp threads of the woven textile.
  • the closure portion makes it possible to follow the variations in relative positioning and dimension of the thermally insulating barrier and/or of the sealed membrane while effectively obstructing the channel in order to create the pressure drop in a flow within said channel.
  • a shutter allows this effective sealing of the channel including when the tank is cold, that is to say in the event of thermal contraction of the sealed membrane and of the thermally insulating barrier and therefore of variation of the gap between the first attachment zone and the second attachment zone.
  • the closure portion of the flexible film is a first closure portion
  • the flexible film comprises a third fixing zone extending transversely to the longitudinal direction of the channel, the third fixing zone being fixed on the bottom of the channel, the second attachment area being interposed between the first attachment area and the third attachment area, the flexible film comprising a second closure portion extending from the second attachment area to the third attachment area , said second closure portion extending across the channel between the bottom of the channel and the sealed membrane so as to create a pressure drop in the channel.
  • Such an obturator allows a good obturation of the channel and therefore a loss of pressure of the flow of the important flow.
  • the third attachment zone is offset along the longitudinal direction of the channel relative to the first attachment zone and to the second attachment zone.
  • the second closure portion is movable relative to the bottom of the channel.
  • the second closure portion is movable relative to the waterproof membrane.
  • the second closure portion is free relative to the bottom of the channel and to the sealed membrane.
  • the second closure portion closes the channel in a non-sealed manner and therefore allows the circulation of inert gas in the channel while creating the pressure drop in the flow.
  • the second closure portion is deformable between the bottom of the channel and the sealed membrane. This deformability of the second closure portion can be obtained in many ways, for example analogously to the examples above for the first closure portion.
  • the flexible film is made of a material chosen from the group consisting of a glass mat, a polyethylene film and/or a polyamide film.
  • the film can be: a glass-based fabric, a polyethylene fabric, a polyamide fabric, a polyimide fabric, a polyetherimide fabric, this list being non-exhaustive.
  • Such materials have good resistance to cold while retaining flexibility allowing the flexible film to follow the deformations of the waterproof membrane.
  • the first attachment zone develops in a plane secant to the longitudinal direction of the channel.
  • the first attachment zone develops in a plane perpendicular to the longitudinal direction of the channel.
  • the second attachment zone develops in a plane secant to the longitudinal direction of the channel.
  • the second attachment zone develops in a plane perpendicular to the longitudinal direction of the channel.
  • Such anchoring zones arranged perpendicular to the longitudinal direction of the channel allow good sealing of the channel by the sealing portion(s).
  • the first fixing zone and/or the second fixing zone is fixed by gluing.
  • the tank comprises a double-sided adhesive tape interposed between the first fixing portion and the bottom of the channel in order to fix said first fixing portion to the bottom of the channel.
  • the tank comprises a double-sided adhesive tape interposed between the waterproof membrane and the second fixing zone in order to fix said second fixing zone on the waterproof membrane.
  • the tank comprises a plurality of shutters arranged in the channel along the longitudinal direction of the channel.
  • a flux flow in the channel is controlled along the channel.
  • Such shutters may comprise one, several or all of them such as the shutters described above.
  • the shutters of the plurality of shutters are arranged in the channel at regular intervals.
  • the thermally insulating barrier forming the bottom of the channel comprises a plurality of spaced insulating panels, for example in a regular or irregular manner, and a plurality of junction zones located between the insulating panels, for example with a regular pitch. or irregular between two junction areas.
  • the shutters can be arranged opposite the insulating panels so that the junction zones at each end of a panel are between the shutters.
  • the shutters are mutually spaced by an interval corresponding to the regular or irregular pitch of the junction zones.
  • at least one shutter is arranged opposite each insulating panel. Thus, there is systematically at least one shutter which blocks the flow between two successive junction zones.
  • the shutters are arranged at irregular intervals.
  • the sealed and thermally insulating tank comprises a first tank wall and a second tank wall, the first tank wall and the second tank wall forming an edge of the thermally insulating barrier, the first tank wall comprising a first anchoring surface and the second vessel wall forming a second anchoring surface, the bottom of the channel being formed by the thermally insulating barrier between the first anchoring surface and the second anchoring surface, the bottom of the channel forming the ridge, and the waterproof membrane comprises a corner waterproof part, the corner waterproof part comprising a first portion anchored on the first anchoring surface and a second portion anchored on the second anchoring surface, the sealed corner piece further comprising a central portion interposed between the first portion and the second portion, said central portion being free with respect to the thermally insulating barrier of my able to absorb the stresses by deformation in the waterproof membrane in line with the edge, the channel being delimited by the outer face of the corner waterproof part .
  • the sealed and thermally insulating tank comprises a corner structure, said corner structure comprising a first insulating panel and a second insulating panel, the first insulating panel forming one end of the thermally insulating barrier of the first vessel wall, the second insulating panel forming one end of the thermally insulating barrier of the second vessel wall, the first insulating panel and the second insulating panel jointly forming the edge, the corner structure further comprising a first portion of waterproof membrane and a second portion of waterproof membrane, the first portion of waterproof membrane resting on the first insulating panel, the said first portion of waterproof membrane forming one end of the waterproof membrane of the first tank wall, the second portion of waterproof membrane resting on the second insulating panel, said second portion of waterproof membrane forming one end of the waterproof membrane of the second tank wall.
  • the first portion of waterproof membrane comprises a first composite film fixed to the first insulating panel and the second portion of waterproof membrane comprises a second composite film fixed to the second insulating panel.
  • the first portion of waterproof membrane comprises a laminated composite waterproof film comprising a metal sheet interposed between two layers of resinated fibers. According to one embodiment, the first portion of waterproof membrane is glued to the first insulating panel. According to one embodiment, the second portion of waterproof membrane comprises a laminated composite waterproof film comprising a metal sheet interposed between two layers of resinated fibers. According to one embodiment, the second portion of sealed membrane is glued to the second insulating panel.
  • the first portion of sealed membrane is a metal plate anchored on the first portion of thermally insulating barrier.
  • the second portion of sealed membrane is a metal plate anchored on the second portion of thermally insulating barrier.
  • the first insulating panel forms the first anchoring surface.
  • the second insulating panel forms the second anchoring surface.
  • the first portion of waterproof membrane for example an edge of said first portion of waterproof membrane, forms the first anchoring surface.
  • the second portion of sealed membrane for example an edge of said second portion of sealed membrane, forms the second anchoring surface.
  • the corner seal can be attached in many ways to the first and second anchoring surfaces. According to one embodiment, the corner sealed piece is glued to one or the first and second anchoring surfaces. According to one embodiment, the sealed corner piece is welded to one or the first and second anchoring surfaces.
  • the corner sealed piece comprises a composite flexible waterproof film, for example a laminated composite comprising a metal sheet sandwiched between two layers of glass fibers.
  • the sealed corner piece is a metal angle iron.
  • the corner of a sealed and thermally insulating tank can be manufactured simply and quickly without the risk of generating a convection phenomenon.
  • these characteristics allow the use of a metal angle or a flexible waterproof film to produce the waterproof membrane in the corner of the tank while ensuring the absence of convection between the waterproof membrane and the thermally insulating barrier in said corner of the tank.
  • the sealed and thermally insulating tank further comprises a wedge, said wedge comprising a first external face resting against the thermally insulating barrier of the first wall of the vessel and a second external face resting against the thermally insulating barrier of the second vessel wall, the wedge further comprising a concave internal face, the channel being delimited by the internal face of the wedge.
  • one end, preferably two opposite ends, of the first attachment zone and/or of the second attachment zone protrudes from the channel so as to be inserted between the waterproof membrane and the thermally insulating barrier.
  • the fixing of the first fixing zone and/or of the second fixing zone is simple and reliable, said end being pinched between the waterproof membrane and the thermally insulating barrier.
  • one end, preferably two opposite ends, of the first attachment zone and/or of the second attachment zone protrudes from the channel so as to be inserted between two contiguous portions of the waterproof membrane, said two adjoining portions being connected in a sealed manner.
  • the fixing of the first fixing zone and/or of the second fixing zone is simple and reliable, said end being clamped between said two contiguous portions of the waterproof membrane.
  • the waterproof membrane comprises a corrugation, said corrugation protruding in the direction of the thermally insulating barrier, said corrugation developing along the longitudinal direction of the channel, the thermally insulating barrier comprising a groove, said corrugation being housed in said groove, the bottom of the channel being formed by said groove.
  • the waterproof membrane comprises a series of parallel undulations and flat portions, said flat portions being located between two adjacent parallel undulations, said parallel undulations projecting in the direction of the thermally insulating barrier, the thermally insulating barrier comprising a series of parallel grooves, the parallel corrugations being housed in a respective said groove, the tank further comprising a plurality of channels delimited on the one hand by a said respective groove and, on the other hand, by the waterproof membrane, a bottom of each channel being formed by a said corresponding groove, the vessel further comprising a plurality of shutters, said shutters comprising a flexible film, said flexible film comprising a first attachment zone and a second attachment zone, the first fixing zone extending transversely to the longitudinal direction of the corresponding groove, the first fixing zone of said flexible film being fixed to the bottom of the corresponding channel, the second attachment zone extending transversely to the longitudinal direction of said channel, the second attachment zone being fixed to the outer face of the waterproof membrane delimiting said channel, said flexible film comprising
  • the channel has a component parallel to the direction of earth gravity.
  • the channel is parallel to the direction of earth gravity.
  • Such channels having a vertical component are the most likely to promote convection phenomena so that the arrangement of shutter(s) in such a channel is particularly advantageous and effectively reduces convection phenomena.
  • the channel has a component perpendicular to the direction of earth gravity.
  • the channel is perpendicular to the direction of earth gravity.
  • Such a tank can be part of an onshore storage facility, for example to store LNG or be installed in a floating, coastal or deep water structure, in particular an LNG carrier, a floating storage and regasification unit (FSRU) , a floating production and remote storage unit (FPSO) and others.
  • FSRU floating storage and regasification unit
  • FPSO floating production and remote storage unit
  • Such a tank can also serve as a fuel tank in any type of ship.
  • the invention also provides a vessel for the transport of a cold liquid product comprises a double hull and a aforementioned tank arranged in the double hull.
  • the invention also provides a method for loading or unloading such a ship, in which a cold liquid product is conveyed through insulated pipes from or to a floating or terrestrial storage installation to or from the ship's tank.
  • the invention also provides a transfer system for a cold liquid product, the system comprising the aforementioned vessel, insulated pipes arranged so as to connect the tank installed in the hull of the vessel to a floating storage installation or land and a pump to cause a flow of cold liquid product through the insulated pipes from or to the floating or land storage facility to or from the tank of the ship.
  • The is a schematic perspective view with section of a sealed and thermally insulating vessel portion arranged in a support structure;
  • the is a cutaway schematic representation of an LNG tank comprising a sealed and thermally insulating tank and a loading/unloading terminal for this tank;
  • a sealed and thermally insulating tank for the storage and transport of a cryogenic fluid for example Liquefied Natural Gas (LNG) comprises a plurality of tank walls each having a multilayer structure.
  • LNG Liquefied Natural Gas
  • Such vessel walls comprise, from the exterior towards the interior of the vessel, a secondary thermally insulating barrier 1 anchored to a supporting structure 2 by secondary retaining members (not shown), a secondary waterproof membrane 3 carried by the secondary thermally insulating barrier 1, a primary thermally insulating barrier 4 resting on the secondary sealed membrane 3 and a primary sealed membrane 5, carried by the primary thermally insulating barrier 4 and intended to be in contact with the cryogenic fluid contained in the vessel.
  • the load-bearing structure 2 can in particular be a self-supporting sheet metal or, more generally, any type of rigid partition having suitable mechanical properties.
  • the load-bearing structure 2 can in particular be formed by the hull or the double hull of a ship, as illustrated in the .
  • the support structure 2 comprises a plurality of walls defining the general shape of the tank, usually a polyhedral shape. Some tanks may also have only one thermally insulating barrier and one sealed membrane, for example for the storage of LPG.
  • the tank has side walls 6 of the tank and transverse walls 7 of the tank (a single transverse wall being illustrated on the ) which have a vertical component, that is to say a component parallel to the direction of earth's gravity.
  • a vertical component that is to say a component parallel to the direction of earth's gravity.
  • the presence of channels developing over the entire height of the wall 6, 7 is likely to favor the phenomena of natural convection. Indeed, in such walls 6, 7, thermosiphon phenomena can occur which leads to a degradation of the thermal insulation performance of the thermally insulating barriers 1, 4.
  • One aspect of the invention starts from the idea of limiting or even eliminate these natural convection phenomena.
  • the tank At the junction between a first wall 8 of the tank, for example a side wall 6, and a second wall 9 of the tank, for example a transverse wall 7, the tank comprises a corner structure 10 illustrated on the .
  • This corner structure 10 is advantageously prefabricated.
  • the corner structure 10 illustrated in the comprises a first secondary corner insulating panel 11 and a second secondary corner insulating panel 12.
  • the secondary corner insulating panels have, from the outside of the tank towards the inside of the tank, an external rigid plate 13 , an insulating gasket 14 and an internal rigid plate 15.
  • the first secondary corner insulating panel 11 and the second secondary corner insulating panel 12 also have a bevelled face, the bevelled faces of said two secondary corner insulating panels 11 , 12 being contiguous.
  • the secondary corner insulating panels form an edge 16 of the secondary thermally insulating barrier 1.
  • the first secondary corner insulating panel 11 carries a first secondary sealed membrane portion 17 and the second secondary corner insulating panel 12 carries a second secondary sealed membrane portion 18.
  • These first and second secondary sealed membrane portions 17, 18 can be done in many ways.
  • the first and second portions of secondary waterproof membrane 17, 18 are made of laminated waterproof film.
  • Such a laminated waterproof film comprises a metal sheet, for example aluminum, interposed between two layers of resinated fibers.
  • Such portions of secondary waterproof membrane 17, 18 in laminated waterproof film are for example glued to the internal face of the secondary corner insulating panels 11, 12.
  • the first and second portions of secondary waterproof membrane 17 , 18 are metal plates anchored to the secondary corner insulating panels 11, 12.
  • the secondary sealed membrane portions 17, 18 comprise a longitudinal edge developing parallel to the edge 16 of the secondary thermally insulating barrier 1, said edge being arranged at a distance from the edge 16.
  • the first sealed membrane portion secondary 17 forms one end of the secondary waterproof membrane 3 of the first wall 8 and the second portion of secondary waterproof membrane 18 forms one end of the secondary waterproof membrane 3 of the second wall 9.
  • the corner structure 10 comprises a secondary corner waterproof membrane portion 19.
  • This secondary corner waterproof membrane portion 19 connects in a leaktight manner the first secondary leaktight membrane portion 17 and the second secondary leaktight membrane portion 18.
  • This secondary leaktight corner membrane portion can be made in many ways.
  • the secondary corner waterproof membrane portion 19 is made of laminated waterproof film, for example comprising a metal sheet sandwiched between two layers of non-resinated fibers. Such a portion of secondary waterproof membrane at an angle 19 in laminated waterproof film is for example glued to the first and second portions of secondary waterproof membrane 17, 18.
  • the corner secondary waterproof membrane portion 19 is formed by a metal angle anchored in a leaktight manner on the first and second secondary waterproof membrane portions 17, 18.
  • the secondary corner waterproof membrane portion 19 develops along the edge 16.
  • the secondary corner waterproof membrane portion 19 has longitudinal edges parallel to the edge 16.
  • a first longitudinal edge of the corner portion secondary corner waterproof membrane 19 forms a first anchoring zone 20, illustrated in dotted lines on the , which is fixed in a leaktight manner to the first portion of secondary leaktight membrane 17.
  • a second longitudinal edge of the corner portion of secondary leaktight membrane 19 forms a second anchoring zone 21, illustrated in dotted lines on the , which is fixed in a sealed manner to the second portion of secondary sealed membrane 18.
  • the fixing in a sealed manner of the anchoring zones 20, 21 of the corner secondary sealed membrane portion 19 on the secondary sealed membrane portions 17, 18 can be achieved in many ways, for example by gluing in the frame of a secondary corner waterproof membrane portion 19 in the form of a laminated waterproof film or else by welding as part of a secondary corner waterproof membrane portion 19 in the form of a metal angle iron.
  • the internal rigid plate 15 of the secondary corner insulating panels 11, 12 may include a thermal protection strip housed in a counterbore in order to protect said secondary corner insulating panels 11, 12 during such welding.
  • the corner structure 10 further comprises a plurality of primary insulating elements 22 juxtaposed along the edge 16 of the secondary thermally insulating barrier 1.
  • Each primary insulating element 22 comprises a first primary insulating block 23 resting on the first portion of secondary waterproof membrane 17 and a second primary insulating block 24 resting on the second portion of secondary waterproof membrane 18.
  • the plurality of primary insulating elements 22 form the primary thermally insulating barrier 4.
  • the primary waterproof membrane 5 comprises a plurality of metal angle brackets 25 each resting on a respective primary insulating block 23, 24.
  • each metal angle has a first wing 26 resting on the first primary insulating block 23 of a primary insulating element 22 and a second wing 27 resting on the second primary insulating block 24 of said primary insulating element 22.
  • the second corner waterproof membrane portion 19 comprises a central zone 28 interposed between the first anchoring zone 20 and the second anchoring zone 21.
  • This central zone 28 is arranged in line with the ridge 16 and develops along the along the edge 16.
  • This central zone 28 is not fixed to the secondary thermally insulating barrier 1.
  • the central zone 28 is free with respect to the secondary thermally insulating barrier 1 and, more particularly, with respect to the edge 16.
  • Other details and characteristics of such a corner structure are described for example in the document WO2014167214A2.
  • the secondary waterproof membrane 3, and therefore the secondary corner waterproof membrane portion 19 contracts, which causes deformation by tensioning of said secondary waterproof membrane portion d angle 19 as shown in the .
  • the secondary corner insulating panels 11, 12 contract, which moves the anchoring zones 20, 21 of the secondary corner waterproof membrane portion 19 away from each other and therefore also causes a deformation by tensioning of said portion of secondary waterproof membrane at the corner 19.
  • the deformation by tensioning of the secondary corner sealed membrane portion 19 moves the central zone 28 away from the edge 16 which substantially increases the volume of the empty space between the secondary corner sealed membrane portion 19 and the secondary thermally insulating barrier 1 at the level of the edge 16.
  • a channel 29 appears or grows between the secondary sealed membrane 3 and the secondary thermally insulating barrier 1. This channel 29 develops over the entire length of the ridge 16 and has a longitudinal direction parallel to the ridge 16.
  • this channel is delimited by an outer face of the central portion 28 of the secondary corner sealed membrane portion 19 and by a portion of the inner faces of the plates 15 of the secondary corner insulating panels 11, 12 between the edge 16 and the first and second portions of secondary waterproof membrane 17 and 18, said portion of the internal faces of the rigid plates 15 forming a bottom 36 of channel 29.
  • the tank comprises a shutter 30.
  • a shutter is arranged in the channel 29 between an internal face of the secondary thermally insulating barrier 1 and an external face of the secondary sealed membrane 3.
  • This shutter 30 is made in the form of a flexible film, having for example a polygonal shape.
  • the shutter 30 can be made using one of the materials mentioned below or a composition formed from several of these materials: in thermoplastic material comprising polyethylene (PE), polyethylene terephthalate (PET) , polyamide, polyimide, polyetherimide, polypropylene in the form of a textile film or not or any other material or textile having cold flexibility.
  • the shutter 30 can also be made of woven fabric, possibly coated.
  • the woven textile can be made from different types of fibers, for example based on mineral fibers, such as glass fibers, basalt or natural fibers, for example based on hemp, linen or wool or thermoplastic fibers (PE, PET, PP, PI, PEI, etc.).
  • the flexible film 30 illustrated in the comprises a first attachment area 31, a second attachment area 32 and a third attachment area 33.
  • the first attachment area 31 and the third attachment area 33 are formed at two opposite ends of the flexible film 30.
  • These first and third fixing zones 31, 33 are for example formed by opposite transverse edges of the flexible film 30.
  • the second attachment zone 32 is interposed between the first attachment zone 31 and the third attachment zone 33, for example at a substantially equal distance from the first and third attachment zones 31 and 33.
  • the flexible film 30 also comprises a first sealing portion 34 inserted between the first attachment zone 31 and the second attachment zone 32 and a second sealing portion 35 inserted between the second attachment zone 32 and the third attachment zone 33.
  • the first fixing zone 31 and the third fixing zone 33 are fixed on the secondary thermally insulating barrier 1. More particularly, the first fixing zone 31 and the third zone 33 are fixed on the bottom 36 of the channel 29 so as to s extend transversely, preferably perpendicularly, to the longitudinal direction of the channel 29.
  • This fixing of the first and third fixing zones 31 and 33 on the bottom 36 of the channel 29 can be achieved in many ways.
  • This fixing is for example carried out by gluing or by means of a double-sided adhesive tape, for example comprising polytetrafluoroethylene (PTFE), interposed between each of said first and third fixing zones 31 and 33 and the bottom 36 of the channel 29.
  • PTFE polytetrafluoroethylene
  • the second attachment zone 32 is attached to the outer face of the central portion 28 of the secondary corner sealed membrane portion 19.
  • the attachment of the second attachment zone 32 can be produced in many ways, for example by gluing or by means of a double-sided adhesive tape inserted between the second attachment zone 32 and the outer face of the central zone 28 of the secondary sealed membrane portion corner 19.
  • the installation of the flexible film 30 in the tank first comprises fixing, by gluing or by means of an adhesive tape, the first and third fixing zones 31 and 33 on the bottom 36 of the channel 29. Furthermore, a double-sided adhesive tape is applied to the outer face of the central portion 28 of the secondary corner waterproof membrane portion 19 at the place where the second fixing zone 32 is to be fixed. Secondary corner waterproof membrane 19, provided with said double-sided adhesive tape, is then anchored to the first and second secondary waterproof membrane portions 17 and 18. The anchoring of the secondary corner waterproof membrane portion on said secondary waterproof membrane portions 17 and 18 brings the double-sided adhesive tape against the second fixing zone 32 and thus fixes said second fixing zone 32 on the corner secondary waterproof membrane portion 19.
  • pressure exerted on an internal face of said laminated waterproof film in line with the double-sided adhesive tape can improve the fixing of the second fixing zone 32 on said laminated waterproof film.
  • the first closure portion 34 and the second closure portion 35 are free with respect to the secondary thermally insulating barrier 1 and to the secondary sealed membrane 3.
  • said first and second closure portions 34 and 35 are not not fixed either on the secondary thermally insulating barrier 1 or on the secondary sealed membrane 3.
  • the longitudinal edges 37 of the closure portions 34 and 35 are loose and allow on the one hand a reduced gas circulation in the channel 29, that is to say with a pressure drop linked to the arrangement of said closure portions 34 and 35 in the channel 29, and on the other hand the deformation of the flexible film 30 to accompany the deformation by tensioning of the corner secondary waterproof membrane portion 19.
  • the portion of the secondary corner sealed membrane 19 is stretched.
  • the second fixing zone 32 of the flexible film 30 fixed to the central zone 28 of the secondary corner waterproof membrane portion 19 accompanies the variation in position of said central zone 28 linked to the deformation of the secondary corner waterproof membrane portion 19.
  • the first and third fixing zones 31 and 33 of the flexible film 30 being fixed on the secondary thermally insulating barrier 1, the sealing portions 34 and 35 of the flexible film 30 are tensioned between said fixing zones 31, 32 and 33 and develop in the channel 29 between the secondary thermally insulating barrier 1 and the secondary sealed membrane 3.
  • the channel 29 is closed by the first closure portion 34 and the second closure portion 35 between the central zone 28 of the corner secondary sealed membrane portion 19 and the secondary thermally insulating barrier 1 while p allowing gas circulation with pressure drop in the flow.
  • the closure portions 34 and 35 may slightly deform and have a conical shape.
  • Such shutters 30 are advantageously arranged in the tank at the corners of the tank, the edge 16 of which has a component parallel to the earth's gravity, typically between the side walls 6 and the transverse walls 7 of the tank.
  • Such shutters 30 can also be arranged in a tank at the corners of the tank, the edge 16 of which is perpendicular to the earth's gravity.
  • a plurality of shutters 30 can be arranged, for example at regular intervals, along the channel 29, thus controlling the pressure drop along the channel 29.
  • Such a wedge 38 is arranged on the bottom 36 of the channel 29, along the edge 16 and has a first face 39 resting on the internal rigid plate 15 of a secondary corner insulating panel and a second face 40 resting on the internal rigid plate 15 of a secondary corner insulating panel.
  • This wedge 38 further comprises an internal face 41 connecting the first and second faces 39 and 40 of the wedge 38.
  • This internal face 41 has a concave shape, the concavity of which faces the inside of the tank.
  • the central zone 28 of said secondary corner waterproof membrane portion 19 is arranged so as to rest on the internal face 41 of the spacer 38.
  • the corner secondary waterproof membrane portion 19 is easily positioned for the bonding of the first and second fixing zones 20 and 21 respectively on the first and second secondary waterproof membrane portions 17 and 18.
  • Such a shim 38 thus makes it possible to control the radius of curvature of the central zone 28 of the secondary corner waterproof membrane portion 19 during the bonding of said secondary corner waterproof membrane portion 19, typically during the manufacture of the tank.
  • Such a wedge 38 also makes it possible to reduce the dimensions of the channel 29, but cannot prevent the enlargement of said channel 29 when the vessel is cooled, as illustrated by the portion of secondary corner waterproof membrane 19 illustrated on this represented in a state of tension related to thermal contraction, as explained above. In such a channel 29, the inner face 41 then forms the bottom 36 of said channel 29.
  • the first fixing zone 31 and the third fixing zone 33 of the shutter 30 can be fixed directly on the internal face 41 of the wedge 38.
  • a first end of one or more of the attachment zones 31, 32 and/or 33 of the flexible film 30 is inserted between the first portion of sealed membrane 17 and the first anchoring zone 20 of the portion secondary corner waterproof membrane 19.
  • a second end of one or more fixing zones 31, 32 and/or 33 are interposed between the second portion of secondary waterproof membrane 18 and the second anchoring zone 21 of the secondary corner waterproof membrane portion 19.
  • these ends of said fixing zones 31, 32 and/or 33 are thus pinched between the first and second secondary waterproof membrane portions 17 or 18 and the secondary corner waterproof membrane portion 19, thus ensuring the fixing of the fixing zones 31, 32 and/or 33 in a simple manner.
  • the elements which are identical or fulfill the same function as the elements described above with regard to FIGS. 1 to 7 carry the same reference increased by 100.
  • the secondary thermally insulating barrier 101 of a vessel wall comprises a plurality of parallelepiped-shaped secondary insulating panels which are juxtaposed in a regular mesh. Analogously to the first and second panels 11, 12 described above, these secondary insulating panels comprise an external rigid plate (not shown), an insulating gasket 43 and an internal rigid plate 44.
  • an internal face of said insulating panels comprises a plurality of grooves 45 provided in the internal rigid plate 44, and possibly on the internal face of the insulating gasket 43. These grooves 45 make it possible to accommodate corrugations 46 of the secondary waterproof membrane 103 , a portion of which is shown in dotted lines on the .
  • the grooves 45 are dimensioned in order to manage the manufacturing and positioning tolerances of the secondary insulating panels and of the corrugations 46 of the secondary waterproof membrane 103.
  • such spaces between the corrugations 46 and the secondary thermally insulating barrier 101 are likely to generate thermosiphon phenomena degrading the insulation performance of secondary thermally insulating barrier 101.
  • a shutter 130 can also be placed between the secondary sealed membrane 103 and the secondary thermally insulating barrier 101 in the grooves 45 of the secondary thermally insulating barrier 101.
  • Such a shutter 130 differs of the shutter 30 described above with regard to the that it comprises only a first fixing zone 131 and a second fixing zone 132.
  • the first fixing zone 131 is fixed on a bottom 136 of the channel 129 formed by the groove 45 of the secondary thermally insulating barrier 101.
  • the second fixing zone 132 is fixed on an outer face of the secondary waterproof membrane 103 and adheres to the outer face of the undulation 46 and flat zones bordering said undulation 46 and arranged in line with the groove 45.
  • the first and second attachment zones 131 and 132 develop along a direction perpendicular to the direction of the groove 45 over a distance greater than the width of the groove 45 taken along said direction perpendicular to the longitudinal direction of the groove. 45.
  • the first and second ends of the first and second attachment zones 131 and 132 are interposed between the flat portions of the secondary waterproof membrane 103 and the internal face of the plate. rigid 44 on which rests said flat faces of the secondary waterproof membrane 103.
  • the first fixing zone 131 and the second fixing zone 132 are fixed in a simple manner between the secondary waterproof membrane 103 and the secondary thermally insulating barrier 101.
  • the shutter 130 is arranged in the channel 129 on the periphery of the internal face of an insulating panel forming the secondary thermally insulating barrier 1.
  • the application of the second fixing zone 132 on the internal face of the secondary waterproof membrane 103 is facilitated by the simple access to the obturator via the groove 45 from the edge of the panel secondary insulation.
  • the side face of the secondary insulating panel and the bottom 136 of the channel at the level of said side face are glued prior to the positioning of the waterproof membrane and the shutter 130.
  • the second fixing zone 132 of the shutter 130 is initially fixed on the outer face of the secondary waterproof membrane 103.
  • the secondary waterproof membrane 103 is attached to the secondary insulating panel so that the flexible film forming the shutter 130 extend beyond the side face of the secondary insulating panel.
  • said projecting portion of the film can be easily applied to the side face of the secondary insulating panel and to the bottom 136 of the channel 129 in order to fix the first fixing zone 131 to the secondary insulating panel.
  • the obturator 330 comprises a first fixing zone 331, a second fixing zone 332.
  • the first fixing zone 331 and the second fixing zone 332 are formed at the level of two opposite ends of the flexible film.
  • the first fixing zone 331 is fixed on a bottom 236 of the channel 329.
  • the second fixing zone 332 is fixed on an external face of the waterproof membrane 203.
  • the first fixing zone 331 and the second fixing zone 332 are offset according to the longitudinal direction of the channel 329.
  • first attachment zone and the second attachment zone are not opposite each other so that the closure portion 235 develops with a component parallel to the longitudinal direction of the channel 329
  • the closure portion 235 comprises two substantially half-turn foldings spaced apart from each other and thus has a shape resembling a Z.
  • the shutter 330 can be installed in prefabrication in the corner structure 10 before the installation of the corner structure 10 in the sealed and thermally insulating tank.
  • the structure of the 330 shutter is easier to set up when the panels are prefabricated in the factory with a portion of the waterproof membrane covering them.
  • the shutter 230 is also made in the form of a flexible film which is folded around an axis transverse to the longitudinal direction of the channel, substantially in the shape of a U.
  • the shutter 230 comprises a first zone of attachment 231, a second attachment zone 232 and a closure portion 135 folded back on itself.
  • the first attachment zone 231 and the second attachment zone 232 are formed at two opposite ends of the flexible film.
  • the first fixing zone 231 is fixed on a bottom 236 of the channel.
  • the second attachment area 232 is attached to an outer face of the waterproof membrane 203.
  • the first attachment area 231 and the second attachment area 232 are opposite each other.
  • the flexible film has a length, when the closure portion is arranged in a plane, greater than the distance between a fixing surface of the first fixing zone 231 on the bottom of the channel 229 and a fixing surface of the second zone fixing 232 on the waterproof membrane.
  • the flexible film forms a fold in which, according to one embodiment, is housed a compressible element 99, for example made of wadding, felt, glass wool, rock wool, polymer foam.
  • the compressible element 99 is compressed between the first and second fixing zones 231, 232 and thus exerts a reaction force which facilitates the fixing by gluing of the first fixing zone 231 and of the second fixing zone 232 on the bottom respectively. of the channel and on the external face of the waterproof membrane.
  • the shutter 230 is inserted into the sealed and thermally insulating tank in the gap between the bottom of the channel 229 and the sealed membrane.
  • an anti-adhesive film (not shown) which prevents the two parts of the flexible film folded relative to each other from sticking is inserted into the folding of the flexible film, instead of or in combination with the compressible element 99.
  • a tool in the form of a blade if necessary a curved blade whose curvature corresponds to the shape of the bottom of the channel, for example the curvature of the wedge 38 ( ).
  • the anti-adhesive film and the flexible film are successively folded around the end edge of the slat in order to push them into the channel 29 or 229, for example between the wedge 38 and the portion of the secondary waterproof membrane at the angle 19.
  • a dedicated tool to set up the shutter.
  • the tool comprises at least one blade which is intended to be inserted between the two foldings of the closure portion and a handle which allows manipulation of the tool.
  • the structure of the shutter 230, illustrated in the is advantageous in that it lends itself more particularly to installation, in situ, of the shutter inside the tank once the latter has been assembled, whereas the shutters described above are simpler to put in place during a factory prefabrication of the panels with a portion of the waterproof membrane covering them.
  • the technique described above for making a tight and thermally insulating tank can be used in different types of tanks, for example to limit the presence of continuous circulation channels in the thermally insulating barriers of an LNG tank in an onshore installation or in a floating structure such as an LNG carrier or other.
  • a cutaway view of an LNG carrier 70 shows a sealed and insulated tank 71 of generally prismatic shape mounted in the double hull 72 of the ship.
  • the wall of the tank 71 comprises a primary leaktight barrier intended to be in contact with the LNG contained in the tank, a secondary leaktight barrier arranged between the primary leaktight barrier and the double hull 72 of the ship, and two insulating barriers arranged respectively between the primary waterproof barrier and the secondary waterproof barrier and between the secondary waterproof barrier and the double hull 72.
  • loading/unloading pipes 73 arranged on the upper deck of the ship can be connected, by means of appropriate connectors, to a maritime or port terminal to transfer a cargo of LNG from or to the tank 71.
  • the represents an example of a maritime terminal comprising a loading and unloading station 75, an underwater pipeline 76 and an installation on land 77.
  • the loading and unloading station 75 is a fixed offshore installation comprising a mobile arm 74 and a tower 78 which supports the mobile arm 74.
  • the mobile arm 74 carries a bundle of insulated flexible pipes 79 which can be connected to the loading/unloading pipes 73.
  • the orientable mobile arm 74 adapts to all sizes of LNG carriers.
  • a connecting pipe, not shown, extends inside the tower 78.
  • the loading and unloading station 75 allows the loading and unloading of the LNG carrier 70 from or to the shore installation 77.
  • This comprises liquefied gas storage tanks 80 and connecting pipes 81 connected by the underwater pipe 76 to the loading or unloading station 75.
  • the underwater pipe 76 allows the transfer of the liquefied gas between the loading or unloading station 75 and the shore installation 77 over a great distance, for example 5 km, which makes it possible to keep the LNG carrier 70 at a great distance from the coast during loading and unloading operations.
  • pumps on board the ship 70 and/or pumps fitted to the shore installation 77 and/or pumps fitted to the loading and unloading station 75 are used.
  • a shutter as described above could be arranged in a channel formed by the internal space of the corrugations of a sealed membrane.
  • such shutters could be arranged under undulations of a secondary leaktight membrane projecting towards the inside of the tank.
  • a shutter can be arranged in any channel capable of generating convection phenomena by thermosiphon in a sealed and thermally insulating tank.
  • the embodiment illustrated in Figures to represents a shutter comprising one or two fixing zones cooperating with the thermally insulating barrier and a fixing zone cooperating with the secondary waterproof membrane, however the number of fixing zones which can cooperate with the waterproof membrane and the number of fixing zones that can cooperate with the thermally insulating barrier can be different.
  • a shutter can thus comprise a plurality of fixing zones intended to cooperate with the thermally insulating barrier alternately with a plurality of fixing zones intended to cooperate with the waterproof membrane so that the closing portions between a fixing zone on the thermally insulating barrier and an attachment zone on the waterproof membrane develops in the channel to close said channel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

L'invention concerne une cuve étanche et thermiquement isolante comportant une barrière thermiquement isolante et une membrane étanche, la cuve comportant un canal (29) se développant selon une direction longitudinale le long de la membrane étanche, la barrière thermiquement isolante formant un fond (36) du canal (29), la cuve comportant en outre un obturateur (30) comportant un film souple, ledit film souple comportant une première zone de fixation (31, 33) s'étendant transversalement à la direction longitudinale du canal (29) et fixée sur le fond (36) du canal (29), une deuxième zone de fixation (32) s'étendant transversalement à la direction longitudinale du canal (29) et fixée à la membrane étanche, le film souple comportant une portion d'obturation (34, 35) intercalée entre la première zone de fixation (31, 33) et la deuxième zone de fixation (32), ladite portion d'obturation (34, 35) obturant le canal (29) de façon à créer une perte de charge dans le canal.

Description

    Cuve étanche et thermiquement isolante
  • L’invention se rapporte au domaine des cuves étanches et thermiquement isolantes, à membranes, pour le stockage et/ou le transport de fluide, tel qu’un fluide cryogénique.
  • Des cuves étanches et thermiquement isolantes à membranes sont notamment employées pour le stockage de gaz naturel liquéfié (GNL), qui est stocké, à pression atmosphérique, à environ -162°C. Ces cuves peuvent être installées à terre ou sur un ouvrage flottant. Dans le cas d’un ouvrage flottant, la cuve peut être destinée au transport de gaz naturel liquéfié ou à recevoir du gaz naturel liquéfié servant de carburant pour la propulsion de l’ouvrage flottant.
  • Arrière-plan technologique
  • Dans l’état de la technique, il est connu des cuves étanches et thermiquement isolantes pour le stockage de gaz naturel liquéfié, intégrées dans une structure porteuse, telle que la double coque d’un navire destiné au transport de gaz naturel liquéfié. Généralement, de telles cuves comportent une structure multicouche présentant successivement, dans le sens de l’épaisseur, depuis l’extérieur vers l’intérieur de la cuve, une barrière d’isolation thermique secondaire retenue à la structure porteuse, une membrane d’étanchéité secondaire reposant contre la barrière d’isolation thermique secondaire, une barrière d’isolation thermique primaire reposant contre la membrane d’étanchéité secondaire et une membrane d’étanchéité primaire reposant contre la barrière d’isolation thermique primaire et destinée à être en contact avec le gaz naturel liquéfié contenu dans la cuve.
  • Le document WO2016/046487 décrit une barrière d’isolation thermique secondaire et une barrière d’isolation thermique primaire formées de panneaux isolants juxtaposés. Dans ce document WO2016/046487, la membrane d’étanchéité secondaire est constituée d’une pluralité de tôles métalliques comportant des ondulations faisant saillie vers l’extérieur de la cuve et permettant ainsi à la membrane d’étanchéité secondaire de se déformer sous l’effet des sollicitations thermiques et mécaniques générées par le fluide emmagasiné dans la cuve. Une face interne des panneaux isolants de la barrière d’isolation thermique secondaire présente des rainures recevant les ondulations des tôles métalliques ondulées de la membrane étanche secondaire. Ces ondulations et ces rainures forment un maillage de canaux se développant le long des parois de la cuve.
  • Le document WO2014167214 A2 décrit une structure d’angle de cuve étanche et thermiquement isolante multicouche dans laquelle la barrière thermiquement isolante secondaire au niveau d’un angle entre deux parois de la cuve comporte deux panneaux isolants formant une arête, la membrane étanche secondaire comportant au droit de ladite arête un film étanche souple reliant des portions de membrane étanche secondaire desdites deux parois de cuve.
  • Une portion centrale de ce film étanche souple, c’est à dire intercalée entre les portions dudit film étanche souple ancrées sur les portions de membrane étanche secondaire des deux parois de cuve, n’est pas ancrée sur la barrière thermiquement isolante secondaire et est donc libre par rapport à ladite barrière thermiquement isolante secondaire.
  • Ainsi, lorsque la cuve étanche et thermiquement isolante est mise à froid, la contraction thermique des panneaux isolant formant l’arête et de la membrane étanche est absorbée par une déformation de la portion centrale du film étanche souple, typiquement ledit film étanche souple est apte à se tendre pour absorber les contraintes liées à cette contraction. Cependant, lorsque le film souple se tend, un espace apparaît ou s’agrandit entre ladite portion centrale du film étanche souple et la barrière thermiquement isolante. Cet espace se développe sur toute la longueur de l’arête.
  • Un tel espace forme un canal favorisant la convection et est donc susceptible de dégrader les performances d’isolation thermique de la cuve, en particulier dans le cadre d’arêtes présentant une composante parallèle à la direction de gravité terrestre.
  • Résumé
  • Une idée à la base de l’invention est de proposer une cuve étanche et thermiquement isolante dans laquelle les phénomènes de convection sont réduits. En particulier, une idée à la base de l’invention est de fournir une cuve étanche et thermiquement isolante limitant la présence de canaux de circulation continus dans les barrières thermiquement isolantes, et plus particulièrement entre les barrières thermiquement isolantes et les membranes étanches, afin de limiter les phénomènes de convection naturelle dans lesdites barrières thermiquement isolantes.
  • Selon un mode de réalisation, l’invention fournit une cuve étanche et thermiquement isolante de stockage de fluide, ladite cuve comportant une barrière thermiquement isolante et une membrane étanche, la cuve comportant un canal se développant selon une direction longitudinale, ledit canal s’étendant le long de la membrane étanche et étant délimité d’une part par la barrière thermiquement isolante et, d’autre part, par une face externe de la membrane étanche, la barrière thermiquement isolante formant un fond du canal,
    la cuve comportant en outre un obturateur agencé dans le canal, ledit obturateur comportant un film souple, ledit film souple comportant une première zone de fixation et une deuxième zone de fixation,
    la première zone de fixation s’étendant transversalement à la direction longitudinale du canal, la première zone de fixation dudit film souple étant fixée sur le fond du canal,
    la deuxième zone de fixation s’étendant transversalement à la direction longitudinale du canal, la deuxième zone de fixation étant fixée à la face externe de la membrane étanche délimitant le canal,
    le film souple comportant une portion d’obturation s’étendant de la première zone de fixation à la deuxième zone de fixation, ladite portion d’obturation s’étendant en travers du canal entre le fond du canal et la membrane étanche de façon à créer une perte de charge dans le canal.
  • On entend par zone de fixation s’étendant transversalement à la direction longitudinale du canal une zone du film souple s’étendant de façon sécante, de préférence perpendiculairement, à la direction longitudinale du canal.
  • Grâce à ces caractéristiques, les phénomènes de convection dans la cuve, et en particulier dans le canal, sont réduits. En effet, l’obturateur permet de générer une perte de charge dans un écoulement de flux pouvant survenir dans le canal tout en permettant la circulation de gaz, par exemple de gaz inerte.
  • En effet, la première zone de fixation du film souple étant fixée sur le fond du canal selon une direction transversale à la direction longitudinale du canal et la deuxième zone de fixation étant fixée sur la face externe de la membrane étanche selon une direction transversale à la direction longitudinale du canal, la portion d’obturation se développe entre le fond du canal et la face externe de la membrane étanche permettant ainsi une bonne obturation du canal. De plus, la deuxième zone de fixation étant fixée sur la membrane étanche, ladite deuxième zone de fixation suit les déformations de la membrane étanche de sorte que cette portion obturation soit présente y compris lors de déformation de la membrane étanche. En outre, cette fixation des première et deuxième zones de fixation permet de s’affranchir de façon simple des tolérances de fabrications et/ou de positionnement de la barrière thermiquement isolante et/ou de la membrane étanche tout en conservant une bonne obturation du canal.
  • Selon des modes de réalisation, une telle cuve étanche et thermiquement isolante peut comporter une ou plusieurs des caractéristiques suivantes.
  • Selon un mode de réalisation, la première zone de fixation et la deuxième zone de fixation sont décalées selon la direction longitudinale du canal. Autrement dit, la première zone de fixation et la deuxième zone de fixation ne sont pas jointives de sorte que la portion d’obturation se développe avec une composante parallèle à la direction longitudinale du canal.
  • Selon un mode de réalisation, la portion d’obturation est mobile par rapport au fond du canal. Selon un mode de réalisation, la portion d’obturation est mobile par rapport à la membrane étanche. Autrement dit, selon un mode de réalisation, la portion d’obturation est libre par rapport au fond du canal et à la membrane étanche. Ainsi, la portion d’obturation obture le canal de manière non étanche et permet donc la circulation de gaz inerte dans le canal tout en créant la perte de charge dans l’écoulement.
  • Selon un mode de réalisation, la portion d’obturation est déformable entre le fond du canal et la membrane étanche. Cette déformabilité de la portion d’obturation peut être obtenue de nombreuses manières. Selon un mode de réalisation, le film souple est réalisé en un matériau élastiquement déformable. Selon un mode de réalisation, la portion d’obturation présente une longueur, lorsque ladite portion d’obturation est agencée dans un plan, supérieure à la distance entre une surface de fixation de la première zone de fixation sur le fond du canal et une surface de fixation de la deuxième zone de fixation sur la membrane étanche. Autrement dit, selon un mode de réalisation, la portion d’obturation est dans un état lâche dans le canal, en particulier à température ambiante.
  • Selon un mode de réalisation, la portion d’obturation située entre le fond du canal et la membrane étanche est déformable et comprend au moins un repliement le long d’un axe transversal à la direction longitudinale du canal.
  • Selon un mode de réalisation, la première zone de fixation et la deuxième zone de fixation sont situées à deux extrémités opposées du film souple et sont disposées à un même niveau dans la direction longitudinale du canal.
  • L’obturateur présente alors par exemple une forme de U particulièrement avantageuse et adaptée à une installation in situ dans la cuve. Un tel obturateur peut être installé avec un outil, par exemple une lame permettant l’insertion de l’obturateur dans le canal sans l’endommager.
  • Selon un mode de réalisation, l’obturateur comporte un élément compressible qui est précontraint et logé dans le repliement entre la première et la deuxième zone de fixation de manière à exercer une force de réaction plaquant la première zone de fixation contre le fond du canal et la deuxième zone de fixation contre la face externe de la membrane étanche délimitant le canal.
  • Selon un mode de réalisation, l’élément compressible est réalisé dans un matériau choisi parmi la ouate, le feutre, laine de verre, laine de roche, les mousses polymères, la ouate de polyéthylène ou autres et s’étendant dans la direction de l’épaisseur entre la première zone de fixation et la deuxième zone de fixation. Grace à cette caractéristique, la fixation par collage est facilitée.
  • Selon un mode de réalisation, un film anti-adhésif est inséré dans le repliement pour éviter de coller ensemble les deux pans du film souple repliés l’un sur l’autre, par exemple sous l’effet des éventuels débordements d’adhésifs. Le film anti-adhésif peut être une feuille de polyéthylène ou de PTFE. Selon un mode de réalisation, le film anti-adhésif inséré dans le repliement comporte une extrémité située dans le repliement et une seconde extrémité située à l’extérieure du repliement. Cette caractéristique permet de faciliter l’installation de l’obturateur dans la cuve et d’éviter que d’éventuels débordements d’adhésifs ne viennent perturber l’installation de l’obturateur. Le film anti-adhésif peut être inséré seul ou en combinaison avec un élément compressible. Pour faciliter l’installation de l’obturateur dans la cuve, on peut replier successivement le film anti-adhésif et le film souple autour du bord d’extrémité de la lame afin de les pousser dans le canal.
  • Selon un mode de réalisation, la portion d’obturation comprend deux repliements mutuellement espacés dans la direction longitudinale du canal, chaque repliement étant réalisé le long d’un axe transversal à la direction longitudinale du canal, la première zone de fixation et la deuxième zone de fixation étant situées au niveau de deux extrémités opposées du film souple et décalées selon la direction longitudinale du canal. L’obturateur présente par exemple une forme en Z.
  • Selon un mode de réalisation, l’obturateur présente une direction d’élongation s’étendant entre la première zone de fixation et la deuxième zone de fixation, le film souple étant réalisé en matériau textile tissé et comprenant des fils orientés entre 35° et 55° (degrés) par rapport à la direction d’élongation, préférentiellement, les fils sont orientées à 45° par rapport à la direction d’élongation. Grace à cette caractéristique, l’obturateur obtient une souplesse par la déformation des fils de trame et des fils de chaine du textile tissé.
  • Grâce à ces caractéristiques, la portion d’obturation permet de suivre les variations de positionnement relatif et de dimension de la barrière thermiquement isolante et/ou de la membrane étanche tout en obstruant le canal de façon efficace afin de créer la perte de charge dans un écoulement au sein dudit canal. En particulier, un tel obturateur permet cette obturation efficace du canal y compris lorsque la cuve est mise à froid, c’est-à-dire en cas de contraction thermique de la membrane étanche et de la barrière thermiquement isolante et donc de variation de l’écart entre la première zone de fixation et la deuxième zone de fixation.
  • Selon un mode de réalisation, la portion d’obturation du film souple est une première portion d’obturation, le film souple comporte une troisième zone de fixation s’étendant transversalement à la direction longitudinale du canal, la troisième zone de fixation étant fixée sur le fond du canal, la deuxième zone de fixation étant intercalée entre la première zone de fixation et la troisième zone de fixation, le film souple comportant une deuxième portion d’obturation s’étendant de la deuxième zone de fixation à la troisième zone de fixation, ladite deuxième portion d’obturation s’étendant en travers du canal entre le fond du canal et la membrane étanche de façon à créer une perte de charge dans le canal.
  • Un tel obturateur permet une bonne obturation du canal et donc une perte de charge de l’écoulement du flux importante.
  • Selon un mode de réalisation, la troisième zone de fixation est décalée le long de la direction longitudinale du canal par rapport à la première zone de fixation et à la deuxième zone de fixation.
  • Selon un mode de réalisation, la deuxième portion d’obturation est mobile par rapport au fond du canal.
  • Selon un mode de réalisation, la deuxième portion d’obturation est mobile par rapport à la membrane étanche.
  • Autrement dit, selon un mode de réalisation, la deuxième portion d’obturation est libre par rapport au fond du canal et à la membrane étanche. Ainsi, la deuxième portion d’obturation obture le canal de manière non étanche et permet donc la circulation de gaz inerte dans le canal tout en créant la perte de charge dans l’écoulement.
  • Selon un mode de réalisation, la deuxième portion d’obturation est déformable entre le fond du canal et la membrane étanche. Cette déformabilité de la deuxième portion d’obturation peut être obtenue de nombreuses manières, par exemple de façon analogue aux exemples ci-dessus pour la première portion d’obturation.
  • Selon un mode de réalisation, le film souple est en matériau choisi dans le groupe consistant en un mât de verre, un film polyéthylène et/ou un film polyamide. A titre d’exemple, le film peut être : un tissu à base de verre, un tissu en polyéthylène, un tissu en polyamide, un tissu en polyimide, un tissu en polyetherimide, cette liste étant non-exhaustive. De tels matériaux présentent une bonne tenue au froid tout en conservant une souplesse permettant au film souple de suivre les déformations de la membrane étanche.
  • Selon un mode de réalisation, la première zone de fixation se développe dans un plan sécant à la direction longitudinale du canal.
  • Selon un mode de réalisation, la première zone de fixation se développe dans un plan perpendiculaire à la direction longitudinale du canal.
  • Selon un mode de réalisation, la deuxième zone de fixation se développe dans un plan sécant à la direction longitudinale du canal.
  • Selon un mode de réalisation, la deuxième zone de fixation se développe dans un plan perpendiculaire à la direction longitudinale du canal.
  • De telles zones d’ancrage agencées perpendiculairement à la direction longitudinale du canal permettent une bonne obturation du canal par la ou les portions d’obturation.
  • Selon un mode de réalisation, la première zone de fixation et/ou la deuxième zone de fixation est fixée par collage. Selon un mode de réalisation, la cuve comporte une bande adhésive double face intercalée entre la première portion de fixation et le fond du canal afin de fixer ladite première portion de fixation sur le fond du canal. Selon un mode de réalisation, la cuve comporte une bande adhésive double face intercalée entre la membrane étanche et la deuxième zone de fixation afin de fixer ladite deuxième zone de fixation sur la membrane étanche. De telles bandes adhésives permettent de fixer les première et deuxième zones de fixation de façon simple et rapide. En outre, de telles bandes adhésives permettent la fixation du film souple de façon simple par simple application ou pression du film souple sur lesdites bandes adhésives ou inversement.
  • Selon un mode de réalisation, la cuve comporte une pluralité d’obturateurs agencés dans le canal le long de la direction longitudinale du canal. Ainsi, un écoulement de flux dans le canal est maîtrisé le long du canal. De tels obturateurs peuvent comporter un, plusieurs ou être tous tels que les obturateurs décrits ci-dessus.
  • Selon un mode de réalisation, les obturateurs de la pluralité d’obturateurs sont agencés dans le canal à intervalles réguliers.
  • Selon un mode de réalisation, la barrière thermiquement isolante formant le fond du canal comporte une pluralité de panneaux isolants espacés, par exemple de manière régulière ou irrégulière, et une pluralité de zones de jonction situées entre les panneaux isolants, par exemple avec un pas régulier ou irrégulier entre deux zones de jonction. Les obturateurs peuvent être agencés en regard des panneaux isolants de manière que les zones de jonction à chaque extrémité d’un panneau se trouvent entre les obturateurs. Par exemple les obturateurs sont mutuellement espacés d’un intervalle correspondant au pas régulier ou irrégulier des zones de jonction. Dans un mode de réalisation, au moins un obturateur est disposé en regard de chaque panneau isolant. Ainsi, il y a systématiquement au moins un obturateur qui bloque l’écoulement entre deux zones de jonctions successives.
  • Selon un mode de réalisation, les obturateurs sont agencés à intervalles irréguliers.
  • Selon un mode de réalisation, la cuve étanche et thermiquement isolante comporte une première paroi de cuve et une deuxième paroi de cuve, la première paroi de cuve et la deuxième paroi de cuve formant une arête de la barrière thermiquement isolante, la première paroi de cuve comportant une première surface d’ancrage et la deuxième paroi de cuve formant une deuxième surface d’ancrage, le fond du canal étant formé par la barrière thermiquement isolante entre la première surface d’ancrage et la deuxième surface d’ancrage, le fond du canal formant l’arête, et la membrane étanche comporte une pièce étanche d’angle, la pièce étanche d’angle comportant une première portion ancrée sur la première surface d’ancrage et une deuxième portion ancrée sur la deuxième surface d’ancrage, la pièce étanche d’angle comportant en outre une portion centrale intercalée entre la première portion et la deuxième portion, ladite portion centrale étant libre par rapport à la barrière thermiquement isolante de manière à absorber par déformation les contraintes dans la membrane étanche au droit de l’arête, le canal étant délimité par la face externe de la pièce étanche d’angle .
  • Selon un mode de réalisation, la cuve étanche et thermiquement isolante comporte une structure d’angle, ladite structure d’angle comportant un premier panneau isolant et un deuxième panneau isolant, le premier panneau isolant formant une extrémité de la barrière thermiquement isolante de la première paroi de cuve, le deuxième panneau isolant formant une extrémité de la barrière thermiquement isolante de la deuxième paroi de cuve, le premier panneau isolant et le deuxième panneau isolant formant conjointement l’arête,
    la structure d’angle comportant en outre une première portion de membrane étanche et une deuxième portion de membrane étanche, la première portion de membrane étanche reposant sur le premier panneau isolant, ladite première portion de membrane étanche formant une extrémité de la membrane étanche de la première paroi de cuve, la deuxième portion de membrane étanche reposant sur le deuxième panneau isolant, ladite deuxième portion de membrane étanche formant une extrémité de la membrane étanche de la deuxième paroi de cuve.
  • Selon un mode de réalisation, la première portion de membrane étanche comporte un premier film composite fixé sur le premier panneau isolant et la deuxième portion de membrane étanche comporte un deuxième film composite fixé sur le deuxième panneau isolant.
  • Selon un mode de réalisation, la première portion de membrane étanche comporte un film étanche composite stratifié comportant une feuille métallique intercalée entre deux couches de fibres résinées. Selon un mode de réalisation, la première portion de membrane étanche est collée sur le premier panneau isolant. Selon un mode de réalisation, la deuxième portion de membrane étanche comporte un film étanche composite stratifié comportant une feuille métallique intercalée entre deux couches de fibres résinées. Selon un mode de réalisation, la deuxième portion de membrane étanche est collée sur le deuxième panneau isolant.
  • Selon un mode de réalisation, la première portion de membrane étanche est une plaque métallique ancrée sur la première portion de barrière thermiquement isolante. Selon un mode de réalisation, la deuxième portion de membrane étanche est une plaque métallique ancrée sur la deuxième portion de barrière thermiquement isolante.
  • Selon un mode de réalisation, le premier panneau isolant forme la première surface d’ancrage. Selon un mode de réalisation, le deuxième panneau isolant forme la deuxième surface d‘ancrage.
  • Selon un mode de réalisation, la première portion de membrane étanche, par exemple un bord de ladite première portion de membrane étanche, forme la première surface d’ancrage. Selon un mode de réalisation la deuxième portion de membrane étanche, par exemple un bord de ladite deuxième portion de membrane étanche, forme la seconde surface d’ancrage.
  • La pièce étanche d’angle peut être fixée de nombreuses manières sur les première et deuxième surfaces d’ancrage. Selon un mode de réalisation, la pièce étanche d’angle est collée sur l’une des ou les première et deuxième surfaces d’ancrage. Selon un mode de réalisation, la pièce étanche d’angle est soudée sur l’une des ou les première et deuxième surface d’ancrage.
  • Selon un mode de réalisation, la pièce étanche d’angle comporte un film étanche souple composite, par exemple un composite stratifié comportant une feuille métallique intercalée entre deux couches de fibres de verre.
  • Selon un mode de réalisation, la pièce étanche d’angle est une cornière métallique.
  • Grâce à ces caractéristiques, le coin d’une cuve étanche et thermiquement isolante peut être fabriqué de façon simple et rapide sans risque de générer de phénomène de convection. En particulier, ces caractéristiques permettent l’utilisation d’une cornière métallique ou d’un film souple étanche pour réaliser la membrane étanche dans l’angle de la cuve tout en s’assurant de l’absence de convection entre la membrane étanche et la barrière thermiquement isolante dans ledit angle de la cuve.
  • Selon un mode de réalisation, la cuve étanche et thermiquement isolante comporte en outre une cale, ladite cale comportant une première face externe reposant contre la barrière thermiquement isolante de la première paroi de cuve et une deuxième face externe reposant contre la barrière thermiquement isolante de la deuxième paroi de cuve, la cale comportant en outre une face interne concave, le canal étant délimité par la face interne de la cale.
  • Selon un mode de réalisation, une extrémité, de préférence deux extrémités opposées, de la première zone de fixation et/ou de la deuxième zone de fixation est débordante du canal de manière à être intercalée entre la membrane étanche et la barrière thermiquement isolante. Ainsi, la fixation de la première zone de fixation et/ou de la deuxième zone de fixation est simple et fiable, ladite extrémité étant pincée entre la membrane étanche et la barrière thermiquement isolante.
  • Selon un mode de réalisation, une extrémité, de préférence deux extrémités opposées, de la première zone de fixation et/ou de la deuxième zone de fixation est débordante du canal de manière à être intercalée entre deux portions jointives de la membrane étanche, lesdites deux portions jointives étant reliées de manière étanche. Ainsi, la fixation de la première zone de fixation et/ou de la deuxième zone de fixation est simple et fiable, ladite extrémité étant pincée entre lesdites deux portions jointives de la membrane étanche.
  • Selon un mode de réalisation, la membrane étanche comporte une ondulation, ladite ondulation faisant saillie en direction de la barrière thermiquement isolante, ladite ondulation se développant selon la direction longitudinale du canal, la barrière thermiquement isolante comportant une rainure, ladite ondulation étant logée dans ladite rainure, le fond du canal étant formée par ladite rainure.
  • Selon un mode de réalisation, la membrane étanche comporte une série d’ondulations parallèles et des portions planes, lesdites portions planes étant situées entre deux ondulations parallèles adjacentes, lesdites ondulations parallèles faisant saillie en direction de la barrière thermiquement isolante,
    la barrière thermiquement isolante comportant une série de rainures parallèles, les ondulations parallèles étant logées dans une dite rainure respective,
    la cuve comportant en outre une pluralité de canaux délimités d’une part par une dite rainure respective et, d’autre part, par la membrane étanche, un fond de chaque canal étant formé par une dite rainure correspondante,
    la cuve comportant en outre une pluralité d’obturateurs, lesdits obturateurs comportant un film souple, ledit film souple comportant une première zone de fixation et une deuxième zone de fixation,
    la première zone de fixation s’étendant transversalement à la direction longitudinale de la rainure correspondante, la première zone de fixation dudit film souple étant fixée sur le fond du canal correspondant,
    la deuxième zone de fixation s’étendant transversalement à la direction longitudinale dudit canal, la deuxième zone de fixation étant fixée à la face externe de la membrane étanche délimitant ledit canal,
    ledit film souple comportant une portion d’obturation s’étendant de la première zone de fixation à la deuxième zone de fixation, ladite portion d’obturation s’étendant en travers du canal entre le fond dudit canal et la membrane étanche de façon à créer une perte de charge dans ledit canal..
  • Grâce à ces caractéristiques, il est possible de loger les ondulations d’une membrane étanche ondulée dans des rainures de la barrière thermiquement isolante sans que cela ne génère des phénomènes de convection naturelle dommageables aux propriétés d’isolation de la barrière thermiquement isolante.
  • Selon un mode de réalisation, le canal présente une composante parallèle à la direction de gravité terrestre.
  • Selon un mode de réalisation, le canal est parallèle à la direction de gravité terrestre.
  • De tels canaux présentant une composante verticale sont les plus susceptibles de favoriser les phénomènes de convection de sorte que l’agencement de ou des obturateurs dans un tel canal est particulièrement avantageux et réduit efficacement les phénomènes de convection.
  • Selon un mode de réalisation, le canal présente une composante perpendiculaire à la direction de gravité terrestre.
  • Selon un mode de réalisation, le canal est perpendiculaire à la direction de gravité terrestre.
  • Une telle cuve peut faire partie d’une installation de stockage terrestre, par exemple pour stocker du GNL ou être installée dans une structure flottante, côtière ou en eau profonde, notamment un navire méthanier, une unité flottante de stockage et de regazéification (FSRU), une unité flottante de production et de stockage déporté (FPSO) et autres. Une telle cuve peut aussi servir de réservoir de carburant dans tout type de navire.
  • Selon un mode de réalisation, l’invention fournit également un navire pour le transport d’un produit liquide froid comporte une double coque et une cuve précitée disposée dans la double coque.
  • Selon un mode de réalisation, l’invention fournit aussi un procédé de chargement ou déchargement d’un tel navire, dans lequel on achemine un produit liquide froid à travers des canalisations isolées depuis ou vers une installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.
  • Selon un mode de réalisation, l’invention fournit aussi un système de transfert pour un produit liquide froid, le système comportant le navire précité, des canalisations isolées agencées de manière à relier la cuve installée dans la coque du navire à une installation de stockage flottante ou terrestre et une pompe pour entrainer un flux de produit liquide froid à travers les canalisations isolées depuis ou vers l’installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.
  • Brève description des figures
  • . L’invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement au cours de la description suivante de plusieurs modes de réalisation particuliers de l’invention, donnés uniquement à titre illustratif et non limitatif, en référence aux dessins annexés.
  • La est une vue en perspective schématique avec coupe d’une portion de cuve étanche et thermiquement isolante agencée dans une structure porteuse ;
  • La est une vue en perspective schématique d’une structure d’angle de la cuve illustrée sur la  ;
  • La est une vue de détail d’une arête de la barrière thermiquement isolante secondaire appartenant à la structure d’angle de la  ;
  • La est une représentation schématique illustrant la membrane étanche secondaire et la barrière thermiquement isolante secondaire au niveau de l’angle de la cuve étanche et thermiquement isolante dans une cuve à température ambiante ;
  • La est une représentation schématique illustrant la membrane étanche secondaire et la barrière thermiquement isolante secondaire au niveau de l’angle de la cuve étanche et thermiquement isolante dans une cuve comportant un liquide cryogénique ;
  • La est une représentation schématique illustrant un obturateur fixé sur la barrière thermiquement isolante secondaire au niveau de l’arête formée par ladite barrière thermiquement isolante secondaire dans une cuve comportant un liquide cryogénique ;
  • La est une représentation schématique illustrant la membrane étanche secondaire et la barrière thermiquement isolante secondaire au niveau de l’angle de la cuve étanche et thermiquement isolante selon un variante de réalisation des figures 4 et 5 ;
  • La est une vue en perspective schématique d’une portion de barrière thermiquement isolante sur laquelle repose une membrane étanche ondulée à ondulations sortantes, ladite membrane étanche ondulée étant illustrée en transparence, un obturateur étant agencé entre la membrane étanche ondulée et la barrière thermiquement isolante ;
  • La est une vue schématique en perspective illustrant l’angle de la cuve étanche et thermiquement isolante muni d’un obturateur à perte de charge selon encore un autre mode de réalisation.
  • La est une vue latérale de l’obturateur à perte de charge selon la flèche XIII de la .
  • La est une vue analogue à la d’un obturateur à perte de charge selon un autre mode de réalisation.
  • La est une représentation schématique écorchée d’une cuve de navire méthanier comportant une cuve étanche et thermiquement isolante et d’un terminal de chargement/déchargement de cette cuve ;
  • Par convention, les termes « externe » et « interne » sont utilisés pour définir la position relative d'un élément par rapport à un autre, par référence à l'intérieur et à l’extérieur de la cuve.
  • Une cuve étanche et thermiquement isolante pour le stockage et le transport d’un fluide cryogénique, par exemple du Gaz Naturel Liquéfié (GNL) comporte une pluralité de parois de cuves présentant chacune une structure multicouche.
  • De telles parois de cuve comportent, depuis l’extérieur vers l’intérieur de la cuve, une barrière thermiquement isolante secondaire 1 ancrée à une structure porteuse 2 par des organes de retenue secondaires (non illustrés), une membrane étanche secondaire 3 portée par la barrière thermiquement isolante secondaire 1, une barrière thermiquement isolante primaire 4 reposant sur la membrane étanche secondaire 3 et une membrane étanche primaire 5, portée par la barrière thermiquement isolante primaire 4 et destinée à être en contact avec le fluide cryogénique contenu dans la cuve.
  • La structure porteuse 2 peut notamment être une tôle métallique autoporteuse ou, plus généralement, tout type de cloison rigide présentant des propriétés mécaniques appropriées. La structure porteuse 2 peut notamment être formée par la coque ou la double coque d’un navire, comme illustré sur la . La structure porteuse 2 comporte une pluralité de parois définissant la forme générale de la cuve, habituellement une forme polyédrique. Certaines cuves peuvent aussi ne comporter qu’une seule barrière thermiquement isolante et une seule membrane étanche, par exemple pour le stockage de GPL.
  • Comme illustré sur la , la cuve comporte des parois latérales 6 de cuve et des parois transversales 7 de cuve (une seule paroi transversale étant illustrée sur la ) qui présentent une composante verticale, c’est-à-dire une composante parallèle à la direction de gravité terrestre. Dans de telles parois de cuve 6, 7 présentant une composante verticale, la présence de canaux se développant sur toute la hauteur de la paroi 6, 7 est susceptible de favoriser les phénomènes de convection naturelle. En effet, dans de telles parois 6, 7, des phénomènes de thermosiphon peuvent survenir ce qui entraîne une dégradation des performances d’isolation thermique des barrières thermiquement isolantes 1, 4. Un aspect de l’invention part de l’idée de limiter voire supprimer ces phénomènes de convection naturelle.
  • Au niveau de la jonction entre une première paroi 8 de la cuve, par exemple une paroi latérale 6, et une deuxième paroi 9 de la cuve, par exemple une paroi transversale 7, la cuve comporte une structure d’angle 10 illustrée sur la . Cette structure d’angle 10 est avantageusement préfabriquée.
  • La structure d’angle 10 illustrée sur la comporte un premier panneau isolant secondaire d’angle 11 et un deuxième panneau isolant secondaire d’angle 12. Les panneaux isolants secondaires d’angle présentent, de l’extérieure de la cuve vers l’intérieur de la cuve, une plaque rigide externe 13, une garniture isolante 14 et une plaque rigide interne 15. Le premier panneau isolant secondaire d’angle 11 et le deuxième panneau isolant secondaire d’angle 12 présentent en outre une face biseautée, les faces biseautées desdits deux panneaux isolants secondaires d’angle 11, 12 étant jointives. Ainsi, comme illustré sur la en détail, les panneaux isolants secondaires d’angle forment une arête 16 de la barrière thermiquement isolante secondaire 1.
  • Le premier panneau isolant secondaire d’angle 11 porte une première portion de membrane étanche secondaire 17 et le deuxième panneau isolant secondaire d’angle 12 porte une deuxième portion de membrane étanche secondaire 18. Ces première et deuxième portions de membrane étanche secondaire 17, 18 peuvent être réalisées de nombreuses manières. Dans un mode de réalisation, les première et deuxième portions de membrane étanche secondaire 17, 18 sont en film étanche stratifié. Un tel film étanche stratifié comporte une feuille métallique, par exemple en aluminium, intercalée entre deux couches de fibres résinées. De telles portions de membrane étanche secondaire 17, 18 en film étanche stratifié sont par exemple collées sur la face interne des panneaux isolants secondaires d’angle 11, 12. Dans un autre mode de réalisation, les première et deuxième portions de membrane étanche secondaire 17, 18 sont des plaques métalliques ancrées sur les panneaux isolants secondaires d’angle 11, 12.
  • Comme illustré sur la , les portions de membrane étanche secondaire 17, 18 comportent un bord longitudinal se développant parallèlement à l’arête 16 de la barrière thermiquement isolante secondaire 1, ledit bord étant agencé à distance de l’arête 16. Typiquement, la première portion de membrane étanche secondaire 17 forme une extrémité de la membrane étanche secondaire 3 de la première paroi 8 et la deuxième portion de membrane étanche secondaire 18 forme une extrémité de la membrane étanche secondaire 3 de la deuxième paroi 9.
  • Afin d’assurer l’étanchéité de la membrane étanche secondaire 3 dans l’angle de la cuve, la structure d’angle 10 comporte une portion de membrane étanche secondaire d’angle 19. Cette portion de membrane étanche secondaire d’angle 19 relie de manière étanche la première portion de membrane étanche secondaire 17 et la deuxième portion de membrane étanche secondaire 18. Cette portion de membrane étanche secondaire d’angle peut être réalisée de nombreuses manières. Dans un mode de réalisation, la portion de membrane étanche secondaire d’angle 19 est réalisée en film étanche stratifié, par exemple comportant une feuille métallique intercalée entre deux couches de fibres non résinées. Une telle portion de membrane étanche secondaire d’angle 19 en film étanche stratifiée est par exemple collée sur les première et deuxième portions de membrane étanche secondaire 17, 18.
  • Selon un autre mode de réalisation, la portion de membrane étanche secondaire d’angle 19 est formée par une cornière métallique ancrée de manière étanche sur les première et deuxième portions de membrane étanche secondaire 17, 18.
  • Comme illustré en détail sur la , la portion de membrane étanche secondaire d’angle 19 se développe le long de l’arête 16. La portion de membrane étanche secondaire d’angle 19 présente des bords longitudinaux parallèles à l’arête 16. Un premier bord longitudinal de la portion de membrane étanche secondaire d’angle 19 forme une première zone d’ancrage 20, illustrée en pointillés sur la , qui est fixée de manière étanche sur la première portion de membrane étanche secondaire 17. De même, un deuxième bord longitudinal de la portion de membrane étanche secondaire d’angle 19 forme une deuxième zone d’ancrage 21, illustrée en pointillés sur la , qui est fixée de manière étanche sur la deuxième portion de membrane étanche secondaire 18.
  • La fixation de manière étanche des zones d’ancrage 20, 21 de la portion de membrane étanche secondaire d’angle 19 sur les portions de membrane étanche secondaire 17, 18 peut être réalisée de nombreuses manières, par exemple par collage dans le cadre d’une portion de membrane étanche secondaire d’angle 19 sous la forme d’un film étanche stratifié ou encore par soudure dans le cadre d’une portion de membrane étanche secondaire d’angle 19 sous la forme d’une cornière métallique. La plaque rigide interne 15 des panneaux isolants secondaires d’angle 11, 12 peut comporter une bande de protection thermique logée dans un lamage afin de protéger lesdits panneaux isolants secondaires d’angle 11, 12 lors d’une telle soudure.
  • La structure d’angle 10 comporte en outre une pluralité d’éléments isolants primaires 22 juxtaposés le long de l’arête 16 de la barrière thermiquement isolante secondaire 1. Chaque élément isolant primaire 22 comporte un premier bloc isolant primaire 23 reposant sur la première portion de membrane étanche secondaire 17 et un deuxième bloc isolant primaire 24 reposant sur la deuxième portion de membrane étanche secondaire 18. La pluralité d’éléments isolants primaires 22 forme la barrière thermiquement isolante primaire 4.
  • La membrane étanche primaire 5 comporte une pluralité de cornières d’angle 25 métalliques reposant chacune sur un bloc isolant primaire 23, 24 respectif. Ainsi, chaque cornière métallique comporte une première aile 26 reposant sur le premier bloc isolant primaire 23 d’un élément isolant primaire 22 et une deuxième aile 27 reposant sur le deuxième bloc isolant primaire 24 dudit élément isolant primaire 22.
  • La portion de membrane étanche secondaire d’angle 19 comporte une zone centrale 28 intercalée entre la première zone d’ancrage 20 et la deuxième zone d’ancrage 21. Cette zone centrale 28 est agencée au droit de l’arête 16 et se développe le long de l’arête 16. Cette zone centrale 28 n’est pas fixée sur la barrière thermiquement isolante secondaire 1. Autrement dit, la zone centrale 28 est libre par rapport à la barrière thermiquement isolante secondaire 1 et, plus particulièrement, par rapport à l’arête 16. D’autres détails et caractéristiques d’une telle structure d’angle sont décrits par exemple dans le document WO2014167214A2.
  • L’absence de fixation de la zone centrale 28 de la portion de membrane étanche secondaire d’angle 19 sur la barrière thermiquement isolante secondaire 1 permet d’absorber les contraintes subies par la membrane étanche secondaire 3 au droit de l’arête 16. En effet, comme illustré sur la , lorsque la cuve est construite, la portion de membrane étanche secondaire d’angle 19 est agencée de sorte que la zone centrale 28 soit au plus près de l’arête 16. Cet agencement permet de limiter la présence d’espace vide entre la membrane étanche secondaire 3 et la barrière thermiquement isolante secondaire 1 favorisant la convection.
  • Cependant, lors de la mise à froid de la cuve, la membrane étanche secondaire 3, et donc la portion de membrane étanche secondaire d’angle 19, se contracte ce qui provoque une déformation par mise en tension de ladite portion de membrane étanche secondaire d’angle 19 comme illustré sur la . De même, les panneaux isolants secondaires d’angle 11, 12 se contractent, ce qui éloigne les zones d’ancrage 20, 21 de la portion de membrane étanche secondaire d’angle 19 l’une de l’autre et donc provoque également une déformation par mise en tension de ladite portion de membrane étanche secondaire d’angle 19.
  • Comme illustré sur la , la déformation par mise en tension de la portion de membrane étanche secondaire d’angle 19 éloigne la zone centrale 28 de l’arête 16 ce qui augmente sensiblement le volume de l’espace vide entre la portion de membrane étanche secondaire d’angle 19 et la barrière thermiquement isolante secondaire 1 au niveau de l’arête 16. Ainsi, un canal 29 apparaît ou s’agrandit entre la membrane étanche secondaire 3 et la barrière thermiquement isolante secondaire 1. Ce canal 29 se développe sur toute la longueur de l’arête 16 et présente une direction longitudinale parallèle à l’arête 16. Typiquement, ce canal est délimité par une face externe de la portion centrale 28 de la portion de membrane étanche secondaire d’angle 19 et par une portion des face internes des plaques rigides 15 des panneaux isolants secondaires d’angle 11, 12 comprise entre l’arête 16 et les première et deuxième portions de membrane étanche secondaire 17 et 18, ladite portion des faces internes des plaques rigides 15 formant un fond 36 du canal 29.
  • Pour éviter la convection dans le canal 29, la cuve comporte un obturateur 30. Un tel obturateur est agencé dans le canal 29 entre une face interne de la barrière thermiquement isolante secondaire 1 et une face externe de la membrane étanche secondaire 3.
  • La illustre un exemple de réalisation d’un tel obturateur 30. Cet obturateur 30 est réalisé sous la forme d’un film souple, possédant par exemple une forme polygonale.
  • L’obturateur 30 peut être réalisé à l’aide d’un des matériaux cités ci-après ou d’une composition formée de plusieurs de ces matériaux : en matériau thermoplastique comprenant du Polyéthylène (PE), du polytéréphtalate d’éthylène (PET), du polyamide, du polyimide, du polyetherimide, du polypropylène sous la forme d’un film textile ou non ou de tout autre matériau ou textile présentant une flexibilité à froid. L’obturateur 30 peut également être réalisé en textile tissé éventuellement enduit. Le textile tissé peut être réalisé à base de différents types de fibres, par exemple à base de fibres minérales, tels que des fibres de verre, fibres de basalte ou naturelles par exemple à base de chanvre, de lin ou de laine ou de fibres thermoplastiques (PE, PET,PP, PI, PEI,…).
  • Le film souple 30 illustré sur la comporte une première zone de fixation 31, une deuxième zone de fixation 32 et une troisième zone de fixation 33. La première zone de fixation 31 et la troisième zone de fixation 33 sont formées au niveau de deux extrémités opposées du film souple 30. Ces première et troisième zones de fixation 31, 33 sont par exemple formées par des bords transversaux opposés du film souple 30.
  • La deuxième zone de fixation 32 est intercalée entre la première zone de fixation 31 et la troisième zone de fixation 33, par exemple à une distance sensiblement égale des première et troisième zones de fixation 31 et 33.
  • Le film souple 30 comporte également une première portion d’obturation 34 intercalée entre la première zone de fixation 31 et la deuxième zone de fixation 32 et une deuxième portion d’obturation 35 intercalée entre la deuxième zone de fixation 32 et la troisième zone de fixation 33.
  • La première zone de fixation 31 et la troisième zone de fixation 33 sont fixées sur la barrière thermiquement isolante secondaire 1. Plus particulièrement, la première zone de fixation 31 et la troisième zone 33 sont fixées sur le fond 36 du canal 29 de manière à s’étendre transversalement, de préférence perpendiculairement, à la direction longitudinale du canal 29.
  • Cette fixation des première et troisième zones de fixation 31 et 33 sur le fond 36 du canal 29 peut être réalisée de nombreuses manières. Cette fixation est par exemple réalisée par collage ou au moyen d’une bande adhésive double face, par exemple comportant du polytétrafluoroéthylène (PTFE), intercalée entre chacune desdites première et troisième zones de fixation 31 et 33 et le fond 36 du canal 29.
  • La deuxième zone de fixation 32 est fixée sur la face externe de la portion centrale 28 de la portion de membrane étanche secondaire d’angle 19. De façon analogue à la fixation des première et troisième zones de fixation 31 et 33, la fixation de la deuxième zone de fixation 32 peut être réalisée de nombreuses manières, par exemple par collage ou au moyen d’une bande adhésive double face intercalée entre la deuxième zone de fixation 32 et la face externe de la zone centrale 28 de la portion de membrane étanche secondaire d’angle 19.
  • Selon un mode de réalisation, l’installation du film souple 30 dans la cuve comporte dans un premier temps fixer, par collage ou au moyen d’une bande adhésive, les première et troisième zones de fixation 31 et 33 sur le fond 36 du canal 29. Par ailleurs, une bande adhésive double face est appliquée sur la face externe de la portion centrale 28 de la portion de membrane étanche secondaire d’angle 19 à l’endroit où doit être fixée la deuxième zone de fixation 32. La portion de membrane étanche secondaire d’angle 19, munie de ladite bande adhésive double face, est dans un second temps ancrée sur les première et deuxième portions de membrane étanche secondaire 17 et 18. L’ancrage de la portion de membrane étanche secondaire d’angle sur lesdites portions de membrane étanche secondaire 17 et 18 amène la bande adhésive double face contre la deuxième zone de fixation 32 et fixe ainsi ladite deuxième zone de fixation 32 sur la portion de membrane étanche secondaire d’angle 19. Dans le cadre d’une portion de membrane étanche secondaire d’angle en film étanche stratifié, une pression exercée sur une face interne dudit film étanche stratifié au droit de la bande adhésive double face peut améliorer la fixation de la deuxième zone de fixation 32 sur ledit film étanche stratifié.
  • La première portion d’obturation 34 et la deuxième portion d’obturation 35 sont libres par rapport à la barrière thermiquement isolante secondaire 1 et à la membrane étanche secondaire 3. Autrement dit, lesdites première et deuxième portions d’obturation 34 et 35 ne sont pas fixées ni sur la barrière thermiquement isolante secondaire 1 ni sur la membrane étanche secondaire 3. Ainsi, des bords longitudinaux 37 des portions d’obturation 34 et 35 sont lâches et permettent d’une part une circulation de gaz réduite dans le canal 29, c’est-à-dire avec une perte de charge liée à l’agencement desdites portions d’obturation 34 et 35 dans le canal 29, et d’autre part la déformation du film souple 30 pour accompagner la déformation par mise en tension de la portion de membrane étanche secondaire d’angle 19.
  • En effet, comme expliqué ci-dessus et en regard des figures, lors de la mise en froid de la cuve, la portion de membrane étanche secondaire d’angle 19 se tend. Lors de cette mise en tension de la portion de membrane étanche secondaire d’angle 19, la deuxième zone de fixation 32 du film souple 30 fixée sur la zone centrale 28 de la portion de membrane étanche secondaire d’angle 19 accompagne la variation de position de ladite zone centrale 28 liée à la déformation de la portion de membrane étanche secondaire d’angle 19. Les première et troisième zones de fixation 31 et 33 du film souple 30 étant fixées sur la barrière thermiquement isolante secondaire 1, les portions d’obturation 34 et 35 du film souple 30 sont mises en tension entre lesdites zones de fixation 31, 32 et 33 et se développent dans le canal 29 entre la barrière thermiquement isolante secondaire 1 et la membrane étanche secondaire 3. Ainsi, le canal 29 est obturé par la première portion d’obturation 34 et la deuxième portion d’obturation 35 entre la zone centrale 28 de la portion de membrane étanche secondaire d’angle 19 et la barrière thermiquement isolante secondaire 1 tout en permettant une circulation de gaz avec perte de charge dans l’écoulement.
  • L’accompagnement de la variation de position de la portion de membrane étanche secondaire d’angle 19 par la deuxième zone de fixation 32 est facilité lorsque le film souple 30 présente une bonne flexibilité à froid. Ainsi, comme représenté sur la , lorsque la cuve est mise à froid, les portions d’obturation 34 et 35 peuvent légèrement se déformer et présenter une forme conique.
  • De tels obturateurs 30 sont avantageusement agencés dans la cuve au niveau d’angles de la cuve dont l’arête 16 présente une composante parallèle à la gravité terrestre, typiquement entre les parois latérales 6 et les parois transversales 7 de la cuve. De tels obturateurs 30 peuvent également être agencés dans une cuve au niveau d’angles de la cuve dont l’arête 16 est perpendiculaire à la gravité terrestre. En outre, une pluralité d’obturateurs 30 peuvent être agencés, par exemple à intervalles réguliers, le long du canal 29, maîtrisant ainsi la perte de charge tout au long du canal 29.
  • La illustre un mode de réalisation dans lequel la portion de membrane étanche secondaire d’angle 19 est formée par un film étanche stratifié collé sur les première et deuxième portions de membrane étanche secondaire 17 et 18 et dans lequel la cuve comporte en outre une cale de positionnement 38 de la portion de membrane étanche secondaire d’angle 19.
  • Une telle cale 38 est agencée sur le fond 36 du canal 29, le long de l’arête 16 et présente une première face 39 reposant sur la plaque rigide interne 15 d’un panneau isolant secondaire d’angle et une deuxième face 40 reposant sur la plaque rigide interne 15 d’un panneau isolant secondaire d’angle. Cette cale 38 comporte en outre une face interne 41 reliant les première et deuxième faces 39 et 40 de la cale 38. Cette face interne 41 présente une forme concave dont la concavité est tournée vers l’intérieur de la cuve.
  • Lors de l’installation de la portion de membrane étanche secondaire d’angle 19, la zone centrale 28 de ladite portion de membrane étanche secondaire d’angle 19 est agencée de manière à reposer sur la face interne 41 de la cale 38. Ainsi, la portion de membrane étanche secondaire d’angle 19 est facilement positionnée pour le collage des première et deuxième zones de fixation 20 et 21 respectivement sur les première et deuxième portions de membrane étanche secondaire 17 et 18.
  • Une telle cale 38 permet ainsi de contrôler le rayon de courbure de la zone centrale 28 de la portion de membrane étanche secondaire d’angle 19 lors du collage de ladite portion de membrane étanche secondaire d’angle 19, typiquement lors de la fabrication de la cuve. Une telle cale 38 permet en outre de réduire les dimensions du canal 29, mais ne peut empêcher l’agrandissement dudit canal 29 lors de la mise en froid de la cuve, comme illustré par la portion de membrane étanche secondaire d’angle 19 illustrée sur cette représentée dans un état de tension lié à la contraction thermique, comme expliqué ci-dessus. Dans un tel canal 29, la face interne 41 forme alors le fond 36 dudit canal 29.
  • En présence d’une telle cale 38, la première zone de fixation 31 et la troisième zone de fixation 33 de l’obturateur 30 peuvent être fixées directement sur la face interne 41 de la cale 38.
  • Dans un mode de réalisation, une première extrémité d’une ou plusieurs des zones de fixation 31, 32 et/ou 33 du film souple 30 est intercalée entre la première portion de membrane étanche 17 et la première zone d’ancrage 20 de la portion de membrane étanche secondaire d’angle 19. De même, une deuxième extrémité d’une ou plusieurs zones de fixation 31, 32 et/ou 33 sont intercalées entre la deuxième portion de membrane étanche secondaire 18 et la deuxième zone d’ancrage 21 de la portion de membrane étanche secondaire d’angle 19. Typiquement ces extrémités desdites zones fixation 31, 32 et/ou 33 sont ainsi pincées entre les première et deuxième portions de membrane étanche secondaire 17 ou 18 et la portion de membrane étanche secondaire d’angle 19, assurant ainsi la fixation des zones de fixation 31, 32 et/ou 33 de façon simple.
  • La illustre une portion de barrière thermiquement isolante secondaire 1 sur laquelle repose une membrane étanche secondaire 3 ondulée à ondulations sortantes, ladite membrane étanche secondaire 3 étant illustrée en transparence. Sur cette figure, les éléments identiques ou remplissant la même fonction que des éléments décrits ci-dessus en regard des figures 1 à 7 portent la même référence augmentée de 100.
  • La barrière thermiquement isolante secondaire 101 d’une paroi de cuve comporte une pluralité de panneaux isolants secondaires de forme parallélépipédique qui sont juxtaposés selon un maillage régulier. De façon analogue aux premier et deuxième panneaux 11, 12 décrits ci-dessus, ces panneaux isolants secondaires comportent une plaque rigide externe (non illustrée), une garniture isolante 43 et une plaque rigide interne 44.
  • Par ailleurs, une face interne desdits panneaux isolants comporte une pluralité de rainures 45 ménagée dans la plaque rigide interne 44, et éventuellement sur la face interne de la garniture isolante 43. Ces rainures 45 permettent de loger des ondulations 46 de la membrane étanche secondaire 103, dont une portion est représentée en pointillées sur la .
  • Cependant, les rainures 45 sont dimensionnées afin de gérer les tolérances de fabrication et de positionnement des panneaux isolants secondaires et des ondulations 46 de la membrane étanche secondaire 103. Autrement dit, il existe dans lesdites rainures 45 un espace entre les ondulations 46 et la barrière thermiquement isolante secondaire 101 formée par les panneaux isolants secondaires lorsque les ondulations 46 sont logées dans les rainures 45. De façon analogue à l’angle de la cuve entre deux parois de cuve décrit ci-dessus, de tels espaces entre les ondulations 46 et la barrière thermiquement isolante secondaire 101 sont susceptibles de générer des phénomènes de thermosiphon dégradant les performances d’isolation de la barrière thermiquement isolante secondaire 101.
  • Afin d’éviter les phénomènes de thermosiphon dans les rainures 45, un obturateur 130 peut également être placé entre la membrane étanche secondaire 103 et la barrière thermiquement isolante secondaire 101 dans les rainures 45 de la barrière thermiquement isolante secondaire 101. Un tel obturateur 130 diffère de l’obturateur 30 décrit ci-dessus en regard de la ce qu’il ne comporte qu’une première zone de fixation 131 et une deuxième zone de fixation 132. La première zone de fixation 131 est fixée sur un fond 136 du canal 129 formée par la rainure 45 de la barrière thermiquement isolante secondaire 101. La deuxième zone de fixation 132 est fixée sur une face externe de la membrane étanche secondaire 103 et adhère à la face externe de l’ondulation 46 et de zones planes bordant ladite ondulation 46 et agencées au droit de la rainure 45.
  • De façon préférentielle, les première et deuxième zones de fixation 131 et 132 se développent selon une direction perpendiculaire à la direction de la rainure 45 sur une distance supérieure à la largeur de la rainure 45 prise selon ladite direction perpendiculaire à la direction longitudinale de la rainure 45. Autrement dit, de façon analogue à la description faite ci-dessus, les première et deuxièmes extrémités des premières et deuxième zones de fixation 131 et 132 sont intercalées entre les portions planes de la membrane étanche secondaire 103 et la face interne de la plaque rigide 44 sur laquelle repose lesdites faces planes de la membrane étanche secondaire 103. Ainsi, la première zone de fixation 131 et la deuxième zone de fixation 132 sont fixées de manière simple entre la membrane étanche secondaire 103 et la barrière thermiquement isolante secondaire 101.
  • Dans un mode de réalisation non illustré, l’obturateur 130 est agencé dans le canal 129 en périphérie de la face interne d’un panneau isolant formant la barrière thermiquement isolante secondaire 1. Ainsi, lorsque l’obturateur 130 est dans un premier temps fixé sur le fond 136 du canal 129, l’application de la deuxième zone de fixation 132 sur la face interne de la membrane étanche secondaire 103 est facilité par l’accès de façon simple à l’obturateur via la rainure 45 depuis le bord du panneau isolant secondaire. Dans une variante de ce mode de réalisation, la face latérale du panneau isolant secondaire et le fond 136 du canal au niveau de ladite face latérale sont encollés préalablement au positionnement de la membrane étanche et de l’obturateur 130. La deuxième zone de fixation 132 de l’obturateur 130 est dans un premier temps fixée sur la face externe de la membrane étanche secondaire 103. Dans un second temps, la membrane étanche secondaire 103 est rapportée sur le panneau isolant secondaire de sorte que le film souple formant l’obturateur 130 s’étendent au-delà de la face latérale du panneau isolant secondaire. Ainsi, ladite portion débordante du film peut être facilement appliquée sur la face latérale du panneau isolant secondaire et sur le fond 136 du canal 129 afin de fixer la première zone de fixation 131 sur le panneau isolant secondaire.
  • Dans un mode de réalisation illustré sur les figures 9 et 10, l’obturateur 330 comporte une première zone de fixation 331, une deuxième zone de fixation 332. La première zone de fixation 331 et la deuxième zone de fixation 332 sont formées au niveau de deux extrémités opposées du film souple. La première zone de fixation 331 est fixée sur un fond 236 du canal 329. La deuxième zone de fixation 332 est fixée sur une face externe de la membrane étanche 203. La première zone de fixation 331 et la deuxième zone de fixation 332 sont décalées selon la direction longitudinale du canal 329. Autrement dit, la première zone de fixation et la deuxième zone de fixation ne sont pas en vis à vis de sorte que la portion d’obturation 235 se développe avec une composante parallèle à la direction longitudinale du canal 329. La portion d’obturation 235 comprend deux repliements sensiblement en demi-tour espacés entre eux et présente ainsi une forme ressemblant à un Z.
  • Afin de faciliter l’intégration de l’obturateur dans la cuve, l’obturateur 330 peut être installé en préfabrication dans la structure d’angle 10 avant la mise en place de la structure d’angle 10 dans la cuve étanche et thermiquement isolante. La structure de l’obturateur 330 est plus simple à mettre en place lors d’une préfabrication en usine des panneaux avec une portion de la membrane étanche les recouvrant.
  • Dans un mode de réalisation illustré , l’obturateur 230 est aussi réalisé sous la forme d’un film souple qui est replié autour d’un axe transversal à la direction longitudinale du canal, sensiblement sous la forme d’un U. L’obturateur 230 comporte une première zone de fixation 231, une deuxième zone de fixation 232 et une portion d’obturation 135 repliée sur elle-même. La première zone de fixation 231 et la deuxième zone de fixation 232 sont formées au niveau de deux extrémités opposées du film souple. La première zone de fixation 231 est fixée sur un fond 236 du canal. La deuxième zone de fixation 232 est fixée sur une face externe de la membrane étanche 203. La première zone de fixation 231 et la deuxième zone de fixation 232 sont en vis-à-vis. Le film souple présente une longueur, lorsque la portion d’obturation est agencée dans un plan, supérieure à la distance entre une surface de fixation de la première zone de fixation 231 sur le fond du canal 229 et une surface de fixation de la deuxième zone de fixation 232 sur la membrane étanche.
  • Le film souple forme un repliement dans lequel, selon un mode de réalisation, est logé un élément compressible 99, par exemple réalisé en ouate, feutre, laine de verre, laine de roche, mousse polymère. L’élément compressible 99 est comprimé entre la première et deuxième zones de fixation 231, 232 et exerce ainsi une force de réaction qui facilite la fixation par collage de la première zone de fixation 231 et de la deuxième zone de fixation 232 sur respectivement le fond du canal et sur la face externe de la membrane étanche. L’obturateur 230 est inséré dans la cuve étanche et thermiquement isolante dans l’interstice entre le fond du canal 229 et la membrane étanche.
  • Selon un mode de réalisation, un film anti-adhésif (non représenté) qui permet d’éviter que les deux parties du film souple repliées l’une par rapport à l’autre ne se collent est inséré dans le repliement du film souple, à la place de ou en combinaison avec l’élément compressible 99.
  • Pour l’installation de l’obturateur 230 dans le canal 229, on peut utiliser un outil en forme de lame, le cas échéant une lame courbe dont la courbure correspond à la forme du fond du canal, par exemple la courbure de la cale 38 ( ). On replie successivement le film anti-adhésif et le film souple autour du bord d’extrémité de la lame afin de les pousser dans le canal 29 ou 229, par exemple entre la cale 38 et la portion de membrane étanche secondaire d’angle 19.
  • Selon un autre mode, il est possible d’utiliser un outil dédié pour mettre en place l’obturateur. L’outil comporte au moins une lame qui est destinée à venir s’insérer entre les deux repliements de la portion d’obturation et une poignée qui permet la manipulation de l’outil. Notons que la structure de l’obturateur 230, illustré sur la est avantageuse en ce qu’elle se prête plus particulièrement à une installation, in situ, de l’obturateur à l’intérieur de la cuve une fois cette dernière assemblée, alors que les obturateurs décrits précédemment sont plus simples à mettre en place lors d’une préfabrication en usine des panneaux avec une portion de la membrane étanche les recouvrant.
  • La technique décrite ci-dessus pour réaliser une cuve étanche et thermiquement isolante peut être utilisée dans différents types de réservoirs, par exemple pour limiter la présence de canaux de circulation continus dans les barrières thermiquement isolantes d’un réservoir de GNL dans une installation terrestre ou dans un ouvrage flottant comme un navire méthanier ou autre.
  • En référence à la , une vue écorchée d’un navire méthanier 70 montre une cuve étanche et isolée 71 de forme générale prismatique montée dans la double coque 72 du navire. La paroi de la cuve 71 comporte une barrière étanche primaire destinée à être en contact avec le GNL contenu dans la cuve, une barrière étanche secondaire agencée entre la barrière étanche primaire et la double coque 72 du navire, et deux barrières isolante agencées respectivement entre la barrière étanche primaire et la barrière étanche secondaire et entre la barrière étanche secondaire et la double coque 72.
  • De manière connue en soi, des canalisations de chargement/déchargement 73 disposées sur le pont supérieur du navire peuvent être raccordées, au moyen de connecteurs appropriées, à un terminal maritime ou portuaire pour transférer une cargaison de GNL depuis ou vers la cuve 71.
  • La représente un exemple de terminal maritime comportant un poste de chargement et de déchargement 75, une conduite sous-marine 76 et une installation à terre 77. Le poste de chargement et de déchargement 75 est une installation fixe off-shore comportant un bras mobile 74 et une tour 78 qui supporte le bras mobile 74. Le bras mobile 74 porte un faisceau de tuyaux flexibles isolés 79 pouvant se connecter aux canalisations de chargement/déchargement 73. Le bras mobile 74 orientable s'adapte à tous les gabarits de méthaniers. Une conduite de liaison non représentée s'étend à l'intérieur de la tour 78. Le poste de chargement et de déchargement 75 permet le chargement et le déchargement du méthanier 70 depuis ou vers l'installation à terre 77. Celle-ci comporte des cuves de stockage de gaz liquéfié 80 et des conduites de liaison 81 reliées par la conduite sous-marine 76 au poste de chargement ou de déchargement 75. La conduite sous-marine 76 permet le transfert du gaz liquéfié entre le poste de chargement ou de déchargement 75 et l'installation à terre 77 sur une grande distance, par exemple 5 km, ce qui permet de garder le navire méthanier 70 à grande distance de la côte pendant les opérations de chargement et de déchargement.
  • Pour engendrer la pression nécessaire au transfert du gaz liquéfié, on met en œuvre des pompes embarquées dans le navire 70 et/ou des pompes équipant l'installation à terre 77 et/ou des pompes équipant le poste de chargement et de déchargement 75.
  • Bien que l'invention ait été décrite en liaison avec plusieurs modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention tel que défini par les revendications.
  • En particulier, la description ci-dessus en regard des figures à est faite dans le cadre d’une barrière thermiquement isolante secondaire sur laquelle repose une membrane étanche secondaire, cependant cette description pourrait s’appliquer de façon analogue à un canal se développant entre une barrière thermiquement isolante primaire et une membrane étanche primaire ou encore dans le cadre d’une cuve ne comportant qu’une unique barrière thermiquement isolante et une unique membrane étanche. De même, un obturateur tel que décrit ci-dessus pourrait être agencé dans un canal formé par l’espace interne des ondulations d’une membrane étanche. Par exemple, de tels obturateurs pourraient être agencés sous des ondulations d’une membrane étanche secondaire faisant saillie en direction de l’intérieur de la cuve. Ainsi, un tel obturateur peut être agencé dans tout canal susceptible de générer des phénomènes de convection par thermosiphon dans une cuve étanche et thermiquement isolante.
  • De même, le mode de réalisation illustré sur les figures à représente un obturateur comportant une ou deux zones de fixation coopérant avec la barrière thermiquement isolante et une zone de fixation coopérant avec la membrane étanche secondaire, cependant le nombre de zones de fixation pouvant coopérer avec la membrane étanche et le nombre de zones de fixation pouvant coopérer avec la barrière thermiquement isolante peut être différent. Un obturateur peut ainsi comporter une pluralité de zone de fixation destinées à coopérer avec la barrière thermiquement isolante en alternance avec une pluralité de zones de fixation destinées à coopérer avec la membrane étanche de sorte que les portions d’obturation entre une zone de fixation sur la barrière thermiquement isolante et une zone de fixation sur la membrane étanche se développe dans le canal pour obturer ledit canal.
  • L’usage du verbe « comporter », « comprendre » ou « inclure » et de ses formes conjuguées n’exclut pas la présence d’autres éléments ou d’autres étapes que ceux énoncés dans une revendication.
  • Dans les revendications, tout signe de référence entre parenthèses ne saurait être interprété comme une limitation de la revendication.

Claims (19)

  1. Cuve étanche et thermiquement isolante de stockage de fluide, ladite cuve comportant une barrière thermiquement isolante (1, 4) et une membrane étanche (3, 5), la cuve comportant un canal (29, 129, 229, 329) se développant selon une direction longitudinale, ledit canal (29, 129, 229, 329) s’étendant le long de la membrane étanche (3, 5) et étant délimité d’une part par la barrière thermiquement isolante (1, 4) et, d’autre part, par une face externe de la membrane étanche (3, 5), la barrière thermiquement isolante (1, 4) formant un fond (36, 136, 236) du canal (29, 129, 229, 329),
    la cuve comportant en outre un obturateur (30, 130, 230, 330) agencé dans le canal (29, 129, 229, 329), ledit obturateur (30, 130, 230, 330) comportant un film souple, ledit film souple comportant une première zone de fixation (31, 131, 231, 331) et une deuxième zone de fixation (32, 132, 232, 332),
    la première zone de fixation (31, 131, 231, 331) s’étendant transversalement à la direction longitudinale du canal (29, 129, 229, 329), la première zone de fixation (31, 131, 231, 331) dudit film souple étant fixée sur le fond (36, 136, 236) du canal (29, 129, 229, 329),
    la deuxième zone de fixation (32, 132, 232, 332) s’étendant transversalement à la direction longitudinale du canal (29, 129, 229, 329), la deuxième zone de fixation (32, 132, 232, 332) étant fixée à la face externe de la membrane étanche (3, 5) délimitant le canal (29, 129, 229, 329),
    le film souple comportant une portion d’obturation (34, 35, 135, 235) s’étendant de la première zone de fixation (31, 131, 231, 331) à la deuxième zone de fixation (32, 132, 232, 332), ladite portion d’obturation (34, 35, 135) s’étendant en travers du canal (29, 129, 229, 329) entre le fond (36, 136, 236) du canal (29, 129, 229, 329) et la membrane étanche (3, 5) de façon à créer une perte de charge dans le canal.
  2. Cuve étanche et thermiquement isolante de stockage de fluide selon la revendication 1, dans laquelle la portion d’obturation du film souple est une première portion d’obturation (34), le film souple comporte une troisième zone de fixation (33) s’étendant transversalement à la direction longitudinale du canal (29, 129, 229, 329), la troisième zone de fixation (33) étant fixée sur le fond (36) du canal (29, 129, 229, 329), la deuxième zone de fixation (32) étant intercalée entre la première zone de fixation (31) et la troisième zone de fixation (33), le film souple comportant une deuxième portion d’obturation (35) s’étendant de la deuxième zone de fixation (32) à la troisième zone de fixation (33), ladite deuxième portion d’obturation (35) s’étendant en travers du canal (29, 129, 229, 329) entre le fond (36) du canal (29) et la membrane étanche (3, 5) de façon à créer une perte de charge dans le canal (29, 129, 229, 329).
  3. Cuve étanche et thermiquement isolante selon la revendication 1, dans laquelle la portion d’obturation est déformable et comprend au moins un repliement le long d’un axe transversal à la direction longitudinale du canal (29, 129, 229, 329).
  4. Cuve étanche et thermiquement isolante selon la revendication 3, dans laquelle la première zone de fixation et la deuxième zone de fixation sont situées à deux extrémités opposées du film souple et sont disposées à un même niveau dans la direction longitudinale du canal (29, 129, 229, 329).
  5. Cuve étanche et thermiquement isolante selon la revendication 3, dans laquelle la portion d’obturation comprend deux repliements mutuellement espacés dans la direction longitudinale du canal (29, 129, 229, 329), chaque repliement étant réalisé le long d’un axe transversal à la direction longitudinale du canal (29, 129, 229, 329), la première zone de fixation et la deuxième zone de fixation étant situées au niveau de deux extrémités opposées du film souple et décalées selon la direction longitudinale du canal.
  6. Cuve étanche et thermiquement isolante selon l’une des revendications 1 à 5, dans laquelle le film souple est en matériau choisi dans le groupe consistant en un mât de verre, un film polyéthylène et/ou un film polyamide.
  7. Cuve étanche et thermiquement isolante selon l’une des revendications 1 à 6, dans laquelle la première zone de fixation (31, 131, 231, 331) et/ou la deuxième zone de fixation (32, 132, 232, 332) se développe dans un plan sécant à la direction longitudinale du canal (29, 129, 229, 329).
  8. Cuve étanche et thermiquement isolante selon l’une des revendications 1 à 7, la cuve comportant une pluralité d’obturateurs (30, 130, 230, 330) agencés dans le canal (29) le long de la direction longitudinale du canal (29, 129, 229, 329).
  9. Cuve étanche et thermiquement isolante selon la revendication 8, dans laquelle les obturateurs (30, 130, 230, 330) de la pluralité d’obturateurs (30, 130, 230, 330) sont agencés dans le canal (29, 129, 229, 329) à intervalles réguliers le long de la direction longitudinale du canal (29, 129, 229, 329).
  10. Cuve étanche et thermiquement isolante selon la revendication 8 ou 9, dans laquelle la barrière thermiquement isolante formant le fond du canal comporte une pluralité de panneaux isolants espacés et une pluralité de zones de jonction situées entre les panneaux isolants, et les obturateurs sont agencés en regard des panneaux isolants de manière que les zones de jonction à chaque extrémité d’un panneau se trouvent entre les obturateurs.
  11. Cuve étanche et thermiquement isolante selon l’une des revendications 1 à 10, comportant une première paroi de cuve (8) et une deuxième paroi de cuve (9), la première paroi de cuve (8) et la deuxième paroi de cuve (9) formant une arête (16) de la barrière thermiquement isolante (1), la première paroi de cuve (8) comportant une première surface d’ancrage et la deuxième paroi de cuve (9) formant une deuxième surface d’ancrage, le fond (36) du canal (29) étant formé par la barrière thermiquement isolante (1) entre la première surface d’ancrage et la deuxième surface d’ancrage, le fond du canal (29) formant l’arête (16), et dans laquelle la membrane étanche (3) comporte une pièce étanche d’angle (19), la pièce étanche d’angle (19) comportant une première portion (20) ancrée sur la première surface d’ancrage et une deuxième portion (21) ancrée sur la deuxième surface d’ancrage, la pièce étanche d’angle (19) comportant en outre une portion centrale (28) intercalée entre la première portion (20) et la deuxième portion (21), ladite portion centrale (28) étant libre par rapport à la barrière thermiquement isolante (1) de manière à absorber par déformation les contraintes dans la membrane étanche (3) au droit de l’arête (16), le canal étant délimité par la face externe de la pièce étanche d’angle (19) .
  12. Cuve étanche et thermiquement isolante selon la revendication 11, comportant une structure d’angle (10), ladite structure d’angle (10) comportant un premier panneau isolant (11) et un deuxième panneau isolant (12), le premier panneau isolant (11) formant une extrémité de la barrière thermiquement isolante (1) de la première paroi de cuve (8), le deuxième panneau isolant (12) formant une extrémité de la barrière thermiquement isolante (1) de la deuxième paroi de cuve (9), le premier panneau isolant (11) et le deuxième panneau isolant (12) formant conjointement l’arête (16),
    la structure d’angle (10) comportant en outre une première portion de membrane étanche (17) et une deuxième portion de membrane étanche (18), la première portion de membrane étanche (17) reposant sur le premier panneau isolant (11), ladite première portion de membrane étanche (17) formant une extrémité de la membrane étanche (3) de la première paroi de cuve (8), la deuxième portion de membrane étanche (18) reposant sur le deuxième panneau isolant (12), ladite deuxième portion de membrane étanche (18) formant une extrémité de la membrane étanche (3) de la deuxième paroi de cuve (9).
  13. Cuve étanche et thermiquement isolante selon l’une des revendications 11 à 12, comportant en outre une cale (38), ladite cale (38) comportant une première face externe reposant contre la barrière thermiquement isolante (1) de la première paroi de cuve (8) et une deuxième face externe reposant contre la barrière thermiquement isolante (1) de la deuxième paroi de cuve (9), la cale (38) comportant en outre une face interne (41) concave, le canal (29) étant délimité par la face interne (41) de la cale (38).
  14. Cuve étanche et thermiquement isolante selon l’une des revendications 1 à 13, dans laquelle la membrane étanche (103) comporte une ondulation (46), ladite ondulation (46) faisant saillie en direction de la barrière thermiquement isolante (101), ladite ondulation (46) se développant selon la direction longitudinale du canal (129), la barrière thermiquement isolante (101) comportant une rainure (45), ladite ondulation (46) étant logée dans ladite rainure (45), le fond (136) du canal (129) étant formée par ladite rainure (45).
  15. Cuve étanche et thermiquement isolante selon l’une des revendications 1 à 14, dans laquelle la membrane étanche (103) comporte une série d’ondulations (46) parallèles et des portions planes, lesdites portions planes étant situées entre deux ondulations (46) parallèles adjacentes, lesdites ondulations (46) parallèles faisant saillie en direction de la barrière thermiquement isolante (101),
    la barrière thermiquement isolante (101) comportant une série de rainures (45) parallèles, les ondulations (46) parallèles étant logées dans une dite rainure (45) respective,
    la cuve comportant en outre une pluralité de canaux (129) délimités d’une part par une dite rainure (45) respective et, d’autre part, par la membrane étanche (103), un fond (136) de chaque canal (129) étant formé par une dite rainure (45) correspondante
    la cuve comportant en outre une pluralité d’obturateurs (130), lesdits obturateurs (130) comportant un film souple, ledit film souple comportant une première zone de fixation (131) et une deuxième zone de fixation (132),
    la première zone de fixation (131) s’étendant transversalement à la direction longitudinale de la rainure (45) correspondante, la première zone de fixation (131) dudit film souple étant fixée sur le fond (136) du canal (129) correspondant,
    la deuxième zone de fixation (132) s’étendant transversalement à la direction longitudinale dudit canal (129), la deuxième zone de fixation (132) étant fixée à la face externe de la membrane étanche (103) délimitant ledit canal (129),
    ledit film souple comportant une portion d’obturation s’étendant de la première zone de fixation (131) à la deuxième zone de fixation (132), ladite portion d’obturation s’étendant en travers du canal (129) entre le fond (136) dudit canal (129) et la membrane étanche (103) de façon à créer une perte de charge dans ledit canal (129).
  16. Cuve étanche et thermiquement isolante selon l’une des revendications 1 à 15, dans laquelle le canal (29, 129, 229, 329) présente une composante parallèle ou une composante perpendiculaire à la direction de gravité terrestre.
  17. Navire (70) pour le transport d’un produit liquide froid, le navire comportant une double coque (72) et une cuve (71) selon l’une des revendications 1 à 16 disposée dans la double coque.
  18. Système de transfert pour un produit liquide froid, le système comportant un navire (70) selon la revendication 17, des canalisations isolées (73, 79, 76, 81) agencées de manière à relier la cuve (71) installée dans la coque du navire à une installation de stockage flottante ou terrestre (77) et une pompe pour entrainer un flux de produit liquide froid à travers les canalisations isolées depuis ou vers l’installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.
  19. Procédé de chargement ou déchargement d’un navire (70) selon la revendication 17, dans lequel on achemine un produit liquide froid à travers des canalisations isolées (73, 79, 76, 81) depuis ou vers une installation de stockage flottante ou terrestre (77) vers ou depuis la cuve du navire (71).
EP21793972.7A 2020-10-29 2021-10-27 Cuve étanche et thermiquement isolante Pending EP4237740A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2011105A FR3115854B1 (fr) 2020-10-29 2020-10-29 Cuve étanche et thermiquement isolante
PCT/EP2021/079883 WO2022090341A1 (fr) 2020-10-29 2021-10-27 Cuve étanche et thermiquement isolante

Publications (1)

Publication Number Publication Date
EP4237740A1 true EP4237740A1 (fr) 2023-09-06

Family

ID=73793511

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21793972.7A Pending EP4237740A1 (fr) 2020-10-29 2021-10-27 Cuve étanche et thermiquement isolante

Country Status (6)

Country Link
US (1) US20230392751A1 (fr)
EP (1) EP4237740A1 (fr)
KR (1) KR20230093040A (fr)
CN (1) CN116457604A (fr)
FR (1) FR3115854B1 (fr)
WO (1) WO2022090341A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3141762A1 (fr) * 2022-11-07 2024-05-10 Gaztransport Et Technigaz Dispositif de vérification du positionnement de deux panneaux d’isolation et de la tension d’une feuille collée sur les panneaux

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3004509B1 (fr) 2013-04-12 2016-11-25 Gaztransport Et Technigaz Structure d'angle d'une cuve etanche et thermiquement isolante de stockage d'un fluide
FR3026459B1 (fr) 2014-09-26 2017-06-09 Gaztransport Et Technigaz Cuve etanche et isolante comportant un element de pontage entre les panneaux de la barriere isolante secondaire
FR3084645B1 (fr) * 2018-08-06 2021-01-15 Gaztransport Et Technigaz Structure d'angle pour une cuve etanche et thermiquement isolante
FR3087518B1 (fr) * 2018-10-17 2020-10-02 Gaztransport Et Technigaz Paroi d'une cuve etanche et thermiquement isolante
FR3094450B1 (fr) * 2019-04-01 2021-06-25 Gaztransport Et Technigaz Cuve étanche et thermiquement isolante

Also Published As

Publication number Publication date
CN116457604A (zh) 2023-07-18
FR3115854A1 (fr) 2022-05-06
FR3115854B1 (fr) 2022-11-04
US20230392751A1 (en) 2023-12-07
WO2022090341A1 (fr) 2022-05-05
KR20230093040A (ko) 2023-06-26

Similar Documents

Publication Publication Date Title
EP3198186B1 (fr) Cuve étanche et isolante comportant un élément de pontage entre les panneaux de la barrière isolante secondaire
EP3320256B1 (fr) Cuve etanche et thermiquement isolante ayant une membrane d'etancheite secondaire equipee d'un arrangement d'angle a toles metalliques ondulees
EP3365592B1 (fr) Cuve comprenant des blocs isolants de coin equipes de fentes de relaxation
FR3074253B1 (fr) Cuve etanche et thermiquement isolante
FR3077277A1 (fr) Paroi etanche a membrane ondulee renforcee
EP3679290A1 (fr) Cuve étanche et thermiquement isolante comportant une plaque de remplissage anti-convective
FR3070745A1 (fr) Cuve etanche et thermiquement isolante a element de remplissage anti-convectif
FR3084347A1 (fr) Paroi etanche a membrane ondulee renforcee
WO2019239048A1 (fr) Cuve etanche et thermiquement isolante
WO2019043348A1 (fr) Cuve étanche et thermiquement isolante comportant une plaque de remplissage anti-convective
WO2022090341A1 (fr) Cuve étanche et thermiquement isolante
WO2021186049A1 (fr) Cuve étanche et thermiquement isolante
FR3084346A1 (fr) Paroi etanche a membrane ondulee renforcee
WO2021094493A1 (fr) Cuve étanche et thermiquement isolante à joints isolants anti-convectifs
EP4269863A1 (fr) Paroi de cuve comportant une conduite traversante
WO2022013031A1 (fr) Cuve étanche et thermiquement isolante
FR3118118A1 (fr) Cuve étanche et thermiquement isolante comportant un élément de pontage
FR3115853A1 (fr) Cuve étanche et thermiquement isolante
FR3112587A1 (fr) Cuve étanche et thermiquement isolante
WO2022136599A1 (fr) Cuve étanche et thermiquement isolante comportant un obturateur d'onde
WO2020084247A1 (fr) Cuve etanche et thermiquement isolante

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230322

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240527

RIN1 Information on inventor provided before grant (corrected)

Inventor name: TESSIER, ALAIN

Inventor name: DELETRE, BRUNO