EP4206337A1 - Tôle forte et procédé de traitement thermomécanique d'une matière de départ destinée à la fabrication d'une tôle forte - Google Patents

Tôle forte et procédé de traitement thermomécanique d'une matière de départ destinée à la fabrication d'une tôle forte Download PDF

Info

Publication number
EP4206337A1
EP4206337A1 EP21218236.4A EP21218236A EP4206337A1 EP 4206337 A1 EP4206337 A1 EP 4206337A1 EP 21218236 A EP21218236 A EP 21218236A EP 4206337 A1 EP4206337 A1 EP 4206337A1
Authority
EP
European Patent Office
Prior art keywords
temperature
cooling rate
thickness
rolling
heavy plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP21218236.4A
Other languages
German (de)
English (en)
Inventor
Rupert Egger
Martin Klima
Erik Parteder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine Grobblech GmbH
Original Assignee
Voestalpine Grobblech GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voestalpine Grobblech GmbH filed Critical Voestalpine Grobblech GmbH
Priority to EP21218236.4A priority Critical patent/EP4206337A1/fr
Priority to PCT/EP2022/088050 priority patent/WO2023126506A1/fr
Publication of EP4206337A1 publication Critical patent/EP4206337A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/02Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0242Flattening; Dressing; Flexing

Definitions

  • the invention relates to a heavy plate and a thermomechanical treatment method of a starting material, in particular a slab, for the production of a heavy plate consisting of a steel alloy.
  • thermomechanical treatment process In order to increase the toughness, especially the low-temperature toughness, of a heavy plate made of a steel alloy, WO2011/079341A2 a thermomechanical treatment process is known in which the starting material is hot-rolled in several stages and accelerated between two hot-rolling passes to below the Ar3 temperature and then inductively heated to above the Ac3 temperature. After the last hot rolling pass, a two-stage cooling to room temperature takes place - first with an accelerated cooling rate by water quenching to a cooling stop temperature below Ar3 and finally with cooling at room temperature.
  • these heavy plates have the disadvantage of low uniform elongation Ag, which limits their use in earthquake zones, for example.
  • thermomechanical treatment process for the production of a heavy plate with which an improved uniform elongation Ag can be achieved reproducibly on the heavy plate despite high toughness values.
  • the invention solves the problem set by the features of claim 1.
  • the steel alloy in each case in % by weight) 0.02 to 0.1 carbon (C), 1.0 to 2.0 manganese (Mn), 0.1 to 0.80 silicon (Si), 0.010 to 0.15 aluminum (Al), ⁇ 0.050 Phosphorus (P) and ⁇ 0.010 Sulfur (S) on.
  • the steel alloy can be used individually or in combination from the group (each in % by weight): 0 to 0.75 copper (Cu) 0 to 3.0 Nickel (Ni) 0 to 0.20 vanadium (V) 0 to 0.003 boron (B) exhibit.
  • the desired microstructure consisting of ferrite, bainite and optionally martensite, can be produced more reproducibly in the steel alloy according to the invention in order to achieve high uniform elongation Ag with high toughness.
  • the lower limit for the cooling rate KR2 of the starting material can be 16 °C/s for a heavy plate with a thickness of 25 mm.
  • the lower limit for the cooling rate KR2 of the starting material can be 3.9 °C/s for a heavy plate with a thickness of 80 mm.
  • An exemplary upper limit based on the above formula for cooling rates KR2 for a heavy plate with a thickness of 25 mm is 78.6 °C/s - for a heavy plate with a thickness of 80 mm this is 5.9 °C/s.
  • the range for the second cooling rate KR2 for the thinner heavy plate (starting material after final forming) is in the range from 16 °C/s to 78.6 °C/s and for the thicker heavy plate (starting material after the final forming) can be in the range from 3.9 °C/s to 5.9 °C/s according to the invention.
  • the thicknesses are to be used in mm (millimeters) and the temperatures in °C and the cooling rates in °C/s.
  • the ratio of the second cooling rate KR2 to the first cooling rate KR1 is at least 2:1, this can further increase the uniform elongation Ag if the toughness is sufficiently high.
  • the ratio of the second cooling rate KR2 to the first cooling rate KR1 is at least 3:1, this can lead to an optimum balance between toughness and uniform elongation Ag in the case of stressed steel alloys.
  • the first cooling rate (KR1) is preferably ⁇ 5° C./s, particularly preferably ⁇ 3° C./s, which makes it easier to handle the method and can also further improve the reproducibility for a high uniform elongation Ag with high toughness.
  • the first temperature is T1 in degrees Celsius ⁇ are 1 + 0.1 ⁇ are 3 ⁇ are 1 2 and ⁇ are 1 + 1.9 ⁇ are 3 ⁇ are 1 2
  • a first temperature T1 in this range can, among other things, reproducibly lead to a maximum of uniform elongation Ag in the steel alloy according to the invention.
  • the second temperature T2 is preferably in the range from 450° C. to 100° C., preferably in the range from 400° C. to 150° C., particularly preferably in the range from 400° C. to 250° C., in order to set the structure for high toughness and in this way an optimum combination of high strength, uniform elongation and toughness can be set.
  • Cooling from the second temperature to room temperature in a third stage at a third cooling rate KR3, with the third cooling rate KR3 ⁇ second cooling rate KR2, can further improve the mechanical characteristics of the steel alloy.
  • the third cooling rate KR3 is ⁇ 5° C./s, preferably ⁇ 3° C./s, because—in terms of process technology—the cooling can be carried out unaccelerated in air.
  • the starting material can be inductively heated for this purpose, which can be advantageous for the overall duration of the production route, since this reduces both the cycle time and the heating rate can be set very high.
  • heating can also take place via thermal radiation - this represents a particularly simple and robust method for heating.
  • End forming is preferably carried out to a thickness of the plate in the range from 8 to 150 mm (millimeters), in particular to a thickness of the plate in the range from 25 to 120 mm.
  • the invention solves the problem set by the features of claim 14.
  • the heavy plate produced by the thermomechanical treatment process can have a yield strength ratio (R p0.2 /R m ) of ⁇ 0.7.
  • This heavy plate can preferably have a yield point ratio (R p0.2 /R m ) of ⁇ 0.70.
  • This heavy plate can preferably have a yield point ratio (R p0.2 /R m ) of ⁇ 0.65.
  • the heavy plate has a thickness in the range from 8 to 150 mm.
  • the heavy plate can have a thickness in the range from 25 to 120 mm.
  • the heavy plate preferably has a yield point R p0.2 >550 N/mm 2 (Newton per square millimeter), in particular a yield point R p0.2 (0.2% yield point) >590 N/mm 2 , in order to have a comparatively high to guarantee strength.
  • This heavy plate can therefore be particularly suitable as a longitudinally welded pipe for a natural gas pipeline or as a construction material, especially in a seismically active region.
  • the respective cooling rate (KR1, KR2, KR3) or heating rate from the initial temperature to the final temperature is an average value, namely a cooling rate or heating rate from the initial temperature to the final temperature averaged over the thickness of the starting material.
  • Both heavy plates A, B have the same steel alloy 0.04% by weight (C) carbon, 1.63% by weight (Mn) manganese, 0.34% by weight (Si) silicon, 0.04% by weight (Al) aluminum, 0.012% by weight (P) phosphorus, 0.001% by weight (S) sulphur, 0.17% by weight (Cr) chromium, 0.02% by weight (Mo) molybdenum, 0.035% by weight (Nb) niobium, 0.014% by weight (Ti)titanium, 0.0003% by weight (B) boron, 0.0045% by weight (N) nitrogen and the remainder iron (Fe) and impurities that are unavoidable as a result of production, each with a maximum of 0.05% by weight and a maximum of 0.15% by weight in total.
  • the primary material, namely the slab, of the respective heavy plate A, B is heated 4 to above the Ac3 temperature, namely 1100° C. (degrees Celsius), for example with a slab heating device.
  • the starting material is then partially formed by first rolling W1.
  • accelerated cooling 5 namely quenching, preferably water quenching, with which the starting material is cooled from the first final rolling temperature, which is above Ac3, to below the Ar3 temperature, namely - as in 1 recognizable - the primary material is cooled or quenched to below the Ar1 temperature.
  • quenching preferably water quenching
  • the starting material leaves the second rolling W2 with a second final rolling temperature EW2 ⁇ Ar3, namely 830 °C.
  • EW2 ⁇ Ar3 a second final rolling temperature
  • other heating sources are also conceivable, for example sources with radiant heat. This rapid heating, be it inductive or with radiant heat etc., takes place at a minimum of 12°C/min.
  • This second roll W2 which can also be referred to as end rolls, is followed by two different multi-stage coolings 3 to room temperature (which is usually between 0 and 60 degrees Celsius, for example 20 degrees Celsius in these processes).
  • the starting material of the heavy plate A is accelerated from the second final rolling temperature to a temperature below Ar1 by water quenching at 30° C./s, namely quenched. This is followed by cooling at 0.1° C./s in still air at ambient temperature as the second immediately following second stage 7b of cooling 3 to room temperature RT.
  • the multi-stage cooling 3 according to the invention can be seen from the starting material of the heavy plate B.
  • the starting material is cooled at a first cooling rate KR1, namely 0.6 °C/s, from the second final rolling temperature EW2 to a first temperature T1 between Ar3 and Ar1, namely 720 °C (Centigrade).
  • the starting material is quenched from the first temperature T1 to a second temperature T2 ⁇ Ar1, namely 150° C., at a second cooling rate KR2, namely 30° C./s.
  • a second cooling rate KR2 namely 30° C./s.
  • room temperature RT which has not been detailed.
  • the first cooling rate KR1 ⁇ second cooling rate KR2 specifically by a factor of 3 less than the second cooling rate KR2.
  • a third stage 8c with a third cooling rate KR3 from the second temperature T2 to room temperature RT in still air at ambient temperature can be seen in the multi-stage cooling.
  • the third cooling rate KR3 is preferably 0.1° C./s.
  • accelerated cooling can be understood to mean faster cooling than cooling at room temperature and still air, which is also often referred to as quenching.
  • a block or a billet is also conceivable as the starting material.
  • first and/or second rolling can consist of one or more part-rolls with possibly several part-rolling steps (passes), which is possible, for example, by reversing rolling.
  • the uniform elongation A g of the heavy plate B was increased from 8.9% to 14.7%, ie by 5.8% compared to heavy plate A. Heavy plate B therefore enables a significantly higher energy dissipation capacity, ie energy absorption capacity.
  • heavy plate B undergoes plastic deformation more quickly than heavy plate A (cf. 0.2% yield strength R p0.2 ), but it still occurs with heavy plate B much later to failure (cf. A g ).
  • This property is particularly advantageous when used in earthquake-prone regions or seismically active regions, where the dissipation capacity of the material is crucial.
  • the heavy plate B produced according to the invention can therefore be particularly suitable, for example, as longitudinally welded pipes for natural gas pipelines or in steel construction in seismically active regions. Due to the high uniform elongations, components made from this heavy plate B have a high energy dissipation capacity. It is also conceivable to use it as a building material in steel construction in the production of welded I-beams with advantageous behavior in the event of a hole reveal failure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
EP21218236.4A 2021-12-29 2021-12-29 Tôle forte et procédé de traitement thermomécanique d'une matière de départ destinée à la fabrication d'une tôle forte Withdrawn EP4206337A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21218236.4A EP4206337A1 (fr) 2021-12-29 2021-12-29 Tôle forte et procédé de traitement thermomécanique d'une matière de départ destinée à la fabrication d'une tôle forte
PCT/EP2022/088050 WO2023126506A1 (fr) 2021-12-29 2022-12-29 Plaque lourde et procédé de manipulation thermomécanique de matériau de départ de production de plaque lourde

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP21218236.4A EP4206337A1 (fr) 2021-12-29 2021-12-29 Tôle forte et procédé de traitement thermomécanique d'une matière de départ destinée à la fabrication d'une tôle forte

Publications (1)

Publication Number Publication Date
EP4206337A1 true EP4206337A1 (fr) 2023-07-05

Family

ID=79185526

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21218236.4A Withdrawn EP4206337A1 (fr) 2021-12-29 2021-12-29 Tôle forte et procédé de traitement thermomécanique d'une matière de départ destinée à la fabrication d'une tôle forte

Country Status (2)

Country Link
EP (1) EP4206337A1 (fr)
WO (1) WO2023126506A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07278656A (ja) * 1994-04-04 1995-10-24 Nippon Steel Corp 低降伏比高張力鋼の製造方法
JPH07286232A (ja) * 1994-04-18 1995-10-31 Nippon Steel Corp 繰り返し曲げ変形性能の優れた曲げ加工用鋼板とその製造方法
EP2340897A1 (fr) * 2009-12-23 2011-07-06 Voestalpine Grobblech GmbH Procédé de traitement thermomécanique pour tôles épaisses
JP2015127447A (ja) * 2013-12-27 2015-07-09 Jfeスチール株式会社 耐疲労き裂伝ぱ特性に優れた高強度鋼材およびその判定方法
EP3272899A1 (fr) * 2015-03-20 2018-01-24 Baoshan Iron & Steel Co., Ltd. Tôle d'acier épaisse à haute résistance-ténacité et faible limite conventionnelle d'élasticité présentant une excellente ténacité au choc à basse température et procédé de fabrication s'y rapportant

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001288512A (ja) * 2000-04-05 2001-10-19 Nippon Steel Corp 靱性と延性に優れた高張力鋼の製造方法
ES2614465T3 (es) * 2012-07-10 2017-05-31 Thyssenkrupp Steel Europe Ag Producto plano de acero laminado en frío y procedimiento para su fabricación

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07278656A (ja) * 1994-04-04 1995-10-24 Nippon Steel Corp 低降伏比高張力鋼の製造方法
JPH07286232A (ja) * 1994-04-18 1995-10-31 Nippon Steel Corp 繰り返し曲げ変形性能の優れた曲げ加工用鋼板とその製造方法
EP2340897A1 (fr) * 2009-12-23 2011-07-06 Voestalpine Grobblech GmbH Procédé de traitement thermomécanique pour tôles épaisses
WO2011079341A2 (fr) 2009-12-23 2011-07-07 Voestalpine Grobblech Gmbh Procédé de traitement thermomécanique
JP2015127447A (ja) * 2013-12-27 2015-07-09 Jfeスチール株式会社 耐疲労き裂伝ぱ特性に優れた高強度鋼材およびその判定方法
EP3272899A1 (fr) * 2015-03-20 2018-01-24 Baoshan Iron & Steel Co., Ltd. Tôle d'acier épaisse à haute résistance-ténacité et faible limite conventionnelle d'élasticité présentant une excellente ténacité au choc à basse température et procédé de fabrication s'y rapportant

Also Published As

Publication number Publication date
WO2023126506A1 (fr) 2023-07-06

Similar Documents

Publication Publication Date Title
EP1573075B8 (fr) Procede de fabrication d'un produit en acier
EP3504349B1 (fr) Procédé de fabrication d'une bande d'acier à résistance très élevée présentant des propriétés améliorées lors du traitement ultérieur et une telle bande d'acier
EP3535431B1 (fr) Produit d'acier à teneur en manganèse intermédiaire pour application à basse température et son procédé de fabrication
DE10128544A1 (de) Höherfestes, kaltumformbares Stahlband oder -blech, Verfahren zu seiner Herstellung und Verwendung eines solchen Bands oder Blechs
EP2905348B1 (fr) Produit en acier plat de haute résistance avec une structure bainitique-martensitique et procédé de fabrication d'un tel produit acier plat
DE60300561T3 (de) Verfahren zur Herstellung eines warmgewalzten Stahlbandes
EP0910675A1 (fr) Feuillard acier lamine a chaud et son procede de fabrication
DE102018132860A1 (de) Verfahren zur Herstellung von konventionell warmgewalzten, profilierten Warmbanderzeugnissen
EP1918403A1 (fr) Procédé de fabrication de produits plats en acier à partir d'un acier formant une structure marténsitique
EP2009120B1 (fr) Utilisation d'un alliage d'acier très solide destiné à la fabrication de tuyaux en acier très résistants et ayant une bonne déformabilité
WO2018050387A1 (fr) Procédé pour la fabrication d'une pièce façonnée en un produit plat en acier contenant du manganèse et pièce correspondante
DE102015111866A1 (de) Umformbarer Leichtbaustahl mit verbesserten mechanischen Eigenschaften und Verfahren zur Herstellung von Halbzeug aus diesem Stahl
DE3440752C2 (fr)
EP1319725B1 (fr) Procédé pour la fabrication d'une bande à chaud
EP1398390B1 (fr) Acier ferritique-martensitique possédant une resistance élevée ayant une fine microstructure
DE102018132908A1 (de) Verfahren zur Herstellung von thermo-mechanisch hergestellten Warmbanderzeugnissen
EP1399598B1 (fr) Procede pour fabriquer des produits en acier de grande resistance et de bonne malleabilite, formes a froid a partir d'un feuillard lamine a chaud
EP3853385A1 (fr) Procédé de fabrication de tôles en acier ultrarésistantes et tôle en acier correspondante
DE102016117494A1 (de) Verfahren zur Herstellung eines umgeformten Bauteils aus einem mittelmanganhaltigen Stahlflachprodukt und ein derartiges Bauteil
DE102018132901A1 (de) Verfahren zur Herstellung von konventionell warmgewalzten Warmbanderzeugnissen
DE102016115618A1 (de) Verfahren zur Herstellung eines höchstfesten Stahlbandes mit verbesserten Eigenschaften bei der Weiterverarbeitung und ein derartiges Stahlband
EP3469108B1 (fr) Procédé de fabrication d'une bande d'acier laminée à froid présentant des propriétés trip à partir d'un acier à résistance élevée contenant du manganèse
EP4206337A1 (fr) Tôle forte et procédé de traitement thermomécanique d'une matière de départ destinée à la fabrication d'une tôle forte
DE69832684T2 (de) Verfahren zur herstellung von stahlrohr mit ultrafeinem gefüge
DE3507124A1 (de) Durch elektro-widerstandsschweissen geschweisstes oelbohrungsrohr und verfahren zu dessen herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20240106