EP4168616B1 - Method for the continuous production of nonwoven fabric, and associated nonwoven fabric production apparatus and nonwoven board - Google Patents

Method for the continuous production of nonwoven fabric, and associated nonwoven fabric production apparatus and nonwoven board Download PDF

Info

Publication number
EP4168616B1
EP4168616B1 EP21736967.7A EP21736967A EP4168616B1 EP 4168616 B1 EP4168616 B1 EP 4168616B1 EP 21736967 A EP21736967 A EP 21736967A EP 4168616 B1 EP4168616 B1 EP 4168616B1
Authority
EP
European Patent Office
Prior art keywords
fibers
nonwoven fabric
air
conveyor belts
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21736967.7A
Other languages
German (de)
French (fr)
Other versions
EP4168616A1 (en
EP4168616C0 (en
Inventor
Wonku LEE
Norbert Nicolai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nvh Czech SRO
Original Assignee
Nvh Czech SRO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nvh Czech SRO filed Critical Nvh Czech SRO
Publication of EP4168616A1 publication Critical patent/EP4168616A1/en
Application granted granted Critical
Publication of EP4168616C0 publication Critical patent/EP4168616C0/en
Publication of EP4168616B1 publication Critical patent/EP4168616B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/732Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by fluid current, e.g. air-lay
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/542Adhesive fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/558Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in combination with mechanical or physical treatments other than embossing
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/74Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being orientated, e.g. in parallel (anisotropic fleeces)

Definitions

  • the invention relates to a continuous fiber fleece production process and the associated fiber fleece production arrangement and fiber fleece board made from fiber mixtures of carrier fibers and binding fibers.
  • a non-woven fabric is a structure made of limited length fibers, filaments or chopped yarns. Since a variety of raw materials can be used for fiber nonwovens and there are a variety of manufacturing processes, fiber nonwovens can be tailored to a wide range of application requirements.
  • the fiber fleeces differ in their structure depending on the requirements.
  • nonwovens with high absorption are dense, have a high flow resistance and consist of thin or very thin fibers.
  • a special version of these is meltblown nonwovens.
  • the polymer strand emerging from the nozzle is immediately stretched by hot air flowing in the direction of the filaments' exit.
  • the fibers swirled by the air flow are deposited on a sieve belt.
  • the deposition process can produce a fine nonwoven made of entangled polymer fibers.
  • Electrostatically formed nonwovens are created by the formation and deposition of fibers from polymer solutions or melts under the influence of an electric field.
  • Nonwovens for thermal insulation are more voluminous. Meltblown nonwovens can also be combined with staple fibers to create a voluminous structure.
  • nonwoven fabrics are subject to mechanical stress and have elastic properties, they preferably have fibers aligned in the direction of the stress.
  • Such nonwoven insulation is used, for example, in vehicles under the carpet or behind the bulkhead, or for the production of air-permeable mattresses.
  • the fibers in the nonwoven fabric can be oriented in different ways. Usually they are more or less parallel to the surface. A distinction is made between oriented nonwovens, where the fibers are very strongly oriented in one direction, cross-layer nonwovens, where the fibers are preferably oriented in two directions by laying individual fiber piles or nonwovens with a longitudinal orientation of the fibers on top of each other to form the overall nonwoven fabric using cross-layers. oriented and random-layer nonwovens, in which the fibres or filaments can take any direction.
  • nonwovens are those that are produced using carding or carding or using airlay processes.
  • the carding or carding process is a dry manufacturing process in which several layers of fleece are placed on top of each other. The fibers are mostly flat, parallel to the surface. Depending on how the fleeces are laid, oriented fleeces or cross-layered fleeces are created. If special cards are used, random fleeces can also be formed.
  • Aerodynamically formed fleeces are those that are formed from fibers using an air stream on an air-permeable base. If the fleeces are produced using airlay systems, the fibers are sucked onto an air-permeable belt and lie oriented in the surface. Depending on the placement and the belt transport speed, the fibers can be positioned at an angle of between 70° and 80° to the surface without being completely vertical. The fibers take on an opposite angle on both surfaces, which causes the fibers to bend significantly.
  • fibers are suspended in water and laid on a water-permeable base. This process is also known as the wet process.
  • Fibers that are perpendicular to the surface can be obtained using the Struto process, which is also known as the Wavemacker or V-Lap process. This is a process in which a flat fleece with vertical folds is created from a carded fleece with a horizontal fiber layer.
  • thermoplastics in the form of low-melting plastic, preferably in fiber form.
  • binding fibers have a melting range of 100 - 200 °C and are preferably present as compact fibers or as bicomponent fibers.
  • the publication EN 10 2010 034 159 A1 discloses a discontinuous solution for the production of nonwoven components with fibers oriented perpendicular to the surface, in which the fibers are transported into a mold provided with flow openings via an air stream wherein the mold is divided and is moved apart before filling, after filling the fiber material is compressed by closing the mold and then the fiber material is heated by hot air until the fibers have bonded together, wherein the fibers in the mold are oriented perpendicular to the feed direction and in the direction of the air flowing out of the mold before compression.
  • a textile lapping machine having an inclined comb which deposits a vertically sloping fibrous web onto a wire belt of a continuous conveyor passing through a furnace.
  • the reciprocating pusher bar pushes the folds formed by the comb into a shark unit which extends across the width of the mesh belt.
  • the unit has a toothed plate which initially slows down the folded web and longitudinal fingers which overlie the conveyor forming a flat overlap zone.
  • a textile card feeds the fibrous web to the lapping zone and the furnace fuses any low melting synthetic fibres in the web to the surrounding fibres to give a web having a density of 80-2000 g/m 2.
  • the comb web direction remains constant and the pusher bar and shark unit are moved towards and away from the comb.
  • the drives to the comb and pusher are independent.
  • the publication further discloses WO 00/66824 A1 an airy nonwoven material comprising a nonwoven web having a plurality of substantially continuous fibers oriented in a z direction of the nonwoven web, and a method of making the airy nonwoven material from the materials described in z -Direction shaped fibers.
  • the Cormatex company has a system that deposits the fibers into a channel and also sucks them off to the side.
  • nonwovens which have different densities and fiber orientations over the fleece thickness, with the fibers in the surface areas being plane-parallel in the central area, largely perpendicular to it, which in turn makes later deformation of the nonwoven into a three-dimensional component more difficult .
  • Fleece manufactured using a well-known airlay process ( WO 2009056745 A1 , US20040097155 A1 and Comatex) always have fibres lying parallel to the surface due to the manufacturing process, which has a negative impact on three-dimensional deformation.
  • the present invention is based on the object of providing a simple and efficient, economical, continuous, aerodynamic manufacturing process and an arrangement for producing nonwoven fabrics with fibers oriented perpendicular to the surface and defined fiber orientation and preferably also density distribution over the length and width of the nonwoven fabric and a corresponding nonwoven fabric therefor.
  • the orientation of the fibers in the front area of the belts running parallel to each other can be controlled.
  • the fibers are vacuumed directly at the beginning of the belts, the fibers are preferably deposited parallel to the belts and form a layer.
  • the ratio of parallel to vertical fibers can be controlled.
  • the air extraction can be moved in the front area of the conveyor belts, from the beginning of the conveyor belts along the belts. This makes it possible to change the orientation of the fibers from parallel to the conveyor belts to a perpendicular orientation of the fibers to the conveyor belts.
  • the filling quantity and the belt speed are controlled so that the fiber condensation always occurs directly at the beginning of the belts.
  • the density can be varied across the length of the fleece.
  • the density and thus the properties of the resulting fiber fleece can be adjusted using the speed of the conveyor belts. If suction power and belt speed are coupled, the desired effect of density and property change is increased.
  • density distribution is also possible across the width. This means that fleece with locally limited density differences can be produced lengthways and crossways within a board.
  • the fleece thickness can be adjusted in the range from 5 mm to 100 mm by means of a defined, adjustable distance between the bands.
  • the fleece can be pre-compressed by changing the band gap.
  • the fleece is preferably heated using hot air.
  • the fleece can be heated using short-wave rays.
  • the heating and cooling process differs.
  • the fleece is heated so that all binding fibers are activated and the maximum mechanical properties are achieved when cold.
  • the optimal parameters can be determined through preliminary tests.
  • the fleece is then cooled with air and cut to size according to the subsequent use.
  • Fig. 8 shows the compression hardness versus heating time for a 50 mm thick fleece.
  • the fleece is only heated for a short time, the fleece strength is then adjusted so that the fleece can be transported and stacked. In picture 3, the first heating time would be sufficient for this fleece. Here, too, the fleece is then cooled and cut to size according to the subsequent use.
  • the fleece is completely heated and, when fully heated, is placed directly into a final mold for shaping and cooling, thus producing a finished component.
  • the fiber fleece production arrangement has a feed arrangement for carrier fibers, a feed arrangement for binding fibers, at least one opening/combing arrangement or a fiber opener for combing, separating, loosening and loosening the carrier and/or binding fibers, at least one mixing system for mixing the dissolved fibers, as well as a transport system with air extraction in the front section of the transport system for aligning and depositing the fibers consisting of air guide channels and pressure control nozzles and with a heat source in the rear section of the transport system with a subsequent cooling source for thermally solidifying the resulting fiber fleece; wherein the front section of the transport system with air suction consists of opposing, air-permeable conveyor belts running at the same speed and the loosened and mixed fibers are sucked in between the opposing conveyor belts and the fibers are in different densities over the width and length of the fiber fleece due to the air suction Arrange from outside on the conveyor belts perpendicular to the conveyor belts.
  • the band gap can be changed via automatic or manual control.
  • a conveyor belt for transporting the fiber fleece can be arranged downstream of the transport system with air extraction and heat source.
  • a cutting device for longitudinal and cross-cutting can be coupled to the conveyor belt.
  • tools with three-dimensional contours for producing molded parts can be arranged downstream of the conveyor belt and the cutting device.
  • the two conveyor belts run parallel.
  • the distance between the air-permeable conveyor belts can be changed to adjust the fleece thickness.
  • the distance between the bands can be reduced over their length and the fleece can thus be pre-compressed.
  • the air extraction area is divided across its width into individual, separately controllable areas.
  • the control can take place via changes in cross-section at the same suction pressure or via a change in the suction pressure.
  • the fleece leaves the belt in a cooled state without being transferred to another transport system.
  • the heated fleece is cut into blank sections, placed in the lower half of a 3-D mold, which is moved along the bottom, the tool is closed with the upper half of the tool, the product is pressed into the final shape and the three-dimensional shaped product is cooled.
  • the cooling source for thermal solidification can be arranged downstream of the heat source in the rear section of the transport system or to cool the contents of the three-dimensional molded part.
  • the heat source can be designed, for example, in the form of a hot air stream.
  • the fleece is heated using short-wave rays.
  • the cooling of the fleece can be done via cold air or via contact, preferably in the 3-D forming tool.
  • the fiber fleece board has a defined density distribution over the length and width, particularly if it has been manufactured accordingly (by means of the method according to the invention and/or by means of the arrangement).
  • Fig. 1 is a schematic representation of an embodiment with vertically oriented fibers 3 between two parallel, air-permeable conveyor belts 4, 4'.
  • Fig. 2 shows a schematic representation of an embodiment of a nonwoven fabric board 2 having vertically oriented fibers 3.
  • Fig. 3 shows a schematic representation of an embodiment of a nonwoven fabric production arrangement 1 with separate feed arrangements 5, 5' of carrier fibers and binding fibers, separate fiber openers 6, 6 ⁇ , common mixing system 7 and air-permeable conveyor belts 4, 4 ⁇ running parallel at the top and bottom.
  • the fibers are each fed from the feed arrangement 5, 5' into a fiber opener 6, 6'.
  • the fiber openers 6, 6' are followed by a common mixing system 7 for mixing the fibers for a homogeneous distribution.
  • Fig. 4 shows a front view of a schematic representation of an exemplary embodiment of a fiber fleece production arrangement 1 with separate feed arrangements 5, 5 'of carrier fibers and binding fibers, separate fiber openers 6, 6', common mixing system 7 and air-permeable conveyor belts 4, 4' running parallel at the top and bottom.
  • the fibers are each guided from the feed arrangement 5, 5' into a fiber opener 6, 6'.
  • the fiber openers 6, 6' are followed by a common mixing system 7 for mixing the fibers for a homogeneous distribution.
  • An air extraction system 8, 8', 81 - 8.10 on the outside of the air-permeable conveyor belts 4, 4' extracts air across the width of the fleece at different rates and at different times, and the fibers condense perpendicular to the surface of the conveyor belts at different densities.
  • the start of the air extraction system 81 - 8.10 is at the beginning of the conveyor belts and the end of the air extraction system 82 is directly in front of the thermal bonding system area.
  • a heat source 9 and a cooling source 10 are connected in series for thermal bonding.
  • the finished fiber fleece is then further processed in subsequent production steps.
  • FIG. 5 is a schematic representation of the rear section of an exemplary embodiment of a fiber fleece production arrangement 1 with air-permeable conveyor belts 4, 4' running parallel at the top and bottom, a heat source 9, and a cooling source 10 and a subsequent conveyor belt 11 with cutting device 12.
  • the finished fiber fleece boards 2 are collected in a product collection container 13.
  • the end of the air extraction 82 is directly in front of the system area for thermal solidification with heat source 9 and cooling source 10.
  • Fig. 6 shows a schematic representation of the rear section of an exemplary embodiment of a fiber fleece production arrangement 1 with air-permeable conveyor belts 4, 4' running parallel at the top and bottom, a heat source 9, a subsequent conveyor belt 11 with cutting device 12 and three-dimensional molded parts 14.
  • the lower half of a three-dimensional molded part 14 is moved along under the warm and therefore easily formable fiber fleece boards 2.
  • the conveyor belt 11 ends the sections are placed individually on the lower three-dimensional molded part halves.
  • the upper molding halves are then pressed with a fixed pressure onto the lower molding halves, each filled with a fiber fleece board 2, and the fiber fleece board 2 is thus formed.
  • the heated fiber fleece blanks formed in the three-dimensional molded parts 14 are cooled in the lower halves of the three-dimensional molded parts 14 before being transferred to a product collection container 13. A fully formed fiber fleece product is obtained.
  • Fig. 7 shows a possible density distribution for floor insulation in a passenger car.
  • the density is higher for this example at 70 kg/m 3 , in the tunnel and under the seats at 30 kg/m 3 .
  • Fig. 8 the compression hardness depending on the heating time.
  • Fig. 9 the suction of the fibers in two belts running at the same speed in such a way that the fibers are sucked in parallel to the belts is shown.
  • Fig. 12 shows the arrangement of the suction with spatially different suction along the belts on the top and bottom and the arrangement of the fibers in the belts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Nonwoven Fabrics (AREA)

Description

Die Erfindung betrifft ein kontinuierliches Faservlies-Herstellungsverfahren sowie die zugehörige Faservlies-Herstellungsanordnung und Faservliesplatine aus Fasergemischen von Trägerfasern und Bindefasern.The invention relates to a continuous fiber fleece production process and the associated fiber fleece production arrangement and fiber fleece board made from fiber mixtures of carrier fibers and binding fibers.

Ein Faservlies ist eine Struktur aus Fasern begrenzter Länge, Filamenten oder geschnittenen Garnen. Da für Faservliese eine Vielzahl an Rohstoffen genutzt werden können und es eine Vielzahl an Herstellungsverfahren gibt, können Faservliese einem breiten Spektrum von Anwendungsanforderungen gezielt angepasst werden.A non-woven fabric is a structure made of limited length fibers, filaments or chopped yarns. Since a variety of raw materials can be used for fiber nonwovens and there are a variety of manufacturing processes, fiber nonwovens can be tailored to a wide range of application requirements.

So gibt es Faservliese mit mehreren Kilogramm Gewicht pro Quadratmeter für Isolationenp und auch Vliese mit weniger als einem Gramm Gewicht pro Quadratmeter, sogenannte Nanovliese.There are fiber fleeces with a weight of several kilograms per square meter for insulation and also fleeces with a weight of less than one gram per square meter, so-called nanofleeces.

Entsprechend den Anforderungen unterscheiden sich die Faservliese in ihrem Aufbau.The fiber fleeces differ in their structure depending on the requirements.

Faservliese mit hoher Absorption beispielsweise sind dicht, haben einen hohen Strömungswiderstand und bestehen aus dünnen oder sehr dünnen Fasern. Eine spezielle Ausführung davon sind Meltblow Faservliese. Im Meltblown Verfahren wird der aus der Düse austretende Polymerstrang unmittelbar durch heiße, in Austrittsrichtung der Filamente strömende Luft verstreckt. Die durch den Luftstrom verwirbelten Fasern werden auf einem Siebband abgelegt. Durch die Ablage kann ein feines Vlies aus verschlauften Polymerfasern erzeugt werden.For example, nonwovens with high absorption are dense, have a high flow resistance and consist of thin or very thin fibers. A special version of these is meltblown nonwovens. In the meltblown process, the polymer strand emerging from the nozzle is immediately stretched by hot air flowing in the direction of the filaments' exit. The fibers swirled by the air flow are deposited on a sieve belt. The deposition process can produce a fine nonwoven made of entangled polymer fibers.

Elektrostatisch gebildete Vliese entstehen durch die Bildung und Ablage von Fasern aus Polymerlösungen oder -schmelzen unter Einwirkung eines elektrischen Felds.Electrostatically formed nonwovens are created by the formation and deposition of fibers from polymer solutions or melts under the influence of an electric field.

Faservliese zur Wärmeisolation hingegen sind voluminöser. Bekannt sind auch Kopplungen von Meltblowvliesen mit Stapelfasern um eine voluminöse Struktur zu erzeugen.Nonwovens for thermal insulation, on the other hand, are more voluminous. Meltblown nonwovens can also be combined with staple fibers to create a voluminous structure.

Wenn Faservliese einer mechanischen Belastung unterliegen und elastische Eigenschaften aufweisen, so haben sie bevorzugt in Belastungsrichtung ausgerichtete Fasern. Solche Vliesisolationen werden beispielsweise in Fahrzeugen unter dem Teppich oder hinter der Stirnwand eingesetzt oder auch für die Herstellung von luftdurchlässigen Matratzen verwendet.If nonwoven fabrics are subject to mechanical stress and have elastic properties, they preferably have fibers aligned in the direction of the stress. Such nonwoven insulation is used, for example, in vehicles under the carpet or behind the bulkhead, or for the production of air-permeable mattresses.

Die Fasern können im Faservlies unterschiedlich orientiert sein. Üblicherweise liegen sie mehr oder weniger parallel zur Oberfläche. Es wird zwischen orientierten Vliesen, bei denen die Fasern sehr stark in eine Richtung orientiert sind, Kreuzlage-Vliesen, bei denen durch ein Übereinanderlegen von einzelnen Faserfloren oder Vliesen mit einer Längsorientierung der Fasern zum Gesamtvlies mittels Kreuzlegern die Fasern vorzugsweise in zwei Richtungen orientiert sind und Wirrlage-Vliesen, bei denen die Fasern beziehungsweise die Filamente jede beliebige Richtung einnehmen können, unterschieden.The fibers in the nonwoven fabric can be oriented in different ways. Usually they are more or less parallel to the surface. A distinction is made between oriented nonwovens, where the fibers are very strongly oriented in one direction, cross-layer nonwovens, where the fibers are preferably oriented in two directions by laying individual fiber piles or nonwovens with a longitudinal orientation of the fibers on top of each other to form the overall nonwoven fabric using cross-layers. oriented and random-layer nonwovens, in which the fibres or filaments can take any direction.

Im Stand der Technik wird bei der Herstellung von Faservliesen aus Stapelfasern zwischen verschiedenen Herstellungsverfahren unterschieden. Mechanisch gebildete Vliese sind solche, die mittels Karde oder Krempeln oder in Airlayverfahren hergestellt werden. Beim Karde- oder Krempelverfahren handelt es sich um ein trockenes Herstellungsverfahren bei dem mehrere Lagen Vliese übereinandergelegt werden. Die Fasern liegen zumeist flächig, parallel zur Oberfläche. Es entstehen je nach Ablageart der Vliese orientierte Vliese oder Kreuzlagevliese. Werden spezielle Krempel verwendet, so können auch Wirrlagevliese gebildet werden.In the prior art, a distinction is made between different manufacturing processes in the production of nonwovens from staple fibers. Mechanically formed nonwovens are those that are produced using carding or carding or using airlay processes. The carding or carding process is a dry manufacturing process in which several layers of fleece are placed on top of each other. The fibers are mostly flat, parallel to the surface. Depending on how the fleeces are laid, oriented fleeces or cross-layered fleeces are created. If special cards are used, random fleeces can also be formed.

Aerodynamisch gebildete Vliese sind solche, die aus Fasern mittels eines Luftstroms auf einer luftdurchlässigen Unterlage gebildet werden. Werden die Vliese über Airlayanlagen hergestellt, so werden die Fasern auf ein luftdurchlässiges Band abgesaugt und liegen in der Fläche orientiert. Je nach Ablage und Bandtransportgeschwindigkeit entsprechend können die Fasern bis zu einem Winkel zwischen 70° und 80° zur Oberfläche aufgestellt werden ohne dabei jedoch vollständig senkrecht zu stehen. Hierbei nehmen die Fasern an beiden Oberflächen einen entgegengesetzten Winkel ein, was eine starke Krümmung der Fasern bewirkt.Aerodynamically formed fleeces are those that are formed from fibers using an air stream on an air-permeable base. If the fleeces are produced using airlay systems, the fibers are sucked onto an air-permeable belt and lie oriented in the surface. Depending on the placement and the belt transport speed, the fibers can be positioned at an angle of between 70° and 80° to the surface without being completely vertical. The fibers take on an opposite angle on both surfaces, which causes the fibers to bend significantly.

Bei hydrodynamisch gebildeten Vliesen werden Fasern in Wasser aufgeschwemmt und auf einer wasserdurchlässigen Unterlage abgelegt. Dieses Verfahren wird auch als Nassverfahren bezeichnet.In hydrodynamically formed nonwovens, fibers are suspended in water and laid on a water-permeable base. This process is also known as the wet process.

Senkrecht zur Oberfläche stehende Fasern können mit dem Struto-Verfahren, welches auch als Wavemacker- oder V-Lap-Verfahren bezeichnet wird, erhalten werden. Es handelt sich hierbei um ein Verfahren bei dem aus einem gekardeten Vlies mit horizontaler Faserlage ein flächiges Vlies mit senkrechten Falten erzeugt wird.Fibers that are perpendicular to the surface can be obtained using the Struto process, which is also known as the Wavemacker or V-Lap process. This is a process in which a flat fleece with vertical folds is created from a carded fleece with a horizontal fiber layer.

Als Verfahren zur anschließenden Verfestigung der auf oben beschriebene Weise entstandenen Vliese sind unterschiedliche Möglichkeiten bekannt, wie die Möglichkeit eines Reibschlusses oder der Kombination eines Reib- und eines Formschlusses auf mechanische Art und Weise oder die Möglichkeit eines Stoffschlusses, welcher sowohl chemisch durch Zugabe eines Bindemittels als auch thermisch über den Einsatz von Thermoplasten erzielt werden kann. Das meistangewandte Verfahren für die Verfestigung ist der Einsatz von Thermoplasten in Form von niedrig schmelzendem Kunststoff, bevorzugt in Faserform. Diese sogenannten Bindefasern haben einen Schmelzbereich von 100 - 200 °C und liegen bevorzugt als Kompaktfaser oder als Bikomponentenfaser vor.Various options are known as methods for the subsequent solidification of the nonwovens created in the manner described above, such as the possibility of a frictional connection or the combination of a frictional and a positive connection in a mechanical manner or the possibility of a material connection, which is achieved both chemically by adding a binder and can also be achieved thermally through the use of thermoplastics. The most commonly used method for solidification is the use of thermoplastics in the form of low-melting plastic, preferably in fiber form. These so-called binding fibers have a melting range of 100 - 200 °C and are preferably present as compact fibers or as bicomponent fibers.

Die Druckschrift DE 10 2010 034 159 A1 offenbart eine diskontinuierliche Lösung zur Herstellung von Vliesbauteilen mit senkrecht zur Oberfläche orientierten Fasern, in welcher die Fasern in eine mit Durchströmöffnungen versehene Form über einen Luftstrom transportiert werden, wobei die Form geteilt ausgebildet ist und vor dem Befüllen auseinander gefahren wird, nach dem Befüllen das Fasermaterial durch Schließen der Form komprimiert und anschließend das Fasermaterial durch Heißluft erwärmt wird bis sich die Fasern miteinander verbunden haben, wobei die Fasern in der Form vor dem Komprimieren senkrecht zu der Zufuhrrichtung und in Richtung der aus der Form ausströmenden Luft orientiert werden.The publication EN 10 2010 034 159 A1 discloses a discontinuous solution for the production of nonwoven components with fibers oriented perpendicular to the surface, in which the fibers are transported into a mold provided with flow openings via an air stream wherein the mold is divided and is moved apart before filling, after filling the fiber material is compressed by closing the mold and then the fiber material is heated by hot air until the fibers have bonded together, wherein the fibers in the mold are oriented perpendicular to the feed direction and in the direction of the air flowing out of the mold before compression.

Ferner ist aus der Druckschrift WO 2006/092029 A1 eine textile Läppmaschine einen geneigten Kamm aufweisend bekannt, der eine vertikal abfallende Faserstoffbahn auf ein Siebband eines durch einen Ofen laufenden Endlosförderers ablegt. Die hin- und hergehende Druckstange drückt die durch den Kamm gebildeten Falten in eine Haieinheit, die sich über die Breite des Maschengürtels erstreckt. Die Einheit hat eine Zahnplatte, die die gefaltete Bahn und die Längsfinger, die über dem Förderer liegen und eine flache Überlappungszone bilden, anfangs verlangsamt. Eine Textilkarte führt die Faserstoffbahn der Läppzone zu und der Ofen verschmilzt alle niedrigschmelzenden synthetischen Fasern in der Bahn mit den umgebenden Fasern, um ein Vlies mit einer Dichte von 80-2000 g / m2 zu ergeben. Die Kammbahnrichtung bleibt konstant und die Drückerleiste und die Haieinheit werden auf den Kamm zu und von ihm wegbewegt. Die Antriebe zu Kamm und Drücker sind unabhängig.Furthermore, the publication WO 2006/092029 A1 a textile lapping machine is known having an inclined comb which deposits a vertically sloping fibrous web onto a wire belt of a continuous conveyor passing through a furnace. The reciprocating pusher bar pushes the folds formed by the comb into a shark unit which extends across the width of the mesh belt. The unit has a toothed plate which initially slows down the folded web and longitudinal fingers which overlie the conveyor forming a flat overlap zone. A textile card feeds the fibrous web to the lapping zone and the furnace fuses any low melting synthetic fibres in the web to the surrounding fibres to give a web having a density of 80-2000 g/m 2. The comb web direction remains constant and the pusher bar and shark unit are moved towards and away from the comb. The drives to the comb and pusher are independent.

In der Druckschrift US 2004/0097155 A1 wird ein Verfahren eine Anordnung und eine Platine beschrieben, wo in Meltblowfasern direkt beim Herstellungsprozess gekrimmte Stabelfasern zugemischt werden. Durch ein Auseinanderziehen des Vlieses in zwei porösen Wellen mittels Luft entsteht ein Gebilde mit zwei Oberflächen, wo die Fasern planar liegen und ein ausgedünnter Mittelbereich, wo die Fasern eine C - förmige Orientierung einnehmen.In the print US 2004/0097155 A1 A process, an arrangement and a board are described where crimped staple fibers are mixed into meltblow fibers directly during the manufacturing process. By pulling the fleece apart in two porous waves using air, a structure is created with two surfaces where the fibers lie flat and a thinned central area where the fibers assume a C-shaped orientation.

In der Druckschrift WO 2009/056745 A1 ist ein aerodynamisches Verfahren beschrieben bei dem die Fasern zwischen mindestens einer bewegten porösen Wand mittels Luftstroms transportiert werden und die Luft von außen abgesaugt wird. Dabei legen sich lange Fasern bevorzugt entlang der porösen Wand ab, während vorwiegend kurze Fasern sich senkrecht zum Luftstrom ablegen.In print WO 2009/056745 A1 An aerodynamic process is described in which the fibers are transported between at least one moving porous wall by means of an air flow and the air is sucked out from the outside. Long fibers are preferably deposited along the porous wall, while predominantly short fibers are deposited perpendicular to the air flow.

Weiter offenbart die Druckschrift WO 00/66824 A1 ein luftiges, nicht gewebtes Material mit einer nicht gewebten Bahn, die eine Vielzahl von im Wesentlichen kontinuierlichen Fasern aufweist, die in einer z-Richtung der nicht gewebten Bahn orientiert sind, und ein Verfahren zur Herstellung des luftigen, nicht gewebten Materials aus den in z-Richtung geformten Fasern.The publication further discloses WO 00/66824 A1 an airy nonwoven material comprising a nonwoven web having a plurality of substantially continuous fibers oriented in a z direction of the nonwoven web, and a method of making the airy nonwoven material from the materials described in z -Direction shaped fibers.

Von der Firma Cormatex ist eine Anlage bekannt die die Fasern in einen Kanal ablegt und auch seitlich absaugt.The Cormatex company has a system that deposits the fibers into a channel and also sucks them off to the side.

Die Probleme im Stand der Technik sind, dass alle Verfahren zur Herstellung von Faservliesplatinen aus Stapelfasern mit senkrecht zur Oberfläche orientierten Fasern im Rahmen der Streuung eine gleiche Dichte längs und quer der Platine haben.The problems in the prior art are that all processes for producing nonwoven fiber boards from staple fibers with fibers oriented perpendicular to the surface have an equal density along and across the board during scattering.

Weitere Nachteile bestehen in der offenbarten Technologie der Druckschrift WO 2006092029 A1 darin, dass durch gleiche Dichte längs und quer der Platine durch die Faltenbildung nur eine zweidimensionale Verformung möglich ist. Das Vlies spaltet auf.Further disadvantages exist in the disclosed technology of the publication WO 2006092029 A1 in that due to the same density along and across the board, only two-dimensional deformation is possible due to the formation of folds. The fleece splits.

In den Offenbarungen der Druckschriften WO 2009056745 A1 und US 20040097155 A1 sowie in dem von der Fa. Comatex beschriebenen Verfahren werden Vliese offenbart, die über die Vliesdicke unterschiedliche Dichten und Faserorientierungen aufweisen, wobei in den Oberflächenbereichen die Fasern planparallel im Mittelbereich weitgehend senkrecht dazu liegen, was wiederum eine spätere Verformung des Vlieses zu einem dreidimensionalen Bauteil erschwert.In the revelations of the printed books WO 2009056745 A1 and US 20040097155 A1 as well as in the process described by Comatex, nonwovens are disclosed which have different densities and fiber orientations over the fleece thickness, with the fibers in the surface areas being plane-parallel in the central area, largely perpendicular to it, which in turn makes later deformation of the nonwoven into a three-dimensional component more difficult .

Die Verfahren, die zur Herstellung von Faservliesplatinen nach dem Airlay Prinzip arbeiten, ( WO 2009056745 A1 , US 20040097155 A1 und Fa. Comatex - mit senkrecht zur Oberfläche orientierten Fasern) ermöglichen längs und quer der Platine nur geringe Dichteunterschiede.The processes used to manufacture nonwoven fabric boards based on the Airlay principle ( WO 2009056745 A1 , US20040097155 A1 and Comatex - with fibers oriented perpendicular to the surface) allow only small differences in density along and across the board.

Nachteilig für alle diese Verfahren mit gleicher Dichte über die Breite und die Länge, ist, dass nach einer Formgebung mit unterschiedlichen Dicken, in den dünnen Bereichen die Dichte deutlich höher als im Ausgangsmaterial ist. Dies führt zum einen zu einem höheren Gewicht und zum anderen werden die dünnen Bereiche steifer und oft weniger akustisch wirksam.The disadvantage of all of these processes with the same density across the width and length is that after shaping with different thicknesses, the density in the thin areas is significantly higher than in the starting material. On the one hand, this leads to a higher weight and, on the other hand, the thin areas become stiffer and often less acoustically effective.

Vlies nach einem bekannten Airlay-Verfahren hergestellt ( WO 2009056745 A1 , US 20040097155 A1 und Fa. Comatex) haben immer durch den Herstellungsprozess bedingt Fasern parallel zur Oberfläche liegend, was sich dann bei einer dreidimensionalen Verformung negativ bemerkbar macht.Fleece manufactured using a well-known airlay process ( WO 2009056745 A1 , US20040097155 A1 and Comatex) always have fibres lying parallel to the surface due to the manufacturing process, which has a negative impact on three-dimensional deformation.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein einfaches und effizientes, wirtschaftliches, kontinuierliches, aerodynamisches Herstellungsverfahren sowie eine Anordnung zur Produktion von Faservliesen mit senkrecht zur Oberfläche orientierten Fasern und definierter Faserorientierung und bevorzugt auch Dichteverteilung über die Länge und Breite des Faservlieses und ein entsprechendes Vlies hierzu bereitzustellen.The present invention is based on the object of providing a simple and efficient, economical, continuous, aerodynamic manufacturing process and an arrangement for producing nonwoven fabrics with fibers oriented perpendicular to the surface and defined fiber orientation and preferably also density distribution over the length and width of the nonwoven fabric and a corresponding nonwoven fabric therefor.

Gelöst wird diese Aufgabe mit einem kontinuierlichen Faservlies-Herstellungsverfahren aus Fasergemischen von Trägerfasern und Bindefasern gemäß Hauptanspruch sowie einer zugehörigen Faservlies-Herstellungsanordnung und Faservliesplatine gemäß nebengeordneten Ansprüchen. Weitere vorteilhafte Ausgestaltungen sind den Unteransprüchen zu entnehmen.This object is achieved with a continuous nonwoven fabric production process from fiber mixtures of carrier fibers and binding fibers according to the main claim and an associated nonwoven fabric production arrangement and nonwoven fabric board according to the independent claims. Further advantageous embodiments can be found in the subclaims.

Das kontinuierliche Faservlies-Herstellungsverfahren aus Fasergemischen von Trägerfasern und Bindefasern umfasst die Schritte:

  1. a. Zuführen von Fasern;
  2. b. Auflösen / -kämmen und Öffnen der Fasern;
  3. c. Mischen der Fasern;
  4. d. Einsaugen der Fasern zwischen zwei sich gegenüberliegenden, mit gleicher Geschwindigkeit laufenden, luftdurchlässigen Transportbändern, in der Art, dass die Luft von außen im vorderen Abschnitt der Transportbänder, so abgesaugt wird, dass der Luftstrom durch zeitliche und über die Breite örtlich unterschiedliche Luftabsaugung immer durch das abgelegte Vliesmaterial parallel zu den Transportbändern abgesaugt wird, und damit das Faservlies senkrecht zur Oberfläche der Transportbänder angelagert ist;
  5. e. thermisches Verfestigen des entstandenen Faservlieses durch Erwärmen mittels Heißluft oder kurzwelliger Strahlung und Kühlen.
The continuous nonwoven fabric manufacturing process from fiber mixtures of carrier fibers and binding fibers comprises the following steps:
  1. a. Addition of fibres;
  2. b. dissolving/combing and opening the fibres;
  3. c. Mixing the fibres;
  4. d. Suction of the fibres between two opposing, at the same speed running, air-permeable conveyor belts, in such a way that the air is sucked out from outside in the front section of the conveyor belts in such a way that the air flow is always sucked out through the laid down nonwoven material parallel to the conveyor belts by means of air suction that varies over time and across the width, and so that the fiber fleece is deposited perpendicular to the surface of the conveyor belts;
  5. e. thermal consolidation of the resulting nonwoven fabric by heating with hot air or short-wave radiation and cooling.

Je nach Luftführung kann die Orientierung der Fasern im vorderen Bereich der parallel zueinander laufenden Bänder gesteuert werden. Bei einem Absaugen der Fasern direkt am Anfang der Bänder lagern sich die Fasern bevorzugt parallel zu den Bändern an und bilden eine Schicht. Je nach Menge der abgesaugten Luft kann das Verhältnis von parallel liegenden zu senkrecht liegenden Fasern gesteuert werden.Depending on the air flow, the orientation of the fibers in the front area of the belts running parallel to each other can be controlled. When the fibers are vacuumed directly at the beginning of the belts, the fibers are preferably deposited parallel to the belts and form a layer. Depending on the amount of air extracted, the ratio of parallel to vertical fibers can be controlled.

Die Luftabsaugung kann im vorderen Bereich der Transportbänder, vom Anfang der Transportbänder entlang der Bänder verschoben werden. Damit ist es möglich, die Orientierung der Fasern von parallel zu den Transportbändern zu einer senkrechten Ausrichtung der Fasern zu den Transportbändern zu verändern.The air extraction can be moved in the front area of the conveyor belts, from the beginning of the conveyor belts along the belts. This makes it possible to change the orientation of the fibers from parallel to the conveyor belts to a perpendicular orientation of the fibers to the conveyor belts.

Wenn auf beiden Seiten der Transportbänder der Saugbereich entlang der Bänder unterschiedlich ist, können Platinen mit einer Schicht parallel zu den Bändern liegende Fasern erzeugt werden.If the suction area along the belts is different on both sides of the conveyor belts, boards with a layer of fibers lying parallel to the belts can be produced.

Um ein flächiges Ablegen der Fasern auf den Bändern zu verhindern, wird die Füllmenge und die Bandgeschwindigkeit so gesteuert, dass die Faserkondensation immer direkt am Anfang der Bänder liegt.In order to prevent the fibers from being deposited flat on the belts, the filling quantity and the belt speed are controlled so that the fiber condensation always occurs directly at the beginning of the belts.

Über die Steuerung des Prozesses beim Anfahren kann die Parallellagerung der Fasern an den Bändern verhindert werden, was deutliche Vorteile bei der Verformung des Vlieses bringt.By controlling the process during start-up, the parallel positioning of the fibers on the belts can be prevented, which brings significant advantages when forming the fleece.

Im Anfahrprozess wird der Vliesaufbau gestoppt bis das Band gefüllt ist und dann der Prozess kontinuierlich fortgeführt (vgl. auch Abb. 9 bis 11).During the start-up process, the fleece build-up is stopped until the belt is filled and then the process continues continuously (see also Fig. 9 to 11 ).

Mit einer zeitlich variierenden Saugleistung kann über die Vlieslänge die Dichte variiert werden. Über die Bandgeschwindigkeit der Transportbänder können die Dichte und damit die Eigenschaften des entstehenden Faservlieses mit eingestellt werden. Werden Saugleistung und Bandgeschwindigkeit gekoppelt wird der zu erzielende Effekt der gewünschten Dichte und Eigenschaftsänderung verstärkt. Durch eine örtlich und zeitlich unterschiedliche Intensität der Saugleitung über die Breite des Faservlieses ist eine Dichteverteilung auch über die Breite möglich. Damit können Vlies mit örtlich begrenzten Dichteunterschieden längs und quer innerhalb einer Platine hergestellt werden.With a suction power that varies over time, the density can be varied across the length of the fleece. The density and thus the properties of the resulting fiber fleece can be adjusted using the speed of the conveyor belts. If suction power and belt speed are coupled, the desired effect of density and property change is increased. By varying the intensity of the suction line locally and over time across the width of the fiber fleece, density distribution is also possible across the width. This means that fleece with locally limited density differences can be produced lengthways and crossways within a board.

Durch einen definiert einstellbaren Abstand der Bänder zueinander kann die Vliesdicke im Bereich von 5 mm bis 100 mm eingestellt werden. Über eine Veränderung des Bandabstandes kann das Vlies vorkomprimiert werden.The fleece thickness can be adjusted in the range from 5 mm to 100 mm by means of a defined, adjustable distance between the bands. The fleece can be pre-compressed by changing the band gap.

Die Erwärmung des Vlieses erfolgt bevorzugt mittels Heißluft. In einer Variante kann die Erwärmung des Vlieses über kurzwellige Strahlen erfolgen.The fleece is preferably heated using hot air. In one variant, the fleece can be heated using short-wave rays.

Je nach weiterer Verwendung des Vlieses unterscheidet sich der Durchwärmungs- und Abkühlungsprozess.Depending on the further use of the fleece, the heating and cooling process differs.

In einer ersten Ausführung wird das Vlies so durchgewärmt, dass alle Bindefasern aktiviert wurden und im kalten Zustand die maximalen mechanischen Eigenschaften erreicht werden. Durch Vorversuche können die optimalen Parameter bestimmt werden. Im nachfolgenden wird das Vlies mit Luft gekühlt und entsprechend dar nachfolgenden Verwendung auf Maß geschnitten. Abb. 8 zeigt für ein 50mm dickes Vlies die Stauchärte gegenüber der Heizzeit.In a first step, the fleece is heated so that all binding fibers are activated and the maximum mechanical properties are achieved when cold. The optimal parameters can be determined through preliminary tests. The fleece is then cooled with air and cut to size according to the subsequent use. Fig. 8 shows the compression hardness versus heating time for a 50 mm thick fleece.

In einer weiteren Ausführung, wird das Vlies nur kurzzeitig erwärmt, die Vliesfestigkeit ist dann so eingestellt, dass das Vlies transportier und stapelbar ist. Im Bild 3 würden für dieses Vlies die erste Heizzeit reichen. Auch hier wird das Vlies anschließend gekühlt und entsprechend der nachfolgenden Verwendung auf Maß geschnitten.In another version, the fleece is only heated for a short time, the fleece strength is then adjusted so that the fleece can be transported and stacked. In picture 3, the first heating time would be sufficient for this fleece. Here, too, the fleece is then cooled and cut to size according to the subsequent use.

In einer weiteren speziellen Ausführung wird das Vlies vollständig erwärmt und im durchgewärmten Zustand direkt in eine Endform zum Verformen und Kühlen abgelegt und so ein fertiges Bauteil produziert.In another special version, the fleece is completely heated and, when fully heated, is placed directly into a final mold for shaping and cooling, thus producing a finished component.

Die Faservlies-Herstellungsanordnung weist eine Zufuhranordnung für Trägerfasern, eine Zufuhranordnung für Bindefasern, wenigstens eine Auflöse- / -kämmanordnung oder einen Faseröffner zum Aufkämmen, Vereinzeln, Lockern und Lösen der Träger- und / oder Bindefasern, wenigstens ein Mischsystem zum Durchmischen der gelösten Fasern, sowie weiter ein Transportsystem mit Luftabsaugung im vorderen Abschnitt des Transportsystems zur Ausrichtung und Ablage der Fasern bestehend aus Luftleitkanälen und Drucksteuerdüsen und mit einer Wärmequelle im hinteren Abschnitt des Transportsystems mit nachfolgender Kühlquelle zur thermischen Verfestigung des entstandenen Faservlieses; wobei der vordere Abschnitt des Transportsystems mit Luftabsaugung aus sich gegenüberliegenden, mit gleicher Geschwindigkeit laufenden, luftdurchlässigen Transportbändern besteht und die gelösten und gemischten Fasern zwischen den sich gegenüberliegenden Transportbändern eingesaugt werden und sich die Fasern aufgrund der Luftabsaugung in unterschiedlicher Dichte über die Breite und Länge des Faservlieses von außen an den Transportbändern senkrecht zu den Transportbändern anordnen. Über eine automatische oder manuelle Steuerung kann der Bandabstand verändert werden.The fiber fleece production arrangement has a feed arrangement for carrier fibers, a feed arrangement for binding fibers, at least one opening/combing arrangement or a fiber opener for combing, separating, loosening and loosening the carrier and/or binding fibers, at least one mixing system for mixing the dissolved fibers, as well as a transport system with air extraction in the front section of the transport system for aligning and depositing the fibers consisting of air guide channels and pressure control nozzles and with a heat source in the rear section of the transport system with a subsequent cooling source for thermally solidifying the resulting fiber fleece; wherein the front section of the transport system with air suction consists of opposing, air-permeable conveyor belts running at the same speed and the loosened and mixed fibers are sucked in between the opposing conveyor belts and the fibers are in different densities over the width and length of the fiber fleece due to the air suction Arrange from outside on the conveyor belts perpendicular to the conveyor belts. The band gap can be changed via automatic or manual control.

Nachfolgend kann an das Transportsystem mit Luftabsaugung und Wärmequelle ein Förderband zum Abtransport des Faservlieses angeordnet sein.A conveyor belt for transporting the fiber fleece can be arranged downstream of the transport system with air extraction and heat source.

Weiter kann an dem Förderband eine Schneidevorrichtung zum Längs- und Querschneiden gekoppelt sein.Furthermore, a cutting device for longitudinal and cross-cutting can be coupled to the conveyor belt.

Weiter können nachfolgend an das Förderband und die Schneidevorrichtung Werkzeuge mit dreidimensionaler Kontur zur Herstellung von Formteilen angeordnet sein.Furthermore, tools with three-dimensional contours for producing molded parts can be arranged downstream of the conveyor belt and the cutting device.

Bevorzugt laufen die beiden Transportbänder parallel. Gezielt kann der Abstand der luftdurchlässigen Transportbänder geändert und damit die Vliesdicke eingestellt werden.Preferably, the two conveyor belts run parallel. The distance between the air-permeable conveyor belts can be changed to adjust the fleece thickness.

In einer weiteren Ausführung kann der Abstand der Bänder zueinander über ihre Länge verringert und somit das Vlies vorkomprimiert werden.In a further embodiment, the distance between the bands can be reduced over their length and the fleece can thus be pre-compressed.

Der Luftabzugsbereich ist über die Breite in einzelne getrennt ansteuerbare Bereiche unterteilt. Die Steuerung kann dabei über Querschnittsänderungen bei gleiche Saugdruck oder über eine Änderung des Saugdrucks erfolgen.The air extraction area is divided across its width into individual, separately controllable areas. The control can take place via changes in cross-section at the same suction pressure or via a change in the suction pressure.

In Koppelung mit der Bandgeschwindigkeit und des zentralen Saugdrucks können Vlies mit definiert örtlich unterschiedlichen Dichten erzielt werden.In conjunction with the belt speed and the central suction pressure, fleece with defined, locally different densities can be achieved.

In einer ersten Ausführung verlässt das Vlies ohne Übergabe in ein anderes Transportsystem das Band im erkalteten Zustand.In a first embodiment, the fleece leaves the belt in a cooled state without being transferred to another transport system.

In einer anderen Ausführung wird das erwärmte Vlies in Platinenabschnitte geschnitten, in die untere Hälfte eines 3 - D Formwerkzeuges, welche unten entlanggefahren wird abgelegt, das Werkzeug mit der Werkzeugoberhälfte geschlossen, das Produkt in die Endform verpresst und das dreidimensionale geformte Produkt abgekühlt.In another embodiment, the heated fleece is cut into blank sections, placed in the lower half of a 3-D mold, which is moved along the bottom, the tool is closed with the upper half of the tool, the product is pressed into the final shape and the three-dimensional shaped product is cooled.

Weiter kann die Kühlquelle für die thermische Verfestigung nachfolgend an die Wärmequelle im hinteren Abschnitt des Transportsystems oder den Inhalt des dreidimensionalen Formteils kühlend angeordnet sein.Furthermore, the cooling source for thermal solidification can be arranged downstream of the heat source in the rear section of the transport system or to cool the contents of the three-dimensional molded part.

Als Wärmequelle und auch Kühlquelle für die thermische Verfestigung können verschiedene Ansätze gewählt werden. Die Wärmequelle kann beispielsweise in Form eines Heißluft-Luftstromes ausgebildet sein. In einer besonderen Ausführung wird das Vlies mittels kurzwelliger Strahlen erwärmt.Various approaches can be chosen as a heat source and also a cooling source for thermal solidification. The heat source can be designed, for example, in the form of a hot air stream. In a special version, the fleece is heated using short-wave rays.

Die Kühlung das Vlieses kann über Kaltluft oder über Kontakt, bevorzugt im 3-D Formwerkzeug erfolgen.The cooling of the fleece can be done via cold air or via contact, preferably in the 3-D forming tool.

Die Faservliesplatine besitzt insbesondere, wenn sie entsprechend hergestellt wurde (mittels des erfindungsgemäßen Verfahrens und/oder mittels der Anordnung) eine definierte Dichteverteilung über die Länge und die Breite.The fiber fleece board has a defined density distribution over the length and width, particularly if it has been manufactured accordingly (by means of the method according to the invention and/or by means of the arrangement).

Nachfolgend werden Ausführungsbeispiele der Erfindung anhand der beiliegenden Zeichnungen in der Abbildungsbeschreibung detailliert beschrieben, wobei diese die Erfindung erläutern sollen und nicht zwingend beschränkend zu werten sind:
Es zeigen:

Abb. 1
eine schematische Darstellung eines Ausführungsbeispiels der senkrechten Ausrichtung der Fasern zwischen zwei parallel verlaufenden, luftdurchlässigen Transportbändern;
Abb. 2
eine schematische Darstellung eines Ausführungsbeispiels einer Faservliesplatine;
Abb. 3
eine schematische Darstellung eines Ausführungsbeispiels einer Faservlies-Herstellungsanordnung mit getrennten Zufuhranordnungen von Trägerfasern und Bindefasern, gemeinsamen Mischsystem und parallel verlaufenden, luftdurchlässigen Transportbändern;
Abb. 4
eine schematische Darstellung einer über die Breite differenzierte Luftführung und -saugung;
Abb.5
eine schematische Darstellung eines Ausführungsbeispiels des hinteren Abschnittes einer Faservlies-Herstellungsanordnung mit parallel verlaufenden, luftdurchlässigen Transportbändern, einer Wärmequelle, einer Kühlquelle und einer Zerschneidevorrichtung;
Abb. 6
eine schematische Darstellung eines Ausführungsbeispiels des hinteren Abschnittes einer Faservlies-Herstellungsanordnung mit parallel verlaufenden, luftdurchlässigen Transportbändern, einer Wärmequelle, einer Zerschneidevorrichtung und einem dreidimensionalen Formteil;
Abb. 7
eine mögliche Dichteverteilung für eine Bodenisolation eines Personenkraftwagens;
Abb. 8
die Stauchhärte in Abhängigkeit von der Durchwärmzeit;
Abb. 9
das Einsaugen der Fasern in zwei mit gleicher Geschwindigkeit laufenden Bändern in der Art, dass die Fasern parallel zu den Bändern eingesaugt werden;
Abb. 10
die Steuerung der Faser-Füllung bei Produktionsbeginn;
Abb. 11
die Faseranordnung in den Bändern bei kontinuierlicher Produktion und
Abb. 12
die Faseranordnung in den Bändern bei räumlich unterschiedlicher Faserabsaugung entlang der Bänder im vorderen Bereich.
In the following, embodiments of the invention are described in detail with reference to the accompanying drawings in the figure description , whereby these are intended to explain the invention and are not necessarily to be considered limiting:
Show it:
Fig. 1
a schematic representation of an embodiment of the vertical alignment of the fibers between two parallel, air-permeable conveyor belts;
Fig. 2
a schematic representation of an embodiment of a nonwoven fabric board;
Fig. 3
a schematic representation of an embodiment of a nonwoven fabric production arrangement with separate feed arrangements for carrier fibers and binding fibers, a common mixing system and parallel, air-permeable conveyor belts;
Fig. 4
a schematic representation of air flow and suction differentiated across the width;
Fig.5
a schematic representation of an embodiment of the rear section of a nonwoven fabric production arrangement with parallel, air-permeable conveyor belts, a heat source, a cooling source and a cutting device;
Fig. 6
a schematic representation of an embodiment of the rear section of a nonwoven fabric production arrangement with parallel, air-permeable conveyor belts, a heat source, a cutting device and a three-dimensional molded part;
Fig. 7
a possible density distribution for floor insulation of a passenger car;
Fig. 8
the compression hardness as a function of the heating time;
Fig. 9
the suction of the fibres in two belts running at the same speed in such a way that the fibres are sucked in parallel to the belts;
Fig. 10
controlling the fiber filling at the start of production;
Fig. 11
the fiber arrangement in the ribbons during continuous production and
Fig. 12
the fiber arrangement in the bands with spatially different fiber suction along the bands in the front area.

An dieser Stelle soll darauf hingewiesen werden, das funktionsgleiche Bauteile mit einheitlichen Bezugszeichen versehen sind.At this point it should be noted that components with the same function are provided with the same reference symbols.

In Abb. 1 ist eine schematische Darstellung eines Ausführungsbeispiels mit senkrecht orientierten Fasern 3 zwischen zwei parallel verlaufenden, luftdurchlässigen Transportbändern 4, 4' dargestellt.In Fig. 1 is a schematic representation of an embodiment with vertically oriented fibers 3 between two parallel, air-permeable conveyor belts 4, 4'.

Abb. 2 zeigt eine schematische Darstellung eines Ausführungsbeispiels einer Faservliesplatine 2 aufweisend senkrecht orientierte Fasern 3. Fig. 2 shows a schematic representation of an embodiment of a nonwoven fabric board 2 having vertically oriented fibers 3.

Abb. 3 zeigt eine schematische Darstellung eines Ausführungsbeispiels einer Faservlies-Herstellungsanordnung 1 mit getrennten Zufuhranordnungen 5, 5' von Trägerfasern und Bindefasern, getrennten Faseröffnern 6, 6`, gemeinsamen Mischsystem 7 und parallel oben und unten verlaufenden, luftdurchlässigen Transportbändern 4, 4`. Die Fasern werden jeweils von der Zufuhranordnung 5, 5' in einen Faseröffner 6, 6' geführt. An die Faseröffner 6, 6' schließt sich ein gemeinsames Mischsystem 7 zur Durchmischung der Fasern für eine homogene Verteilung an. Fig. 3 shows a schematic representation of an embodiment of a nonwoven fabric production arrangement 1 with separate feed arrangements 5, 5' of carrier fibers and binding fibers, separate fiber openers 6, 6`, common mixing system 7 and air-permeable conveyor belts 4, 4` running parallel at the top and bottom. The fibers are each fed from the feed arrangement 5, 5' into a fiber opener 6, 6'. The fiber openers 6, 6' are followed by a common mixing system 7 for mixing the fibers for a homogeneous distribution.

Abb. 4 zeigt in der Frontansicht eine schematische Darstellung eines Ausführungsbeispiels einer Faservlies-Herstellungsanordnung 1 mit getrennten Zufuhranordnungen 5, 5' von Trägerfasern und Bindefasern, getrennten Faseröffnern 6, 6`, gemeinsamen Mischsystem 7 und parallel oben und unten verlaufenden, luftdurchlässigen Transportbändern 4, 4`. Die Fasern werden jeweils von der Zufuhranordnung 5, 5' in einen Faseröffner 6, 6' geführt. An die Faseröffner 6, 6` schließt sich ein gemeinsames Mischsystem 7 zur Durchmischung der Fasern für eine homogene Verteilung an. Fig. 4 shows a front view of a schematic representation of an exemplary embodiment of a fiber fleece production arrangement 1 with separate feed arrangements 5, 5 'of carrier fibers and binding fibers, separate fiber openers 6, 6', common mixing system 7 and air-permeable conveyor belts 4, 4' running parallel at the top and bottom. The fibers are each guided from the feed arrangement 5, 5' into a fiber opener 6, 6'. The fiber openers 6, 6' are followed by a common mixing system 7 for mixing the fibers for a homogeneous distribution.

Über ein System aus mehreren Ventilatoren 15-1 - 15-4 wird der Luft-, Faserstrom über einen Umlenkkanal 16 in die zwei parallelen, luftdurchlässigen Transportbändern 4, 4` geführt.Using a system consisting of several fans 15-1 - 15-4, the air and fiber flow is guided via a deflection channel 16 into the two parallel, air-permeable conveyor belts 4, 4`.

Über eine Luftabsaugung 8, 8' ,81 - 8.10 von außen an den luftdurchlässigen Transportbändern 4, 4` wird über die Vliesbreite mit unterschiedlicher Stärke auch zeitlich veränderlich abgesaugt und die Fasern kondensieren senkrecht zur Oberfläche der Transportbänder in unterschiedlicher Dichte. Der Start der Luftabsaugung 81- 8.10 ist am Anfang der Transportbänder ausgeführt und das Ende der Luftabsaugung 82 liegt direkt vor dem Anlagenbereich für die thermische Verfestigung. Für die thermische Verfestigung sind eine Wärmequelle 9 und eine Kühlquelle 10 hintereinandergeschaltet. Anschließend wird das fertige Faservlies in nachfolgenden Produktionsschritten weiterverarbeitet.An air extraction system 8, 8', 81 - 8.10 on the outside of the air-permeable conveyor belts 4, 4' extracts air across the width of the fleece at different rates and at different times, and the fibers condense perpendicular to the surface of the conveyor belts at different densities. The start of the air extraction system 81 - 8.10 is at the beginning of the conveyor belts and the end of the air extraction system 82 is directly in front of the thermal bonding system area. A heat source 9 and a cooling source 10 are connected in series for thermal bonding. The finished fiber fleece is then further processed in subsequent production steps.

In Abb. 5 ist eine schematische Darstellung des hinteren Abschnittes eines Ausführungsbeispiels einer Faservlies-Herstellungsanordnung 1 mit parallel oben und unten verlaufenden, luftdurchlässigen Transportbändern 4, 4`, einer Wärmequelle 9, einer Kühlquelle 10 und einem nachfolgenden Förderband 11 mit Zerschneidevorrichtung 12. Die fertigen Faservliesplatinen 2 werden in einem Produktsammelbehälter 13 aufgefangen. Das Ende der Luftabsaugung 82 liegt direkt vor dem Anlagenbereich für die thermische Verfestigung mit Wärmequelle 9 und Kühlquelle 10.In Fig. 5 is a schematic representation of the rear section of an exemplary embodiment of a fiber fleece production arrangement 1 with air-permeable conveyor belts 4, 4' running parallel at the top and bottom, a heat source 9, and a cooling source 10 and a subsequent conveyor belt 11 with cutting device 12. The finished fiber fleece boards 2 are collected in a product collection container 13. The end of the air extraction 82 is directly in front of the system area for thermal solidification with heat source 9 and cooling source 10.

Abb. 6 zeigt eine schematische Darstellung des hinteren Abschnittes eines Ausführungsbeispiels einer Faservlies-Herstellungsanordnung 1 mit parallel oben und unten verlaufenden, luftdurchlässigen Transportbändern 4, 4`, einer Wärmequelle 9, einem nachfolgenden Förderband 11 mit Zerschneidevorrichtung 12 und dreidimensionalen Formteilen 14. Die untere Hälfte eines dreidimensionalen Formteils 14 wird unter den warmen und somit gut formbaren Faservliesplatinen 2 entlanggefahren. Endet das Förderband 11, so werden die Abschnitte einzeln auf den unteren dreidimensionalen Formteilhälften abgelegt. Die oberen Formteilhälften werden anschließend mit einem festgelegten Druck auf die unteren jeweils mit einer Faservliesplatine 2 gefüllten Formteilhälften gepresst und die Faservliesplatine 2 somit ausgeformt. Die Kühlung der erwärmten und in den dreidimensionalen Formteilen 14 geformten Faservliesplatinen erfolgt jeweils in den unteren Hälften der dreidimensionalen Formteile 14 vor der Übergabe in einen Produktsammelbehälter 13. Es wird ein fertig ausgeformtes Faservliesprodukt erhalten. Fig. 6 shows a schematic representation of the rear section of an exemplary embodiment of a fiber fleece production arrangement 1 with air-permeable conveyor belts 4, 4' running parallel at the top and bottom, a heat source 9, a subsequent conveyor belt 11 with cutting device 12 and three-dimensional molded parts 14. The lower half of a three-dimensional molded part 14 is moved along under the warm and therefore easily formable fiber fleece boards 2. When the conveyor belt 11 ends, the sections are placed individually on the lower three-dimensional molded part halves. The upper molding halves are then pressed with a fixed pressure onto the lower molding halves, each filled with a fiber fleece board 2, and the fiber fleece board 2 is thus formed. The heated fiber fleece blanks formed in the three-dimensional molded parts 14 are cooled in the lower halves of the three-dimensional molded parts 14 before being transferred to a product collection container 13. A fully formed fiber fleece product is obtained.

Abb. 7 zeigt für eine Bodenisolation eines Personenkraftwagens eine mögliche Dichteverteilung. In den Fußaufstellbereichen ist die Dichte höher für dieses Beispiel bei 70 kg/m3, im Tunnel und unter den Sitzen bei 30 kg/ m3. Fig. 7 shows a possible density distribution for floor insulation in a passenger car. In the footrest areas, the density is higher for this example at 70 kg/m 3 , in the tunnel and under the seats at 30 kg/m 3 .

Abb. 8 die Stauchhärte in Abhängigkeit von der Durchwärmzeit. Fig. 8 the compression hardness depending on the heating time.

In Abb. 9 ist das Einsaugen der Fasern in zwei mit gleicher Geschwindigkeit laufenden Bändern in der Art, dass die Fasern parallel zu den Bändern eingesaugt werden, gezeigt.In Fig. 9 the suction of the fibers in two belts running at the same speed in such a way that the fibers are sucked in parallel to the belts is shown.

Weiter ist in der Abb. 10 die Steuerung der Faser-Füllung bei Produktionsbeginn und in Abb. 11 die Faseranordnung in den Bändern bei kontinuierlicher Produktion dargestellt.Next is in the Fig. 10 the control of the fiber filling at the start of production and in Fig. 11 The fiber arrangement in the strips is shown during continuous production.

Abb. 12 zeigt die Anordnung der Absaugung bei räumlich unterschiedlicher Absaugung entlang der Bänder an Ober- und Unterseite und die Anordnung der Fasern in den Bändern. Fig. 12 shows the arrangement of the suction with spatially different suction along the belts on the top and bottom and the arrangement of the fibers in the belts.

BezugszeichenlisteReference symbol list

11
Faservlies-HerstellungsanordnungNonwoven fabric manufacturing arrangement
22
FaservliesplatineFiber fleece board
33
Senkrecht orientierte FasernVertically oriented fibers
4, 4'4, 4'
luftdurchlässiges Transportbandair-permeable conveyor belt
5, 5`5, 5`
ZufuhranordnungFeed arrangement
6, 6`6, 6`
FaseröffnerFiber opener
7, 7`7, 7`
MischsystemMixing system
8, 8`8, 8`
Luftabsaugung 8-1 - 8-10Air extraction 8-1 - 8-10
8181
Start LuftabsaugungStart air extraction
8282
Ende LuftabsaugungEnd of air extraction
99
Wärmequelleheat source
1010
KühlquelleCooling source
1111
FörderbandConveyor belt
1212
Schneidevorrichtungcutting device
1313
ProduktsammelbehälterProduct collection container
1414
Dreidimensionales FormteilThree-dimensional molded part
15-1 -15 -415-1 -15 -4
Ventilatoren zur LuftsteuerungFans for air control
1616
Umlenkkanaldeflection channel

Claims (13)

  1. Method for the production of a continuous nonwoven fabric from fiber mixtures of carrier fibers and binding fibers,
    comprising the steps of:
    a. Feeding fibers;
    b. Breaking up / combing and opening the fibers;
    c. Mixing of the fibers;
    d. Sucking in the fibers between two opposing air-permeable conveyor belts running at the identical speed, such that the air in the front section of the conveyor belts is sucked from the outside in such a way that the air flow is always sucked through the deposited nonwoven fabric parallel to the conveyor belts by temporally and locally varying air suction over the width, and thus the fibers are deposited perpendicular to the surfaces of the conveyor belts;
    e. Thermal bonding of the created nonwoven fiber by heating by means of hot air or short-wave radiation and cooling.
  2. A nonwoven fabric manufacturing method according to claim 1,
    characterized in that
    the suction power at the opposing, air-permeable conveyor belts (4, 4') is identical in each case.
  3. A nonwoven fabric manufacturing method according to claim 1,
    characterized in that
    the suction power along the conveyor belt is different at the opposing, air-permeable conveyor belts (4, 4').
  4. A nonwoven fabric production method according to any one of claims 1 to 3,
    characterized in that
    the suction power and/or the belt speed of the conveyor belts is adjusted over the production cycle according to a predetermined system, whereby a local and temporal variation can be realized.
  5. A nonwoven fabric manufacturing method according to one of the preceding claims,

    characterized in that
    the belt speed of the conveyor belts and the suction power of the air extraction system are coupled to each other.
  6. A nonwoven fabric manufacturing method according to any one of the preceding claims,
    characterized in that
    the distance between the belts is adjustable.
  7. A nonwoven fabric manufacturing method according to one of the preceding claims,
    characterized in that the
    heating of the nonwoven is carried out via hot air and/or short-wave radiation.
  8. A nonwoven fabric manufacturing apparatus (1) comprising:
    - a supply arrangement (5, 5') for carrier fibers;
    - a supply arrangement (5, 5') for binder fibers;
    - at least one opening arrangement or opening/loosening combing arrangement or at least one fiber opener (6, 6') for combing, separating, loosening and detaching the carrier fibers and/or binder fibers;
    - at least one mixing system (7, 7') for mixing the loosened or detached fibers;
    - a transport system
    - with air suction (8, 8') in the front section of the transport system for aligning and
    depositing the fibers consisting of air guide channels and pressure control nozzles (15-1 - 15 - 4)
    and
    - with a heat source (9) in the rear section of the transport system with subsequent cooling source (10) for thermal bonding of the resulting nonwoven fabric,
    wherein
    the front section of the transport system with air suction (8, 8') consists of opposing airpermeable conveyor belts (4, 4') running at the same speed, and the loosened and
    mixed fibers are conveyed between the opposing conveyor belts, and the fibers are arranged in different density over the width and length of the nonwoven fabric on the transport belts perpendicular to the conveyor belts due to the air suction (8, 8') (8-1 -8-10) from the outside.
  9. A nonwoven fabric manufacturing apparatus (1) according to the preceding claim,
    characterized in that
    a conveyor belt (11) for transporting away the nonwoven fiber is arranged downstream of the transport system with air suction (8, 8') and heat source (9).
  10. A nonwoven fabric manufacturing apparatus (1) according to one of the two preceding claims,
    characterized in that a
    cutting device (12) for dividing the nonwoven fabric into sections / nonwoven fiber sheets or blanks is located on the conveyor belt (11).
  11. A nonwoven fabric manufacturing apparatus (1) according to one of the three preceding claims,
    characterized in that
    three-dimensional moldings (14) are arranged downstream of the conveyor belt (11) and the cutting device (12).
  12. A nonwoven fabric manufacturing apparatus (1) according to any one of the four preceding claims,
    characterized in that
    the cooling source (10) for thermal bonding and consolidation is arranged
    - downstream of the heat source (9) in the rear section of the transport system
    or
    - for cooling the content of the three-dimensional molded part (14).
  13. A nonwoven fabric sheet or board produced by means of a nonwoven fabric production method according to one of claims 1 to 7 or produced by means of a nonwoven fabric manufacturing apparatus (1) according to one of the five preceding claims,
    characterized in that
    the nonwoven fabric sheet has a defined density distribution over the length and the width.
EP21736967.7A 2020-06-19 2021-06-15 Method for the continuous production of nonwoven fabric, and associated nonwoven fabric production apparatus and nonwoven board Active EP4168616B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020116315.0A DE102020116315A1 (en) 2020-06-19 2020-06-19 Continuous fiber fleece manufacturing process as well as associated fiber fleece manufacturing arrangement and fiber fleece board
PCT/DE2021/100511 WO2021254565A1 (en) 2020-06-19 2021-06-15 Method for the continuous production of nonwoven fabric, and associated nonwoven fabric production apparatus and nonwoven board

Publications (3)

Publication Number Publication Date
EP4168616A1 EP4168616A1 (en) 2023-04-26
EP4168616C0 EP4168616C0 (en) 2024-04-03
EP4168616B1 true EP4168616B1 (en) 2024-04-03

Family

ID=76744573

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21736967.7A Active EP4168616B1 (en) 2020-06-19 2021-06-15 Method for the continuous production of nonwoven fabric, and associated nonwoven fabric production apparatus and nonwoven board

Country Status (6)

Country Link
US (1) US20230228018A1 (en)
EP (1) EP4168616B1 (en)
KR (1) KR20230024992A (en)
CN (1) CN116134190A (en)
DE (1) DE102020116315A1 (en)
WO (1) WO2021254565A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5503782A (en) 1993-01-28 1996-04-02 Minnesota Mining And Manufacturing Company Method of making sorbent articles
CA2136273C (en) 1994-11-21 2001-11-20 Serge Cadieux Fiber mat forming method, machine and product
US6588080B1 (en) * 1999-04-30 2003-07-08 Kimberly-Clark Worldwide, Inc. Controlled loft and density nonwoven webs and method for producing
US7476632B2 (en) 2002-11-15 2009-01-13 3M Innovative Properties Company Fibrous nonwoven web
EP1853754B1 (en) 2005-03-02 2012-09-05 V-Lap Pty. Ltd Textile lapping machine
FR2922901B1 (en) 2007-10-25 2010-03-26 Elysees Balzac Financiere METHOD AND DEVICE FOR CONTINUOUSLY MANUFACTURING 3D FIBROUS PATCHES; THESE TABLETS AND THEIR USES.
DE102010034159A1 (en) 2010-08-10 2012-02-16 Grimm-Schirp Gs Technologie Gmbh Apparatus, useful to produce molded fiber article (used e.g. as cushioning material), comprises pneumatic fiber supply device associated with heating device having a heat exchanger, and a mold provided with a flow passage hole on one side

Also Published As

Publication number Publication date
EP4168616A1 (en) 2023-04-26
CN116134190A (en) 2023-05-16
DE102020116315A1 (en) 2021-12-23
KR20230024992A (en) 2023-02-21
EP4168616C0 (en) 2024-04-03
US20230228018A1 (en) 2023-07-20
WO2021254565A1 (en) 2021-12-23

Similar Documents

Publication Publication Date Title
EP2630287B1 (en) Method and apparatus for producing a composite nonwoven
DE60030120T2 (en) METHOD FOR THE PRODUCTION OF A NONWOVEN MATERIAL, APPARATUS FOR CARRYING OUT THIS METHOD, NONWOVEN MATERIAL MANUFACTURED
EP3118361B1 (en) Installation and method for making a multi-layer nonwoven fabric from at least one loose fibre web
EP1726700B1 (en) Process and device for making a nonwoven fabric
EP1930492B1 (en) Method and apparatus for making a spunbonded nonwoven fabric
EP2128320B1 (en) Method and device for the manufacture of nonwoven material from filaments
EP3061855B1 (en) Roller card and method for fixing at least one fibre web
EP3110997B1 (en) Carding apparatus and carding method
EP2480709B1 (en) System and method for producing glass fiber fibrous non-woven fabric, and fibrous non-woven fabric produced using same
DE4244904C2 (en) Bulky, nonwoven fleeces mfr., with stabilised surfaces
EP3450603B1 (en) Method for forming a profiled non-woven fabric
EP2695980A1 (en) Feeding device for fibers or flocks
DE10329648B4 (en) Device for web formation
EP1057906A1 (en) Web producing installation and method
EP4168616B1 (en) Method for the continuous production of nonwoven fabric, and associated nonwoven fabric production apparatus and nonwoven board
EP2509759B1 (en) Intermediate product and method for producing an intermediate product for a fiber composite component
EP3450604B1 (en) Method for forming a profiled, solidified nonwoven fabric product
WO2001014623A2 (en) Method and device for influencing the structure and position of fibres during the aerodynamic formation of non-wovens
DE19527416A1 (en) Nonwoven produced by repeated cross-laying of carded webs - has web edges thinned by varying the laying width to improve final web uniformity
EP1726699A1 (en) Process and device for making a nonwoven fabric
WO2008074665A1 (en) Method of, and apparatus for, producing a nonwoven
DE102016113721A1 (en) Flannel-based web-shaped textile with unidirectionally increased strength
WO2023104365A1 (en) System and method for producing a single-layer or multi-layer nonwoven
DE10313688A1 (en) Plant producing fibrous composite material, has carding systems depositing fibrous layers, and filler distributors along conveyor belt leading to folding machine
EP3491181A1 (en) Pile product with unidirectionally increased strength for producing cfrp components

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230109

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: D04H 1/542 20120101ALI20231006BHEP

Ipc: D04H 1/54 20120101ALI20231006BHEP

Ipc: D04H 1/74 20060101ALI20231006BHEP

Ipc: D04H 1/732 20120101AFI20231006BHEP

INTG Intention to grant announced

Effective date: 20231027

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502021003226

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

U01 Request for unitary effect filed

Effective date: 20240418

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20240425