EP4146996A1 - Cooling system, air-conditioning system, motor assembly and associated methods - Google Patents

Cooling system, air-conditioning system, motor assembly and associated methods

Info

Publication number
EP4146996A1
EP4146996A1 EP21732956.4A EP21732956A EP4146996A1 EP 4146996 A1 EP4146996 A1 EP 4146996A1 EP 21732956 A EP21732956 A EP 21732956A EP 4146996 A1 EP4146996 A1 EP 4146996A1
Authority
EP
European Patent Office
Prior art keywords
cooling system
cooling
component
primary
cryogenic liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21732956.4A
Other languages
German (de)
French (fr)
Inventor
Jean-Philippe Georges VERNET
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eosgen Technologies
Original Assignee
Eosgen Technologies
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eosgen Technologies filed Critical Eosgen Technologies
Publication of EP4146996A1 publication Critical patent/EP4146996A1/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0005Light or noble gases
    • F25J1/0007Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0012Primary atmospheric gases, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0012Primary atmospheric gases, e.g. air
    • F25J1/0015Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0012Primary atmospheric gases, e.g. air
    • F25J1/0017Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0225Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using other external refrigeration means not provided before, e.g. heat driven absorption chillers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0236Heat exchange integration providing refrigeration for different processes treating not the same feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04533Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the direct combustion of fuels in a power plant, so-called "oxyfuel combustion"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • F25J3/04575Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating for a gas expansion plant, e.g. dilution of the combustion gas in a gas turbine
    • F25J3/04581Hot gas expansion of indirect heated nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04975Construction and layout of air fractionation equipments, e.g. valves, machines adapted for special use of the air fractionation unit, e.g. transportable devices by truck or small scale use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/86Processes or apparatus using other separation and/or other processing means using electrical phenomena, e.g. Corona discharge, electrolysis or magnetic field
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/02Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams using a pump in general or hydrostatic pressure increase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/908External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by regenerative chillers, i.e. oscillating or dynamic systems, e.g. Stirling refrigerator, thermoelectric ("Peltier") or magnetic refrigeration

Definitions

  • the present invention relates to the general field of cooling an initially gaseous component until liquefaction, more precisely at a very low temperature and in particular cryogenic.
  • the invention thus relates to a cooling system.
  • the invention further relates to an air conditioning system, an engine assembly, an adaptation method, a cooling method and an associated oxycombustion method.
  • the regulated use, transport or storage of a gaseous component requires carrying out an operation of concentration of this gaseous component, for example by means of a compressor.
  • concentration operation can also be carried out by liquefying the initially gaseous component.
  • the known gas liquefaction systems in particular of the liquefaction by cooling or compression type, are particularly expensive, energy intensive and bulky, and present a high risk in terms of the safety of goods and people. They are difficult to use outside an industrial installation that is not very flexible and relatively inefficient.
  • the objects assigned to the present invention therefore aim to remedy the various drawbacks listed above and to propose a new cooling system which, while being particularly efficient, is particularly simple to implement, inexpensive and not bulky.
  • Another object of the invention is to provide a new cooling system whose operation is particularly easy to adapt to different uses.
  • Another object of the invention is to provide a new cooling system whose maintenance cost is reduced.
  • Another object of the invention aims to provide a new cooling system which is particularly resistant to wear and whose efficiency is substantially constant over time and this even if it is subjected to prolonged uses and / or successive.
  • Another object of the invention is to provide a new cooling system having an optimized efficiency, thus allowing the use of a dimensioning as accurate as possible according to its use.
  • Another object of the invention is to provide a novel cooling system which is particularly efficient, takes up little space and which can be easily adapted for use on different scales.
  • Another object of the invention is to provide a novel cooling system which is particularly useful in the field of motor vehicles, in particular with regard to energy efficiency and pollution control.
  • Another object of the invention is to provide a new cooling system which operates under optimum safety conditions.
  • Another object of the invention is to provide a new cooling system which has very little or no environmental impact, as well as an excellent carbon footprint.
  • Another object of the invention aims to provide a new air conditioning system exhibiting in particular high energy efficiency as well as excellent air conditioning capacity. Another object of the invention aims to provide a new engine assembly that is particularly low in pollution, easy to produce and exhibiting high energy efficiency.
  • Another object of the invention aims to provide a new method of adapting an internal combustion engine that is easy to implement, making it possible to obtain an improvement in the overall performance of the engine, in particular in the fields of energy efficiency and limitation of pollutant discharges.
  • Another object of the invention is to provide a new cooling method which is particularly inexpensive in terms of energy, easy to implement and to adapt to a large number of applications.
  • Another object of the invention is to provide a new particularly efficient oxycombustion process, controlled, very low polluting, and having excellent overall energy efficiency.
  • a cooling system comprising at least:
  • a cooling means intended to cool said primary electric motor using cryogenic liquid from said primary pump.
  • a high-power air conditioning system characterized in that it comprises the cooling system described above and below, the cooling energy of the system of high power air conditioning being supplied via the evaporator.
  • a motor assembly characterized in that it comprises at least: - the cooling system as described above and below, said cooling system being designed to produce liquefied oxygen, and
  • an internal combustion engine downstream of said cooling system and comprising a combustion chamber, the cooling system being connected to said internal combustion engine so as to be able to inject said liquefied oxygen into said combustion chamber.
  • the objects assigned to the invention are also achieved by means of a method of adapting an internal combustion engine comprising at least one intake manifold and a combustion chamber, said method of adaptation being characterized by what he understands at least:
  • the objects assigned to the invention are also achieved using an oxycombustion process comprising the cooling process as described above, the oxycombustion process further comprising a step of injecting liquefied oxygen during of the cooling process within a combustion chamber of an internal combustion engine.
  • Figure 1 is a simplified schematic illustration of the general principle of a cooling system of the invention.
  • FIG. 2 is a schematic illustration of a particular embodiment of the cooling system of the invention, with helium cooling.
  • FIG. 3 is a schematic illustration of another particular embodiment of the cooling system of the invention, with a separation device, the whole integrated within an exemplary motor assembly of the invention.
  • FIG. 4 is a schematic illustration of yet another particular embodiment of the cooling system of the invention, with water electrolysis and anaerobic digestion, all integrated within another example of an engine assembly of the invention.
  • FIG. 5 is a schematic illustration of the separation device of Figure 3.
  • FIG. 6 is a schematic illustration of an enlarged view of a detail of Figure 5.
  • FIG. 7 is a schematic illustration of part of the separation device of Figure 3.
  • FIG. 8 is a section along a plane B of the separation device of Figure 7.
  • FIG. 9 is a detailed schematic illustration of an example of the operating principle of a magnetic separation device according to the invention.
  • Figure 10 is a schematic illustration of the motor of Figure 3. WAYS TO CARRY OUT THE INVENTION
  • the invention relates, according to a first aspect illustrated in the figures, to a cooling system 1 comprising at least:
  • a primary electric motor 3 intended to operate said Stirling heat pump 2.
  • the cooling system 1 of the invention is advantageously designed to cool said inlet gas G ⁇ until the latter liquefies and more precisely so that it reaches a cryogenic temperature (also called cryotemperature) for constitute said cryogenic liquid L.
  • said input gas Ge is preferably formed from at least one compound capable of reaching, in liquid form, a cryogenic temperature, that is to say rather low.
  • Said cryogenic liquid L and the terms relating to cryogenics in general, preferably relate to temperatures below -50 ° C, more preferably -100 ° C, even more preferably -150 ° C or even -153 , 15 ° C (i.e. 120 K).
  • said cryogenic temperature is advantageously less than -50 ° C, more preferably -100 ° C, even more preferably -150 ° C or even more preferably -153.15 ° C (that is to say say 120 K).
  • the cryogenic temperature, to which the cryogenic liquid L is therefore advantageously brought by means of said Stirling heat pump 2 is between -150 ° C and -270 ° C, more preferably between -170 and -250 ° C, and more preferably still between -196 and - 210 ° C.
  • Said Stirling heat pump 2 is preferably a cold machine, and therefore advantageously designed to generate cold (sometimes called “Stirling cold”) according to the Stirling cycle but in the opposite direction of operation of a Stirling engine, since the cycle of Stirling is reversible.
  • said Stirling heat pump 2 thus requires, in order to generate cold, a mechanical drive provided by said primary electric motor 3.
  • Said Stirling heat pump 2 is therefore advantageously designed for, alone or in combination with d '' possible others cooling devices, cooling said input gas Ge, at least until it liquefies, and preferably before it solidifies, and more precisely to said cryogenic temperature.
  • the invention also relates as such, according to a second aspect illustrated in the figures, a cooling method comprising at least one step of cooling an inlet gas G ⁇ using at least one heat pump Stirling 2, so as to form a cryogenic liquid L, said Stirling 2 heat pump being powered by a primary electric motor 3.
  • the cooling process is obviously preferably implemented by means of the cooling system 1 mentioned above, and described in more detail below.
  • the description which follows and which precedes concerning the cooling system 1 therefore also applies to the cooling method of the invention, and vice versa.
  • the cooling system 1 further comprises at least:
  • a primary pump 4 intended to circulate said cryogenic liquid L under pressure
  • the cooling method further comprises:
  • said pumping step is preferably carried out using said primary pump 4.
  • said cooling step is preferably carried out using said cooling means 5, which may for example comprise a heat exchanger (not shown) enveloping the primary electric motor 3.
  • Said cooling means 5 further advantageously comprises a recirculation means, for example a pipe, designed to recover the cryogenic liquid L at an outlet of the pump to Stirling heat 2 and inject it into said heat exchanger.
  • Said primary pump 4 is preferably a high pressure pump, capable of putting said cryogenic liquid L under a pressure greater than 40 bars, preferably greater than 70 bars, more advantageously greater than 100 bars, and for example between 100 and 3000 bars.
  • Said pumping step is therefore advantageously a high pressure pumping step, to bring the cryogenic liquid L to one of the aforementioned pressure ranges.
  • the cooling means 5 is designed so as to also cool said Stirling heat pump 2 itself with the aid of said cryogenic liquid L coming from said primary pump 4, thereby accelerating the condensation of the cryogenic liquid L at the same time. within said Stirling 2 heat pump and allowing the latter to minimize losses (by heating for example).
  • cryogenic liquids very often have a very low viscosity, that of liquefied air (for example forming said cryogenic liquid L) being for example approximately 20 times lower. to the viscosity of water in the liquid state.
  • Another advantage of the cooling configuration established by the invention is that the pressurization (preferably high pressure) of the cryogenic liquid L, which can therefore be carried out almost without loss (in particular of electrical energy) by said primary pump 4, maximizes the efficiency of using said cryogenic liquid L in a wide variety of applications.
  • One of the advantages of this pressurization of the cryogenic liquid L is that it allows the latter to sufficiently rapidly cool said primary electric motor 3
  • Said primary pump 4 comprises, for example, a pumping means which may in particular be centrifugal, positive-displacement, or even vacuum.
  • the primary pump 4 comprises a secondary electric motor (not shown), and the cooling system 1 is designed to cool said secondary electric motor using the cryogenic liquid L coming from said Stirling heat pump 2.
  • the cryogenic liquid L coming from said Stirling heat pump 2 cools said secondary electric motor.
  • the cryogenic liquid L advantageously makes it possible to operate the primary electric motor 3, and preferably also the secondary electric motor, at cryogenic temperatures.
  • Said electric motor (s) therefore operating advantageously under conditions close to superconductivity due to their low operating temperature, this configuration significantly reducing the losses in the magnetic circuit (called “iron” losses) and losses by the Joule effect (known as “copper” losses, due to electrical resistance) of the electric motor (s) 3.
  • the cooling system 1 operates almost without losses other than friction losses, which are moreover very low within the primary pump 4 and even within the Stirling heat pump 2 when said cryogenic liquid L has a low viscosity.
  • the cooling system 1 and the cooling method can therefore be implemented with a minimum of electrical energy, without substantial loss of the latter.
  • Said primary 3 and secondary electric motors are preferably separate, to allow better control of the cooling system and of the cooling process, but alternatively, they can be formed by the same single electric motor, which performs the two functions of starting up the cooling system.
  • said Stirling heat pump 2 and switching on said primary pump 4 or more exactly its pumping means are preferably separate, to allow better control of the cooling system and of the cooling process, but alternatively, they can be formed by the same single electric motor, which performs the two functions of starting up the cooling system.
  • the cooling system 1 also comprises a device for generating electrical energy from a renewable energy source (not illustrated), said primary electric motor 3 and / or said primary pump 4 being designed to be supplied (therefore with electrical energy) by said energy generation device.
  • Said power generation device is by example with intermittent production, and may in particular comprise one or more wind turbines, or even one or more solar panels (photovoltaic in particular).
  • the cooling method comprises a step of generating electrical energy from a renewable energy source, for example intermittent, such as a wind or solar energy source, for supplying (therefore electrical energy) said primary electric motor 3 and / or enabling said pumping step.
  • said energy generation step is preferably carried out using said energy generation device.
  • Such a configuration is particularly advantageous because it represents an optimized carbon footprint, low overall heating, and therefore an optimized environmental impact that is to say reduced or even almost zero or zero.
  • the cooling system 1 further comprises an evaporator 6 intended to evaporate at least part of said cryogenic liquid L under pressure from said primary electric motor 3, so as to form an outlet gas G ⁇ and to recover cooling energy.
  • Said evaporator 6 can be formed from one unit or from a plurality of units, each unit advantageously forming a specific heat exchanger.
  • Said evaporator 6 can be considered as being a global heat exchanger, one of the main functions of which is to heat said cryogenic liquid L so as to cause it to evaporate in the form of said outlet gas G ⁇ .
  • Said evaporator 6 can also be designed to heat transfer cooling energy from said outlet gas Gs (which remains relatively cold in the evaporator 6, for example around -10 to -120 ° C) to another compound, or in other words, to transfer heat from this other compound to said outlet gas Gs.
  • said evaporator 6 comprises at least one primary heat exchanger 7 intended to collect on the one hand said input gas Ge in order to cool it before its entry into said Stirling heat pump 2, and on the other hand at least part of said cryogenic liquid L, coming from said primary electric motor 3, to heat it.
  • said evaporator 6 further comprises at least one secondary heat exchanger 8 intended to heat said outlet gas G ⁇ or at least part of said cryogenic liquid L coming from said primary heat exchanger 7 using a source heat Q.
  • the cooling system 1 comprises a module 9 for supplying said heat source Q.
  • said supply module 9 is formed by a device for producing solar energy. 10, a combustion heat recovery device 51, for example from an internal combustion engine 50, or a fatal heat recovery device from the cooling system 1 or from another system.
  • the cooling system 1 comprises a helium liquefaction device 30, which comprises at least:
  • a heat exchanger 31 intended to collect on the one hand gaseous helium He in order to cool it to a cryotemperature, for example 120 K or below (or any other cryogenic temperature already mentioned), and on the other hand the cryogenic liquid L under pressure from the primary electric motor 3 to heat it,
  • an isenthalpic expansion module 32 intended to achieve the isenthalpic expansion of the cooled gaseous helium He from the heat exchanger 31, in order to liquefy said gaseous helium He.
  • said heat exchanger 31 therefore forms part of said evaporator 6, and can be formed, for example, by said primary heat exchanger 7 or said secondary heat exchanger 8 or else constitute a separate unit.
  • said evaporator 6 comprises said heat exchanger 31.
  • said helium liquefaction device 30 further comprises at least one or more of:
  • a cooling circuit 33 of a magnetic element 34 such as a medical imaging magnet, using the liquefied helium He coming from said isenthalpic expansion module, so that the liquefied helium He is sufficiently heated to be vaporized into gaseous helium He,
  • a secondary compressor 36 intended to compress the gaseous helium He coming from said cooling circuit 33 and to send it to said heat exchanger 31, and a secondary turbine 35, positioned upstream of said isenthalpic expansion module 32 and intended to recover mechanical energy from the cooled gaseous helium He coming from the heat exchanger 31, said secondary turbine 35 supplying (at least in part ) said secondary compressor 36 in energy (mechanical, directly, or electrical, indirectly for example via an electrical generator unit).
  • the cooling system 1 comprises a mechanical energy recovery device 12 for recovering the mechanical energy produced by a displacement of said outlet gas Gs.
  • the cooling method thus comprises, downstream of said cooling step, a step of recovering mechanical energy produced by a displacement of said outlet gas Gs.
  • said outlet gas displacement Gs is caused by the passage of at least part of said cryogenic liquid L in the gaseous state in the form of said outlet gas Gs and / or by heating and / or expansion of said second component outlet gas Gs.
  • the displacement of said outlet gas Gs is thus advantageously the source of mechanical work operated by said mechanical energy recovery device 12.
  • said primary pump 4 is at least partly actuated using said mechanical energy recovery device 12.
  • said pumping step is less partly carried out using the energy recovered during said mechanical energy recovery step.
  • said mechanical energy recovery device 12 comprises at least one electric generator 13.
  • Said mechanical energy recovery device 12 further comprises, for example, a primary turbine 14, linked to said generator. electric 13, said primary turbine 14 being rotated by said outlet gas Gs.
  • the mechanical energy recovered by said mechanical energy recovery device 12 is reused in mechanical form.
  • Said mechanical energy recovery device 12, and more precisely said electric generator 13 is thus advantageously designed to produce produced electric energy Eee from the recovered mechanical energy.
  • the cooling system 1 comprises, upstream of said Stirling heat pump 2, a primary compressor 15 designed to compress said input gas Ge, as illustrated in FIGS. 1 to 4.
  • This compressor 35 advantageously makes it possible to facilitate the entry of the input gas Ge, for example air, within the cooling system 1, with a view to producing said cryogenic liquid JL.
  • said primary compressor 15 is at least partly actuated using said mechanical energy recovery device 12, for example by transmission of mechanical and / or electrical energy Em / e.
  • the cooling process comprises, upstream of said cooling step, a compression step during which said inlet gas Ge is compressed, said compression step being more preferably at least partly carried out at using the energy recovered during said mechanical energy recovery step. The energy balance and the overall efficiency of the cooling system 1 are further improved.
  • the cooling system further comprises a module 16 for electrolysis of water H2O into dihydrogen H2 and oxygen oxygen O2 supplied with electricity at least by said electric generator 13.
  • said electric generator 13 supplies the electric energy produced Eee, to the electrolysis module 16 advantageously continuously, which makes it possible to save large amounts of energy since there is no longer any need to supply said module completely independently.
  • 'electrolysis 16 Such a configuration is particularly advantageous because the electrolysis of water is very expensive in terms of electrical energy.
  • the cooling system 1 advantageously further comprises a heat exchange module 17 designed to:
  • the cooling system 1 also comprises a methane reforming unit 18, designed to react carbon dioxide CO2 with dihydrogen Hg from said water electrolysis module 16 to form methane CH4 and water H2O.
  • the methane CH4 thus formed can advantageously be injected into an internal combustion engine 50 as fuel, while the liquefied oxygen O2 can be injected into said internal combustion engine 50 as an oxidizer.
  • the invention also relates as such, according to a third aspect illustrated by the examples in FIGS. 3 and 4, an engine assembly 60 comprising at least:
  • cooling system 1 being designed to produce liquefied oxygen O2
  • the engine assembly 60 is obviously preferably implemented by means of the cooling system 1 mentioned above, and described in more detail below.
  • the above description (and optionally which follows) concerning the cooling system 1 and the cooling method therefore also applies to the engine assembly 60 of the invention, and vice versa.
  • the cooling system 1 is connected to said internal combustion engine 50 so as to be able to inject said liquefied oxygen O2 into said combustion chamber 25.
  • said liquefied dioxygen O2 comes from said water electrolysis module 16.
  • the cooling system 1 is also designed to be able to also inject said methane ChU into said combustion chamber 25.
  • the internal combustion engine 50 is a four-stroke engine, a two-stroke engine, a rotary piston engine (as illustrated), a gas turbine, or a Stirling engine. Said internal combustion engine 50 is thus advantageously intended to be supplied with an oxidizer and a fuel, one and / or the other possibly coming from said cooling system 1.
  • said cryogenic liquid L coming from said primary electric motor 3 is formed of at least a first component i and a second component Qg which are distinct and in the liquid state.
  • the cooling system 1 further comprises a separation device 19 designed to separate said first and second components i, Qg in the liquid state by magnetism, one of said first and second components Ci, Qg in the liquid state exhibiting a much greater paramagnetic character than the other of said first and second components Ci, Qg.
  • the cooling method further comprises a step of separating said first and second components Qi, Qg in the liquid state by magnetism. Obviously, said separation step is preferably carried out by means of said separation device 19.
  • said input gas Ge is formed by air, said first component Ci being mainly formed by dioxygen O2, while said second component C2 is very predominantly formed. by nitrogen N2.
  • said second component Qg thus further comprises argon Ar and / or carbon dioxide C02, each of which is found in air in a much lower proportion than that of dinitrogen N2.
  • said input gas Ge is formed mainly by natural gas or bio-methane (that is to say resulting from an essentially biological process for the production of methane), said first component O being predominantly formed of CHU methane while said second component C2, in particular in the liquid state, is formed from natural gas or bio-methane effluents, said effluents being in the present case preferably formed from the liquid fraction of natural gas or bio-methane released following the treatment of the input gas Ge (cooling to liquefaction) freed of its main recoverable product, namely here CHU methane.
  • natural gas and biomethane are usually each formed by a mixture of several chemical species, among which methane CH4 is normally predominant.
  • Said separation device 19 preferably further comprises an induction pump 20, for example single-phase or three-phase, designed to expel said most paramagnetic component, among said first and second components Ci, C2, out of the separation device 19, preferably while pressurizing it.
  • said separation device 19 comprises a magnetic trap 21 designed to emit a magnetic field 100 so as to retain the most paramagnetic component, among said first and second components Ci, 2, substantially within a trapping portion 22 of said separation device 19.
  • said separation step thus comprises a magnetic trapping step in which a magnetic field 100 is emitted so as to retain the most paramagnetic component, among said first and second components Ci, Cg, substantially at the same time. within a trapping zone 23, which is preferably formed by or surrounded by said trapping portion 22.
  • said magnetic trapping step is advantageously carried out using said magnetic trap 21.
  • said device separation 19 comprises means 24 for settling said cryogenic liquid JL, at least a portion of said settling means 24 forming the said trapping portion 22.
  • the cooling method therefore advantageously comprises a step of settling said cryogenic liquid L, said settling step preferably being carried out by means of said settling means 24, which for example comprises a settling vessel.
  • said settling and trapping steps are at least partly concomitant.
  • said magnetic trap 21 and said induction pump 20 are used in combination, said induction pump 20 being downstream of the magnetic trap 21 and making it possible to complete the step of separating said first and second components ⁇ i, ⁇ z.
  • the first component ⁇ l in the liquid state (liquid oxygen O2 in the case where the inlet gas G ⁇ is Even) is sucked into the magnetic trap 21 by the induction pump 20 whose magnetic field, thanks to a phase shift, generates a magnetic wave which travels along a discharge pipe forming an outlet of said first component i in the liquid state, thus attracting the first component i in the liquid state liquid (formed for example of liquid oxygen O2) out of the settling means 24 while putting it under pressure.
  • the speed of displacement of the first component Ci in the liquid state is preferably proportional to the frequency of the current supplying the induction pump 20 and to the Lorentz forces.
  • the magnetic trap 21, and more precisely said trapping portion 22 advantageously comprises a magnetic network formed of small magnets 26 which constitute small three-dimensional cells, and which allow said magnetic field 100 to be emitted.
  • the set of said magnets 17 can form a cube, a cylinder, or a cone, and the cells are smaller and smaller as the bottom is approached. Such a configuration is similar to a magnetic filter with increasingly fine mesh.
  • the indices P + and P- advantageously represent partial pressure gradients due to the concentration respectively of the oxygen O2 (or more generally of the first component i) liquid and of the nitrogen N2 (or more generally of the said second component C2) liquid within the magnetic trap 21, while the horizontal arrows resulting from the signs O2 and N2 represent the respective hydraulic speeds of liquid oxygen O2 and liquid nitrogen N2, respectively, the waveform on the far left representing the distribution of the speeds of the first and second components 1, C 2 mixed in the liquid state just before their magnetic separation.
  • said liquid oxygen O2 (or more generally said first component Ci) approaches a first wall 27 of the magnetic trap 21 behind which is located said magnets 26, while the dinitrogen N2 (or more generally the second component C2) approaches a second wall 28 of the magnetic trap 21 opposite to the first wall 27 and devoid of magnet, the magnetic field 100 exerting a magnetic force Fm on the paramagnetic molecules of the oxygen O2 (or more generally on the most paramagnetic of said first and second components Ci, 2, preferably said first component Ci) only, and not on the N2 dinitrogen molecules.
  • the separation step and / or the separation device 19 of the invention uses (s) the paramagnetic capacity of liquid oxygen O2 (and more generally of said first component Ci to I). liquid state), which is thus retained between the magnet poles and / or is attracted by a magnetic field 11, to separate it from the nitrogen N2 and the argon Ar (and more generally from said second component C2 in the state liquid).
  • the liquid argon Ar and the liquid nitrogen N2 being mainly non-magnetic, they are advantageously not retained by the magnetic field 100.
  • Said induction pump 20 comprises, according to an advantageous example illustrated in FIG. 7, a winding 70 of three-phase wire for collecting said first component Ci within the settling means 6, and downstream of this winding 70 one or more coils. in three-phase 71, as illustrated in FIG. 6.
  • a winding 70 of three-phase wire for collecting said first component Ci within the settling means 6, and downstream of this winding 70 one or more coils. in three-phase 71, as illustrated in FIG. 6.
  • Such a configuration preferably makes it possible both to improve the final separation of said first and second components ⁇ i, ⁇ 2, and to put under pressure, that is to say at a flow rate significant, said first liquid C ⁇ component finally separated from said second liquid Cz component.
  • This specific configuration with a separation device 19 operating by virtue of magnetism is particularly advantageous, since the operating temperatures of the magnetic separation device 19, and in particular of said magnetic trap 21 and of said induction pump 20, are very low (cryotemperatures).
  • the conductive parts of the separation device 19, in particular in the case of magnets and more particularly of an electromagnet are at the limits of the natural superconductivity of copper or aluminum, and electric currents of any magnitude can therefore be used and generate large magnetic forces with little heating and therefore little electrical and thermal losses.
  • the engine assembly 60 is designed so that the cooling system 1 can inject, within said combustion chamber 25, the first component Ci in the state coming from the separation device 19, said first component Ci in the liquid state advantageously forming said liquefied dioxygen O2
  • said first injected component Ci is therefore intended to serve as an oxidizer within the internal combustion engine 50.
  • said separation device 19 is therefore designed to inject said second component C2 in the liquid state into said evaporator 6 and not to inject said first component Ci in the liquid state into said evaporator 6.
  • 'motor assembly 60 is designed so that the second component C2 is formed (mainly) by said liquid nitrogen N2 and is introduced into the evaporator 6, while the first component i is formed by said liquid oxygen O2 and injected directly in said internal combustion engine 50, to carry out oxycombustion, as illustrated in FIG. 3.
  • an engine assembly 60 comprising:
  • an internal combustion engine 50 downstream of said cooling system 1 and comprising a combustion chamber 25, the cooling system 1 being connected to said engine 26 so as to be able to inject into said combustion chamber 25 said first component Ci.
  • the latter is obviously preferably formed by oxygen O2.
  • said engine 50 comprises an exhaust outlet 42 designed to evacuate at least one exhaust component Ce in the gaseous state out of said combustion chamber 25. More advantageously still, downstream of said exhaust outlet 42, said evaporator 6 is designed to cool said exhaust component Ce coming from said exhaust outlet 42 and heat said second component C2 coming from said separation device 19. Said exhaust outlet 42 thus advantageously forms part of said exhaust. combustion heat recovery device 51.
  • the fuel of the internal combustion engine 50 may in particular be a hydrocarbon, for example methane Cm, or dihydrogen H2.
  • the fuel is a hydrocarbon and in particular methane CH4.
  • the exhaust component Ce in the gaseous state which contains the products of the combustion of the engine 26, will be mainly formed of water and carbon dioxide CO2.
  • the fuel is hydrogen H2
  • the exhaust component Ce in the gaseous state will be formed mainly or even almost only water.
  • the engine assembly 60 comprises a combustion heat recovery device 51, preferably that described above, for recovering the heat of combustion of the exhaust component Ce from said combustion chamber 25.
  • the motor assembly 60 is designed so that the evaporator 6 for cooling said exhaust component Ce at least until liquefaction of a primary portion of the latter, as illustrated in FIGS. 3 and 4.
  • the motor assembly 60 is designed to use said primary liquefied portion to liquefy a secondary portion of said exhaust component Ce, said primary and secondary portions being separate.
  • Said primary portion is advantageously mainly formed of carbon dioxide CO2
  • said secondary portion is mainly formed of water, as illustrated in Figures 3 and 4.
  • said combustion heat recovery device 51 comprises a device reinjection valve (not shown) designed to sweep said combustion chamber 25 with said primary portion and / or said secondary portion (in liquid or alternatively gaseous state) in order to expel said exhaust component C e out of said chamber.
  • said reinjection device is designed to inject the primary liquid portion formed of carbon dioxide, within said combustion chamber 25, to optimize the scanning of the latter, that is, that is to say expel all of the gases burnt by combustion and which form the exhaust component Ce in the gaseous state.
  • the invention also relates as such, according to a fourth aspect, to a method of adapting an internal combustion engine 50 comprising at least one intake manifold and a combustion chamber 25, said adaptation method comprising at least one less :
  • cooling system 1 as described above is connected to said internal combustion engine 50, at said closed or removed intake manifold and therefore upstream of said combustion chamber 25, so to be able to inject into the latter liquefied oxygen oxygen produced by said cooling system 1.
  • said internal combustion engine 50 and the cooling system 1 form an engine assembly 60 as described above
  • said liquefied oxygen oxygen can be formed by said first component Ci originating from the separation device 19, as illustrated in FIG. 3, or else by the oxygen oxygen O2 formed by the water electrolysis module 16 and liquefied by said heat exchange module 17, or a combination of the two.
  • said following and preceding description concerning the cooling system 1, the engine assembly 60 and the cooling method therefore also applies to the adaptation method of the invention, and vice versa.
  • the invention also relates as such, according to a fifth aspect, to an oxycombustion process comprising the cooling process as described above, the oxycombustion process further comprising a step of injecting liquefied dioxygen O2 during of the cooling process within a combustion chamber 25 of an internal combustion engine 50.
  • the following and preceding description concerning the cooling system 1, the engine assembly 60, the cooling process and even the adaptation method therefore also applies to the oxycombustion method of the invention, and vice versa.
  • said input gas Ge being formed by air
  • said first component i being mainly formed by oxygen O2
  • said first component i is injected into said combustion chamber 25.
  • the internal combustion engine 50 has a rotary piston 44 (in the shape of a Reuleaux triangle).
  • the internal combustion engine 50 with rotary piston 44 of the variant illustrated in FIG. 10 comprises two spark plugs 39 in opposition, two common injections of fuel and oxidizer 40, 41 also in opposition, and two exhaust outlets 42 also in opposition and designed to evacuate the exhaust component Ce in the gaseous state, as previously described.
  • Said oxidizer is preferably formed by liquid oxygen O2, formed for example by said first component Ci. Oxycombustion here makes it possible to overcome the recurring low compression problems of conventional rotary piston engines, in particular by adapting the speed of rotation of the rotary piston 44.
  • the cooling system 1 is also suitable for the production of small quantities of said first liquefied component i, or, after returning to the gaseous state of the latter, for the production of small quantities of said first component Ci in the gaseous but compressed state. (i.e. under relatively high pressure).
  • the invention also relates as such, according to a fifth aspect not illustrated here, a high power air conditioning system comprising the cooling system described above, the cooling energy of the high power air conditioning system being supplied via said evaporator 6.
  • the signs (g) and (liq) are indicated in the figures to indicate respectively the gaseous and liquid states of different components.
  • the arrows positioned on either side of the continuous lines preferably indicate the direction of a flow, for example a flow of He ( g ), that is to say a flow of helium He to I. gaseous state.
  • first, second, third, fourth, fifth, primary, secondary, tertiary type of the preceding description are preferably used for distinctive purposes only, and not to designate a rank or an ordinal numbering.
  • a second element can for example be introduced without necessarily that a first element of the same nature is also introduced or even present implicitly.
  • the invention relates to the problems of liquefied gas production, pollution control and energy efficiency of combustion engines, and more generally energy saving, with the possible application of the production of a liquid. cryogenic with optimized energy consumption.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

The invention relates to a cooling system (1) comprising at least: - a Stirling heat pump (2) designed to cool an inlet gas (Ge) down to a cryogenic temperature so as to form a cryogenic liquid (L), - a primary electric motor (3), intended to put said Stirling heat pump (2) into operation, - a primary pump (4) intended to cause said cryogenic liquid (L) to circulate under pressure, and - a cooling means (5) intended to cool said primary electric motor (3) with the aid of the cryogenic liquid (L) output by said primary pump (4). - The invention is particularly suitable for the production of a cryogenic liquid and the applications thereof.

Description

SYSTEME DE REFROIDISSEMENT, SYSTEME DE CLIMATISATION, ENSEMBLE COOLING SYSTEM, AIR CONDITIONING SYSTEM, ASSEMBLY
MOTEUR ET PROCEDES ASSOCIES ENGINE AND ASSOCIATED PROCESSES
DOMAINE TECHNIQUE TECHNICAL AREA
La présente invention concerne le domaine général du refroidissement d’un composant initialement gazeux jusqu’à liquéfaction, plus précisément à une température très basse et en particulier cryogénique. The present invention relates to the general field of cooling an initially gaseous component until liquefaction, more precisely at a very low temperature and in particular cryogenic.
L’invention concerne ainsi un système de refroidissement. The invention thus relates to a cooling system.
L’invention concerne en outre un système de climatisation, un ensemble moteur, un procédé d’adaptation, un procédé de refroidissement et un procédé d’oxycombustion associés. The invention further relates to an air conditioning system, an engine assembly, an adaptation method, a cooling method and an associated oxycombustion method.
TECHNIQUE ANTERIEURE PRIOR TECHNIQUE
Traditionnellement, l’utilisation régulée, le transport ou le stockage d’un composant gazeux nécessite de réaliser une opération de concentration de ce composant gazeux, par exemple au moyen d’un compresseur. L’opération de concentration peut également être réalisée par liquéfaction du composant initialement gazeux. Traditionally, the regulated use, transport or storage of a gaseous component requires carrying out an operation of concentration of this gaseous component, for example by means of a compressor. The concentration operation can also be carried out by liquefying the initially gaseous component.
Pour réaliser la liquéfaction d’un composant gazeux, il est ainsi connu de mettre en œuvre des systèmes de refroidissement et des systèmes de compression. To achieve liquefaction of a gaseous component, it is thus known to use cooling systems and compression systems.
Ces systèmes dédiés à la liquéfaction d’un gaz, bien que donnant globalement satisfaction dans leur utilisation, n’en présentent pas moins certains inconvénients. Ainsi, les systèmes de refroidissement connus dédiés à la liquéfaction d’un gaz présentent un coût énergétique important, un rendement au mieux médiocre, une mise en œuvre complexe et un dimensionnement conséquent en regard de la quantité de gaz liquéfié relativement faible produite par unité de temps. These systems dedicated to the liquefaction of a gas, although generally satisfactory in their use, nonetheless have certain drawbacks. Thus, the known cooling systems dedicated to the liquefaction of a gas have a high energy cost, an efficiency at best mediocre, a complex implementation and a consequent dimensioning with regard to the relatively small quantity of liquefied gas produced per unit of gas. time.
Les systèmes de compression connus, en particulier ceux dédiés à la liquéfaction d’un gaz, présentent également un coût énergétique important, d’autant qu’ils présentent en outre des pertes caloriques conséquentes du fait même de la compression du gaz et des frottements inhérents au mouvement de leur organe de compression, par exemple un piston dans le cas d’un compresseur à pistons. Une telle configuration limite en pratique le taux de compression de chaque étage en particulier lorsqu’il est nécessaire d’atteindre de hautes pressions. Les compresseurs peuvent ainsi nécessiter d’être refroidis à chacun de leurs étages, ce qui consomme encore plus d’énergie. Enfin, les systèmes de compression connus présentent des risques de sécurité importants liés au stockage de gaz comprimé, et ne sont généralement pas adaptés, seuls, à la liquéfaction de certains gaz, notamment à la liquéfaction des composants gazeux de l’air. Known compression systems, in particular those dedicated to the liquefaction of a gas, also have a high energy cost, especially since they present in in addition to the consequent heat losses due to the very fact of the compression of the gas and the friction inherent in the movement of their compression member, for example a piston in the case of a piston compressor. Such a configuration in practice limits the compression ratio of each stage, in particular when it is necessary to reach high pressures. Compressors may therefore need to be cooled at each of their stages, which consumes even more energy. Finally, the known compression systems present significant safety risks associated with the storage of compressed gas, and are generally not suitable, on their own, for the liquefaction of certain gases, in particular for the liquefaction of the gaseous components of the air.
Ainsi, même si des systèmes de liquéfaction de gaz sont connus et réalisables en tant que tels, les inconvénients mentionnés ci-avant démontrent qu’ils ne sont pas adaptés à une mise en œuvre simple, efficiente et en toute sécurité de la concentration d’un gaz et à plus forte raison de la liquéfaction d’un gaz. Thus, even if gas liquefaction systems are known and workable as such, the aforementioned drawbacks demonstrate that they are not suitable for a simple, efficient and safe implementation of the concentration of gas. a gas and all the more so from the liquefaction of a gas.
En définitive, les systèmes connus de liquéfaction de gaz, notamment du type à liquéfaction par refroidissement ou compression, sont particulièrement coûteux, énergivores et encombrants, et présentent un risque élevé en matière de sécurité des biens et des personnes. Ils sont difficilement utilisables en dehors d’une installation industrielle peu modulable et relativement peu efficiente. Ultimately, the known gas liquefaction systems, in particular of the liquefaction by cooling or compression type, are particularly expensive, energy intensive and bulky, and present a high risk in terms of the safety of goods and people. They are difficult to use outside an industrial installation that is not very flexible and relatively inefficient.
EXPOSE DE L’INVENTION DISCLOSURE OF THE INVENTION
Les objets assignés à la présente invention visent en conséquence à remédier aux différents inconvénients énumérés précédemment et à proposer un nouveau système de refroidissement qui, tout en étant particulièrement efficient, est particulièrement simple à mettre en œuvre, peu coûteux et peu encombrant. The objects assigned to the present invention therefore aim to remedy the various drawbacks listed above and to propose a new cooling system which, while being particularly efficient, is particularly simple to implement, inexpensive and not bulky.
Un autre objet de l’invention vise à proposer un nouveau système de refroidissement dont le fonctionnement est particulièrement facile à adapter à différentes utilisations. Another object of the invention is to provide a new cooling system whose operation is particularly easy to adapt to different uses.
Un autre objet de l’invention vise à proposer un nouveau système de refroidissement de conception robuste dont la mise en œuvre est facile et réalisée avec une excellente efficacité énergétique. Un autre objet de l’invention vise à proposer un nouveau système de refroidissement à la fois fiable et compétitif sur le plan économique. Another object of the invention aims to provide a new cooling system of robust design, the implementation of which is easy and carried out with excellent energy efficiency. Another object of the invention aims to provide a new cooling system which is both reliable and competitive from an economic point of view.
Un autre objet de l’invention vise à proposer un nouveau système de refroidissement dont le coût d’entretien est réduit. Another object of the invention is to provide a new cooling system whose maintenance cost is reduced.
Un autre objet de l’invention vise à proposer un nouveau système de refroidissement qui soit particulièrement résistant à l’usure et dont l’efficacité est sensiblement constante au cours du temps et ce même s’il est soumis à des utilisations prolongées et/ou successives. Another object of the invention aims to provide a new cooling system which is particularly resistant to wear and whose efficiency is substantially constant over time and this even if it is subjected to prolonged uses and / or successive.
Un autre objet de l’invention vise à proposer un nouveau système de refroidissement présentant un rendement optimisé, permettant ainsi le recours à un dimensionnement au plus juste selon son utilisation. Another object of the invention is to provide a new cooling system having an optimized efficiency, thus allowing the use of a dimensioning as accurate as possible according to its use.
Un autre objet de l’invention vise à proposer un nouveau système de refroidissement particulièrement efficace, peu encombrant et qui peut être facilement adapté à une utilisation selon différentes échelles. Another object of the invention is to provide a novel cooling system which is particularly efficient, takes up little space and which can be easily adapted for use on different scales.
Un autre objet de l’invention vise à proposer un nouveau système de refroidissement particulièrement utile dans le domaine des véhicules automobiles, notamment en ce qui concerne l’efficacité énergétique et la dépollution. Another object of the invention is to provide a novel cooling system which is particularly useful in the field of motor vehicles, in particular with regard to energy efficiency and pollution control.
Un autre objet de l’invention vise à proposer un nouveau système de refroidissement qui fonctionne dans conditions de sécurité optimales. Another object of the invention is to provide a new cooling system which operates under optimum safety conditions.
Un autre objet de l’invention vise à proposer un nouveau système de refroidissement qui présente un impact environnemental très limité voire nul, ainsi qu’un excellent bilan carbone. Another object of the invention is to provide a new cooling system which has very little or no environmental impact, as well as an excellent carbon footprint.
Un autre objet de l’invention vise à proposer un nouveau système de climatisation présentant en particulier une grande efficacité énergétique ainsi qu’une excellente capacité de climatisation. Un autre objet de l’invention vise à proposer un nouvel ensemble moteur particulièrement peu polluant, facile à réaliser et présentant une grande efficacité énergétique. Another object of the invention aims to provide a new air conditioning system exhibiting in particular high energy efficiency as well as excellent air conditioning capacity. Another object of the invention aims to provide a new engine assembly that is particularly low in pollution, easy to produce and exhibiting high energy efficiency.
Un autre objet de l’invention vise à proposer un nouveau procédé d’adaptation d’un moteur à combustion interne facile à mettre en oeuvre permettant d’obtenir une amélioration des performances globales du moteur, notamment dans les domaines de l’efficacité énergétique et de la limitation des rejets polluants. Another object of the invention aims to provide a new method of adapting an internal combustion engine that is easy to implement, making it possible to obtain an improvement in the overall performance of the engine, in particular in the fields of energy efficiency and limitation of pollutant discharges.
Un autre objet de l’invention vise à proposer un nouveau procédé de refroidissement qui soit particulièrement peu coûteux en termes d’énergie, facile à mettre en œuvre et à adapter à un grand nombre d’applications. Another object of the invention is to provide a new cooling method which is particularly inexpensive in terms of energy, easy to implement and to adapt to a large number of applications.
Un autre objet de l’invention vise à proposer un nouveau procédé d’oxycombustion particulièrement efficace, maîtrisé, très peu polluant, et présentant un excellent rendement énergétique global. Another object of the invention is to provide a new particularly efficient oxycombustion process, controlled, very low polluting, and having excellent overall energy efficiency.
Les objets assignés à l’invention sont atteints à l’aide d’un système de refroidissement comprenant au moins : The objects assigned to the invention are achieved using a cooling system comprising at least:
- une pompe à chaleur Stirling conçue pour refroidir un gaz d’entrée jusqu’à une température cryogénique afin de former un liquide cryogénique, - a Stirling heat pump designed to cool an inlet gas to a cryogenic temperature in order to form a cryogenic liquid,
- un moteur électrique primaire, destiné à faire fonctionner ladite pompe à chaleur Stirling,- a primary electric motor, intended to operate said Stirling heat pump,
- une pompe primaire destinée à faire circuler ledit liquide cryogénique sous pression, et- a primary pump intended to circulate said cryogenic liquid under pressure, and
- un moyen de refroidissement, destiné à refroidir ledit moteur électrique primaire à l’aide du liquide cryogénique issu de ladite pompe primaire. - a cooling means, intended to cool said primary electric motor using cryogenic liquid from said primary pump.
Les objets assignés à l’invention sont également atteints à l’aide d’un système de climatisation haute puissance, caractérisé en ce qu’il comprend le système de refroidissement décrit ci-avant et ci-après, l’énergie de refroidissement du système de climatisation haute puissance étant fournie via l’évaporateur. The objects assigned to the invention are also achieved with the aid of a high-power air conditioning system, characterized in that it comprises the cooling system described above and below, the cooling energy of the system of high power air conditioning being supplied via the evaporator.
Les objets assignés à l’invention sont également atteints à l’aide d’un ensemble moteur caractérisé en ce qu’il comprend au moins: - le système de refroidissement tel que décrit précédemment et ci-après, ledit système de refroidissement étant conçu pour produire du dioxygène liquéfié, et The objects assigned to the invention are also achieved using a motor assembly characterized in that it comprises at least: - the cooling system as described above and below, said cooling system being designed to produce liquefied oxygen, and
- un moteur à combustion interne, en aval dudit système de refroidissement et comprenant une chambre de combustion, le système de refroidissement étant relié audit moteur à combustion interne de façon à pouvoir injecter dans ladite chambre de combustion ledit dioxygène liquéfié. an internal combustion engine, downstream of said cooling system and comprising a combustion chamber, the cooling system being connected to said internal combustion engine so as to be able to inject said liquefied oxygen into said combustion chamber.
Les objets assignés à l’invention sont également atteints à l’aide d’un procédé d’adaptation d’un moteur à combustion interne comprenant au moins une tubulure d’admission et une chambre de combustion, ledit procédé d’adaptation étant caractérisé en ce qu’il comprend au moins : The objects assigned to the invention are also achieved by means of a method of adapting an internal combustion engine comprising at least one intake manifold and a combustion chamber, said method of adaptation being characterized by what he understands at least:
- une étape de fermeture ou d’enlèvement de ladite tubulure d’admission du moteur,- a step of closing or removing said engine intake manifold,
- une étape d’installation dans laquelle le système de refroidissement tel que décrit ci- avant et ci-après est relié audit moteur à combustion interne, au niveau de ladite tubulure d’admission fermée ou enlevée et donc en amont de ladite chambre de combustion, de façon à pouvoir injecter dans cette dernière du dioxygène liquéfié produit par ledit système de refroidissement. - an installation step in which the cooling system as described above and below is connected to said internal combustion engine, at said closed or removed intake manifold and therefore upstream of said combustion chamber , so as to be able to inject liquefied oxygen produced by said cooling system into the latter.
Les objets assignés à l’invention sont également atteints à l’aide d’un procédé de refroidissement comprenant au moins : The objects assigned to the invention are also achieved using a cooling process comprising at least:
- une étape de refroidissement d’un gaz d’entrée à l’aide d’au moins une pompe à chaleur Stirling, de façon à former un liquide cryogénique, ladite pompe à chaleur Stirling étant alimentée par un moteur électrique primaire, - a step of cooling an input gas using at least one Stirling heat pump, so as to form a cryogenic liquid, said Stirling heat pump being powered by a primary electric motor,
- une étape de pompage pour faire circuler ledit liquide cryogénique sous pression, et- a pumping step to circulate said cryogenic liquid under pressure, and
- une étape de refroidissement au cours de laquelle ledit moteur électrique primaire est refroidi à l’aide du liquide cryogénique issu de ladite étape de pompage. - a cooling step during which said primary electric motor is cooled using cryogenic liquid from said pumping step.
Les objets assignés à l’invention sont également atteints à l’aide d’un procédé d’oxycombustion comprenant le procédé de refroidissement tel que décrit ci-avant, le procédé d’oxycombustion comprenant en outre une étape d’injection de dioxygène liquéfié lors du procédé de refroidissement au sein d’une chambre de combustion d’un moteur à combustion interne. DESCRIPTIF SOMMAIRE DES DESSINS The objects assigned to the invention are also achieved using an oxycombustion process comprising the cooling process as described above, the oxycombustion process further comprising a step of injecting liquefied oxygen during of the cooling process within a combustion chamber of an internal combustion engine. SUMMARY DESCRIPTION OF THE DRAWINGS
D’autres particularités et avantages de l’invention apparaîtront et ressortiront plus en détail à la lecture de la description faite ci-après, en référence aux dessins annexés, donnés uniquement à titre d’exemples illustratifs et non limitatifs, dans lesquels : Other features and advantages of the invention will become apparent and will emerge in more detail on reading the description given below, with reference to the accompanying drawings, given solely by way of illustrative and non-limiting examples, in which:
La figure 1 est une illustration schématique simplifiée du principe générale d’un système de refroidissement de l’invention. Figure 1 is a simplified schematic illustration of the general principle of a cooling system of the invention.
- La figure 2 est une illustration schématique d’un mode particulier de réalisation du système de refroidissement de l’invention, avec refroidissement d’hélium. - Figure 2 is a schematic illustration of a particular embodiment of the cooling system of the invention, with helium cooling.
- La figure 3 est une illustration schématique d’un autre mode particulier du système de refroidissement de l’invention, avec dispositif de séparation, le tout intégré au sein d’un exemple d’ensemble moteur de l’invention. - Figure 3 is a schematic illustration of another particular embodiment of the cooling system of the invention, with a separation device, the whole integrated within an exemplary motor assembly of the invention.
- La figure 4 est une illustration schématique d’un autre mode particulier encore du système de refroidissement de l’invention, avec électrolyse de l’eau et méthanisation, le tout intégré au sein d’un autre exemple d’ensemble moteur de l’invention. - Figure 4 is a schematic illustration of yet another particular embodiment of the cooling system of the invention, with water electrolysis and anaerobic digestion, all integrated within another example of an engine assembly of the invention.
- La figure 5 est une illustration schématique du dispositif de séparation de la figure 3. - Figure 5 is a schematic illustration of the separation device of Figure 3.
- La figure 6 est une illustration schématique d’un agrandi d’un détail de la figure 5. - Figure 6 is a schematic illustration of an enlarged view of a detail of Figure 5.
- La figure 7 est une illustration schématique d’une partie du dispositif de séparation de la figure 3. - Figure 7 is a schematic illustration of part of the separation device of Figure 3.
- La figure 8 est une coupe selon un plan B du dispositif de séparation de la figure 7. - Figure 8 is a section along a plane B of the separation device of Figure 7.
- La figure 9 est une illustration schématique détaillée d’un exemple de principe de fonctionnement d’un dispositif de séparation magnétique selon l’invention. - Figure 9 is a detailed schematic illustration of an example of the operating principle of a magnetic separation device according to the invention.
La figure 10 est une illustration schématique du moteur de la figure 3. MANIERES DE REALISER L’INVENTION Figure 10 is a schematic illustration of the motor of Figure 3. WAYS TO CARRY OUT THE INVENTION
Comme illustré aux figures, l'invention concerne, selon un premier aspect illustré aux figures, un système de refroidissement 1 comprenant au moins : As illustrated in the figures, the invention relates, according to a first aspect illustrated in the figures, to a cooling system 1 comprising at least:
- une pompe à chaleur Stirling 2 conçue pour refroidir un gaz d’entrée Ge jusqu’à une température cryogénique afin de former un liquide cryogénique L, - a Stirling 2 heat pump designed to cool an inlet gas Ge to a cryogenic temperature in order to form a cryogenic liquid L,
- un moteur électrique primaire 3, destiné à faire fonctionner ladite pompe à chaleur Stirling 2. a primary electric motor 3, intended to operate said Stirling heat pump 2.
Ainsi, le système de refroidissement 1 de l’invention est avantageusement conçu pour refroidir ledit gaz d’entrée G§ jusqu’à liquéfaction de ce dernier et plus précisément de manière à ce qu’il atteigne une température cryogénique (également appelée cryotempérature) pour constituer ledit liquide cryogénique L. Bien évidemment, ledit gaz d’entrée Ge est de préférence formé d’au moins un composé pouvant atteindre sous forme liquide une température cryogénique, c’est-à-dire assez basse. Ledit liquide cryogénique L, et les mentions relatives à la cryogénie en général, se rapporte(nt) de préférence à des températures inférieures à -50°C, plus préférentiellement -100°C, encore plus préférentiellement -150°C ou encore -153,15 °C (c’est-à-dire 120 K). En d’autres termes, ladite température cryogénique est avantageusement inférieure à -50°C, plus préférentiellement -100°C, encore plus préférentiellement -150°C ou de manière encore plus préférentielle -153,15°C (c’est-à-dire 120 K). Par exemple la température cryogénique, à laquelle est donc avantageusement portée le liquide cryogénique L grâce à ladite pompe à chaleur Stirling 2, est comprise entre -150°C et -270°C, plus préférentiellement entre -170 et -250°C, et plus préférentiellement encore entre -196 et - 210°C. Thus, the cooling system 1 of the invention is advantageously designed to cool said inlet gas G § until the latter liquefies and more precisely so that it reaches a cryogenic temperature (also called cryotemperature) for constitute said cryogenic liquid L. Obviously, said input gas Ge is preferably formed from at least one compound capable of reaching, in liquid form, a cryogenic temperature, that is to say rather low. Said cryogenic liquid L, and the terms relating to cryogenics in general, preferably relate to temperatures below -50 ° C, more preferably -100 ° C, even more preferably -150 ° C or even -153 , 15 ° C (i.e. 120 K). In other words, said cryogenic temperature is advantageously less than -50 ° C, more preferably -100 ° C, even more preferably -150 ° C or even more preferably -153.15 ° C (that is to say say 120 K). For example the cryogenic temperature, to which the cryogenic liquid L is therefore advantageously brought by means of said Stirling heat pump 2, is between -150 ° C and -270 ° C, more preferably between -170 and -250 ° C, and more preferably still between -196 and - 210 ° C.
Ladite pompe à chaleur Stirling 2 est préférentiellement une machine à froid, et donc avantageusement conçue pour générer du froid (parfois appelé « froid Stirling ») selon le cycle de Stirling mais dans le sens inverse de fonctionnement d’un moteur Stirling, puisque le cycle de Stirling est réversible. De manière préférentielle, ladite pompe à chaleur Stirling 2 nécessite ainsi, afin de générer du froid, un entraînement mécanique assuré par ledit moteur électrique primaire 3. Ladite pompe à chaleur Stirling 2 est donc conçue de façon avantageuse pour, seule ou en combinaison avec d’éventuels autres dispositifs de refroidissement, refroidir ledit gaz d’entrée Ge, au moins jusqu’à sa liquéfaction, et de préférence avant sa solidification, et plus précisément à ladite température cryogénique. Said Stirling heat pump 2 is preferably a cold machine, and therefore advantageously designed to generate cold (sometimes called “Stirling cold”) according to the Stirling cycle but in the opposite direction of operation of a Stirling engine, since the cycle of Stirling is reversible. Preferably, said Stirling heat pump 2 thus requires, in order to generate cold, a mechanical drive provided by said primary electric motor 3. Said Stirling heat pump 2 is therefore advantageously designed for, alone or in combination with d '' possible others cooling devices, cooling said input gas Ge, at least until it liquefies, and preferably before it solidifies, and more precisely to said cryogenic temperature.
L'invention concerne également en tant que tel, selon un deuxième aspect illustré aux figures, un procédé de refroidissement comprenant au moins une étape de refroidissement d’un gaz d’entrée G§ à l’aide d’au moins une pompe à chaleur Stirling 2, de façon à former un liquide cryogénique L, ladite pompe à chaleur Stirling 2 étant alimentée par un moteur électrique primaire 3. Le procédé de refroidissement est bien évidemment préférentiellement mis en œuvre au moyen du système de refroidissement 1 mentionné ci-avant, et décrit plus en détail ci-après. Ainsi, de façon préférentielle, la description qui suit et qui précède concernant le système de refroidissement 1 s’applique donc également au procédé de refroidissement de l’invention, et inversement. The invention also relates as such, according to a second aspect illustrated in the figures, a cooling method comprising at least one step of cooling an inlet gas G § using at least one heat pump Stirling 2, so as to form a cryogenic liquid L, said Stirling 2 heat pump being powered by a primary electric motor 3. The cooling process is obviously preferably implemented by means of the cooling system 1 mentioned above, and described in more detail below. Thus, preferably, the description which follows and which precedes concerning the cooling system 1 therefore also applies to the cooling method of the invention, and vice versa.
Selon l’invention, le système de refroidissement 1 comprend en outre au moins : According to the invention, the cooling system 1 further comprises at least:
- une pompe primaire 4 destinée à faire circuler ledit liquide cryogénique L sous pression, et a primary pump 4 intended to circulate said cryogenic liquid L under pressure, and
- un moyen de refroidissement 5, destiné à refroidir ledit moteur électrique primaire 3 à l’aide du liquide cryogénique L'issu de ladite pompe primaire 4. - a cooling means 5, intended to cool said primary electric motor 3 using cryogenic liquid The result of said primary pump 4.
Selon l’invention, le procédé de refroidissement comprend en outre : According to the invention, the cooling method further comprises:
- une étape de pompage pour faire circuler ledit liquide cryogénique L sous pression, et- a pumping step for circulating said cryogenic liquid L under pressure, and
- une étape de refroidissement au cours de laquelle ledit moteur électrique primaire 3 est refroidi à l’aide du liquide cryogénique L issu de ladite étape de pompage. - a cooling step during which said primary electric motor 3 is cooled using the cryogenic liquid L from said pumping step.
Naturellement, ladite étape de pompage est de préférence mise en œuvre à l’aide de ladite pompe primaire 4. Bien évidemment, ladite étape de refroidissement est préférentiellement mise en œuvre à l’aide dudit moyen de refroidissement 5, lequel peut par exemple comprendre un échangeur de chaleur (non illustré) enveloppant le moteur électrique primaire 3. Ledit moyen de refroidissement 5 comprend en outre avantageusement un moyen de recirculation, par exemple un tuyau, conçu pour récupérer le liquide cryogénique L au niveau d’une sortie de la pompe à chaleur Stirling 2 et l’injecter dans ledit échangeur de chaleur. Ladite pompe primaire 4 est de préférence une pompe haute pression, capable de mettre ledit liquide cryogénique L sous une pression supérieure à 40 bars, de préférence supérieure à 70 bars, plus avantageusement supérieure à 100 bars, et par exemple comprise entre 100 et 3000 bars. Ladite étape de pompage est donc avantageusement une étape de pompage haute pression, pour porter le liquide cryogénique L à l’une des plages de pression susmentionnées. Optionnellement, le moyen de refroidissement 5 est conçu de manière à refroidir également ladite pompe à chaleur Stirling 2 elle-même à l’aide dudit liquide cryogénique L en provenance de ladite pompe primaire 4, accélérant de ce fait la condensation du liquide cryogénique L au sein de ladite pompe à chaleur Stirling 2 et permettant à cette dernière de minimiser les pertes (par échauffement par exemple). Naturally, said pumping step is preferably carried out using said primary pump 4. Obviously, said cooling step is preferably carried out using said cooling means 5, which may for example comprise a heat exchanger (not shown) enveloping the primary electric motor 3. Said cooling means 5 further advantageously comprises a recirculation means, for example a pipe, designed to recover the cryogenic liquid L at an outlet of the pump to Stirling heat 2 and inject it into said heat exchanger. Said primary pump 4 is preferably a high pressure pump, capable of putting said cryogenic liquid L under a pressure greater than 40 bars, preferably greater than 70 bars, more advantageously greater than 100 bars, and for example between 100 and 3000 bars. Said pumping step is therefore advantageously a high pressure pumping step, to bring the cryogenic liquid L to one of the aforementioned pressure ranges. Optionally, the cooling means 5 is designed so as to also cool said Stirling heat pump 2 itself with the aid of said cryogenic liquid L coming from said primary pump 4, thereby accelerating the condensation of the cryogenic liquid L at the same time. within said Stirling 2 heat pump and allowing the latter to minimize losses (by heating for example).
L’un des avantages de la configuration de refroidissement établie par l’invention est que les liquides cryogéniques présentent bien souvent une viscosité très faible, celle de l’air liquéfié (formant par exemple ledit liquide cryogénique L) étant par exemple environ 20 fois inférieure à la viscosité de l’eau à l’état liquide. Ainsi, il est possible grâce au système de refroidissement 1 et au procédé de refroidissement de l’invention de mettre facilement sous pression ledit liquide cryogénique L avec ladite pompe primaire 4, et ce à un coût énergétique maîtrisé non seulement en raison de la faible viscosité des liquides cryogéniques mis en œuvre, mais également en raison des températures de fonctionnement de la pompe primaire 4, lesquelles sont avantageusement très basses et permettent la mise en œuvre de ladite pompe primaire 4 dans des conditions aux limites de la supraconductivité, grâce au refroidissement de ladite pompe primaire 4 elle-même par ledit liquide cryogénique L. One of the advantages of the cooling configuration established by the invention is that cryogenic liquids very often have a very low viscosity, that of liquefied air (for example forming said cryogenic liquid L) being for example approximately 20 times lower. to the viscosity of water in the liquid state. Thus, it is possible, thanks to the cooling system 1 and to the cooling method of the invention, to easily pressurize said cryogenic liquid L with said primary pump 4, and this at a controlled energy cost not only because of the low viscosity cryogenic liquids used, but also because of the operating temperatures of the primary pump 4, which are advantageously very low and allow the implementation of said primary pump 4 under conditions at the limits of superconductivity, thanks to the cooling of said primary pump 4 itself by said cryogenic liquid L.
Un autre avantage de la configuration de refroidissement établie par l’invention est que, la mise sous pression (de préférence haute pression) du liquide cryogénique L, qui peut donc être réalisée quasiment sans perte (d’énergie électrique notamment) par ladite pompe primaire 4, permet de maximiser l’efficience de l’utilisation dudit liquide cryogénique L dans une large variétés d’applications. Un des avantages de cette mise sous pression du liquide cryogénique L est qu’elle permet à ce dernier de refroidir suffisamment rapidement ledit moteur électrique primaire 3 Another advantage of the cooling configuration established by the invention is that the pressurization (preferably high pressure) of the cryogenic liquid L, which can therefore be carried out almost without loss (in particular of electrical energy) by said primary pump 4, maximizes the efficiency of using said cryogenic liquid L in a wide variety of applications. One of the advantages of this pressurization of the cryogenic liquid L is that it allows the latter to sufficiently rapidly cool said primary electric motor 3
Ladite pompe primaire 4 comprend par exemple un moyen de pompage qui peut être notamment centrifuge, volumétrique, ou encore à vide. De manière particulièrement avantageuse, la pompe primaire 4 comprend un moteur électrique secondaire (non illustré), et le système de refroidissement 1 est conçu pour refroidir ledit moteur électrique secondaire à l’aide du liquide cryogénique L en provenance de ladite pompe à chaleur Stirling 2. Ainsi, préférentiellement pendant l’étape de refroidissement, le liquide cryogénique L en provenance de ladite pompe à chaleur Stirling 2 refroidit ledit moteur électrique secondaire. Said primary pump 4 comprises, for example, a pumping means which may in particular be centrifugal, positive-displacement, or even vacuum. In a particular way advantageously, the primary pump 4 comprises a secondary electric motor (not shown), and the cooling system 1 is designed to cool said secondary electric motor using the cryogenic liquid L coming from said Stirling heat pump 2. Thus, preferably during the cooling step, the cryogenic liquid L coming from said Stirling heat pump 2 cools said secondary electric motor.
Selon cette configuration, au sein du système de refroidissement 1 , le liquide cryogénique L permet avantageusement de faire fonctionner le moteur électrique primaire 3, et préférentiellement également le moteur électrique secondaire, à des températures cryogéniques. Ledit ou lesdits moteur(s) électrique(s) fonctionnant donc avantageusement dans des conditions proches de la supraconductivité en raison de leur faible température de fonctionnement, cette configuration diminuant de façon significative les pertes dans le circuit magnétique (dites pertes « fer ») et les pertes par effet Joules (dites pertes « cuivre », dues à la résistance électrique) du ou des moteur(s) électrique(s) 3. Ainsi, d’un point de vue énergétique, le système de refroidissement 1 fonctionne quasiment sans pertes autres que des pertes de frottement, lesquelles sont par ailleurs très faibles au sein de la pompe primaire 4 et même au sein de la pompe à chaleur Stirling 2 lorsque ledit liquide cryogénique L présente une faible viscosité. Le système de refroidissement 1 et le procédé de refroidissement peuvent donc être mis en œuvre avec un minimum d’énergie électrique, sans perte substantielle de cette dernière. According to this configuration, within the cooling system 1, the cryogenic liquid L advantageously makes it possible to operate the primary electric motor 3, and preferably also the secondary electric motor, at cryogenic temperatures. Said electric motor (s) therefore operating advantageously under conditions close to superconductivity due to their low operating temperature, this configuration significantly reducing the losses in the magnetic circuit (called "iron" losses) and losses by the Joule effect (known as "copper" losses, due to electrical resistance) of the electric motor (s) 3. Thus, from an energy point of view, the cooling system 1 operates almost without losses other than friction losses, which are moreover very low within the primary pump 4 and even within the Stirling heat pump 2 when said cryogenic liquid L has a low viscosity. The cooling system 1 and the cooling method can therefore be implemented with a minimum of electrical energy, without substantial loss of the latter.
Lesdits moteurs électriques primaire 3 et secondaire sont préférentiellement distincts, pour permettre une meilleure maîtrise du système de refroidissement et du procédé de refroidissement, mais alternativement, ils peuvent être formés par un même moteur électrique unique, lequel réalise les deux fonctions de mise en marche de ladite pompe à chaleur Stirling 2 et de mise en marche de ladite pompe primaire 4 ou plus exactement de son moyen de pompage. Said primary 3 and secondary electric motors are preferably separate, to allow better control of the cooling system and of the cooling process, but alternatively, they can be formed by the same single electric motor, which performs the two functions of starting up the cooling system. said Stirling heat pump 2 and switching on said primary pump 4 or more exactly its pumping means.
Selon un mode de réalisation particulier de l’invention, le système de refroidissement 1 comprend également un dispositif de génération d’énergie électrique à partir d’une source d’énergie renouvelable (non illustré), ledit moteur électrique primaire 3 et/ou ladite pompe primaire 4 étant conçu(s) pour être alimentés (en énergie électrique donc) par ledit dispositif de génération d’énergie. Ledit dispositif de génération d’énergie est par exemple à production intermittente, et peut notamment comprendre une ou plusieurs éoliennes, ou encore un ou plusieurs panneaux solaires (photovoltaïques en particulier). Ainsi, selon ce mode de réalisation particulier, le procédé de refroidissement comprend une étape de génération d’énergie électrique à partir d’une source d’énergie renouvelable, par exemple intermittente, telle qu’une source d’énergie éolienne ou solaire, pour alimenter (en énergie électrique donc) ledit moteur électrique primaire 3 et/ou permettre ladite étape de pompage. Naturellement, ladite étape de génération d’énergie est de préférence réalisée à l’aide dudit dispositif de génération d’énergie. Une telle configuration est particulièrement avantageuse car elle représente un bilan carbone optimisé, un faible échauffement global, et donc un impact environnemental optimisé c’est-à-dire réduit voire quasi nul ou nul. According to a particular embodiment of the invention, the cooling system 1 also comprises a device for generating electrical energy from a renewable energy source (not illustrated), said primary electric motor 3 and / or said primary pump 4 being designed to be supplied (therefore with electrical energy) by said energy generation device. Said power generation device is by example with intermittent production, and may in particular comprise one or more wind turbines, or even one or more solar panels (photovoltaic in particular). Thus, according to this particular embodiment, the cooling method comprises a step of generating electrical energy from a renewable energy source, for example intermittent, such as a wind or solar energy source, for supplying (therefore electrical energy) said primary electric motor 3 and / or enabling said pumping step. Of course, said energy generation step is preferably carried out using said energy generation device. Such a configuration is particularly advantageous because it represents an optimized carbon footprint, low overall heating, and therefore an optimized environmental impact that is to say reduced or even almost zero or zero.
De manière particulièrement avantageuse, le système de refroidissement 1 comprend en outre un évaporateur 6 destiné à évaporer au moins une partie dudit liquide cryogénique L sous pression en provenance dudit moteur électrique primaire 3, de façon à former un gaz de sortie G§ et à récupérer de l’énergie de refroidissement. Ledit évaporateur 6 peut être formé d’une unité ou d’une pluralité d’unités, chaque unité formant avantageusement un échangeur de chaleur spécifique. Ledit évaporateur 6 peut être considéré comme étant un échangeur de chaleur global, dont une des fonctions principales est de réchauffer ledit liquide cryogénique L de façon à le faire évaporer sous la forme dudit gaz de sortie G§. Ledit évaporateur 6 peut également être conçu pour réchauffer transférer de l’énergie de refroidissement dudit gaz de sortie Gs (qui reste relativement froid dans l’évaporateur 6, par exemple aux alentours de -10 à -120°C) à un autre composé, ou autrement dit, de transférer de la chaleur de cet autre composé audit gaz de sortie Gs. Particularly advantageously, the cooling system 1 further comprises an evaporator 6 intended to evaporate at least part of said cryogenic liquid L under pressure from said primary electric motor 3, so as to form an outlet gas G § and to recover cooling energy. Said evaporator 6 can be formed from one unit or from a plurality of units, each unit advantageously forming a specific heat exchanger. Said evaporator 6 can be considered as being a global heat exchanger, one of the main functions of which is to heat said cryogenic liquid L so as to cause it to evaporate in the form of said outlet gas G § . Said evaporator 6 can also be designed to heat transfer cooling energy from said outlet gas Gs (which remains relatively cold in the evaporator 6, for example around -10 to -120 ° C) to another compound, or in other words, to transfer heat from this other compound to said outlet gas Gs.
Selon certains modes de réalisations particuliers, dont des exemples sont illustrés notamment aux figures 1 à 4, ledit évaporateur 6 comprend au moins un échangeur thermique primaire 7 destiné à recueillir d’une part ledit gaz d’entrée Ge pour le refroidir avant son entrée dans ladite pompe à chaleur Stirling 2, et d’autre part au moins une partie dudit liquide cryogénique L, en provenance dudit moteur électrique primaire 3, pour le réchauffer. De façon avantageuse, ledit évaporateur 6 comprend en outre au moins un échangeur thermique secondaire 8 destiné à réchauffer ledit gaz de sortie G§ ou au moins une partie dudit liquide cryogénique L en provenance dudit échangeur thermique primaire 7 à l’aide d’une source de chaleur Q. Selon le mode de réalisation illustré à la figure 1, le système de refroidissement 1 comprend un module de fourniture 9 de ladite source de chaleur Q. De façon particulièrement avantageuse, ledit module de fourniture 9 est formé par un dispositif de production d’énergie solaire 10, un dispositif de récupération de chaleur de combustion 51 par exemple issue d’un moteur à combustion interne 50, ou un dispositif de récupération de chaleurs fatales issues du système de refroidissement 1 ou d’un autre système. According to certain particular embodiments, examples of which are illustrated in particular in FIGS. 1 to 4, said evaporator 6 comprises at least one primary heat exchanger 7 intended to collect on the one hand said input gas Ge in order to cool it before its entry into said Stirling heat pump 2, and on the other hand at least part of said cryogenic liquid L, coming from said primary electric motor 3, to heat it. Advantageously, said evaporator 6 further comprises at least one secondary heat exchanger 8 intended to heat said outlet gas G § or at least part of said cryogenic liquid L coming from said primary heat exchanger 7 using a source heat Q. According to the embodiment illustrated in FIG. 1, the cooling system 1 comprises a module 9 for supplying said heat source Q. Particularly advantageously, said supply module 9 is formed by a device for producing solar energy. 10, a combustion heat recovery device 51, for example from an internal combustion engine 50, or a fatal heat recovery device from the cooling system 1 or from another system.
Selon un mode de réalisation illustré à la figure 2, le système de refroidissement 1 comprend un dispositif de liquéfaction de l’hélium 30, lequel comprend au moins : According to one embodiment illustrated in Figure 2, the cooling system 1 comprises a helium liquefaction device 30, which comprises at least:
- un échangeur de chaleur 31 destiné à recueillir d’une part de l’hélium He gazeux pour le refroidir à une cryotempérature, par exemple 120 K ou en-dessous (ou tout autre température cryogénique déjà mentionnée), et d’autre part le liquide cryogénique L sous pression en provenance du moteur électrique primaire 3 pour le réchauffer, a heat exchanger 31 intended to collect on the one hand gaseous helium He in order to cool it to a cryotemperature, for example 120 K or below (or any other cryogenic temperature already mentioned), and on the other hand the cryogenic liquid L under pressure from the primary electric motor 3 to heat it,
- un module de détente isenthalpique 32, destiné à réaliser la détente isenthalpique de l’hélium He gazeux refroidi en provenance de l’échangeur de chaleur 31 , afin de liquéfier ledit hélium He gazeux. - an isenthalpic expansion module 32, intended to achieve the isenthalpic expansion of the cooled gaseous helium He from the heat exchanger 31, in order to liquefy said gaseous helium He.
De façon particulièrement avantageuse, ledit échangeur de chaleur 31 fait donc partie dudit évaporateur 6, et peut être formé par exemple par ledit échangeur thermique primaire 7 ou ledit changeur thermique secondaire 8 ou encore constituer une unité distincte. En d’autres termes, ledit évaporateur 6 comprend ledit échangeur de chaleur 31. Particularly advantageously, said heat exchanger 31 therefore forms part of said evaporator 6, and can be formed, for example, by said primary heat exchanger 7 or said secondary heat exchanger 8 or else constitute a separate unit. In other words, said evaporator 6 comprises said heat exchanger 31.
De préférence, ledit dispositif de liquéfaction de l’hélium 30 comprend en outre au moins l'un ou plusieurs parmi : Preferably, said helium liquefaction device 30 further comprises at least one or more of:
- un circuit de refroidissement 33 d’un élément magnétique 34, tel un aimant d’imagerie médicale, à l’aide de l’hélium He liquéfié en provenance dudit module de détente isenthalpique, de sorte que l’hélium He liquéfié soit suffisamment réchauffé pour être vaporisé en hélium He gazeux, - a cooling circuit 33 of a magnetic element 34, such as a medical imaging magnet, using the liquefied helium He coming from said isenthalpic expansion module, so that the liquefied helium He is sufficiently heated to be vaporized into gaseous helium He,
- un compresseur secondaire 36, destiné à comprimer l’hélium He gazeux en provenance dudit circuit de refroidissement 33 et à l’envoyer vers ledit échangeur de chaleur 31 , et - une turbine secondaire 35, positionnée en amont dudit module de détente isenthalpique 32 et destinée à récupérer de l’énergie mécanique de l’hélium He gazeux refroidi provenant de l’échangeur de chaleur 31 , ladite turbine secondaire 35 alimentant (au moins en partie) ledit compresseur secondaire 36 en énergie (mécanique, directement, ou électrique, indirectement par exemple via une unité électrique génératrice). - a secondary compressor 36, intended to compress the gaseous helium He coming from said cooling circuit 33 and to send it to said heat exchanger 31, and a secondary turbine 35, positioned upstream of said isenthalpic expansion module 32 and intended to recover mechanical energy from the cooled gaseous helium He coming from the heat exchanger 31, said secondary turbine 35 supplying (at least in part ) said secondary compressor 36 in energy (mechanical, directly, or electrical, indirectly for example via an electrical generator unit).
Selon les modes de réalisation illustrés aux figures 1 à 4, le système de refroidissement 1 comprend un dispositif de récupération d’énergie mécanique 12 pour récupérer l’énergie mécanique produite par un déplacement dudit gaz de sortie Gs. De préférence, le procédé de refroidissement comprend ainsi, en aval de ladite étape de refroidissement, une étape de récupération d’énergie mécanique produite par un déplacement dudit gaz de sortie Gs. De préférence, ledit déplacement gaz de sortie Gs est provoqué par le passage d’au moins une partie dudit liquide cryogénique L à l’état gazeux sous forme dudit gaz de sortie Gs et/ou par un réchauffage et/ou une détente dudit deuxième composant gaz de sortie Gs. Le déplacement dudit gaz de sortie Gs est ainsi avantageusement la source d’un travail mécanique exploité par ledit dispositif de récupération d’énergie mécanique 12. According to the embodiments illustrated in Figures 1 to 4, the cooling system 1 comprises a mechanical energy recovery device 12 for recovering the mechanical energy produced by a displacement of said outlet gas Gs. Preferably, the cooling method thus comprises, downstream of said cooling step, a step of recovering mechanical energy produced by a displacement of said outlet gas Gs. Preferably, said outlet gas displacement Gs is caused by the passage of at least part of said cryogenic liquid L in the gaseous state in the form of said outlet gas Gs and / or by heating and / or expansion of said second component outlet gas Gs. The displacement of said outlet gas Gs is thus advantageously the source of mechanical work operated by said mechanical energy recovery device 12.
Une telle configuration permet d’obtenir un bilan énergétique particulièrement favorable, c’est-à-dire avec peu de gaspillage et de pertes et un maximum d’efficacité énergétique. Par exemple, ladite pompe primaire 4 est au moins en partie actionnée à l’aide dudit dispositif de récupération d’énergie mécanique 12. Ainsi, selon ce dernier exemple, ladite étape de pompage est moins en partie réalisée à l’aide de l’énergie récupérée lors de ladite étape de récupération d’énergie mécanique. Such a configuration makes it possible to obtain a particularly favorable energy balance, that is to say with little waste and loss and maximum energy efficiency. For example, said primary pump 4 is at least partly actuated using said mechanical energy recovery device 12. Thus, according to the latter example, said pumping step is less partly carried out using the energy recovered during said mechanical energy recovery step.
Selon le mode de réalisation illustré à la figure 4, ledit dispositif de récupération d’énergie mécanique 12 comprend au moins un générateur électrique 13. Ledit dispositif de récupération d’énergie mécanique 12 comprend par exemple en outre une turbine primaire 14, liée audit générateur électrique 13, ladite turbine primaire 14 étant mise en rotation par ledit gaz de sortie Gs. Alternativement, l’énergie mécanique récupérée par ledit dispositif de récupération d’énergie mécanique 12 est réutilisée sous forme mécanique. Ledit dispositif de récupération d’énergie mécanique 12, et plus précisément ledit générateur électrique 13, est ainsi avantageusement conçu pour produire de l’énergie électrique produite Eee à partir de l’énergie mécanique récupérée. According to the embodiment illustrated in FIG. 4, said mechanical energy recovery device 12 comprises at least one electric generator 13. Said mechanical energy recovery device 12 further comprises, for example, a primary turbine 14, linked to said generator. electric 13, said primary turbine 14 being rotated by said outlet gas Gs. Alternatively, the mechanical energy recovered by said mechanical energy recovery device 12 is reused in mechanical form. Said mechanical energy recovery device 12, and more precisely said electric generator 13 is thus advantageously designed to produce produced electric energy Eee from the recovered mechanical energy.
De façon avantageuse, le système de refroidissement 1 comprend, en amont de ladite pompe à chaleur Stirling 2, un compresseur primaire 15 conçu pour comprimer ledit gaz d’entrée Ge, comme illustré aux figures 1 à 4. Ce compresseur 35 permet avantageusement de faciliter l’entrée du gaz d’entrée Ge, par exemple l’air, au sein du système de refroidissement 1 , en vue de produire ledit liquide cryogénique JL. De manière préférentielle, ledit compresseur primaire 15 est au moins en partie actionné à l’aide dudit dispositif de récupération d’énergie mécanique 12, par exemple par transmission d’énergie mécanique et/ou électrique Em/e. Ainsi, de manière avantageuse, le procédé de refroidissement comprend, en amont de ladite étape de refroidissement, une étape de compression au cours de laquelle ledit gaz d’entrée Ge est comprimé, ladite étape de compression étant plus préférentiellement au moins en partie réalisée à l’aide de l’énergie récupérée au cours de ladite étape de récupération d’énergie mécanique. Le bilan énergétique et l’efficacité globale du système de refroidissement 1 s’en trouvent encore améliorés. Advantageously, the cooling system 1 comprises, upstream of said Stirling heat pump 2, a primary compressor 15 designed to compress said input gas Ge, as illustrated in FIGS. 1 to 4. This compressor 35 advantageously makes it possible to facilitate the entry of the input gas Ge, for example air, within the cooling system 1, with a view to producing said cryogenic liquid JL. Preferably, said primary compressor 15 is at least partly actuated using said mechanical energy recovery device 12, for example by transmission of mechanical and / or electrical energy Em / e. Thus, advantageously, the cooling process comprises, upstream of said cooling step, a compression step during which said inlet gas Ge is compressed, said compression step being more preferably at least partly carried out at using the energy recovered during said mechanical energy recovery step. The energy balance and the overall efficiency of the cooling system 1 are further improved.
Selon le mode de réalisation illustré à la figure 4, le système de refroidissement comprend en outre un module d’électrolyse 16 de l’eau H2O en dihydrogène H2 et en dioxygène O2 alimenté en électricité au moins par ledit générateur électrique 13. Ainsi, ledit générateur électrique 13 fournit l’énergie électrique produite Eee, au module d’électrolyse 16 avantageusement en continue, ce qui permet d’économiser des quantités importantes d’énergie puisqu’il n’y a plus besoin d’alimenter complètement indépendamment ledit module d’électrolyse 16. Une telle configuration est particulièrement avantageuse car l’électrolyse de l’eau est très coûteuse en énergie électrique. According to the embodiment illustrated in FIG. 4, the cooling system further comprises a module 16 for electrolysis of water H2O into dihydrogen H2 and oxygen oxygen O2 supplied with electricity at least by said electric generator 13. Thus, said electric generator 13 supplies the electric energy produced Eee, to the electrolysis module 16 advantageously continuously, which makes it possible to save large amounts of energy since there is no longer any need to supply said module completely independently. 'electrolysis 16. Such a configuration is particularly advantageous because the electrolysis of water is very expensive in terms of electrical energy.
Selon le mode de réalisation illustré à la figure 4, le système de refroidissement 1 comprend avantageusement en outre un module d’échange de chaleur 17 conçu pour : According to the embodiment illustrated in Figure 4, the cooling system 1 advantageously further comprises a heat exchange module 17 designed to:
- refroidir au moins jusqu’à liquéfaction le dioxygène O2 issu du module d’électrolyse 16 de façon à former du dioxygène O2 liquéfié, et - réchauffer le gaz de sortie Gs en provenance du dispositif de récupération d’énergie mécanique 12. - to cool at least until liquefaction the oxygen O2 issuing from the electrolysis module 16 so as to form liquefied oxygen O2, and - heat the outlet gas Gs from the mechanical energy recovery device 12.
Toujours selon le mode de réalisation de la figure 4, le système de refroidissement 1 comprend également une unité de reformage du méthane 18, conçue pour faire réagir du dioxyde de carbone CO2 avec du dihydrogène Hg issu dudit module d’électrolyse de l’eau 16 afin de former du méthane CH4 et de l’eau H2O. Le méthane CH4 ainsi formé peut avantageusement être injecté dans un moteur à combustion interne 50 en tant que combustible, tandis que le dioxygène O2 liquéfié peut être injecté au sein dudit moteur à combustion interne 50 en tant que comburant. Still according to the embodiment of Figure 4, the cooling system 1 also comprises a methane reforming unit 18, designed to react carbon dioxide CO2 with dihydrogen Hg from said water electrolysis module 16 to form methane CH4 and water H2O. The methane CH4 thus formed can advantageously be injected into an internal combustion engine 50 as fuel, while the liquefied oxygen O2 can be injected into said internal combustion engine 50 as an oxidizer.
L'invention concerne également en tant que tel, selon un troisième aspect illustré par les exemples aux figures 3 et 4, un ensemble moteur 60 comprenant au moins : The invention also relates as such, according to a third aspect illustrated by the examples in FIGS. 3 and 4, an engine assembly 60 comprising at least:
- le système de refroidissement 1 , tel que décrit précédemment et optionnellement ci- après, ledit système de refroidissement 1 étant conçu pour produire du dioxygène O2 liquéfié, et - the cooling system 1, as described above and optionally below, said cooling system 1 being designed to produce liquefied oxygen O2, and
- un moteur à combustion interne 50, en aval dudit système de refroidissement 1 et comprenant une chambre de combustion 25. - an internal combustion engine 50, downstream of said cooling system 1 and comprising a combustion chamber 25.
L’ensemble moteur 60 est bien évidemment préférentiellement mis en œuvre au moyen du système de refroidissement 1 mentionné ci-avant, et décrit plus en détail ci-après. Ainsi, de façon préférentielle, la description qui précède (et optionnellement qui suit) concernant le système de refroidissement 1 et le procédé de refroidissement s’applique donc également à l’ensemble moteur 60 de l’invention, et inversement. The engine assembly 60 is obviously preferably implemented by means of the cooling system 1 mentioned above, and described in more detail below. Thus, preferably, the above description (and optionally which follows) concerning the cooling system 1 and the cooling method therefore also applies to the engine assembly 60 of the invention, and vice versa.
Selon ce troisième aspect de l’invention, le système de refroidissement 1 est relié audit moteur à combustion interne 50 de façon à pouvoir injecter dans ladite chambre de combustion 25 ledit dioxygène O2 liquéfié. According to this third aspect of the invention, the cooling system 1 is connected to said internal combustion engine 50 so as to be able to inject said liquefied oxygen O2 into said combustion chamber 25.
Selon le mode de réalisation illustré à la figure 3, ledit dioxygène O2 liquéfié est issu dudit module d’électrolyse de l’eau 16. De façon avantageuse, le système de refroidissement 1 est également conçu pour pouvoir injecter également ledit méthane ChU au sein de ladite chambre de combustion 25. According to the embodiment illustrated in FIG. 3, said liquefied dioxygen O2 comes from said water electrolysis module 16. Advantageously, the cooling system 1 is also designed to be able to also inject said methane ChU into said combustion chamber 25.
Par exemple, le moteur à combustion interne 50 est un moteur à quatre temps, un moteur à deux temps, un moteur à piston rotatif (comme illustré), une turbine à gaz, ou un moteur Stirling. Ledit moteur à combustion interne 50 est ainsi avantageusement destiné, à être alimenté par un comburant et un combustible, l’un et/ou l’autre pouvant être issu dudit système de refroidissement 1. For example, the internal combustion engine 50 is a four-stroke engine, a two-stroke engine, a rotary piston engine (as illustrated), a gas turbine, or a Stirling engine. Said internal combustion engine 50 is thus advantageously intended to be supplied with an oxidizer and a fuel, one and / or the other possibly coming from said cooling system 1.
Selon un mode de réalisation particulier dont un exemple est illustré à la figure 3, compatible notamment avec le troisième aspect de l’invention et/ou avec les premier et deuxième aspects seuls, ledit liquide cryogénique L en provenance dudit moteur électrique primaire 3 est formé d’au moins un premier composant i et un deuxième composant Qg distincts et à l’état liquide. According to a particular embodiment, an example of which is illustrated in FIG. 3, compatible in particular with the third aspect of the invention and / or with the first and second aspects alone, said cryogenic liquid L coming from said primary electric motor 3 is formed of at least a first component i and a second component Qg which are distinct and in the liquid state.
Selon le mode de réalisation illustré à la figure 3, le système de refroidissement 1 comprend en outre un dispositif de séparation 19 conçu pour séparer lesdits premier et deuxième composants i, Qg à l’état liquide par magnétisme, l’un desdits premier et deuxième composants Çi, Qg à l’état liquide présentant un caractère paramagnétique bien supérieur à l’autre desdits premier et deuxième composants Ci , Qg. Ainsi, selon ce dernier mode de réalisation, le procédé de refroidissement comprend en outre une étape de séparation desdits premier et deuxième composants Qi, Qg à l’état liquide par magnétisme. Bien évidemment, ladite étape de séparation est préférentiellement mise en œuvre au moyen dudit dispositif de séparation 19. According to the embodiment illustrated in FIG. 3, the cooling system 1 further comprises a separation device 19 designed to separate said first and second components i, Qg in the liquid state by magnetism, one of said first and second components Ci, Qg in the liquid state exhibiting a much greater paramagnetic character than the other of said first and second components Ci, Qg. Thus, according to the latter embodiment, the cooling method further comprises a step of separating said first and second components Qi, Qg in the liquid state by magnetism. Obviously, said separation step is preferably carried out by means of said separation device 19.
Selon un premier exemple, tel que celui illustré à la figure 3, ledit gaz d’entrée Ge est formé par de l’air, ledit premier composant Çi étant principalement formé par du dioxygène O2, tandis que ledit deuxième composant Ç2 est très majoritairement formé par du diazote N2. De préférence, ledit deuxième Qg composant comprend ainsi en outre de l’argon Ar et/ou du dioxyde de carbone ÇO2, lesquels se trouvent dans l’air chacun à une proportion bien inférieure à celle du diazote N2. Selon un deuxième exemple, ledit gaz d’entrée Ge est formé principalement par du gaz naturel ou du bio-méthane (c’est-à- dire issu d’un procédé essentiellement biologique de production de méthane), ledit premier composant O étant majoritairement formé de méthane CHU tandis que ledit deuxième composant Ç2, en particulier à l’état liquide, est formé des effluents du gaz naturel ou bio-méthane, lesdits effluents étant dans le cas présent préférentiellement formés de la fraction liquide du gaz naturel ou bio-méthane rejetée à la suite du traitement du gaz d’entrée Ge (refroidissement jusqu’à liquéfaction) débarrassée de son principal produit valorisable, à savoir ici le méthane CHU. En effet, le gaz naturel et le biométhane sont habituellement formés chacun par un mélange de plusieurs espèces chimiques, parmi lesquelles le méthane CH4 est normalement prépondérant. According to a first example, such as that illustrated in FIG. 3, said input gas Ge is formed by air, said first component Ci being mainly formed by dioxygen O2, while said second component C2 is very predominantly formed. by nitrogen N2. Preferably, said second component Qg thus further comprises argon Ar and / or carbon dioxide C02, each of which is found in air in a much lower proportion than that of dinitrogen N2. According to a second example, said input gas Ge is formed mainly by natural gas or bio-methane (that is to say resulting from an essentially biological process for the production of methane), said first component O being predominantly formed of CHU methane while said second component C2, in particular in the liquid state, is formed from natural gas or bio-methane effluents, said effluents being in the present case preferably formed from the liquid fraction of natural gas or bio-methane released following the treatment of the input gas Ge (cooling to liquefaction) freed of its main recoverable product, namely here CHU methane. In fact, natural gas and biomethane are usually each formed by a mixture of several chemical species, among which methane CH4 is normally predominant.
Ledit dispositif de séparation 19 comprend de préférence en outre une pompe à induction 20, par exemple monophasée ou triphasée, conçue pour expulser ledit composant le plus paramagnétique, parmi lesdits premier et deuxième composants Ci, C2, hors du dispositif de séparation 19, de préférence tout en le pressurisant. Avantageusement, ledit dispositif de séparation 19 comprend un piège magnétique 21 conçu pour émettre un champ magnétique 100 de sorte à retenir le composant le plus paramagnétique, parmi lesdits premier et deuxième composants Çi, 2, sensiblement au sein d’une portion de piégeage 22 dudit dispositif de séparation 19. De façon avantageuse, ladite étape de séparation comprend ainsi une étape de piégeage magnétique dans laquelle un champ magnétique 100 est émis de façon à retenir le composant le plus paramagnétique, parmi lesdits premier et deuxième composants Ci, Cg, sensiblement au sein d’une zone de piégeage 23, laquelle est de préférence formée de ou entourée par ladite portion de piégeage 22. Naturellement, ladite étape de piégeage magnétique est avantageusement mise en œuvre à l’aide dudit piège magnétique 21. De préférence, ledit dispositif de séparation 19 comprend un moyen de décantation 24 dudit liquide cryogénique JL, une portion au moins dudit moyen de décantation 24 formant ladite portion de piégeage 22. Le procédé de refroidissement comprend donc avantageusement une étape de décantation dudit liquide cryogénique L, ladite étape de décantation étant préférentiellement mise en œuvre au moyen dudit moyen de décantation 24, lequel comprend par exemple un vase de décantation. De façon avantageuse, lesdites étapes de décantation et de piégeage sont au moins en partie concomitantes. Avantageusement, ledit piège magnétique 21 et ladite pompe à induction 20 sont utilisés en combinaison, ladite pompe à induction 20 étant en aval du piège magnétique 21 et permettant de compléter l’étape de séparation desdits premier et deuxième composants Çi, Çz. Selon un exemple de fonctionnement donné à titre illustratif uniquement et non limitatif, pour finaliser cette séparation, le premier composant Çl à l’état liquide (dioxygène O2 liquide dans le cas où le gaz d'entrée G§ est Pair) est aspiré dans le piège magnétique 21 par la pompe à induction 20 dont le champ magnétique, grâce à un déphasage, génère une onde magnétique qui se déplace le long d’un tuyau d’évacuation formant une sortie dudit premier composant i à l’état liquide, attirant ainsi le premier composant i à l’état liquide (formé par exemple de dioxygène O2 liquide) hors du moyen de décantation 24 tout en le mettant sous pression. La vitesse de déplacement du premier composant Çi à l’état liquide est préférentiellement proportionnelle à la fréquence du courant alimentant la pompe à induction 20 et aux forces de Lorentz. Said separation device 19 preferably further comprises an induction pump 20, for example single-phase or three-phase, designed to expel said most paramagnetic component, among said first and second components Ci, C2, out of the separation device 19, preferably while pressurizing it. Advantageously, said separation device 19 comprises a magnetic trap 21 designed to emit a magnetic field 100 so as to retain the most paramagnetic component, among said first and second components Ci, 2, substantially within a trapping portion 22 of said separation device 19. Advantageously, said separation step thus comprises a magnetic trapping step in which a magnetic field 100 is emitted so as to retain the most paramagnetic component, among said first and second components Ci, Cg, substantially at the same time. within a trapping zone 23, which is preferably formed by or surrounded by said trapping portion 22. Naturally, said magnetic trapping step is advantageously carried out using said magnetic trap 21. Preferably, said device separation 19 comprises means 24 for settling said cryogenic liquid JL, at least a portion of said settling means 24 forming the said trapping portion 22. The cooling method therefore advantageously comprises a step of settling said cryogenic liquid L, said settling step preferably being carried out by means of said settling means 24, which for example comprises a settling vessel. Advantageously, said settling and trapping steps are at least partly concomitant. Advantageously, said magnetic trap 21 and said induction pump 20 are used in combination, said induction pump 20 being downstream of the magnetic trap 21 and making it possible to complete the step of separating said first and second components Çi, Çz. According to an example of operation given as illustrative only and not limiting, to finalize this separation, the first component Çl in the liquid state (liquid oxygen O2 in the case where the inlet gas G§ is Even) is sucked into the magnetic trap 21 by the induction pump 20 whose magnetic field, thanks to a phase shift, generates a magnetic wave which travels along a discharge pipe forming an outlet of said first component i in the liquid state, thus attracting the first component i in the liquid state liquid (formed for example of liquid oxygen O2) out of the settling means 24 while putting it under pressure. The speed of displacement of the first component Ci in the liquid state is preferably proportional to the frequency of the current supplying the induction pump 20 and to the Lorentz forces.
Comme illustré à la figure 9, le piège magnétique 21 , et plus précisément ladite portion de piégeage 22, comprend avantageusement un réseau magnétique formé de petits aimants 26 qui constituent de petites alvéoles en trois dimensions, et qui permettent d’émettre ledit champ magnétique 100. L’ensemble desdits aimants 17 peut former un cube, un cylindre, ou un cône, et les alvéoles sont de plus en plus petites au fur et à mesure de l’approche du bas. Une telle configuration s’apparente à un filtre magnétique aux mailles de plus en plus fines. A la figure 9, les indices P+ et P- représentent avantageusement des gradients de pression partielle dû à la concentration respectivement du dioxygène O2 (ou plus généralement du premier composant i) liquide et du diazote N2 (ou plus généralement dudit deuxième composant Ç2) liquide au sein du piège magnétique 21 , tandis que les flèches horizontales issues des signes O2 et N2 représentent les vitesses hydrauliques respectives du dioxygène O2 liquide et du diazote N2 liquide, respectivement, la forme d’onde tout à gauche représentant la répartition des vitesses des premier et second composants l, Ç2 mélangés à l’état liquides juste avant leur séparation magnétique. De façon avantageuse, sous l’effet du champ magnétique 100, ledit dioxygène O2 liquide (ou plus généralement ledit premier composant Ci) se rapproche d’une première paroi 27 du piège magnétique 21 derrière laquelle se trouve lesdits aimants 26, tandis que le diazote N2 (ou plus généralement le deuxième composant Ç2) se rapproche d’une seconde paroi 28 du piège magnétique 21 opposée à la première paroi 27 et dépourvue d’aimant, le champ magnétique 100 exerçant une force magnétique Fm sur les molécules paramagnétique du dioxygène O2 (ou plus généralement sur le plus paramagnétique desdits premier et deuxième composants Çi, 2, de préférence ledit premier composant Çi) seulement, et pas sur les molécules du diazote N2. Ainsi, selon cette variante à dispositif de séparation 19 magnétique, l’étape de séparation et/ou le dispositif de séparation 19 de l’invention utilise(nt) la capacité paramagnétique du dioxygène O2 liquide (et plus généralement dudit premier composant Ci à l’état liquide), qui est ainsi retenu entre des pôles d’aimant et/ou est attiré par un champ magnétique 11 , pour le séparer du diazote N2 et de l’argon Ar (et plus généralement dudit deuxième composant Ç2 à l’état liquide). En effet, l’argon liquide Ar et l’azote liquide N2 étant principalement amagnétiques, ils ne sont avantageusement pas retenus par le champ magnétique 100. As illustrated in FIG. 9, the magnetic trap 21, and more precisely said trapping portion 22, advantageously comprises a magnetic network formed of small magnets 26 which constitute small three-dimensional cells, and which allow said magnetic field 100 to be emitted. The set of said magnets 17 can form a cube, a cylinder, or a cone, and the cells are smaller and smaller as the bottom is approached. Such a configuration is similar to a magnetic filter with increasingly fine mesh. In FIG. 9, the indices P + and P- advantageously represent partial pressure gradients due to the concentration respectively of the oxygen O2 (or more generally of the first component i) liquid and of the nitrogen N2 (or more generally of the said second component C2) liquid within the magnetic trap 21, while the horizontal arrows resulting from the signs O2 and N2 represent the respective hydraulic speeds of liquid oxygen O2 and liquid nitrogen N2, respectively, the waveform on the far left representing the distribution of the speeds of the first and second components 1, C 2 mixed in the liquid state just before their magnetic separation. Advantageously, under the effect of the magnetic field 100, said liquid oxygen O2 (or more generally said first component Ci) approaches a first wall 27 of the magnetic trap 21 behind which is located said magnets 26, while the dinitrogen N2 (or more generally the second component C2) approaches a second wall 28 of the magnetic trap 21 opposite to the first wall 27 and devoid of magnet, the magnetic field 100 exerting a magnetic force Fm on the paramagnetic molecules of the oxygen O2 (or more generally on the most paramagnetic of said first and second components Ci, 2, preferably said first component Ci) only, and not on the N2 dinitrogen molecules. Thus, according to this variant with a magnetic separation device 19, the separation step and / or the separation device 19 of the invention uses (s) the paramagnetic capacity of liquid oxygen O2 (and more generally of said first component Ci to I). liquid state), which is thus retained between the magnet poles and / or is attracted by a magnetic field 11, to separate it from the nitrogen N2 and the argon Ar (and more generally from said second component C2 in the state liquid). Indeed, the liquid argon Ar and the liquid nitrogen N2 being mainly non-magnetic, they are advantageously not retained by the magnetic field 100.
Ladite pompe à induction 20 comprend, selon un exemple avantageux illustré à la figure 7, un enroulement 70 de fil en triphasé pour la collecte dudit premier composant Çi au sein du moyen de décantation 6, et en aval de cet enroulement 70 une ou plusieurs bobines en triphasé 71 , comme illustré à la figure 6. Une telle configuration permet préférentiellement à la fois d’améliorer la séparation finale desdits premier et deuxième composants Çi, Ç2, et de mettre sous pression, c’est-à-dire à un débit significatif, ledit premier composant DZ liquide enfin séparé dudit deuxième composant Cz liquide. Said induction pump 20 comprises, according to an advantageous example illustrated in FIG. 7, a winding 70 of three-phase wire for collecting said first component Ci within the settling means 6, and downstream of this winding 70 one or more coils. in three-phase 71, as illustrated in FIG. 6. Such a configuration preferably makes it possible both to improve the final separation of said first and second components Çi, Ç2, and to put under pressure, that is to say at a flow rate significant, said first liquid C ± component finally separated from said second liquid Cz component.
Cette configuration spécifique à dispositif de séparation 19 fonctionnant grâce au magnétisme est particulièrement avantageuse, puisque les températures de fonctionnement du dispositif de séparation 19 magnétique, et notamment dudit piège magnétique 21 et de ladite pompe à induction 20, sont très basses (cryotempé ratures). Ainsi, les parties conductrices du dispositif de séparation 19, notamment dans le cas d’aimants et plus particulièrement d’électro-aimant, sont aux limites de la supraconductivité naturelle du cuivre ou de l’aluminium, et des courants électriques de toutes grandeurs peuvent donc être utilisés et générer de grandes forces magnétiques avec peu d’échauffement et donc peu de pertes électriques et thermiques. This specific configuration with a separation device 19 operating by virtue of magnetism is particularly advantageous, since the operating temperatures of the magnetic separation device 19, and in particular of said magnetic trap 21 and of said induction pump 20, are very low (cryotemperatures). Thus, the conductive parts of the separation device 19, in particular in the case of magnets and more particularly of an electromagnet, are at the limits of the natural superconductivity of copper or aluminum, and electric currents of any magnitude can therefore be used and generate large magnetic forces with little heating and therefore little electrical and thermal losses.
Selon le mode de réalisation illustré à la figure 3, l’ensemble moteur 60 est conçu de façon que le système de refroidissement 1 puisse pour injecter, au sein de ladite chambre de combustion 25, le premier composant Ci à l’état en provenance du dispositif de séparation 19, ledit premier composant Çi à l’état liquide formant avantageusement ledit dioxygène O2 liquéfié De façon avantageuse, ledit premier composant Çi injecté est donc destiné à servir de comburant au sein du moteur à combustion interne 50. De façon particulièrement avantageuse, ledit dispositif de séparation 19 est donc conçu pour injecter ledit deuxième composant Ç2 à l’état liquide dans ledit évaporateur 6 et ne pas injecter ledit premier composant Çi à l'état liquide dans ledit évaporateur 6. Par exemple, l’ensemble moteur 60 est conçu de façon que le deuxième composant Ç2 soit formé (principalement) par ledit diazote N2 liquide et qu’il soit introduit dans l’évaporateur 6, tandis que le premier composant i est formé par ledit dioxygène O2 liquide et injecté directement dans ledit moteur à combustion interne 50, pour réaliser une oxycombustion, comme illustré à la figure 3. According to the embodiment illustrated in FIG. 3, the engine assembly 60 is designed so that the cooling system 1 can inject, within said combustion chamber 25, the first component Ci in the state coming from the separation device 19, said first component Ci in the liquid state advantageously forming said liquefied dioxygen O2 Advantageously, said first injected component Ci is therefore intended to serve as an oxidizer within the internal combustion engine 50. Particularly advantageously, said separation device 19 is therefore designed to inject said second component C2 in the liquid state into said evaporator 6 and not to inject said first component Ci in the liquid state into said evaporator 6. For example, 'motor assembly 60 is designed so that the second component C2 is formed (mainly) by said liquid nitrogen N2 and is introduced into the evaporator 6, while the first component i is formed by said liquid oxygen O2 and injected directly in said internal combustion engine 50, to carry out oxycombustion, as illustrated in FIG. 3.
Ainsi, une alternative spécifique du troisième aspect de l’invention concerne un ensemble moteur 60 comprenant : Thus, a specific alternative of the third aspect of the invention relates to an engine assembly 60 comprising:
- le système de refroidissement 1 , et - the cooling system 1, and
- un moteur à combustion interne 50, en aval dudit système de refroidissement 1 et comprenant une chambre de combustion 25 le système de refroidissement 1 étant relié audit moteur 26 de façon à pouvoir injecter dans ladite chambre de combustion 25 ledit premier composant Ci. Ce dernier est bien évidemment préférentiellement formé par du dioxygène O2. an internal combustion engine 50, downstream of said cooling system 1 and comprising a combustion chamber 25, the cooling system 1 being connected to said engine 26 so as to be able to inject into said combustion chamber 25 said first component Ci. The latter is obviously preferably formed by oxygen O2.
De façon avantageuse, ledit moteur 50 comprend une sortie d’échappement 42 conçue pour évacuer au moins un composant d’échappement Ce à l’état gazeux hors de ladite chambre de combustion 25. Plus avantageusement encore, en aval de ladite sortie d’échappement 42, ledit évaporateur 6 est conçu pour refroidir ledit composant d’échappement Ce en provenance de ladite sortie d’échappement 42 et réchauffer ledit deuxième composant Ç2 en provenance dudit dispositif de séparation 19. Ladite sortie d’échappement 42 forme ainsi avantageusement une partie dudit dispositif de récupération de chaleur de combustion 51. Advantageously, said engine 50 comprises an exhaust outlet 42 designed to evacuate at least one exhaust component Ce in the gaseous state out of said combustion chamber 25. More advantageously still, downstream of said exhaust outlet 42, said evaporator 6 is designed to cool said exhaust component Ce coming from said exhaust outlet 42 and heat said second component C2 coming from said separation device 19. Said exhaust outlet 42 thus advantageously forms part of said exhaust. combustion heat recovery device 51.
Le combustible du moteur à combustion interne 50 peut être notamment un hydrocarbure, par exemple le méthane Cm, ou du dihydrogène H2. Lorsque le combustible est un hydrocarbure et notamment le méthane CH4. le composant d’échappement Ce à l’état gazeux, qui contient les produits de la combustion du moteur 26, sera principalement formé d’eau et de dioxyde de carbone CO2. Lorsque le combustible est le dihydrogène H2, le composant d’échappement Ce à l’état gazeux, sera formé principalement voire quasiment uniquement d’eau. L’absence de diazote N2 dans la chambre de combustion, grâce à l’injection directe de dioxygène O2 liquide (ou éventuellement gazeux) pur est un des avantages de l’ensemble moteur 60 de l’invention (dont deux variantes spécifique sont illustrées aux figures 3 et 4), notamment en ce qui concerne la diminution de la pollution relative aux oxydes d’azote, aussi appelés « NOx ». En effet, le moteur à combustion interne 50 de l’ensemble moteur 60, en l’absence d’azote dans la chambre de combustion 25, ne produit pas ou quasiment pas de NOx. The fuel of the internal combustion engine 50 may in particular be a hydrocarbon, for example methane Cm, or dihydrogen H2. When the fuel is a hydrocarbon and in particular methane CH4. the exhaust component Ce in the gaseous state, which contains the products of the combustion of the engine 26, will be mainly formed of water and carbon dioxide CO2. When the fuel is hydrogen H2, the exhaust component Ce in the gaseous state, will be formed mainly or even almost only water. The absence of nitrogen N2 in the combustion chamber, thanks to the direct injection of pure liquid (or possibly gaseous) O2 dioxygen is one of the advantages of the engine assembly 60 of the invention (two specific variants of which are illustrated in figures 3 and 4), in particular with regard to the reduction in pollution relating to nitrogen oxides, also called “NO x ”. In fact, the internal combustion engine 50 of the engine assembly 60, in the absence of nitrogen in the combustion chamber 25, does not produce or hardly produces any NOx.
De façon avantageuse, l’ensemble moteur 60 comprend un dispositif de récupération de chaleur de combustion 51, de préférence celui décrit précédemment, pour récupérer la chaleur de combustion du composant d’échappement Ce provenant de ladite chambre de combustion 25. Advantageously, the engine assembly 60 comprises a combustion heat recovery device 51, preferably that described above, for recovering the heat of combustion of the exhaust component Ce from said combustion chamber 25.
De préférence, l’ensemble moteur 60 est conçu de façon que l’évaporateur 6 pour refroidisse ledit composant d’échappement Ce au moins jusqu’à liquéfaction d’une portion primaire de ce dernier, comme illustré aux figures 3 et 4. Préférentiellement, l’ensemble moteur 60 est conçu pour utiliser ladite portion primaire liquéfiée afin de liquéfier une portion secondaire dudit composant d’échappement Ce, lesdites portions primaire et secondaire étant distinctes. Ladite portion primaire est avantageusement principalement formée de dioxyde de carbone CO2, tandis que ladite portion secondaire est principalement formée d’eau, comme illustré aux figures 3 et 4. Plus avantageusement encore, ledit un dispositif de récupération de chaleur de combustion 51 comprend un dispositif de réinjection (non illustré) conçu pour balayer ladite chambre de combustion 25 avec ladite portion primaire et/ou ladite portion secondaire (à l’état liquide ou alternativement gazeux) afin d’expulser ledit composant d’échappement Ce hors de ladite chambre de combustion 25. Une telle configuration permet d’améliorer le fonctionnement du moteur à combustion interne 50 en expulsant efficacement ce dernier le composant d’échappement Ce. Par exemple, en particulier lorsque le combustible est un hydrocarbure, ledit dispositif de réinjection est conçu pour injecter la portion primaire liquide formée de dioxyde de carbone, au sein de ladite chambre de combustion 25, pour optimiser le balayage de cette dernière, c'est-à-dire expulser la totalité des gaz brûlés par la combustion et qui forment le composant d’échappement Ce à l’état gazeux. L'invention concerne également en tant que tel, selon un quatrième aspect, un procédé d’adaptation d’un moteur à combustion interne 50 comprenant au moins une tubulure d’admission et une chambre de combustion 25, ledit procédé d’adaptation comprenant au moins : Preferably, the motor assembly 60 is designed so that the evaporator 6 for cooling said exhaust component Ce at least until liquefaction of a primary portion of the latter, as illustrated in FIGS. 3 and 4. Preferably, The motor assembly 60 is designed to use said primary liquefied portion to liquefy a secondary portion of said exhaust component Ce, said primary and secondary portions being separate. Said primary portion is advantageously mainly formed of carbon dioxide CO2, while said secondary portion is mainly formed of water, as illustrated in Figures 3 and 4. More advantageously still, said combustion heat recovery device 51 comprises a device reinjection valve (not shown) designed to sweep said combustion chamber 25 with said primary portion and / or said secondary portion (in liquid or alternatively gaseous state) in order to expel said exhaust component C e out of said chamber. combustion 25. Such a configuration makes it possible to improve the operation of the internal combustion engine 50 by effectively expelling the latter the exhaust component Ce. For example, in particular when the fuel is a hydrocarbon, said reinjection device is designed to inject the primary liquid portion formed of carbon dioxide, within said combustion chamber 25, to optimize the scanning of the latter, that is, that is to say expel all of the gases burnt by combustion and which form the exhaust component Ce in the gaseous state. The invention also relates as such, according to a fourth aspect, to a method of adapting an internal combustion engine 50 comprising at least one intake manifold and a combustion chamber 25, said adaptation method comprising at least one less :
- une étape de fermeture ou d’enlèvement de ladite tubulure d’admission du moteur 26,- a step of closing or removing said engine intake manifold 26,
- une étape d’installation dans laquelle le système de refroidissement 1 tel que décrit précédemment est relié audit moteur à combustion interne 50, au niveau de ladite tubulure d’admission fermée ou enlevée et donc en amont de ladite chambre de combustion 25, de façon à pouvoir injecter dans cette dernière du dioxygène O2 liquéfié produit par ledit système de refroidissement 1. - an installation step in which the cooling system 1 as described above is connected to said internal combustion engine 50, at said closed or removed intake manifold and therefore upstream of said combustion chamber 25, so to be able to inject into the latter liquefied oxygen oxygen produced by said cooling system 1.
Avantageusement, à l’issue de ladite étape d’installation, ledit moteur à combustion interne 50 et le système de refroidissement 1 forment un ensemble moteur 60 tel que décrit ci-avant Advantageously, at the end of said installation step, said internal combustion engine 50 and the cooling system 1 form an engine assembly 60 as described above
Par exemple, ledit dioxygène O2 liquéfié peut être formé par ledit premier composant Ci provenance du dispositif de séparation 19, comme illustré à la figure 3, ou bien par le dioxygène O2 formé par le module d’électrolyse de l’eau 16 et liquéfié par ledit module d’échange de chaleur 17, ou encore une combinaison des deux. Bien évidemment, la description qui suit et qui précède concernant le système de refroidissement 1, l’ensemble moteur 60 et le procédé de refroidissement s’applique donc également au procédé d’adaptation de l’invention, et inversement. For example, said liquefied oxygen oxygen can be formed by said first component Ci originating from the separation device 19, as illustrated in FIG. 3, or else by the oxygen oxygen O2 formed by the water electrolysis module 16 and liquefied by said heat exchange module 17, or a combination of the two. Obviously, the following and preceding description concerning the cooling system 1, the engine assembly 60 and the cooling method therefore also applies to the adaptation method of the invention, and vice versa.
L'invention concerne également en tant que tel, selon un cinquième aspect, un procédé d’oxycombustion comprenant le procédé de refroidissement tel que décrit ci-avant, le procédé d’oxycombustion comprenant en outre une étape d’injection de dioxygène liquéfié O2 lors du procédé de refroidissement au sein d’une chambre de combustion 25 d’un moteur à combustion interne 50. Bien évidemment, la description qui suit et qui précède concernant le système de refroidissement 1, l’ensemble moteur 60, le procédé de refroidissement et même le procédé d’adaptation s’applique donc également au procédé d’oxycombustion de l’invention, et inversement. Par exemple, ledit gaz d’entrée Ge étant formé par de l’air, ledit premier composant i étant principalement formé par du dioxygène O2, et lors de ladite étape d’injection, ledit premier composant i est injecté dans ladite chambre de combustion 25. The invention also relates as such, according to a fifth aspect, to an oxycombustion process comprising the cooling process as described above, the oxycombustion process further comprising a step of injecting liquefied dioxygen O2 during of the cooling process within a combustion chamber 25 of an internal combustion engine 50. Obviously, the following and preceding description concerning the cooling system 1, the engine assembly 60, the cooling process and even the adaptation method therefore also applies to the oxycombustion method of the invention, and vice versa. For example, said input gas Ge being formed by air, said first component i being mainly formed by oxygen O2, and during said injection step, said first component i is injected into said combustion chamber 25.
Par exemple, comme illustré à la figure 10, le moteur à combustion interne 50, est à piston rotatif 44 (en forme de triangle de Reuleaux). Le moteur à combustion interne 50 à piston rotatif 44 de la variante illustrée à la figure 10 comprend deux bougies d’allumage 39 en opposition, deux injections communes de combustible et de comburant 40, 41 également en opposition, et deux sorties d’échappement 42 aussi en opposition et conçues pour évacuer le composant d’échappement Ce à l’état gazeux, comme décrit précédemment. Ledit comburant est préférentiellement formé par du dioxygène O2 liquide, formé par exemple par ledit premier composant Çi. L’oxycombustion permet ici de surmonter les problèmes de faible compression récurrents des moteurs à piston rotatif classiques, notamment en adaptant la vitesse de rotation du piston rotatif 44. For example, as illustrated in FIG. 10, the internal combustion engine 50 has a rotary piston 44 (in the shape of a Reuleaux triangle). The internal combustion engine 50 with rotary piston 44 of the variant illustrated in FIG. 10 comprises two spark plugs 39 in opposition, two common injections of fuel and oxidizer 40, 41 also in opposition, and two exhaust outlets 42 also in opposition and designed to evacuate the exhaust component Ce in the gaseous state, as previously described. Said oxidizer is preferably formed by liquid oxygen O2, formed for example by said first component Ci. Oxycombustion here makes it possible to overcome the recurring low compression problems of conventional rotary piston engines, in particular by adapting the speed of rotation of the rotary piston 44.
Le système de refroidissement 1 est également adapté pour la production de petites quantités dudit premier composant i liquéfié, ou, après retour à l’état gazeux de ce dernier, pour la production de petite quantité dudit premier composant Çi à l’état gazeux mais comprimé (c’est-à-dire sous pression relativement élevée). The cooling system 1 is also suitable for the production of small quantities of said first liquefied component i, or, after returning to the gaseous state of the latter, for the production of small quantities of said first component Ci in the gaseous but compressed state. (i.e. under relatively high pressure).
L'invention concerne également en tant que tel, selon un cinquième aspect non illustré ici, un système de climatisation haute puissance comprenant le système de refroidissement précédemment décrit, l’énergie de refroidissement du système de climatisation haute puissance étant fournie via ledit évaporateur 6. The invention also relates as such, according to a fifth aspect not illustrated here, a high power air conditioning system comprising the cooling system described above, the cooling energy of the high power air conditioning system being supplied via said evaporator 6.
Par convention, de manière purement indicative et non limitative, il est indiqué dans les figures les signes (g) et (liq) pour indiquer respectivement les états gazeux et liquide de différents composants. Dans les figures, les flèches positionnées de part et d’autre des lignes continues indiquent de préférence le sens d’un flux, par exemple un flux de He(g) c’est-à-dire un flux d’hélium He à l’état gazeux. By convention, in a purely indicative and non-limiting manner, the signs (g) and (liq) are indicated in the figures to indicate respectively the gaseous and liquid states of different components. In the figures, the arrows positioned on either side of the continuous lines preferably indicate the direction of a flow, for example a flow of He ( g ), that is to say a flow of helium He to I. gaseous state.
Les termes du type premier, deuxième, troisième, quatrième, cinquième, primaire, secondaire, tertiaire de la précédente description sont de préférence employés à des fins distinctives uniquement, et non pour désigner un rang ou une numérotation ordinale. Un deuxième élément peut par exemple être introduit sans forcément qu’un premier élément de même nature soit également introduit ou même présent implicitement. The terms of the first, second, third, fourth, fifth, primary, secondary, tertiary type of the preceding description are preferably used for distinctive purposes only, and not to designate a rank or an ordinal numbering. a second element can for example be introduced without necessarily that a first element of the same nature is also introduced or even present implicitly.
POSSIBILITE D’APPLICATION INDUSTRIELLE POSSIBILITY OF INDUSTRIAL APPLICATION
En résumé, l’invention est en lien avec les problématiques de production de gaz liquéfié, de dépollution et d’efficacité énergétique des moteurs à combustion, et plus généralement d’économie d’énergie, avec pour application possible la production d’un liquide cryogénique avec une consommation énergétique optimisée. In summary, the invention relates to the problems of liquefied gas production, pollution control and energy efficiency of combustion engines, and more generally energy saving, with the possible application of the production of a liquid. cryogenic with optimized energy consumption.

Claims

REVENDICATIONS
1 - Système de refroidissement (1) comprenant au moins : 1 - Cooling system (1) comprising at least:
- une pompe à chaleur Stirling (2) conçue pour refroidir un gaz d’entrée (Ge) jusqu’à une température cryogénique afin de former un liquide cryogénique (L), - a Stirling heat pump (2) designed to cool an inlet gas (G e ) down to a cryogenic temperature in order to form a cryogenic liquid (L),
- un moteur électrique primaire (3), destiné à faire fonctionner ladite pompe à chaleur Stirling (2), - a primary electric motor (3), intended to operate said Stirling heat pump (2),
- une pompe primaire (4) destinée à faire circuler ledit liquide cryogénique (L) sous pression, et - a primary pump (4) intended to circulate said cryogenic liquid (L) under pressure, and
- un moyen de refroidissement (5), destiné à refroidir ledit moteur électrique primaire (3) à l’aide du liquide cryogénique (L) issu de ladite pompe primaire (4). - cooling means (5), intended to cool said primary electric motor (3) using cryogenic liquid (L) from said primary pump (4).
2 - Système de refroidissement (1) selon la revendication précédente, caractérisé en ce la pompe primaire (4) comprend un moteur électrique secondaire, le système de refroidissement (1) étant conçu pour refroidir ledit moteur électrique secondaire à l’aide du liquide cryogénique (L) en provenance de ladite pompe à chaleur Stirling (2). 2 - Cooling system (1) according to the preceding claim, characterized in that the primary pump (4) comprises a secondary electric motor, the cooling system (1) being designed to cool said secondary electric motor using the cryogenic liquid (L) from said Stirling heat pump (2).
3 - Système de refroidissement (1) selon la revendication 1 ou 2, caractérisé en ce qu’il comprend un dispositif de liquéfaction de l’hélium (30), lequel comprend au moins :3 - Cooling system (1) according to claim 1 or 2, characterized in that it comprises a helium liquefaction device (30), which comprises at least:
- un échangeur de chaleur (31) destiné à recueillir d’une part de l’hélium gazeux pour le refroidir à une cryotempérature, par exemple 120 K ou en-dessous, et d’autre part le liquide cryogénique (L) sous pression en provenance du moteur électrique primaire (3) pour le réchauffer, - a heat exchanger (31) intended to collect on the one hand gaseous helium in order to cool it to a cryotemperature, for example 120 K or below, and on the other hand the cryogenic liquid (L) under pressure in from the primary electric motor (3) to heat it,
- un module de détente isenthalpique (32), destiné à réaliser la détente isenthalpique de l’hélium (He) gazeux refroidi en provenance de l’échangeur de chaleur (31), afin de liquéfier ledit hélium (He) gazeux. - an isenthalpic expansion module (32), intended to achieve the isenthalpic expansion of the cooled helium (He) gas coming from the heat exchanger (31), in order to liquefy said gaseous helium (He).
4 - Système de refroidissement (1) selon la revendication précédente, caractérisé en ce que ledit dispositif de liquéfaction de l’hélium (30) comprend en outre : 4 - Cooling system (1) according to the preceding claim, characterized in that said helium liquefaction device (30) further comprises:
- un circuit de refroidissement (33) d’un élément magnétique (34), tel un aimant d’imagerie médicale, à l’aide de l’hélium (He) liquéfié en provenance dudit module de détente îsenthalpique (32), de sorte que l’hélium (He) liquéfié soit suffisamment réchauffé pour être vaporisé en hélium (He) gazeux, - a cooling circuit (33) of a magnetic element (34), such as a medical imaging magnet, using liquefied helium (He) coming from said module isenthalpic expansion (32), so that the liquefied helium (He) is heated enough to be vaporized into gaseous helium (He),
- un compresseur secondaire (36), destiné à comprimer l’hélium (He) gazeux en provenance dudit circuit de refroidissement (30) et à l’envoyer vers ledit échangeur de chaleur (31), et - a secondary compressor (36), intended to compress the helium (He) gas from said cooling circuit (30) and send it to said heat exchanger (31), and
- une turbine secondaire (35), positionnée en amont dudit module de détente îsenthalpique (32) et destinée à récupérer de l’énergie mécanique de l’hélium (He) gazeux refroidi provenant de l’échangeur de chaleur (31), ladite turbine secondaire (35) alimentant ledit compresseur secondaire (36) en énergie. - a secondary turbine (35), positioned upstream of said isenthalpic expansion module (32) and intended to recover mechanical energy from the cooled helium (He) gas coming from the heat exchanger (31), said turbine secondary (35) supplying said secondary compressor (36) with energy.
5 - Système de refroidissement (1) selon l’une quelconques des revendications précédentes, caractérisé en ce qu’il comprend un évaporateur (6) destiné à évaporer au moins une partie dudit liquide cryogénique (L) sous pression en provenance dudit moteur électrique primaire (3), de façon à former un gaz de sortie (Gs) et à récupérer de l’énergie de refroidissement. 5 - Cooling system (1) according to any one of the preceding claims, characterized in that it comprises an evaporator (6) intended to evaporate at least part of said cryogenic liquid (L) under pressure from said primary electric motor (3), so as to form an outlet gas (G s ) and to recover cooling energy.
6 - Système de refroidissement (1) selon la revendication précédente, caractérisé en ce que ledit évaporateur (6) comprend au moins un échangeur thermique primaire (7) destiné à recueillir d’une part ledit gaz d’entrée (Ge) pour le refroidir avant son entrée dans ladite pompe à chaleur Stirling (2), et d’autre part au moins une partie dudit liquide cryogénique (L), en provenance dudit moteur électrique primaire (3), pour le réchauffer. 6 - Cooling system (1) according to the preceding claim, characterized in that said evaporator (6) comprises at least one primary heat exchanger (7) intended to collect on the one hand said inlet gas (G e ) for the cooling before it enters said Stirling heat pump (2), and on the other hand at least part of said cryogenic liquid (L), coming from said primary electric motor (3), in order to heat it.
7 - Système de refroidissement (1) selon la revendication précédente, caractérisé en ce que ledit évaporateur (6) comprend en outre au moins un échangeur thermique secondaire (8) destiné à réchauffer ledit gaz de sortie (Gs) ou au moins une partie dudit liquide cryogénique (L) en provenance dudit échangeur thermique primaire (7) à l’aide d’une source de chaleur (Q). 7 - Cooling system (1) according to the preceding claim, characterized in that said evaporator (6) further comprises at least one secondary heat exchanger (8) intended to heat said outlet gas (G s ) or at least a part of said cryogenic liquid (L) from said primary heat exchanger (7) using a heat source (Q).
8 - Système de refroidissement (1) selon la revendication précédente, caractérisé en ce qu’il comprend un module de fourniture (9) de ladite source de chaleur (Q), ledit module de fourniture (9) étant formé par un dispositif de production d’énergie solaire (10), un dispositif de récupération de chaleur de combustion (51), ou un dispositif de récupération de chaleurs fatales issues du système de refroidissement (1) ou d’un autre système. 8 - Cooling system (1) according to the preceding claim, characterized in that it comprises a supply module (9) of said heat source (Q), said supply module (9) being formed by a production device solar energy (10), a combustion heat recovery device (51), or a device for recovering fatal heat from the cooling system (1) or from another system.
9 - Système de refroidissement (1) selon l’une quelconque des revendications 5 à 8, caractérisé en ce qu’il comprend un dispositif de récupération d’énergie mécanique (12) pour récupérer l’énergie mécanique produite par un déplacement dudit gaz de sortie (Gs). 9 - Cooling system (1) according to any one of claims 5 to 8, characterized in that it comprises a mechanical energy recovery device (12) for recovering the mechanical energy produced by a displacement of said gas from output (G s ).
10 - Système de refroidissement (1) selon la revendication précédente, caractérisé en ce qu’il comprend, en amont de ladite pompe à chaleur Stirling (2), un compresseur primaire (15) conçu pour comprimer ledit gaz d’entrée (Ge), ledit compresseur primaire (15) étant au moins en partie actionné à l’aide dudit dispositif de récupération d’énergie mécanique (12). 10 - Cooling system (1) according to the preceding claim, characterized in that it comprises, upstream of said Stirling heat pump (2), a primary compressor (15) designed to compress said inlet gas (G e ), said primary compressor (15) being at least partly actuated with the aid of said mechanical energy recovery device (12).
11 - Système de refroidissement (1) selon la revendication 9 ou 10, caractérisé en ce que ledit dispositif de récupération d’énergie mécanique (34) comprend au moins un générateur électrique (13), le système de refroidissement (1) comprenant en outre un module d’électrolyse (16) de l’eau en dihydrogène (H2) et en dioxygène (O2) alimenté en électricité au moins par ledit générateur électrique (13). 11 - cooling system (1) according to claim 9 or 10, characterized in that said mechanical energy recovery device (34) comprises at least one electric generator (13), the cooling system (1) further comprising a module (16) for electrolysis of water into hydrogen (H2) and oxygen (O2) supplied with electricity at least by said electric generator (13).
12 - Système de refroidissement (1) selon la revendication précédente, caractérisé en ce qu’il comprend en outre un module d’échange de chaleur (17) conçu pour :12 - Cooling system (1) according to the preceding claim, characterized in that it further comprises a heat exchange module (17) designed to:
- refroidir au moins jusqu’à liquéfaction le dioxygène (O2) issu du module d’électrolyse (16) de façon à former du dioxygène (O2) liquéfié, et - cool at least until liquefaction the dioxygen (O2) from the electrolysis module (16) so as to form liquefied dioxygen (O2), and
- réchauffer le gaz de sortie (Gs) en provenance du dispositif de récupération d’énergie mécanique (12). - heat the outlet gas (G s ) from the mechanical energy recovery device (12).
13 - Système de refroidissement (1) selon la revendication 11 ou 12, caractérisé en ce qu’il comprend en outre une unité de reformage du méthane (18), conçue pour faire réagir du dioxyde de carbone (CO2) avec du dihydrogène (H2) issu dudit module d’électrolyse (16) de l’eau afin de former du méthane (CH4) et de l’eau (H2O). 13 - Cooling system (1) according to claim 11 or 12, characterized in that it further comprises a methane reforming unit (18), designed to react carbon dioxide (CO2) with dihydrogen (H2 ) from said electrolysis module (16) of water to form methane (CH4) and water (H2O).
14 - Système de refroidissement (1) selon l’une quelconque des revendications précédentes, caractérisé en ce que ledit liquide cryogénique (L) en provenance dudit moteur électrique primaire (3) est formé d’au moins un premier composant (Ci) et un deuxième composant (C2) distincts et à l’état liquide, le système de refroidissement (1) comprenant en outre un dispositif de séparation (19) conçu pour séparer lesdits premier et deuxième composants (Ci, C2) à l’état liquide par magnétisme, l’un desdits premier et deuxième composants (Ci, C2) à l’état liquide présentant un caractère paramagnétique bien supérieur à l’autre desdits premier et deuxième composants (Ci, C2). 14 - Cooling system (1) according to any one of the preceding claims, characterized in that said cryogenic liquid (L) from of said primary electric motor (3) is formed of at least a first component (Ci) and a second component (C2) distinct and in the liquid state, the cooling system (1) further comprising a separation device (19 ) designed to separate said first and second components (Ci, C2) in the liquid state by magnetism, one of said first and second components (Ci, C2) in the liquid state exhibiting a much greater paramagnetic character than the other of said first and second components (Ci, C2).
15 - Système de refroidissement (1) selon les revendications 5 et 14, caractérisé en ce ledit dispositif de séparation (19) est conçu pour injecter ledit deuxième composant (C2) à l’état liquide dans ledit évaporateur (6) et ne pas injecter ledit premier composant (Ci) à l’état liquide dans ledit évaporateur (6). 15 - Cooling system (1) according to claims 5 and 14, characterized in that said separation device (19) is designed to inject said second component (C2) in the liquid state into said evaporator (6) and not to inject said first component (Ci) in the liquid state in said evaporator (6).
16 - Système de refroidissement (1) selon la revendication 14 ou 15, caractérisé en ce que ledit dispositif de séparation (19) comprend en outre une pompe à induction (20), par exemple monophasée ou triphasée, conçue pour expulser ledit composant le plus paramagnétique, parmi lesdits premier et deuxième composants (Ci, C2), hors du dispositif de séparation (19), de préférence tout en le pressurisant. 16 - Cooling system (1) according to claim 14 or 15, characterized in that said separation device (19) further comprises an induction pump (20), for example single-phase or three-phase, designed to expel said component most paramagnetic, among said first and second components (Ci, C2), out of the separation device (19), preferably while pressurizing it.
17 - Système de refroidissement (1) selon l’une quelconque des revendications 14 à 16, caractérisé en ce que ledit dispositif de séparation (19) comprend un piège magnétique (21) conçu pour émettre un champ magnétique (100) de sorte à retenir le composant le plus paramagnétique, parmi lesdits premier et deuxième composants (Ci, C2), sensiblement au sein d’une portion de piégeage (22) dudit dispositif de séparation (19). 17 - Cooling system (1) according to any one of claims 14 to 16, characterized in that said separation device (19) comprises a magnetic trap (21) designed to emit a magnetic field (100) so as to retain the most paramagnetic component, among said first and second components (Ci, C2), substantially within a trapping portion (22) of said separation device (19).
18 - Système de refroidissement (1) selon la revendication précédente, caractérisé en ce que ledit dispositif de séparation (19) comprend un moyen de décantation (24) dudit liquide cryogénique (L), une portion au moins dudit moyen de décantation (24) formant ladite portion de piégeage (22). 18 - Cooling system (1) according to the preceding claim, characterized in that said separation device (19) comprises settling means (24) of said cryogenic liquid (L), at least a portion of said settling means (24) forming said trapping portion (22).
19 - Système de refroidissement (1) selon l’une quelconque des revendications 14 à 18, caractérisé en ce que ledit gaz d’entrée (Ge) est formé par de l’air, ledit premier composant (Ci) étant principalement formé par du dioxygène (O2), tandis que ledit deuxième composant (C2) est très majoritairement formé par du diazote (N2). 19 - Cooling system (1) according to any one of claims 14 to 18, characterized in that said inlet gas (G e ) is formed by air, said first component (Ci) being mainly formed by dioxygen (O2), while said second component (C2) is very predominantly formed by dinitrogen (N2).
20 - Système de refroidissement (1) selon l’une quelconque des revendications 14 à 19, caractérisé en ce qu’il est relié à un moteur à combustion interne (50) comprenant une chambre de combustion (25), le système de refroidissement (1) étant conçu pour injecter, au sein de ladite chambre de combustion (25), le premier composant (Ci) en provenance du dispositif de séparation (19). 20 - Cooling system (1) according to any one of claims 14 to 19, characterized in that it is connected to an internal combustion engine (50) comprising a combustion chamber (25), the cooling system ( 1) being designed to inject, within said combustion chamber (25), the first component (Ci) from the separation device (19).
21 - Système de refroidissement (1) selon la revendication précédente, caractérisé en ce ledit premier composant (Ci) injecté est destiné à servir de comburant au sein du moteur à combustion interne (50). 21 - Cooling system (1) according to the preceding claim, characterized in that said first component (Ci) injected is intended to serve as an oxidizer within the internal combustion engine (50).
22 - Système de climatisation haute puissance, caractérisé en ce qu’il comprend le système de refroidissement selon la revendication 5 et optionnellement l’une quelconque des autres revendications précédentes, l’énergie de refroidissement du système de climatisation haute puissance étant fournie via ledit évaporateur (6). 22 - High power air conditioning system, characterized in that it comprises the cooling system according to claim 5 and optionally any one of the other preceding claims, the cooling energy of the high power air conditioning system being supplied via said evaporator (6).
23 - Ensemble moteur (60) caractérisé en ce qu’il comprend au moins: 23 - Engine assembly (60) characterized in that it comprises at least:
- le système de refroidissement (1) selon l’une quelconque des revendications 1 à 21, ledit système de refroidissement (1) étant conçu pour produire du dioxygène (O2) liquéfié, et - the cooling system (1) according to any one of claims 1 to 21, said cooling system (1) being designed to produce liquefied oxygen (O2), and
- un moteur à combustion interne (50), en aval dudit système de refroidissement (1) et comprenant une chambre de combustion (25), le système de refroidissement (1) étant relié audit moteur à combustion interne (50) de façon à pouvoir injecter dans ladite chambre de combustion (25) ledit dioxygène (O2) liquéfié. - an internal combustion engine (50), downstream of said cooling system (1) and comprising a combustion chamber (25), the cooling system (1) being connected to said internal combustion engine (50) so as to be able to injecting said liquefied oxygen (O2) into said combustion chamber (25).
24 - Ensemble moteur (60) selon la revendication précédente et l’une quelconque des revendications 14 à 21, caractérisé en ce qu’il est conçu de façon que le système de refroidissement (1) puisse pour injecter, au sein de ladite chambre de combustion (25), le premier composant (Ci) à l’état liquide en provenance du dispositif de séparation (19), ledit premier composant (Ci) à l’état liquide formant avantageusement ledit dioxygène (O2) liquéfié. 25 - Ensemble moteur (60) selon la revendication précédente et l’une quelconque des revendications 11 à 13, caractérisé en ce que ledit dioxygène (O2) liquéfié est issu dudit module d’électrolyse (16) de l’eau. 24 - Motor assembly (60) according to the preceding claim and any one of claims 14 to 21, characterized in that it is designed so that the cooling system (1) can inject, within said chamber of combustion (25), the first component (Ci) in the liquid state coming from the separation device (19), said first component (Ci) in the liquid state advantageously forming said liquefied oxygen (O2). 25 - Motor assembly (60) according to the preceding claim and any one of claims 11 to 13, characterized in that said liquefied dioxygen (O2) comes from said electrolysis module (16) of water.
26 - Procédé d’adaptation d’un moteur à combustion interne (50) comprenant au moins une tubulure d’admission et une chambre de combustion (25), ledit procédé d’adaptation étant caractérisé en ce qu’il comprend au moins : 26 - A method of adapting an internal combustion engine (50) comprising at least one intake manifold and a combustion chamber (25), said adaptation method being characterized in that it comprises at least:
- une étape de fermeture ou d’enlèvement de ladite tubulure d’admission du moteur (26), - a step of closing or removing said engine intake manifold (26),
- une étape d’installation dans laquelle le système de refroidissement (1) selon l’une quelconque des revendications 1 à 21 est relié audit moteur à combustion interne (50), au niveau de ladite tubulure d’admission fermée ou enlevée et donc en amont de ladite chambre de combustion (25), de façon à pouvoir injecter dans cette dernière du dioxygène (O2) liquéfié produit par ledit système de refroidissement (1). - an installation step in which the cooling system (1) according to any one of claims 1 to 21 is connected to said internal combustion engine (50), at said closed or removed intake manifold and therefore in upstream of said combustion chamber (25), so as to be able to inject liquefied dioxygen (O2) produced by said cooling system (1) into the latter.
27 - Procédé d’adaptation selon la revendication précédente, caractérisé en ce qu’à l’issue de ladite étape d’installation, ledit moteur à combustion interne (50) et le système de refroidissement (1) forment un ensemble moteur (60) selon la revendication 24 ou 25. 27 - Adaptation method according to the preceding claim, characterized in that at the end of said installation step, said internal combustion engine (50) and the cooling system (1) form an engine assembly (60) according to claim 24 or 25.
28 - Procédé de refroidissement comprenant au moins : 28 - Cooling process comprising at least:
- une étape de refroidissement d’un gaz d’entrée (Ge) à l’aide d’au moins une pompe à chaleur Stirling (2), de façon à former un liquide cryogénique (L), ladite pompe à chaleur Stirling (2) étant alimentée par un moteur électrique primaire (3), - a step of cooling an inlet gas (G e ) using at least one Stirling heat pump (2), so as to form a cryogenic liquid (L), said Stirling heat pump ( 2) being powered by a primary electric motor (3),
- une étape de pompage pour faire circuler ledit liquide cryogénique (L) sous pression, et - a pumping step for circulating said cryogenic liquid (L) under pressure, and
- une étape de refroidissement au cours de laquelle ledit moteur électrique primaire (3) est refroidi à l’aide du liquide cryogénique (L) issu de ladite étape de pompage. - a cooling step during which said primary electric motor (3) is cooled using cryogenic liquid (L) from said pumping step.
29 - Procédé de refroidissement selon la revendication précédente, caractérisé en ce que ledit liquide cryogénique (L) en provenance dudit moteur électrique primaire (3) est formé d’au moins un premier composant (Ci) et un deuxième composant (C2) distincts et à l’état liquide, le procédé de refroidissement comprenant en outre une étape de séparation desdits premier et deuxième composants (C1, C2) à l’état liquide par magnétisme, l’un desdits premier et deuxième composants (Ci, C2) à l’état liquide présentant un caractère paramagnétique bien supérieur à l’autre desdits premier et deuxième composants (Ci, C2). 29 - Cooling method according to the preceding claim, characterized in that said cryogenic liquid (L) from said primary electric motor (3) is formed of at least a first component (Ci) and a second component (C2) separate and in the liquid state, the cooling process further comprising a step of separating said first and second components (C1, C2) in the liquid state by magnetism, one of said first and second components (Ci, C2) in the liquid state exhibiting a much greater paramagnetic character than the other of said first and second components (Ci, C2).
30 - Procédé d’oxycombustion caractérisé en ce qu’il comprend le procédé de refroidissement selon la revendication 28 ou 29, le procédé d’oxycombustion comprenant en outre une étape d’injection de dioxygène liquéfié (O2) lors du procédé de refroidissement au sein d’une chambre de combustion (25) d’un moteur à combustion interne (50). 30 - Oxycombustion process characterized in that it comprises the cooling process according to claim 28 or 29, the oxycombustion process further comprising a step of injecting liquefied oxygen (O2) during the cooling process within a combustion chamber (25) of an internal combustion engine (50).
EP21732956.4A 2020-05-05 2021-05-04 Cooling system, air-conditioning system, motor assembly and associated methods Pending EP4146996A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2004428A FR3109986B1 (en) 2020-05-05 2020-05-05 COOLING SYSTEM, AIR CONDITIONING SYSTEM, ENGINE ASSEMBLY AND ASSOCIATED PROCESSES
PCT/FR2021/050768 WO2021224574A1 (en) 2020-05-05 2021-05-04 Cooling system, air-conditioning system, motor assembly and associated methods

Publications (1)

Publication Number Publication Date
EP4146996A1 true EP4146996A1 (en) 2023-03-15

Family

ID=72356072

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21732956.4A Pending EP4146996A1 (en) 2020-05-05 2021-05-04 Cooling system, air-conditioning system, motor assembly and associated methods

Country Status (15)

Country Link
US (1) US20230228463A1 (en)
EP (1) EP4146996A1 (en)
JP (1) JP2023527118A (en)
KR (1) KR20230006899A (en)
CN (1) CN115516262A (en)
AU (1) AU2021267010A1 (en)
BR (1) BR112022022386A2 (en)
CA (1) CA3180531A1 (en)
CL (1) CL2022002892A1 (en)
CO (1) CO2022015852A2 (en)
FR (1) FR3109986B1 (en)
IL (1) IL297876A (en)
MX (1) MX2022013831A (en)
WO (1) WO2021224574A1 (en)
ZA (1) ZA202213081B (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014087251A2 (en) * 2012-06-20 2014-06-12 Proyectos Y Generadores Libelula, S.A. De C.V. Systems and methods for distributed production liquefied natural gas
FR3009058A1 (en) * 2013-07-29 2015-01-30 Air Liquide METHOD AND INSTALLATION FOR PRODUCING PRESSURIZED GASES
FR3029611A1 (en) * 2014-12-08 2016-06-10 Eosgen-Technologies GAS LIQUEFACTION SYSTEM WITH ABSORPTION MACHINE AND STIRLING HEAT PUMP

Also Published As

Publication number Publication date
BR112022022386A2 (en) 2022-12-13
CL2022002892A1 (en) 2023-06-16
IL297876A (en) 2023-01-01
FR3109986A1 (en) 2021-11-12
CA3180531A1 (en) 2021-11-11
CO2022015852A2 (en) 2022-11-29
MX2022013831A (en) 2023-01-05
US20230228463A1 (en) 2023-07-20
KR20230006899A (en) 2023-01-11
FR3109986B1 (en) 2022-05-06
ZA202213081B (en) 2023-08-30
CN115516262A (en) 2022-12-23
AU2021267010A1 (en) 2022-12-01
WO2021224574A1 (en) 2021-11-11
JP2023527118A (en) 2023-06-27

Similar Documents

Publication Publication Date Title
FR3053771B1 (en) METHOD FOR LIQUEFACTING NATURAL GAS AND RECOVERING LIQUID EVENTS OF NATURAL GAS COMPRISING TWO NATURAL GAS SEMI-OPENING REFRIGERANT CYCLES AND A REFRIGERANT GAS REFRIGERANT CYCLE
CN1685189A (en) All electric LNG system and process
WO2015036708A2 (en) Device for recovering vapours from a cryogenic tank
EP2510292B1 (en) Method and device for low-temperature cooling/liquefaction
FR2558893A1 (en) METHOD FOR PRODUCING ENERGY USING A GAS TURBINE
EP2959242B1 (en) Station for reducing gas pressure and liquefying gas
FR2787560A1 (en) PROCESS FOR CRYOGENIC SEPARATION OF AIR GASES
FR3053770B1 (en) METHOD FOR LIQUEFACTING NATURAL GAS AND RECOVERING LIQUID EVENTS OF NATURAL GAS COMPRISING A SEMI-OPENING REFRIGERANT CYCLE WITH NATURAL GAS AND TWO REFRIGERANT GAS REFRIGERANT CYCLES
EP4146996A1 (en) Cooling system, air-conditioning system, motor assembly and associated methods
MXPA05003333A (en) Reduced carbon dioxide emission system and method for providing power for refrigerant compression and electrical power for a light hydrocarbon gas liquefaction process.
EP1488843B1 (en) Method for processing flue gases
WO2018036284A1 (en) Gas conversion method and system
FR2855985A1 (en) PROCESS FOR TREATING SMOKE WITH ENERGY RECOVERY
BE903196A (en) ENERGY PRODUCTION PROCESS
CA3224441A1 (en) Facility and method for the liquefaction of hydrogen
FR2943125A1 (en) Liquefied natural gas producing method, involves providing natural gas, recovering part of heat from fumes produced by gas turbine, and producing vapor for vapor turbine by using recovered part of heat
EA044860B1 (en) COOLING SYSTEM, AIR CONDITIONING SYSTEM, ENGINE ASSEMBLY AND RELATED METHODS
FR3035195B1 (en) INSTALLATION AND PROCESS FOR PRODUCTION OF LIQUID HELIUM
RU2808890C1 (en) Energy technological complex for generation of thermal and mechanical energy and method of complex operation
WO2022189157A1 (en) Fuel conditioning system and method configured to power an aircraft turbine engine using fuel from a cryogenic tank
FR2922960A1 (en) Blow-by gas reinjection system for e.g. petrol engine of motor vehicle, has exhaust gas recuperating circuit emerging from air intake circuit of engine, and blow-by gas recuperating circuit connected in exhaust gas recuperating circuit
WO2024069074A1 (en) Method and system for solidifying a gas at atmospheric pressure
FR2827186A1 (en) Compressor(s) in an air distillation unit supplying gas(es) to an industrial unit which produces steam are driven using the steam from the industrial unit and an electric motor
FR2776018A1 (en) Turbine drive method for marine vessel
FR2944095A1 (en) Liquefied natural gas producing method for engine of jet aircraft, involves driving compressor by driving units, and transferring part of heat of fumes from gas turbine towards refrigerating machine

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221003

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAV Requested validation state of the european patent: fee paid

Extension state: TN

Effective date: 20221003

Extension state: MD

Effective date: 20221003

Extension state: MA

Effective date: 20221003

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240111

RIN1 Information on inventor provided before grant (corrected)

Inventor name: VERNET, JEAN-PHILIPPE GEORGES

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20240430