EP4127406A1 - Turbomachine à double flux comprenant un dispositif de régulation du débit de fluide de refroidissement - Google Patents

Turbomachine à double flux comprenant un dispositif de régulation du débit de fluide de refroidissement

Info

Publication number
EP4127406A1
EP4127406A1 EP21718940.6A EP21718940A EP4127406A1 EP 4127406 A1 EP4127406 A1 EP 4127406A1 EP 21718940 A EP21718940 A EP 21718940A EP 4127406 A1 EP4127406 A1 EP 4127406A1
Authority
EP
European Patent Office
Prior art keywords
turbomachine
pressure
turbine
primary
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21718940.6A
Other languages
German (de)
English (en)
Inventor
Arnaud Nicolas Negri
Thaïs Savanah Liliane Marie SMEETS
Didier Jean-Louis Yvon
Frédéric François Jean-Yves Patard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
Safran Aircraft Engines SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Aircraft Engines SAS filed Critical Safran Aircraft Engines SAS
Publication of EP4127406A1 publication Critical patent/EP4127406A1/fr
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/141Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/081Cooling fluid being directed on the side of the rotor disc or at the roots of the blades
    • F01D5/082Cooling fluid being directed on the side of the rotor disc or at the roots of the blades on the side of the rotor disc
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • F02C7/18Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/36Power transmission arrangements between the different shafts of the gas turbine plant, or between the gas-turbine plant and the power user
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/232Heat transfer, e.g. cooling characterized by the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/301Pressure
    • F05D2270/3015Pressure differential pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • TITLE Double-flow turbine comprising a device for regulating the flow of cooling fluid
  • the present invention relates to the field of turbomachines, and in particular the cooling of a turbine rotor of a turbomachine.
  • the present invention relates to the regulation of the flow of a fluid through a rotor element of said turbomachine.
  • turbomachines of the bypass turbojet type comprising an inlet sleeve receiving the air which is drawn in by a low-pressure compressor to then be divided into a central primary flow and a secondary flow surrounding the primary flow.
  • the low-pressure compressor is similar to a blower in that part of the air flow that it compresses supplies a secondary flow.
  • the secondary flow circulates in a space called the secondary flow which is delimited externally by a secondary flow casing also called the motor hull, and internally by an envelope surrounding the primary flow.
  • the primary flow circulates in a space called the primary vein bounded on the outside by the casing and inside by a succession of fixed and rotating internal elements.
  • the fixed internals include rectifier and valve platforms, and inner case ferrules, and the rotating internals include rotor bladed wheel platforms.
  • the primary flow circulates between an internal casing and an external casing of a high pressure compressor to be compressed in this high pressure compressor before being burned in a combustion chamber. It is then expanded in a high pressure turbine to drive the high pressure compressor, then in a low pressure turbine to drive the low pressure compressor, before being expelled backwards by generating a thrust.
  • the outer casing delimiting the primary stream is thus formed by a series of casings comprising a high pressure compressor casing, a casing at the level of the combustion chamber and a high pressure turbine casing, as well as by an outer casing of the casing. 'exhaust.
  • Each turbine and each compressor is formed of stages each comprising a series of rotating blades regularly spaced around a longitudinal central axis of the engine, possibly preceded by a distributor in the case of a turbine or possibly followed by a rectifier. in the case of a compressor.
  • Distributors and rectifiers consist of a series of fixed vanes.
  • the rear part of such an engine comprises, downstream of the low pressure turbine, an exhaust casing which carries a bearing supporting a rear end of the engine rotor.
  • This exhaust casing comprises an internal ferrule and an external ferrule and radial arms joining the ferrules to one another, radially crossing the primary stream.
  • Aircraft turbomachines are also known, of the double-flow and double-body turbojet type.
  • the turbomachine comprises, from upstream to downstream in the direction of flow of the gas flows in the turbomachine, a fan, coupled to a gas turbine engine comprising a low pressure compressor, a high pressure compressor, a annular combustion chamber, a high pressure turbine and a low pressure turbine.
  • the rotors of the high pressure compressor and the high pressure turbine are connected by a high pressure (HP) shaft and form with it a high pressure body.
  • the rotors of the low pressure compressor and the low pressure turbine are connected by a low pressure (LP) shaft and form with it a low pressure body.
  • the HP and LP shafts extend along a longitudinal axis of the turbomachine.
  • the fan has blades which are connected to a fan shaft. It is advantageous to make the fan turn at a speed of rotation lower than that of the LP shaft, in particular when the latter is very large, in order to better adapt it aerodynamically.
  • the fan shaft is connected in rotation to the LP shaft by means of a reduction gear, for example of the epicyclic gear type.
  • the fan shaft can be directly linked to the LP shaft.
  • the turbomachinery also includes a fan housing that extends around the blades which is carried by aerodynamic arms, and which defines an inlet stream of air flow. Some of this air enters an internal annular flow vein of a primary flow and the other part feeds an external annular flow vein of a secondary flow.
  • the flow passes through the LP and HP compressors, the combustion chamber, and the HP and LP turbines.
  • the external duct envelops the casings of the compressors and the turbines and joins the internal duct at the level of a nozzle of the turbomachine.
  • it is known to increase the size of the turbomachine which has the drawback of increasing the mass and the size of the turbomachine.
  • the various elements of the turbine, and in particular the rotor subjected to high temperatures are traversed by a cooling fluid, such as air from the turbine. ventilation.
  • a cooling fluid such as air from the turbine. ventilation.
  • the blades of the high pressure turbine are ventilated in order to be able to accept very high temperatures.
  • cooling or ventilation air must be used at a pressure higher than that of the primary stream in the high pressure turbine. This air is generally taken from the outlet of the high pressure compressor and will not enter the combustion chamber, which has the effect of reducing the quantity of air available for the combustion chamber of the turbomachine, and thus of reducing the efficiency. thermal of the turbomachine.
  • some include an active system for controlling the ventilation flow of a high pressure turbine configured to draw the air flow required for ventilation according to the needs of the turbomachine.
  • a system generally comprises a plurality of open tubes located in front of the outlet of the high pressure compressor and the opening of which is controlled by means of one or more actuators in order to take air at the outlet of the high pressure compressor for. inject it into the high pressure turbine disc.
  • FR 2 943 094 discloses a closure element configured to deform under the action of a centrifugal force induced by the rotation of the rotor.
  • the shutter member is angularly movable about a transverse axis perpendicular to the axis of rotation of the rotor. In the rest position, the shutter element is noticeably flared from upstream to downstream.
  • the shutter member deforms under the force of downstream upstream so as to block the passage of cooling air flow in the turbomachine.
  • Such a closure element does not allow the increase in the temperature. flow of cooling air when increasing the rotational speed of the rotor, which does not meet the cooling needs of the turbomachine.
  • the object of the present invention is therefore to alleviate the drawbacks of the aforementioned systems and to provide a device for regulating the flow of air circulating in a turbomachine rotor as a function of the air requirements necessary to cool at least one element of the turbomachine and this , without adding actuators and control system, in order to optimize the overall performance of the turbomachine.
  • the subject of the invention is therefore a turbomachine, with a longitudinal axis comprising a primary stream in which a primary flow circulates at a primary pressure and a secondary stream radially surrounding the primary stream and in which a secondary flow circulates at a secondary pressure, said primary duct comprising at least one compressor configured to compress the primary flow, a turbine driving said compressor in rotation and a combustion chamber intended to receive at the inlet the flow of primary air compressed by the compressor.
  • Said turbomachine further comprises a cooling circuit extending between the compressor and the turbine and in which circulates a flow of cooling air taken from the outlet of the compressor and having the primary pressure as pressure.
  • the cooling circuit comprises a device for regulating the air flow arranged upstream of the turbine and comprising at least one valve movable between an open position and a closed position as a function of the pressure difference between the pressure in the primary duct located between the compressor and the combustion chamber and the pressure in the secondary stream.
  • valve is movable between a position open and closed position as a function of the pressure difference between the pressure of the cooling air flow circulating in the cooling circuit and the pressure in the secondary stream.
  • the pressure is almost homogeneous up to the nozzle. It is thus possible to approximate the pressure to a secondary stream pressure, in particular the pressure located between the downstream side of the fan rectifier upstream of the ejection nozzle.
  • the air flow control device thus makes it possible to passively regulate the flow of air circulating in the turbine rotor elements by modulating the air bleed according to the cooling needs of the turbomachine.
  • the turbomachine can be a double-flow turbojet or a double-flow and double-body turbojet comprising a fan.
  • the air flow regulator may be intended to regulate the air flow in a blade of a high pressure or low pressure turbine.
  • the device for regulating the air flow is configured to ensure a minimum air flow when the pressure difference between the primary pressure and the secondary pressure is less than a threshold value and to ensure a flow of flow of maximum air when the pressure difference between the primary pressure and the secondary pressure is greater than or equal to the threshold value.
  • the threshold value from which the pressure difference increases the air flow can be between 10 and 40 bars.
  • this threshold value depends on the general parameters of the turbomachine and particularly on its maximum compression ratio, acronym “OPR” and its compression ratio of the secondary flow, acronym “FPR”.
  • OCR maximum compression ratio
  • FPR compression ratio of the secondary flow
  • the threshold value may be greater than 30, for example 40 bars.
  • the threshold value may be less than 20 bars, for example equal to 10 bars.
  • the device for regulating the air flow may comprise an annular cover for calibrating the ventilation flow rate mounted in the cooling circuit at the downstream end of said circuit upstream of the turbine rotor and integral with the stator part of the turbomachine, by example the casing of the combustion chamber, the valve being mounted in said cover.
  • the cover comprises at least one longitudinal passage opening opening into the cooling circuit, the valve being mounted downstream of said passage opening.
  • the passage orifice is, for example, made in an upstream surface of the cover.
  • the valve comprises a cylindrical housing, an actuator movable in translation in said housing along an axis parallel to the axis of rotation of the turbine rotor, between the closed position of the valve in which the actuator closes the passage orifice and the open position of the valve in which the cylinder allows the passage of an air flow through the passage orifice.
  • Said housing is connected directly or indirectly to a secondary pressure supply tube opening into the secondary vein.
  • the jack includes an upstream end having a pointed shape upstream.
  • a pointed shape upstream.
  • the end of the secondary pressure supply tube opening into the secondary vein is, for example, oriented downstream in order to capture only the static pressure in the secondary vein and not the impurities which may be present in said secondary vein .
  • the valve may include sealing elements mounted between the external cylindrical surface of the cylinder and the internal cylindrical surface of the housing.
  • the sealing elements can be, for example, O-rings or U-type hydraulic seals or any type of element preventing the passage of fluid to the secondary stream.
  • the upstream end of the cylinder includes an axial stop against the end of the housing in the open position of the valve and against the upstream surface of the cover in the closed position of the valve.
  • the jack is held in the housing.
  • the axial stop has the shape of an annular flange.
  • any other shape could be provided forming an axial stop of the jack.
  • the valve comprises an elastic member configured to prestress the cylinder in the closed position of the valve, such as for example a spring, housed in said housing and cooperating with a downstream end of the cylinder.
  • Said elastic member is dimensioned to prevent the translational movement of the cylinder in the closed position of the valve when the pressure difference between the pressure in the primary stream and the secondary pressure in the secondary stream is below the threshold value, for example when the engine is under little stress.
  • the prestressing force of the elastic member is countered and the jack is moved in translation towards the upstream in the open position of the valve.
  • elastic member any elastic member, by virtue of the material used and / or its dimensions, capable of deforming elastically, in a reversible manner, under the action of a stress exerted by the pressure difference between the pressure in the primary vein and the secondary pressure in the secondary vein and to return to its initial position after stopping said stress.
  • the cover may include an annular chamber into which the secondary pressure supply tube opens.
  • the flow control device comprises in besides a secondary pressure supply duct connected to the annular distribution chamber and to the cylindrical housing of the valve, said secondary pressure supply duct being configured to convey the secondary flow into the cylindrical housing of the valve.
  • the cover may also include at least one channel extending between the passage orifice and the turbine rotor to allow the passage of an air flow coming from the passage orifice towards said turbine rotor.
  • the cover and in particular its upstream surface, comprises a plurality of longitudinal passage orifices, for example, cîrconferentially regularly distributed, opening into the cooling circuit.
  • the through holes can be the same sizes or alternatively different sizes to further regulate the air flow.
  • the device for regulating the air flow comprises a plurality of valves each configured to be actuated as a function of the pressure difference between the pressure in the primary stream and the pressure in the secondary stream, each valve being mounted in the valve. cover downstream of an associated passage orifice.
  • the number of valves may be less than the number of through holes.
  • half of the hood passage orifices is associated with a valve.
  • the other half of the hood passage openings is therefore permanently open.
  • the elastic members of the valves can be identical to each other.
  • valve can be non-progressive opening and closing or opening and closing and urep ro gr essive.
  • the pressure supply conduit allows the secondary flow to be routed into all of the cylindrical housings of the valves.
  • the turbine rotor comprises a turbine disk whose axis of symmetry is coaxial with the axis of rotation, at least one rotor blade mounted radially on the circumference of said turbine disk and a sealing disk having the shape general of an annular part whose axis of symmetry is coaxial with the axis of rotation of the rotor, arranged upstream and integral in rotation with said rotor disc.
  • the rotor vanes extend radially outward.
  • the cooling circuit opens into a cooling volume formed between the sealing disc and the upstream surface of the turbine disc, the sealing disc comprising at least one ventilation opening opening into the channel.
  • the sealing disc comprises a plurality of angularly and regularly distributed ventilation openings.
  • the ventilation openings allow the passage of a flow of air taken, for example, by an air injector into the cooling volume.
  • the cooling air flow is then distributed to the vanes mounted on the turbine disk.
  • the ventilation openings are configured to allow sufficient air flow to cool the turbine blades when the turbomachine is operating at full speed, in particular during the takeoff phases of the aircraft and when the temperature of the gases is very high.
  • the air injector makes it possible to drive the cooling air flow in rotation so that said air flow circulates more easily from the stator mark to the rotor mark.
  • the air flow from cooling flows along a substantially axial axis at the level of the upstream face of the cover and in the passage orifices.
  • this air flow must circulate through the ventilation openings made in a room having a high speed of rotation.
  • the air injector which is a part fixed to the stator between said passage and ventilation openings makes it possible, by virtue of the fins, to force the axial air flow to orient itself more naturally towards the rotating ventilation openings.
  • FIG. 1 illustrates schematically a half. axial section of a structure of an example of a turbomaehine comprising a device for regulating the air flow according to a first embodiment of the invention
  • FIG 2 [Fig 3] very schematically illustrate the upper half of a part of the high pressure body of the turbomaehine of Figure 1 comprising a device for regulating the air flow according to an embodiment of the invention comprising a valve in a closed position and an open position respectively;
  • FIG 4 illustrates in detail the air flow control device of Figures 2 and 3;
  • FIG 6 are sectional views of the valve in the closed position and the open position, respectively;
  • FIG 7 illustrates the downstream face of the air flow regulating device of Figures 2 and 3;
  • FIG 8 illustrates very schematically the upper half of a part of the low pressure body of the turbomaehine of Figure 1 in which the device for regulating the air flow according to the invention could be integrated;
  • FIG 9 schematically illustrates an axial half-section of a structure of another example of a turbomachine comprising the device for regulating the air flow.
  • upstream and downstream are defined with respect to the direction of air circulation in the turbomachine.
  • FIG. I is shown very schematically an axial half-section of a turbomachine 10, of longitudinal general axis X-X ', for example of the bypass turbojet type,
  • the turbomachine comprises, from upstream to downstream in the direction of flow of the air flow F, an inlet sleeve 11 receiving air, a low pressure compressor 12 (CQPB) configured to suck the air flow F and divide it into a central primary flow F1 at a first variable pressure and a secondary flow F2 at a secondary pressure radially surrounding said primary flow F1.
  • the low-pressure compressor 12 can be likened to a fan insofar as part of the air flow that it compresses makes it possible to supply the secondary flow.
  • the turbomachine further comprises a high pressure compressor 13 configured to receive the primary air flow Fl from the low pressure compressor 12, an annular combustion chamber 14, a high pressure turbine 15 and a low pressure turbine 16.
  • the rotors of the high compressor pressure 13 and the high pressure turbine 15 are connected by a high pressure shaft 17.
  • the rotors of the low pressure compressor 12 and of the low pressure turbine 16 are connected by a low pressure shaft 18.
  • the secondary stream F2 circulates in a space 19 called the secondary stream delimited on the outside by a casing 19a of the secondary stream or motor shell and internally by a casing 19b radially surrounding the primary stream Fl.
  • the primary flow Fl circulates in a space 20 called the primary vein delimited on the outside by the envelope 19b and on the inside. by a succession of fixed and rotating elements.
  • the primary flow F1 circulates between an internal casing 21 located downstream of the low pressure compressor 12 and an exhaust casing 22 downstream of the low pressure turbine 16.
  • the primary and secondary streams 19, 20 meet downstream of the casing. exhaust 22.
  • the turbomachine 10 comprises a first cooling circuit 23 of the high pressure turbine 15 taking air from the high pressure compressor 13 and a second cooling circuit 24 of the low pressure turbine 16 drawing air from the high pressure compressor 13.
  • turbomachine could include one or the other of said cooling ducts, or even both.
  • the low-pressure compressor 12 or the fan in the case of a double-flow and double-body turbomachine creates a pressure PS called "secondary pressure" in the secondary stream 19.
  • FIG. 2 and 3 is shown very schematically an upper half of a part of the high pressure body of a turbomachine 10, for example the turbomachine of Figure 1. It will be noted that the regulating device could also be integrated into the low pressure body of a turbomachine, as illustrated in FIG. 8.
  • the high pressure body of the turbomachine of longitudinal general axis X-X ', comprises a casing 19b forming the casing of the secondary stream 19 and enclosing the high pressure compressor 13 of which only the compressor diffuser has been shown, the combustion chamber 14 receiving as input the hot air compressed by said compressor 13, and the high pressure turbine.
  • the high pressure turbine 15 comprises a turbine rotor 25, with an axis of rotation X-X ', comprising a turbine disk 25a whose axis of symmetry is coaxial with the axis of rotation X-X'.
  • the turbine disk 25a comprises an axial bore (not referenced) from which extends the drive shaft 17 connected to the compressor 13 to drive it in rotation in a primary stream 20.
  • the turbine disk 25a further comprises a plurality of rotor blades 25b mounted radially on the circumference of said turbine disk 25a.
  • the rotor vanes 25b extend radially outward.
  • the turbine 15 further comprises a sealing disc 26 configured to seal between the rotor 25 and the stator upstream of the turbine 15.
  • the sealing disc 26 is commonly referred to as a "labyrinth disc”.
  • the sealing disc 26 takes the general form of an annular part whose axis of symmetry is coaxial with the axis of rotation X-X ’.
  • the sealing disc 26 is mounted upstream of the turbine disc 25a and rotatably secured to the latter.
  • the cooling circuit 23 of the turbomachine 10 extends between the high pressure compressor 13 and the high pressure turbine 15.
  • the cooling circuit 13 opens into a cooling volume Y formed between the downstream surface of the sealing disc 26 and the upstream surface of the turbine disc 25a.
  • an air flow is taken upstream of the combustion chamber 14 at the outlet of the compressor 13 to be introduced into said cooling volume V.
  • the sealing disc 26 comprises a plurality of ventilation openings 26a opening out into the thickness of said sealing disc 26.
  • the ventilation openings 26a are angularly and regularly distributed over the upstream surface of said sealing disc. 26.
  • the ventilation openings 26a allow the passage of a flow of air F1 taken, for example, by an air injector (not shown) in the cooling volume V.
  • the cooling air flow is then distributed to the vanes 25b mounted on the turbine disk 25a,
  • the ventilation openings 26a are configured to allow sufficient air flow to cool the vanes 25b when the turbomachine is operating at full speed. , in particular during the take-off phases of the aircraft and when the gas temperature is very high.
  • the cooling circuit 23 comprises a device for regulating the air flow rate 30.
  • the device for regulating the air flow rate 30 comprises an annular cover 31 for calibrating the ventilation flow rate mounted in the cooling circuit 23 at the downstream end of said circuit directly upstream of the disc turbine 25a.
  • the cover 31 is integral with the stator, in particular with the casing 14a of the combustion chamber 14.
  • the cover 31 is delimited by an upstream radial surface 32, an internal annular surface 33 connected upstream to the upstream radial surface 32 and supporting downstream an internal seal with the sealing disc 26, an intermediate annular surface 34 connected upstream to the upstream radial surface 32 and supporting downstream an external seal with the sealing disc 26 and an external annular surface 35 connected upstream to the upstream radial surface 32 and connected downstream to the stator, in particular to the casing 14a of the combustion chamber 14.
  • the upstream radial surface 32 comprises a plurality of longitudinal passage orifices 32a emerging into the thickness of the upstream surface 32.
  • the passage orifices 32a may be circumferentially regularly distributed over the upstream surface 32 of the cover 31.
  • the cover 31 further comprises a channel 36 located axially between the upstream surface 32 and the downstream end of the sealing disc 26 and radially between the inner annular surface 33 and the intermediate annular surface 34 of the cover 31.
  • the channel 36 allows the passage of the air flow F1 coming from the passage openings 32a towards the sealing disc 26 and thus into the cooling volume V through the ventilation openings 26a of said disc 26.
  • the device for regulating the air flow 30 further comprises a tube 38 for supplying secondary pressure PS comprising an end 38a opening into the secondary stream 19 and an end 38b connected to the cover 31 and opening in particular into an annular chamber 40 mounted. in said cover 32.
  • the end 38a opening into the secondary stream 19 is oriented downstream so as to capture only the static pressure in the secondary stream 19 and not the impurities that may be present.
  • the device for regulating the air flow rate 30 further comprises a plurality of valves 42 each configured to be actuated as a function of the pressure difference between the primary stream 20 and the secondary stream 19.
  • Each valve 42 is mounted in the cover 31. in ava1 of an associated passage orifice 32a.
  • half of the passage orifices 32a of the cover 31 is associated with a valve 42.
  • the other half of the passage orifices 32a of the cover 31 is therefore permanently open.
  • the latter case is particularly advantageous so as not to ventilate the turbine blades when the engine speed is at idle.
  • Each valve 42 comprises a cylindrical housing 43, a cylinder 44 movable in translation in said housing 43 along an axis Xl-Xl 'parallel to the axis X-X' of rotation, between a closed position of the valve, visible in the figures 2 and 5 and an open position of the valve, visible in Figures 3 and 6, and a spring 46 housed in said housing 43.
  • each valve 42 comprises an elastic member 46, such as for example a spring, configured to pre-stress the cylinder 44 in the closed position of the valve 42,
  • the jack 44 comprises an upstream end 44a which opens into the associated passage orifice 32a and a downstream end 44b cooperating with the associated spring 46.
  • the upstream end 44a has, in no way limiting, the shape of a point upstream. Such a shape has the advantage of allowing self-centering of the jack 44 in the associated passage orifice 32a.
  • Each assembly of actuator 44 and its spring 46 is associated with a conduit 48 for supplying secondary pressure connected to the annular distribution chamber 40 and to the cylindrical housings 43 of each valve 42 in order to convey the secondary flow into all the cylindrical housings. valves 42.
  • Each of the cylinders 44 is held in the closed position of the valve 42, visible in Figures 2 and 5, by an associated spring 46. In the closed position of the valve 42, the cylinders 44 block the passage of ventilation air through the 'passage orifice 32a associated in the channel 36 and thus in the cooling volume V.
  • the springs 46 are dimensioned to prevent the translational movement of the jack 44 upstream when the pressure difference DR between the pressure P3 in the primary stream and the pressure PS in the secondary stream is less than a first threshold value SI, for example when the turbomachine is idling.
  • the pressure P3 is located between the high pressure compressor 13 and the combustion chamber 14.
  • the threshold value S 1 above which the pressure difference makes it possible to increase the air flow rate may be between 10 and 40 bars.
  • this threshold value depends on the general parameters of the turbomachine and particularly on its maximum compression ratio, acronym "OPR” and its secondary flow compression ratio, acronym "FPR".
  • OPR maximum compression ratio
  • FPR secondary flow compression ratio
  • the threshold value may be greater than 30, for example 40 bars.
  • the threshold value may be less than 20 bars, for example equal to 10 bars.
  • the opening of the valves could be gradual in the case where the springs 46 are different between the valves in order to start opening a passage orifice 32a from of a first threshold value, then two passage orifices 32a starting from a second threshold value, greater than the first threshold value, and so on until the opening of all the valves starting from a final threshold value.
  • These threshold values can be between 10 and 40 bars.
  • the first threshold value may be equal to 30 bars
  • the second threshold value may be equal to 35 bars.
  • the through holes 32a are of identical size. As a variant, one could provide passage orifices 32a of different dimensions to regulate the air flow more finely.
  • the springs 46 are identical to each other. Different springs could be provided for each valve and configured so that the valves are actuated in the open position one after the other as the pressure difference DR increases, thus allowing a gradual increase in the air flow of ventilation.
  • the valve can be non-progressive opening and closing or progressive opening and closing.
  • each valve 42 comprises sealing elements 49 between the external cylindrical surface (not referenced) of the jack 44 and the internal cylindrical surface (not referenced) housing 43. Sealing elements 49 may be, for example, O-rings or U-type hydraulic seals.
  • the upstream end 44a of the cylinder comprises an annular flange 44c forming an axial stop against the end of the housing 43 in the open position of the valve 42 and against the upstream surface 32 of the cover 31 in closed position of the valve 42.
  • the actuator 44 is held in the housing 43.
  • any other shape could be provided forming an axial stop of the actuator 44.
  • the device for regulating the air flow thus makes it possible to passively regulate the flow of air circulating in the rotor elements by modulating the air intake according to cooling needs.
  • the turbomachine comprises a valve actuated between a closed position and an open position as a function of the pressure difference between the primary stream 20 and the secondary stream 19.
  • the turbomachine 10 comprises a low pressure turbine stage 16 comprising a turbine rotor, with an axis of rotation X-X ', comprising a turbine disk 16a of generally annular shape, the axis of which of symmetry is coaxial with the axis of rotation X-X '.
  • Turbine disc 16a comprises an axial bore (not referenced) from which extends a drive shaft 18 and a plurality of rotor blades 16b mounted radially around the circumference of said turbine disc 16a. The rotor blades 16b extend radially outward.
  • the drive shaft 1 8 is intended to be connected to the rotor of a low pressure compressor 12 mounted upstream of the low pressure turbine rotor 16.
  • the turbine stage further comprises a sealing disc 50 configured to seal between the rotor and the stator part, for example comprising the casing of the combustion chamber (not shown) upstream of the turbomachine.
  • the sealing disc 50 is commonly referred to as a "labyrinth disc”.
  • the sealing disc 50 is in the general form of an annular part whose axis of symmetry is coaxial with the axis of rotation X-X ’.
  • the sealing disc 50 is mounted upstream of the turbine disc 16a and rotatably secured to the latter.
  • the sealing disc 50 comprises a radially inner fixing part 50a connected upstream to an element (not referenced) of the turbine body 10 and downstream to the turbine disc 16a.
  • the sealing disc 50 is also axially prestressed so that its radially outer edge 50b bears axially against an upstream surface of the rim of the turbine disc 16a and thus prevent the movement of the blades 16b.
  • a cooling volume V is provided between the downstream surface of the sealing disc 50 and the upstream surface of the rotor turbine disc 16a.
  • An air flow, illustrated by an arrow F1 in FIG. 8, is taken upstream from the high pressure compressor 13 to be introduced into said cooling volume V.
  • the sealing disc 50 comprises a plurality of ventilation openings 50c opening into the thickness of said sealing disc 50.
  • the ventilation openings 50c are angularly and regularly distributed over the upstream surface of said disc 50.
  • the ventilation openings 50c are angularly and regularly distributed over the upstream surface of said disc 50.
  • the ventilation openings 50c are angularly and regularly distributed.
  • 50c ventilation openings allow the passage of an air flow taken from the high pressure compressor and conveyed by a cooling circuit 24 to the low pressure turbine casing. The cooling air flow is then distributed to the vanes 16b mounted on the rotor turbine disk 16a.
  • the ventilation openings 50c are configured to allow sufficient air flow to cool the turbine blades 16b when the turbomachine is operating at full speed, in particular during the take-off phases of the aircraft and when the gas temperature is very high. .
  • the turbomachine 10 comprises the device for regulating the air flow rate 30 illustrated in detail in FIGS. 2 to 7.
  • the device for regulating the air flow rate 30 comprises an annular cover 31 for calibrating the ventilation flow rate mounted in the cooling circuit 24 at the downstream end of said circuit directly upstream of the turbine disk 16a.
  • the cover 31 is integral with the stator.
  • turbomachine structure and could be applied to a turbomachine of different structure, for example to a turbomachine 100 with double flow and double body comprising a fan, as illustrated. in figure 9.
  • the turbomachine 100 comprises, from upstream to downstream in the direction of flow of the gas flows in the turbomachine, a fan 101, coupled to a gas turbine engine comprising a low pressure compressor 1 12, a high pressure compressor 113, an annular combustion chamber 114, a high pressure turbine 115 and a low pressure turbine 1 16.
  • the rotors of the high pressure compressor and of the high pressure turbine are connected by a high pressure (HP) shaft 117 and form with it a high pressure body.
  • the rotors of the low pressure compressor and of the low pressure turbine are connected by a low pressure shaft (LP) 1 18 and form with it a low pressure body.
  • the HP and LP shafts extend along a longitudinal axis X-X 'of the turbomachine.
  • the fan shaft is rotatably linked to the BP 11 8 shaft directly or indirectly.
  • the turbomachine also includes a fan housing which extends around the blades which is carried by aerodynamic arms, and which defines an air inlet stream for the flows. Part of this air enters an internal annular flow stream of a primary flow 120 and the other part feeds an external annular flow stream of a secondary flow 119.
  • the flow passes through the LP and HP compressors, the combustion chamber, and HP and LP turbines.
  • the outer vein envelops the casings of compressors and turbines and joins the internal vein at the level of a nozzle of the turbomachine.
  • the ventilation air flow can be regulated using only the outlet pressure of the high pressure compressor and the pressure in the secondary stream.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Turbomachine (10) à double flux d'axe longitudinal (X-X') comprenant une veine primaire (20) dans laquelle circule un flux primaire (F1) à une pression primaire (P3) et une veine secondaire (19) entourant radialement ladite veine primaire (20) et dans laquelle circule un flux secondaire (F2) à une pression secondaire (PS), ladite veine primaire (20) comportant au moins un compresseur (13) configuré pour comprimer le flux primaire (F1), une turbine (15) entraînant en rotation ledit compresseur (13) et une chambre de combustion (14) destinée à recevoir en entrée le flux d'air primaire comprimé par le compresseur (13), ladite turbomachine (10) comprenant en outre un circuit de refroidissement (23) s'étendant entre le compresseur (13) et la turbine (15). Le circuit de refroidissement (23) comprend un dispositif de régulation du débit d'air (30) disposé en amont de la turbine (15) et comprenant au moins une vanne (42) mobile entre une position ouverte et une position fermée en située entre le compresseur (13) et la chambre de combustion (14) dans la veine primaire (20) et la pression (PS) dans la veine secondaire (19).

Description

DESCRIPTION
TITRE : Turbomacbine à double flux comprenant un dispositif de régulation du débit de fluide de refroidissement
Domaine technique de l’invention
La présente invention concerne le domaine des turbomachines, et notamment le refroidissement d’un rotor de turbine de turbomacbine.
Plus particulièrement, la présente invention concerne la régulation de la circulation d’un fluide à travers un élément de rotor de ladite turbomachine.
Etat de la technique antérieure
Classiquement, on connaît les turbomachiness du type turboréacteur à double flux comportant une manche d’entrée recevant l'air qui est aspiré par un compresseur basse pression pour ensuite être divisé en un flux primaire central et un flux secondaire entourant le flux primaire. Le compresseur basse pression est assimilable à une soufflante en ce qu’une partie du flux d’air qu’il compresse alimente un flux secondaire.
Le flux secondaire circule dans un espace appelé veine secondaire qui est délimité extérieurement par un carter de veine secondaire encore appelé carène du moteur, et intérieurement par une enveloppe entourant le flux primaire.
Le flux primaire circule dans un espace appelé veine primaire délimité extérieurement par l’enveloppe et intérieurement par une succession d’éléments internes fixes et rotatifs. Les éléments internes fixes comprennent des plateformes de redresseurs et de distributeurs, et des viroles de carters intérieurs, et les éléments internes rotatifs comprennent des plateformes de roues aubagées de rotors.
Plus concrètement, le flux primaire circule entre un carter interne et un carter externe de compresseur haute pression pour être comprimé dans ce compresseur haute pression avant d’être brûlé dans une chambre de combustion. Il est ensuite détendu dans une turbine haute pression pour entraîner le compresseur haute pression, puis dans une turbine basse pression pour entraîner le compresseur basse pression, avant d’être expulsé vers l'arrière en générant une poussée.
L’enveloppe délimitant extérieurement la veine primaire est ainsi formée par une série de carters comprenant un carter de compresseur haute pression, un carter au niveau de la chambre de combustion et un carter de turbine haute pression, ainsi que par une virole externe de carter d’échappement.
Chaque turbine et chaque compresseur est formé d’étages comportant chacun une série d’aubes rotatives régulièrement espacées autour d'un axe central longitudinal du moteur, précédé éventuellement d’un distributeur dans le cas d’une turbine ou suivi éventuellement d’un redresseur dans le cas d’un compresseur. Les distributeurs et les redresseurs sont constitués d’une série d’aubes fixes.
La partie arrière d’un tel moteur comprend, en aval de la turbine basse pression, un carter d’échappement qui porte un palier supportant une extrémité arrière de rotor du moteur. Ce carter d’échappement comporte une virole interne et une virole externe et des bras radiaux solidarisant ees viroles l’une à l’autre, en traversant radialement la veine primaire.
On connaît également les turbomachines d’aéronef, du type turboréacteur à double flux et à double corps. De manière connue, la turbomachine comporte, d'amont en aval selon le sens d’écoulement des flux de gaz dans la turbomachine, une soufflante, accouplée à un moteur à turbine à gaz comportant un compresseur basse pression, un compresseur haute pression, une chambre annulaire de combustion, une turbine haute pression et une turbine basse pression.
Les rotors du compresseur haute pression et de la turbine haute pression sont reliés par un arbre haute pression (HP) et forment avec lui un corps haute pression. Les rotors du compresseur basse pression et de la turbine basse pression sont reliés par un arbre basse pression (BP) et forment avec lui un corps basse pression. Les arbres HP et BP s’étendent suivant un axe longitudinal de la turbomachine.
La soufflante comporte des pales qui sont reliées à un arbre de soufflante. Il est intéressant de faire tourner la soufflante à une vitesse de rotation inférieure à celle de l'arbre BP, notamment lorsque celle-ci est de très grande dimension, dans le but de mieux l'adapter aérodynamiquement. A cet effet, l'arbre de soufflante est lié en rotation à l'arbre BP par l'intermédiaire d'un réducteur, par exemple du type à train épicycloïdal. Dans une autre configuration l’arbre de soufflante peut être directement lié à l’arbre BP.
La turbomachines comprend également un carter de soufflante qui s’étend autour des pales qui est porté par des bras aérodynamiques, et qui définit une veine d’entrée d’air des flux. Une partie de cet air pénètre dans une veine annulaire interne d'écoulement d’un flux primaire et l’autre partie alimente une veine annulaire externe d’écoulement d’un flux secondaire. La veine traverse les compresseurs BP et HP, la chambre de combustion, et les turbines HP et BP. La veine externe enveloppe des carters des compresseurs et des turbines et rejoint la veine interne au niveau d'une tuyère de la turbomachine. Afin d’augmenter la poussée de la turbomachine, il est connu d’augmenter la taille de la turbomachine, ce qui a pour inconvénient d’augmenter la masse et l’encombrement de la turbomachine.
Il est également connu d’augmenter la puissance et le rendement thermique de la turbomachine en augmentant la température des gaz de combustion transmis aux ailettes de la turbine. Toutefois, l’augmentation de la température des gaz est limitée par la température maximale admissible du rotor et des ailettes de la turbine. De plus, l’augmentation de la température réduit considérablement la durée de vie des éléments situés en aval de la chambre de combustion, tels que les distributeurs ou les aubes de turbines, ce qui génère d’importants coûts de maintenance.
Dans le but de trouver un compromis satisfaisant entre des caractéristiques mécaniques et des durées de vies acceptables, les différents éléments de la turbine, et notamment le rotor soumis à des températures élevées sont parcourus par un fluide de refroidissement, tel que de l ’air de ventilation. Ainsi, les aubes de la turbine haute pression sont ventilées afin de pouvoir accepter des températures très élevées.
Cependant, l’air de refroidissement ou ventilation doit être utilisé à une pression supérieure à celle de la veine primaire dans la turbine haute pression. Cet air est généralement prélevé à la sortie du compresseur haute pression et ne rentrera pas dans la chambre de combustion, ce qui a pour effet de diminuer la quantité d’air disponible pour la chambre de combustion de la turbomachine, et ainsi de réduire le rendement thermique de la turbomachine.
Il faut donc limiter les prélèvements d’air nécessaires pour la ventilation afin d’améliorer le rendement thermique de la turbomachine.
Parmi les circuits de ventilation connus, certains comprennent un système actif de contrôle du débit de ventilation d’une turbine haute pression configuré pour prélever le débit d’air nécessaire à la ventilation en fonction des besoins de la turbomachine. Un tel système comprend généralement une pluralité de tubes ouverts située devant la sortie du compresseur haute pression et dont l’ouverture est contrôlée par l ’intermédiaire d’un on plusieurs actionneurs afin de prélever de l ’air à la sortie du compresseur haute pression pour l’injecter vers le disque de turbine haute pression.
Toutefois, un tel système actif nécessite l’intégration d’ actionneurs et d’une unité de commande dédiée, ce qui est particulièrement encombrant et coûteux. On connaît également des dispositifs configurés pour commander la circulation d’un fluide à travers un élément de rotor en fonction de la vitesse de rotation de ce dernier.
On peut se référer à cet égard au document FR 2 943 094 (Snecma) qui divulgue un élément d’obturation configuré pour se déformer sous l’action d’une force centrifuge induite par la rotation du rotor. L’élément d’obturation est mobile angulairement autour d’un axe transversal perpendiculaire à l’axe de rotation du rotor. En position de repos, l’élément d’obturation est sensiblement évasé de l’amont vers l ’aval. Lorsque la turbomachine est en rotation, l’élément d’obturation se déforme sous l’effet de la force de l’aval vers l’ amont de manière à venir obturer le passage de flux d’air de refroidissement dans la turbomachine.
Un tel élément d’obturation ne permet pas l ’augmentation du flux d’air de refroidissement lors de l’augmentation de la vitesse de rotation du rotor, ce qui ne répond pas aux besoins de refroidissement de la turbomachine.
Ainsi, il existe un besoin de proposer un dispositif configuré pour réguler passivement le débit d’air de refroidissement en fonction des besoins nécessaires en air.
Exposé de l’invention
La présente invention a donc pour but de pallier les inconvénients des systèmes précités et de proposer un dispositif de régulation du débit d’air circulant dans un rotor de turbomachine en fonction des besoins nécessaires en air pour refroidir au moins un élément de la turbomachine et ce, sans ajouter d’actionneurs et de système de commande, afin d’optimiser les performances globales de la turbomachine. L’invention a donc pour objet une turbomachine, d’axe longitudinal comprenant une veine primaire dans laquelle circule un flux primaire à une pression primaire et une veine secondaire entourant radialement la veine primaire et dans laquelle circule un flux secondaire à une pression secondaire, ladite veine primaire comportant au moins un compresseur configuré pour comprimer le flux primaire, une turbine entraînant en rotation ledit compresseur et une chambre de combustion destinée à recevoir en entrée le flux d’air primaire comprimé par le compresseur.
Ladite turbomachine comprend en outre un circuit de refroidissement s’étendant entre le compresseur et la turbine et dans lequel circule un flux d’air de refroidissement prélevé à la sortie du compresseur et ayant comme pression la pression primaire.
Le circuit de refroidissement comprend un dispositif de régulation du débit d’air disposé en amont de la turbine et comprenant au moins une vanne mobile entre une position ouverte et une position fermée en fonction de la différence de pression entre la pression dans la veine primaire située entre le compresseur et la chambre de combustion et la pression dans la veine secondaire.
En d’autres termes, la vanne est mobile entre une position ouverte et une position fermée en fonction de la différence de pression entre la pression du flux d’air de refroidissement circulant dans le circuit de refroidissement et la pression dans la veine secondaire.
Dans la veine secondaire, une fois passé l’aubage redresseur situé en aval de la soufflante et à l’entrée du flux secondaire, la pression est quasiment homogène jusqu’à la tuyère. Il est ainsi possible d’approximer la pression à une pression de veine secondaire, notamment la pression située entre l’aval du redresseur de soufflante jusqu’à l’amont de la tuyère d’éjection. Le dispositif de régulation du flux d’air permet ainsi de réguler passivement le débit d’air circulant dans les éléments de rotor de turbine en modulant le prélèvement d’air en fonction des besoins en refroidissement de la turbomachine.
La turbomachine peut être un turboréacteur à double flux ou un turboréacteur à double flux et à double corps comprenant une soufflante.
Par ailleurs, le dispositif de régulation du flux d’air peut être destiné à réguler le débit d’air dans une aube d’une turbine haute pression ou basse pression.
Avantageusement, le dispositif de régulation du débit d’air est configuré pour assurer un débit d’air minimal lorsque la différence de pression entre la pression primaire et la pression secondaire est inférieure à une valeur de seuil et pour assurer un flux de débit d’air maximal lorsque la différence de pression entre la pression primaire et la pression secondaire est supérieure ou égale à la valeur de seuil. Par exemple, la valeur seuil à partir de laquelle la différence de pression permet d’augmenter le débit d’air peut être comprise entre 10 et 40 bars.
Toutefois, on notera que cette valeur de seuil dépend des paramètres généraux de la turbomachine et particulièrement de son taux de compression maximum, d’acronyme « OPR » et de son taux de compression du flux secondaire, d’acronyme « FPR ». Avec une turbomachine conçue, par exemple, avec un taux de compression maximum égal à 60 et un taux de compression du flux secondaire égal à 1.5, la valeur de seuil peut être supérieure à 30, par exemple de 40 bars. Avec une turbomachine conçue, par exemple, avec un taux de compression maximum égal à 20 et un taux de compression du flux secondaire égal à 5, la valeur de seuil peut être inférieure à 20 bars, par exemple égale à 10 bars. Le dispositif de régulation du débit d’air peut comprendre un capot annulaire de calibrage du débit de ventilation monté dans le circuit de refroidissement à l’extrémité aval dudit circuit en amont du rotor de turbine et solidaire de la partie statorique de la turbomachine, par exemple le carter de la chambre de combustion, la vanne étant montée dans ledit capot.
Selon un mode de réalisation, le capot comprend au moins un orifice de passage longitudinal débouchant dans le circuit de refroidissement, la vanne étant montée en aval dudit orifice de passage.
L’orifice de passage est, par exemple, pratiqué dans une surface amont du capot.
Par exemple, la vanne comprend un logement cylindrique, un vérin mobile en translation dans ledit logement selon un axe parallèle à l’axe de rotation du rotor de turbine, entre la position fermée de la vanne dans laquelle le vérin obture l’orifice de passage et la position ouverte de la vanne dans laquelle le vérin permet le passage d’un flux d’air à travers l’orifice de passage. Ledit logement est relié directement ou indirectement à un tube d’amenée de pression secondaire débouchant dans la veine secondaire.
Par exemple, le vérin comprend une extrémité amont ayant une forme en pointe vers l' amont. Une telle forme a pour avantage de permettre un auto-centrage du vérin dans l’orifice de passage associé.
L’extrémité du tube d’amenée de pression secondaire débouchant dans la veine secondaire est, par exemple, orientée vers l’aval afin de ne capter que la pression statique dans la veine secondaire et non les impuretés qui peuvent être présentes dans ladite veine secondaire.
Idéalement, il n’y a pas de circulation d’air dans le tube d’amenée de pression secondaire. Afin d’éviter ou limiter les fuites d’air de ventilation vers la veine secondaire, la vanne peut comprendre des éléments d’étanchéité montés entre la surface cylindrique externe du vérin et la surface cylindrique interne du logement. Les éléments d’étanchéité peuvent être, par exemple, des joints toriques ou des joints hydrauliques de type U ou tout type d’élément empêchant le passage du fluide vers la veine secondaire.
Par exemple, l’extrémité amont du vérin comprend une butée axiale contre l’extrémité du logement en position ouverte de la vanne et contre la surface amont du capot en position fermée de la vanne. Ainsi, le vérin est maintenu dans le logement. Par exemple, la butée axiale a une forme de collerette annulaire. En variante, on pourrait prévoir toute autre forme formant une butée axiale du vérin.
Avantageusement, la vanne comprend un organe élastique configuré pour précontraindre le vérin dans la position fermée de la vanne, tel que par exemple un ressort, logé dans ledit logement et coopérant avec une extrémité aval du vérin. Ledit organe élastique est dimensionné pour empêcher le mouvement de translation du vérin dans la position fermée de la vanne lorsque la différence de pression entre la pression dans la veine primaire et la pression secondaire dans la veine secondaire est inférieure à la valeur de seuil, par exemple lorsque le moteur est peu sollicité.
Lorsque la différence de pression entre la pression dans la veine primaire et la pression dans la veine secondaire est supérieure ou égale à la valeur de seuil, l ’effort de précontrainte de l’organe élastique est contré et le vérin est déplacé en translation vers l’amont dans la position ouverte de la vanne.
Par « organe élastique », on entend tout organe élastique, de par le matériau utilisé et/ou ses dimensions, capable de se déformer élastiquement, de manière réversible, sous l’action d’une sollicitation exercée par la différence de pression entre la pression dans la veine primaire et la pression secondaire dans la veine secondaire et de revenir dans sa position initiale après arrêt de ladite sollicitation.
Le capot peut comprendre une chambre annulaire dans laquelle débouche le tube d’ amenée de pression secondaire.
Par exemple, le dispositif de régulation de débit comprend en outre un conduit d’amenée de pression secondaire relié à la chambre annulaire de répartition et au logement cylindrique de la vanne, ledit conduit d’amenée de pression secondaire étant configuré pour acheminer le flux secondaire dans le logement cylindrique de la vanne. Le capot peut également comprendre au moins un canal s’étendant entre l’orifice de passage et le rotor de turbine pour permettre le passage d’un flux d’air provenant de l’orifice de passage vers ledit rotor de turbine.
Selon un autre mode de réalisation, le capot, et notamment sa surface amont, comprend une pluralité d’orifices de passage longitudinaux, par exemple, cîrconférentiellement régulièrement répartis, débouchants dans le circuit de refroidissement.
Les orifices de passage peuvent être de tailles identiques ou en variante, de dimensions différentes pour réguler davantage le débit d’air.
Par exemple, le dispositif de régulation du débit d’air comprend une pluralité de vannes configurées chacune pour être actionnées en fonction de la différence de pression entre la pression dans la veine primaire et la pression dans la veine secondaire, chaque vanne étant montée dans le capot en aval d’un orifice de passage associé.
Le nombre de vannes peut être inférieur au nombre d’orifices de passage. Par exemple, et de manière nullement limitative, la moitié des orifices de passage du capot est associé à une vanne. L’autre moitié des orifices de passage du capot est donc ouverte en permanence. En variante, on pourrait prévoir qu’un seul orifice de passage soit associé à une vanne ou à l’inverse que l’ensemble des orifices de passage soient associés à une vanne. Ce dernier cas est particulièrement avantageux pour ne pas ventiler les aubes de turbine lorsque le régime du moteur est au ralenti. Les organes élastiques des vannes peuvent être identiques entre eux. En variante, on pourrait prévoir des organes élastiques différents pour chaque vanne et configurés pour que les vannes soient actionnées dans la position ouverte les unes après les autres à mesure que la différence de pression augmente, permettant ainsi d’avoir une augmentation progressive du débit d’air de ventilation. Ainsi, la vanne peut être à ouverture et fermeture non progressive ou à ouverture et f erm et u r e p ro gr e s s i v e .
Dans le cas où le dispositif de régulation de débit d’air comprend une pluralité de vannes, le conduit d’amenée de pression permet d’acheminer le flux secondaire dans tous les logements cylindriques des vannes.
Avantageusement, le rotor de turbine comprend un disque de turbine dont l’axe de symétrie est coaxial à l’axe de rotation, au moins une aube de rotor montée radialement sur la circonférence dudit disque de turbine et un disque d’étanchéité présentant la forme générale d’une pièce annulaire dont l’axe de symétrie est coaxial à l ’axe de rotation du rotor, disposé en amont et solidaire en rotation dudit disque de rotor. Les aubes de rotor s’étendent radialement vers l’extérieur. Par exemple, le circuit de refroidissement débouche dans un volume de refroidissement ménagé entre le disque d’étanchéité et la surface amont du disque de turbine, le disque d’étanchéité comprenant au moins un orifice de ventilation débouchant dans le canal.
Ainsi, un flux d’air est prélevé en amont de la chambre de combustion à la sortie du compresseur pour être introduit dans ledit volume de refroidissement.
En variante, le disque d’étanchéité comprend une pluralité d’orifices de ventilation angulairement et régulièrement répartis.
Les orifices de ventilation permettent le passage d’un flux d’air prélevé, par exemple, par un injecteur d ’air dans le volume de refroidissement. Le flux d’air de refroidissement est ensuite distribué vers les aubes montées sur le disque de turbine. Les orifices de ventilation sont configurés pour permettre un débit d’air suffisant pour refroidir les aubes de turbine lorsque la turbomachine fonctionne à plein régime, en particulier lors des phases de décollage de l’aéronef et que la température des gaz est très élevée.
L’injecteur d’air permet d’entraîner en rotation le flux d’air de refroidissement afin que ledit flux d’air circule plus facilement du repère statorique au repère rotor. En effet le fl ux d’air de refroidissement s’écoule selon un axe substantiellement axial au niveau de la face amont du capot et dans les orifices de passage. Toutefois, ce flux d’air doit circuler à travers les orifices de ventilation pratiqués dans une pièce ayant une vitesse de rotation importante. L’injecteur d’air qui est une pièce fixée au stator entre lesdits orifices de passage et de ventilation permet, grâce à des ailettes, de forcer le flux d’air axial à s’orienter plus naturellement vers les orifices de ventilation en rotation. Ces injecteurs d’air sont connus de l’homme du métier et ne seront pas davantage décrits. Brève description des dessins
D'autres buts, caractéristiques et avantages de l’invention apparaîtront à la lecture de la description suivante, donnée uniquement à titre d'exemple non limitatif, et faite en référence aux dessins annexés sur lesquels : [Fig 1 ] illustre schématiquement une demi-coupe axiale d’une structure d'un exemple d’une turbomaehine comprenant un dispositif de régulation du débit d’air selon un premier mode de réalisation de l’invention ;
[Fig 2] [Fig 3] illustrent très schématiquement la moitié supérieure d’une partie du corps haute pression de la turbomaehine de la Figure 1 comprenant un dispositif de régulation du débit d’air selon un mode de réalisation de l ’invention comprenant une vanne respecti vement dans une position fermée et une position ouverte ; [Fig 4] illustre en détails le dispositif de régulation du débit d’air des Figures 2 et 3 ;
[Fig 5]
[Fig 6] sont des vues en coupe de la vanne respectivement dans la position fermée et la position ouverte ; [Fig 7] illustre la face aval du dispositif de régulation du débit d’air des Figures 2 et 3 ;
[Fig 8] illustre très schématiquement la moitié supérieure d’une partie du corps basse pression de la turbomaehine de la Figure 1 dans laquelle le dispositif de régulation du débit d’air selon l’invention pourrait être intégré ; et
[Fig 9] illustre schématiquement une demi-coupe axiale d’une structure d'un autre exemple d’une turbomachine comprenant le dispositif de régulation du débit d’air.
Dans la suite de la description, les termes « amont » et « aval » sont définis par rapport au sens de circulation de l ’air dans la turbomachine.
Exposé détaillé d’au moins nn mode de réalisation Sur la figure I est représentée très schématiquement une demi- coupe axiale d’une turbomachine 10, d ’axe général longitudinal X-X’, par exemple de type turboréacteur à double flux, La turbomachine comprend, d’amont en aval dans le sens d’écoulement du flux d’air F, une manche d’entrée 11 recevant de l’air, un compresseur basse pression 12 (CQPB) configuré pour aspirer le flux d’air F et le diviser en un flux primaire central Fl à une première pression variable et un flux secondaire F2 à une pression secondaire entourant radialement ledit flux primaire Fl . Le compresseur basse pression 12 peut être assimilé à une soufflante dans la mesure où une partie du flux d’air qu’il comprime permet d’alimenter le flux secondaire. La turbomachine comprend en outre un compresseur haute pression 13 configuré pour recevoir le flux d’air primaire Fl du compresseur basse pression 12, une chambre de combustion annulaire 14, une turbine haute pression 15 et une turbine basse pression 16. Les rotors du compresseur haute pression 13 et de la turbine haute pression 15 sont reliés par un arbre haute pression 17. Les rotors du compresseur basse pression 12 et de la turbine basse pression 16 sont reliés par un arbre basse pression 18.
Le flux secondaire F2 circule dans un espace 19 appelé veine secondaire délimité extérieurement par un carter 19a de veine secondaire ou carène du moteur et intérieurement par une enveloppe 19b entourant radialement le flux primaire Fl .
Le flux primaire Fl circule dans un espace 20 appelé veine primaire délimité extérieurement par l’enveloppe 19b et intérieurement par une succession d’éléments fixes et rotatifs.
Le flux primaire F1 circule entre un carter interne 21 situé en aval du compresseur basse pression 12 et un carter d’échappement 22 en aval de la turbine basse pression 16. Les veines primaire et secondaire 19, 20 se rejoignent en aval du carter d’échappement 22.
Tel qu ’illustré sur la figure 1 , la turbomachine 10 comprend un premier circuit de refroidissement 23 de la turbine haute pression 15 prélevant de l’air au niveau du compresseur haute pression 13 et un deuxième circuit de refroidissement 24 de la turbine basse pression 16 prélevant de l ’air au niveau du compresseur haute pression 13.
On notera que la turbomachine pourrait comprendre l’un ou l’autre desdits conduits de refroidissement, voire les deux.
Le compresseur basse pression 12 ou la soufflante dans le cas d’une turbomachine à double flux et double corps crée une pression PS dite « pression secondaire » dans la veine secondaire 19.
Sur les figures 2 et 3 est représentée très schématiquement une moitié supérieure d’une partie du corps haute pression d’une turbomachine 10, par exemple la turbomachine de la figure 1 . On notera que le dispositif de régulation pourrait également être intégré dans le corps basse pression d’une turbomachine, tel qu’illustré sur la figure 8.
Le corps haute pression de la turbomachine, d’axe général longitudinal X-X’, comprend, un carter 19b formant l’enveloppe de la veine secondaire 19 et enfermant le-compresseur haute pression 13 dont seul le diffuseur de compresseur a été représenté, la chambre de combustion 14 recevant en entrée l’air chaud et comprimé par ledit compresseur 13, et la turbine haute pression.
La turbine haute pression 15 comprend un rotor de turbine 25, d’axe de rotation X-X’, comprenant un disque de turbine 25a dont l’axe de symétrie est coaxial à l’axe de rotation X-X’. Le disque de turbine 25a comprend un alésage axial (non référencé) à partir duquel s’étend l’arbre d’entraînement 17 relié au compresseur 13 pour l’entraîner en rotation dans une veine primaire 20. Le disque de turbine 25a comprend en outre une pluralité d’aubes de rotor 25b montées radialement sur la circonférence dudit disque de turbine 25a. Les aubes de rotor 25b s’étendent radiaiement vers l’extérieur.
La turbine 15 comprend en outre un disque d’étanchéité 26 configuré pour assurer l ’étanchéité entre le rotor 25 et le stator à l’amont de la turbine 15. Le disque d’étanchéité 26 est désigné communément « disque labyrinthe ».
Le disque d’étanchéité 26 se présente sous la forme générale d’une pièce annulaire dont l ’axe de symétrie est coaxial à l’axe de rotation X-X’. Le disque d’étanchéité 26 est monté en amont du disque de turbine 25a et solidaire en rotation de ce dernier.
Le circuit de refroidissement 23 de la turbomachine 10 s’étend entre le compresseur haute pression 13 et la turbine haute pression 15. Le circuit de refroidissement 13 débouche dans un volume Y de refroidissement ménagé entre la surface aval du disque d’étanchéité 26 et la surface amont du disque de turbine 25a. Ainsi, un flux d’air est prélevé en amont de la chambre de combustion 14 à la sortie du compresseur 13 pour être introduit dans ledit volume V de refroidissement. A cet effet, le disque d’étanchéité 26 comprend une pluralité d’orifices de ventilation 26a débouchant dans l ’épaisseur dudit disque d’étanchéité 26. Les orifices de ventilation 26a sont angulairement et régulièrement répartis sur 1a surface amont dudit disque d’étanchéité 26.
Les orifices de ventilation 26a permettent le passage d’un flux d’air Fl prélevé, par exemple, par un injecteur d’air (non représenté) dans le volume V de refroidissement. Le flux d’air de refroidissement est ensuite distribué vers les aubes 25b montées sur le disque de turbine 25a, Les orifices de ventilation 26a sont configurés pour permettre un débit d’air suffisant pour refroidir les aubes 25 b lorsque la turbomachine fonctionne à plein régime, en particulier lors des phases de décollage de l’aéronef et que la température des gaz est très élevée.
En régime de croisière, lorsque la température des gaz est moins élevée et que les besoins en refroidissement sont réduits, il est avantageux de réguler le débit du flux d ’air de refroidissement.
A cet effet, le circuit de refroidissement 23 comprend un dispositif de régulation du débit d’air 30. Le dispositif de régulation du débit d’air 30 comprend un capot annulaire 31 de calibrage du débit de ventilation monté dans le circuit de refroidissement 23 à l’extrémité aval dudit circuit directement en amont du disque de turbine 25a. Le capot 31 est solidaire du stator, notamment du carter 14a de la chambre de combustion 14.
Tel qu’illustré, le capot 31 est délimité par une surface radiale amont 32, une surface annulaire intérieure 33 reliée à l’amont à la surface radiale amont 32 et supportant à l’aval une étanchéité interne avec le disque d’étanchéité 26, une surface annulaire intermédiaire 34 reliée à l’amont à la surface radiale amont 32 et supportant à l ’aval une étanchéité externe avec le disque d’étanchéité 26 et une surface annulaire externe 35 reliée à l’amont à la surface radiale amont 32 et reliée à l’aval au stator, notamment au carter 14a de la chambre de combustion 14.
La surface radiale amont 32 comprend une pluralité d’orifices de passages 32a longitudinaux débouchants dans l’épaisseur de la surface amont 32. De manière nullement limitative, les orifices de passages 32a peuvent être circonférentielfement régulièrement répartis sur la surface amont 32 du capot 31.
Le capot 31 comprend en outre un canal 36 situé axialement entre la surface amont 32 et l’extrémité aval du disque d’étanchéité 26 et radialement entre la surface annulaire intérieure 33 et la surface annulaire intermédiaire 34 du capot 31. Le canal 36 permet le passage du flux d’air Fl provenant des orifices de passages 32a vers le disque d’étanchéité 26 et ainsi dans le volume V de refroidissement à travers les orifices de ventilation 26a dudit disque 26.
Le dispositif de régulation du débit d’air 30 comprend en outre un tube 38 d ’amenée de pression secondaire PS comprenant une extrémité 38a débouchant dans la veine secondaire 19 et une extrémité 38b reliée au capot 31 et débouchant notamment dans une chambre annulaire 40 montée dans ledit capot 32. L’extrémité 38a débouchant dans la veine secondaire 19 est orientée vers l’aval afin de ne capter que la pression statique dans la veine secondaire 19 et non les impuretés qui peuvent être présentes.
Le dispositif de régulation du débit d’air 30 comprend en outre une pluralité de vannes 42 configurées chacune pour être actionnées en fonction de la différence de pression entre la veine primaire 20 et la veine secondaire 19. Chaque vanne 42 est montée dans le capot 31 en ava1 d’un orifice de passage 32a associé.
Tel qu’illustré, et de manière nullement limitative, la moitié des orifices de passage 32a du capot 31 est associée à une vanne 42. L’autre moitié des orifices de passage 32a du capot 31 est donc ouverte en permanence.
En variante, on pourrait prévoir qu’un seul orifice de passage 32a soit associé à une vanne 42 ou à l’inverse que l’ensemble des orifices de passage 32a soient associés à une vanne 42. Ce dernier cas est particulièrement avantageux pour ne pas ventiler les aubes de turbine lorsque le régime du moteur est au ralenti.
Chaque vanne 42 comprend un logement cylindrique 43, un vérin 44 mobile en translation dans ledit logement 43 selon un axe Xl-Xl ’ parallèle à l’axe X-X’ de rotation, entre une position fermée de la vanne, visible sur les figures 2 et 5 et une position ouverte de la vanne, visible sur les figures 3 et 6, et un ressort 46 logé dans ledit logement 43. De manière générale, chaque vanne 42 comprend un organe élastique 46, tel que par exemple un ressort, configuré pour précontraindre le vérin 44 dans la position fermée de la vanne 42,
Le vérin 44 comprend une extrémité amont 44a qui débouche dans l’orifice de passage 32a associé et une extrémité aval 44b coopérant avec le ressort 46 associé. Telle qu ’illustrée, l’extrémité amont 44a présente, de manière nullement limitative, une forme en pointe vers l’amont. Une telle forme a pour avantage de permettre un auto-centrage du vérin 44 dans l’orifice de passage 32a associé. Chaque ensemble de vérin 44 et son ressort 46 est associé à un conduit 48 d’ amenée de pression secondaire relié à la chambre annulaire de répartition 40 et aux logements cylindriques 43 de chaque vanne 42 afin d’acheminer le flux secondaire dans tous les logements cylindriques des vannes 42. Chacun des vérins 44 est maintenu en position fermée de la vanne 42, visible sur les figures 2 et 5, par un ressort associé 46, En position fermée de la vanne 42, les vérins 44 bloquent le passage de l’air de ventilation par l ’orifice de passage 32a associé dans le canal 36 et ainsi dans le volume V de refroidissement.
Les ressorts 46 sont dimensionnés pour empêcher le mouvement de translation du vérin 44 vers l’amont lorsque la différence de pression DR entre la pression P3 dans la veine primaire et la pression PS dans la veine secondaire est inférieure à une première valeur de seuil S I , par exemple lorsque la turbomachine est au ralenti. La pression P3 est située entre le compresseur haute pression 13 et la chambre de combustion 14.
Par exemple, la valeur seuil S 1 à partir de laquelle la différence de pression permet d’augmenter le débit d’air peut être comprise entre 10 et 40 bars. Toutefois, ou notera que cette valeur de seuil dépend des paramètres généraux de la turbomachine et particulièrement de son taux de compression maximum, d’acronyme « OPR » et de son taux de compression du flux secondaire, d’acronyme « FPR ». A vec une turbomachine conçue, par exemple, avec un taux de compression maximum égal à 60 et un taux de compression du flux secondaire égal à 1.5, la valeur de seuil peut être supérieure à 30, par exemple de 40 bars. Avec une turbomachine conçue, par exemple, avec un taux de compression maximum égal à 20 et un taux de compression du flux secondaire égal à 5, la valeur de seuil peut être inférieure à 20 bars, par exemple égale à 10 bars.
Ainsi, lorsque la différence de pression DR entre la pression P3 dans la veine primaire et la pression PS dans la veine secondaire est supérieure ou égale à la première valeur de seuil S I , l’effort du ressort 46 est contré et le vérin 44 est déplacé en translation vers l’aval, selon la flèche F visible sur la figure 6, dans la position ouverte de la vanne 42 visible sur les figures 3 et 6.
A titre d’exemple non limitatif, l’ouverture des vannes pourrait être progressive dans le cas où les ressorts 46 sont différents entres les vannes afin de commencer à ouvrir un orifice de passage 32a à partir d’une première valeur de seuil, puis deux orifices de passage 32a à partir d’une deuxième valeur de seuil, supérieure à la première valeur de seuil, et ainsi de suite jusqu ’à l ’ouverture de toutes les vannes à partir d’une dernière valeur de seuil. Ces valeurs de seuil peuvent être comprises entre 10 et 40 bars. Par exemple, la première valeur de seuil peut être égale à 30 bars, la deuxième valeur de seuil peut être égaie à 35 bars.
Tel qu’illustré, les orifices de passage 32a sont de tailles identiques. En variante, on pourrait prévoir des orifices de passage 32a de dimensions différentes pour réguler plus finement le débit d’air.
De même, dans l’exemple illustré, les ressorts 46 sont identiques entre eux. On pourrait prévoir des ressorts différents pour chaque vanne et configurés pour que les vannes soient actionnées dans la position ouverte les unes après les autres à mesure que la différence de pression DR augmente, permettant ainsi d’avoir une augmentation progressive du débit d’air de ventilation.
Ainsi, la vanne peut être à ouverture et fermeture non progressive ou à ouverture et fermeture progressive.
Idéalement, il n’y a pas de circulation d’air dans les tubes d’amenée de pression secondaire 38 et dans les conduits 48 d’amenée de pression secondaire. Afin d’éviter ou limiter les fuites d’air de ventilation vers la veine secondaire 19, chaque vanne 42 comprend des éléments d’étanchéité 49 entre la surface cylindrique externe (non référencée) du vérin 44 et la surface cylindrique interne (non référencée) du logement 43. Les éléments d’étanchéité 49 peuvent être, par exemple, des joints toriques ou des joints hydrauliques de type U.
Telle qu’illustrée sur les figures 5 et 6, l’extrémité amont 44a du vérin comprend une collerette annulaire 44c formant butée axiale contre l’extrémité du logement 43 en position ouverte de la vanne 42 et contre la surface amont 32 du capot 31 en position fermée de la vanne 42. Ainsi, le vérin 44 est maintenu dans le logement 43. En variante, on pourrait prévoir toute autre forme formant une butée axiale du vérin 44.
Le dispositif de régulation du flux d’air permet ainsi de réguler passivement le débit d’air circulant dans les éléments de rotor en modulant le prélèvement d’air en fonction des besoins en refroidissement.
De manière générale, la turbomachine comprend une vanne actionnée entre une position fermée et une position ouverte en fonction de la différence de pression entre la veine primaire 20 et la veine secondaire 19.
Tel qu ’illustré sur la figure 8, la turbomachine 10 comprend un étage de turbine basse pression 16 comprenant un rotor de turbine, d’axe de rotation X-X’, comprenant un disque de turbine 16a de forme générale annulaire dont l’axe de symétrie est coaxial à l’axe de rotation X-X’ . Le disque de turbine 16a comprend un alésage axial (non référencé) à partir duquel s’étend un arbre d’entraînement 18 et une pluralité d’aubes de rotor 16b montées radialement sur la circonférence dudit disque de turbine 16a, Les aubes de rotor 16b s’étendent radialement vers l’extérieur.
L’arbre d’entraînement 1 8 est destiné à être relié au rotor d’un compresseur basse pression 12 monté en amont du rotor de turbine basse pression 16.
L’étage de turbine comprend en outre un disque d’étanchéité 50 configuré pour assurer l’étanchéité entre le rotor et la partie statorique, comprenant par exemple le carter de la chambre à combustion (non représenté) à l’amont de la turbomachine. Le disque d’étanchéité 50 est désigné communément « disque labyrinthe ».
Le disque d’étanchéité 50 se présente sous la forme générale d’une pièce annulaire dont l’axe de symétrie est coaxial à l’axe de rotation X-X’. Le disque d’étanchéité 50 est monté en amont du disque de turbine 16a et solidaire en rotation de ce dernier.
Le disque d’étanchéité 50 comprend une partie de fixation 50a radialement intérieure reliée en amont à un élément (non référencé) du corps de turbine 10 et en aval an disque de turbine 16a. Le disque d’étanchéité 50 est par ailleurs précontraint axialement afin que son bord radialement externe 50b soit en appui axial contre une surface amont de la jante du disque de turbine 16a et ainsi empêcher le déplacement des aubes 16b. Un volume V de refroidissement est ménagé entre la surface aval du disque d’étanchéité 50 et la surface amont du disque de turbine de rotor 16a, Un flux d’air, illustré par une flèche Fl sur la figure 8, est prélevé en amont sur le compresseur haute pression 13 pour être introduit dans ledit volume V de refroidissement. A cet effet, le disque d’étanchéité 50 comprend une pluralité d’orifices de ventilation 50c débouchant dans l’épaisseur dudit disque d’étanchéité 50. Les orifices de ventilation 50c sont angulairement et régulièrement répartis sur la surface amont dudit disque 50. Les orifices de ventilation 50c permettent le passage d’un flux d’air prélevé sur le compresseur haute pression et acheminé par un circuit de refroidissement 24 jusqu’au carter de turbine basse pression. Le flux d’air de refroidissement est ensuite distribué vers les aubes 16b montées sur le disque de turbine de rotor 16a. Les orifices de ventilation 50c sont configurés pour permettre un débit d’air suffisant pour refroidir les aubes de turbine 16b lorsque la turbomachine fonctionne à plein régime, en particulier lors des phases de décollage de l’aéronef et que la température des gaz est très élevée.
En régime de croisière, lorsque la température des gaz est moins élevée et que les besoins en refroidissement sont réduits, il est avantageux de réguler le débit d’air de refroidissement.
Pour cela, la turbomachine 10 comprend le dispositif de régulation du débit d’air 30 illustré en détails sur les figures 2 à 7. Le dispositif de régulation du débit d’air 30 comprend un capot annulaire 31 de calibrage du débit de ventilation monté dans le circuit de refroidissement 24 à l ’extrémité aval dudit circuit directement en amont du disque de turbine 16a. Le capot 31 est solidaire du stator.
On notera également que l’invention n’est pas limitée à une telle structure de turbomachine et pourrait s’appliquer à une turbomachine de structure différente, par exemple à une turbomachine 100 à double flux et double corps comprenant une soufflante, telle qu’illustrée sur la figure 9.
La turbomachine 100 comporte, d'amont en aval selon le sens d’écoulement des flux de gaz dans la turbomachine, une soufflante 101 , accouplée à un moteur à turbine à gaz comportant un compresseur basse pression 1 12, un compresseur haute pression 113, une chambre annulaire de combustion 114, une turbine haute pression 115 et une turbine basse pression 1 16. Les rotors du compresseur haute pression et de la turbine haute pression sont reliés par un arbre haute pression (HP) 117 et forment avec lui un corps haute pression. Les rotors du compresseur basse pression et de la turbine basse pression sont reliés par un arbre basse pression (BP) 1 18 et forment avec lui un corps basse pression. Les arbres HP et BP s'étendent suivant un axe longitudinal X-X’ de la turbomachine.
L'arbre de soufflante est lié en rotation à l’arbre BP 11 8 directement ou indirectement.
La turbomachine comprend également un carter de soufflante qui s’étend autour des pales qui est porté par des bras aérodynamiques, et qui définit une veine d’entrée d’air des flux. Une partie de cet air pénètre dans une veine annulaire interne d'écoulement d’un flux primaire 120 et l’autre partie alimente une veine annulaire externe d’écoulement d’un flux secondaire 119. La veine traverse les compresseurs BP et HP, la chambre de combustion, et les turbines HP et BP. La veine externe enveloppe des carters des compresseurs et des turbines et rejoint la veine interne au niveau d’une tuyère de la turbomachine.
Ainsi, on peut réguler le débit d’air de ventilation en utilisant uniquement la pression de sortie du compresseur haute pression et la pression dans la veine secondaire.

Claims

REVENDICATIONS
1. Turbomachine (10, 100) à double flux d’axe longitudinal (X-
X’) comprenant une veine primaire (20, 120) dans laquelle circule un fl ux primaire à une pression primaire (P3) et une veine secondaire (19, 1 19) entourant radialement ladite veine primaire (20, 120) et dans laquelle circule un flux secondaire (F2) à une pression secondaire (PS), ladite veine primaire (20, 120) comportant au moins un compresseur (13) configuré pour comprimer le flux primaire, une turbine ( 15, 16, 115, 1 16) entraînant en rotation ledit compresseur (13, 1 13) et une chambre de combustion (14, 114) destinée à recevoir en entrée le flux d’air primaire comprimé par le compresseur (13, 1 13), ladite turbomachine (10, 100) comprenant en outre un circuit de refroidissement (23, 24, 123, 124) s’étendant entre le compresseur (13, 113) et la turbine (15, 16, 115, 1 16) et dans lequel circule un flux (Fl) d’air de refroidissement prélevé à la sortie du compresseur (13, 1 13) et ayant comme pression la pression primaire (P 3 ) , caractérisée en ce que le circuit de refroidissement (23, 123) comprend un dispositif (30) de régulation du débit d’air de refroidissement disposé en amont de la turbine (15, 16, 115, 1 16) et comprenant au moins une vanne (42) mobile entre une position ouverte et une position fermée en fonction de la différence de pression (DR) entre la pression (P3) dans la veine primaire (20, 120) située entre le compresseur (13, 1 13) et la chambre de combustion (14, 1 14) et la pression (PS) dans la veine secondaire (19, 1 19).
2. Turbomachine (10, 100) selon la revendication 1 , dans laquelle le dispositif de régulation du débit d’air (30) est configuré pour assurer un débit d’air minimal lorsque la différence de pression (DR) entre la pression (P3) dans la veine primaire (20, 120) entre le compresseur (13, 113) et la chambre de combustion (14, 1 14) et la pression (PS) dans la veine secondaire (19, 1 19) est inférieure à une valeur de seuil (S I ) et pour assurer un débit d’air maximal lorsque ladite différence de pression (DR) est supérieure ou égale à la valeur de seuil (S i).
3. Turbomachine (10, 100) selon la revendication 1 ou 2, dans laquelle le dispositif de régulation du débit d’air (30) comprend un capot annulaire (31) de calibrage du débit d’air de refroidissement monté dans le circuit de refroidissement (23) à l’extrémité aval dudit circuit (23) en amont d’un rotor de turbine (25, 16) et solidaire d’une partie statorique (14) de la turbomachine, la vanne (42) étant montée dans ledit capot (31).
4. Turbomachine (10, 100) selon la revendication 3, dans laquelle le capot (31) comprend au moins un orifice de passage (32a) longitudinal débouchant dans le circuit de refroidissement (23), la vanne (42) étant montée en aval dudit orifice de passage (32a).
5. Turbomachine (10, 100) selon la revendication 4, dans laquelle la vanne (42) comprend un logement cylindrique (43), un vérin (44) mobile en translation dans ledit logement (43) selon un axe (XI- XI ’) parallèle à l’axe (X-X’) de rotation du rotor de turbine (25, 16), entre la position fermée de la vanne (42) dans laquelle le vérin (44) obture l ’orifice de passage (32a) et la position ouverte de la vanne (42) dans laquelle le vérin (44) permet le passage d’un flux d’air à travers l’orifice de passage (32a), ledit logement (43) étant relié à un tube (38) d’ amenée de pression secondaire (PS) débouchant dans la veine secondaire (19, 119).
6. Turbomachine (10, 100) selon la revendication 5, dans laquelle la vanne (42) comprend un organe élastique (46) configuré pour précontraindre le vérin dans la position fermée de la vanne (42) et logé dans ledit logement (43) et coopérant avec une extrémité aval (44b) du vérin (44), ledit organe élastique (46) étant dimensionné pour empêcher le mouvement de translation du vérin (44) dans la position fermée de la vanne (42) lorsque la différence de pression (DR) entre la pression (P3) dans la veine primaire (20) située entre le compresseur (13, 1 13) et la chambre de combustion (14, 114) et la pression secondaire (PS) dans la veine secondaire (19, 1 19) est inférieure à la valeur de seuil (S I).
7. Turbomachine (10, 100) selon la revendication 5 ou 6, dans laquelle le capot (31 ) comprend une chambre annulaire (40) dans laquelle débouche le tube (38) d’ amenée de pression secondaire.
8. Turbomachine (10, 100) selon la revendication 7, dans laquelle le dispositif de régulation de débit (30) comprend en outre au moins un conduit (48) d’ amenée de pression secondaire relié à la chambre annulaire de répartition (40) et au logement cylindrique (43) de la vanne (42).
9. Turbomachine (10, 100) selon l’une quelconque des revendications 3 à 8, dans lequel le capot (31) comprend en outre un canal (36) s’étendant entre l’orifice de passage (32a) et le rotor de turbine (25, 16) pour permettre le passage d’ un flux d’air (Fl ) provenant de l’orifice de passage (32a) vers ledit rotor de turbine (25, 16).
10. Turbomachine (10, 100) selon l’une quelconque des revendications 3 à 9, dans laquelle le capot (31) comprend une pluralité d’orifices de passage (32a) longitudinaux débouchants dans le circuit de refroidissement (23, 24, 123, 124).
11 . Turbomachine (10. 100) selon la revendication 10, dans laquelle le dispositif de régulation du débit d’air (30) comprend une pluralité de vannes (42) configurées chacune pour être actionnées en fonction de la différence de pression (DR) entre la pression (P3) dans la veine primaire (20) située entre le compresseur (13, 113) et la chambre de combustion (14, 114) et la pression (PS) dans la veine secondaire (19, 1 19), chaque vanne (42) étant montée dans le capot (31) en aval d’un orifice de passage (32a) associé.
12. Turbomachine (10, 100) selon la revendication 1 1 , dans laquelle le nombre de vannes (42) est inférieur au nombre d’orifices de passage (32a).
13. Turbomachine (10, 100) selon la revendication 11 ou 12, dans laquelle les organes élastiques (46) des vannes (42) sont identiques entre eux.
14. Turbomachine (10, 100) selon l’une quelconque des revendications précédentes, dans laquelle le rotor de turbine (25, 16) comprend un disque de turbine (25a, 16a), au moins une aube de rotor (25b, 16b) montée radialement sur la circonférence dudit disque de turbine (25a, 16a) et un disque d’étanchéité (26, 50) présentant la forme générale d’une pièce annulaire dont l’axe de symétrie est coaxial à l’axe de rotation (X-X’) du rotor, disposé en aval et solidaire en rotation dudit disque de rotor (25a, 16a).
15. Turbomachine (10, 100) selon les revendications 9 et 14, dans laquelle le circuit de refroidissement (23, 24, 123, 124) débouche dans un volume (V) de refroidissement ménagé entre le disque d’étanchéité (26, 50) et la surface amont du disque de turbine (25a, 16a), le disque d’étanchéité (26, 50) comprenant au moins un orifice de ventilation (26a, 50c) débouchant dans le canal (36).
EP21718940.6A 2020-03-24 2021-03-18 Turbomachine à double flux comprenant un dispositif de régulation du débit de fluide de refroidissement Pending EP4127406A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2002873A FR3108655B1 (fr) 2020-03-24 2020-03-24 Turbomachine à double flux comprenant un dispositif de régulation du débit de fluide de refroidissement
PCT/FR2021/050443 WO2021191528A1 (fr) 2020-03-24 2021-03-18 Turbomachine à double flux comprenant un dispositif de régulation du débit de fluide de refroidissement

Publications (1)

Publication Number Publication Date
EP4127406A1 true EP4127406A1 (fr) 2023-02-08

Family

ID=71662006

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21718940.6A Pending EP4127406A1 (fr) 2020-03-24 2021-03-18 Turbomachine à double flux comprenant un dispositif de régulation du débit de fluide de refroidissement

Country Status (5)

Country Link
US (1) US11873729B2 (fr)
EP (1) EP4127406A1 (fr)
CN (1) CN115244271A (fr)
FR (1) FR3108655B1 (fr)
WO (1) WO2021191528A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3106624B1 (fr) * 2020-01-24 2022-02-18 Safran Aircraft Engines dispositif amélioré de détection d’anomalie de refroidissement pour turbomachine d’aéronef
FR3134842A1 (fr) 2022-04-21 2023-10-27 Safran Helicopter Engines Dispositif de refroidissement magnétothermique d’une turbomachine
CN115618652B (zh) * 2022-11-28 2023-03-10 成都秦川物联网科技股份有限公司 智慧燃气压缩机运行优化方法、物联网***、装置及介质
CN118128603B (zh) * 2024-05-10 2024-07-02 中国航发四川燃气涡轮研究院 一种涡轮盘系冷却封严结构

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3584458A (en) * 1969-11-25 1971-06-15 Gen Motors Corp Turbine cooling
US4296599A (en) * 1979-03-30 1981-10-27 General Electric Company Turbine cooling air modulation apparatus
GB2246836B (en) * 1981-05-07 1992-05-13 Rolls Royce Fluid flow valve
US4807433A (en) * 1983-05-05 1989-02-28 General Electric Company Turbine cooling air modulation
US6931859B2 (en) * 2003-12-17 2005-08-23 Honeywell International Inc. Variable turbine cooling flow system
US7926289B2 (en) * 2006-11-10 2011-04-19 General Electric Company Dual interstage cooled engine
US7665310B2 (en) * 2006-12-27 2010-02-23 General Electric Company Gas turbine engine having a cooling-air nacelle-cowl duct integral with a nacelle cowl
FR2943094B1 (fr) 2009-03-12 2014-04-11 Snecma Element de rotor avec un passage de fluide et un element d'obturation du passage, turbomachine comportant l'element de rotor.
US8549865B2 (en) * 2010-08-03 2013-10-08 General Electric Company Pressure-actuated plug
FR3062678B1 (fr) * 2017-02-07 2019-04-19 Safran Aircraft Engines Turboreacteur a double flux comprenant une veine intermediaire dediee a l'alimentation en air par des bras radiaux d'un carter d'echappement de ce turboreacteur

Also Published As

Publication number Publication date
WO2021191528A1 (fr) 2021-09-30
US11873729B2 (en) 2024-01-16
US20230107761A1 (en) 2023-04-06
CN115244271A (zh) 2022-10-25
FR3108655A1 (fr) 2021-10-01
FR3108655B1 (fr) 2022-07-15

Similar Documents

Publication Publication Date Title
EP1503061B1 (fr) Procédé de refroidissement, par air refroidi en partie dans un échangeur externe, des parties chaudes d'un turboréacteur, et turboréacteur ainsi refroidi.
WO2021191528A1 (fr) Turbomachine à double flux comprenant un dispositif de régulation du débit de fluide de refroidissement
EP3224462B1 (fr) Dispositif de refroidissement pour une turbomachine alimente par un circuit de decharge
FR2870293A1 (fr) Procedes et dispositifs pour assembler des turbomoteurs
FR2772835A1 (fr) Systeme de transfert d'ecoulement servant au refroidissement module d'une turbine
EP2440746A1 (fr) Turbomachine comprenant des moyens ameliores de reglage du debit d'un flux d'air de refroidissement preleve en sortie de compresseur haute pression
EP2475847A1 (fr) Pilotage des jeux en sommet d'aubes dans une turbomachine
EP1329595A1 (fr) Diffuseur pour moteur à turbine à gaz terrestre ou aèronautique
FR3018094A1 (fr) Rotor de soufflante pour une turbomachine telle qu'un turboreacteur multiflux entraine par reducteur
WO2021191523A1 (fr) Turbomachine avec dispositif de refroidissement et de pressurisation d'une turbine
EP2078822B1 (fr) Moteur à turbine à gaz avec clapet de mise en communication de deux enceintes
WO2009153480A2 (fr) Turbomachine avec diffuseur
EP0473494B1 (fr) Circuit d'alimentation en carburant d'un turbo-moteur
FR3062424A1 (fr) Systeme d'entrainement d'une pompe a carburant d'une turbomachine
FR3108659A1 (fr) Rotor de turbine comprenant un dispositif de régulation du débit de fluide de refroidissement et turbomachine comprenant un tel rotor
FR3108658A1 (fr) Rotor de turbine comprenant un dispositif de régulation du débit de fluide de refroidissement et turbomachine comprenant un tel rotor
FR3119199A1 (fr) Conduit de decharge a etancheite perfectionnee
CA2839248C (fr) Architecture double corps de turbomoteur avec compresseur haute pression lie a la turbine basse pression
FR3097907A1 (fr) Contrôle actif du débit de refroidissement du compresseur haute pression
FR3108657A1 (fr) Rotor de turbine comprenant un dispositif de régulation du débit de fluide de refroidissement et turbomachine comprenant un tel rotor
FR2688271A1 (fr) Moteur de propulsion, notamment pour avion supersonique.
FR3005109A1 (fr) Volute a deux volumes pour turbine a gaz
EP4256189A1 (fr) Ensemble pour turbomachine d'aeronef comprenant une vanne passive de contournement d'un echangeur de chaleur carburant / huile
FR3142223A1 (fr) Turbomachine d’aeronef comportant un circuit de carburant optimise
FR3120898A1 (fr) Dispositif de refroidissement d’un fluide pour une turbomachine

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220920

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)