EP4127261A1 - Barrier layer system and method for producing a barrier layer system - Google Patents

Barrier layer system and method for producing a barrier layer system

Info

Publication number
EP4127261A1
EP4127261A1 EP21715230.5A EP21715230A EP4127261A1 EP 4127261 A1 EP4127261 A1 EP 4127261A1 EP 21715230 A EP21715230 A EP 21715230A EP 4127261 A1 EP4127261 A1 EP 4127261A1
Authority
EP
European Patent Office
Prior art keywords
layer
parylene
layer system
oxide layers
deposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21715230.5A
Other languages
German (de)
French (fr)
Inventor
Emmy TÖRKER
Franz SELBMANN
Claudia Keibler-Willner
Mario Baum
Maik Wiemer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP4127261A1 publication Critical patent/EP4127261A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/01Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes on temporary substrates, e.g. substrates subsequently removed by etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45529Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations specially adapted for making a layer stack of alternating different compositions or gradient compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45555Atomic layer deposition [ALD] applied in non-semiconductor technology
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/44Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by a measurable physical property of the alternating layer or system, e.g. thickness, density, hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/60Deposition of organic layers from vapour phase

Definitions

  • the invention relates to a layer system and a method for producing such a layer system which has barrier properties against oxygen and water vapor.
  • Electronically active materials that are used in a wide variety of electrical assemblies are often highly sensitive to moisture and atmospheric oxygen.
  • a protective layer on the materials to be protected or by housing the assemblies using additional components.
  • solar cells are often protected from moisture and other external influences by means of glass.
  • plastic films are also used for encapsulation. Such plastic films must be coated for an adequate protective effect. For this reason, at least one so-called permeation barrier layer (hereinafter also referred to as a barrier layer) is deposited on them.
  • Barrier layers sometimes offer very different levels of resistance to different permeating substances.
  • the permeation of oxygen (OTR) and water vapor (WVTR) through the substrates provided with the barrier layer under defined conditions is often used to characterize barrier layers (WVTR according to DIN 53122-2-A; OTR according to DIN 53380-3).
  • Coating with a barrier layer reduces the permeation through a coated substrate compared to an uncoated substrate by a factor that can be in the single-digit range or many orders of magnitude.
  • various other target parameters are also often expected from a barrier layer. Examples of this are optical, mechanical and technological-economic requirements.
  • Barrier layers should often be almost completely transparent in the visible spectral range or beyond. If barrier layers are used in layer systems, it is often advantageous if Coating steps for applying individual parts of the layer system can be combined with one another.
  • PECVD processes plasma enhanced chemical vapor deposition
  • barrier layers These can be used when coating a wide variety of substrates for different layer materials. It is known, for example, to deposit Si0 2 and Si 3 N 4 layers with a thickness of 20 to 30 nm on 13 ⁇ m PET substrates [AS da Silva Sobrinho et al., J. Vac. May be. Technol. A 16 (6), Nov / Dec 1998, p. 3190-3198]
  • WVTR 0.3 g / m 2 d
  • OTR 0.5 cm 3 / m 2 d
  • barrier layers by sputtering. Sputtered individual layers often show better barrier properties than PECVD layers.
  • numerous other materials are known which are used, in particular, by reactive sputtering for the production of transparent barrier layers.
  • the layers produced in this way also have insufficient barrier effects.
  • Another disadvantage such layers are due to their low mechanical strength. Damage caused by technologically unavoidable stresses during further processing or use usually leads to a significant deterioration in the barrier effect. This often makes sputtered individual layers unusable for barrier applications.
  • Another disadvantage of sputtered layers is their high costs, which are caused by the low productivity of the sputtering process.
  • barrier layers By means of such PVD processes, different materials can also be deposited directly or reactively on a wide variety of substrates.
  • reactive vapor deposition of PET substrates with Al 2 O 3 is known [Surface and Coatings Technology, Vol.125 (2000), p. 354-360]
  • This barrier effect is also much too weak for materials coated in this way to be able to be used as barrier layers for electrical products. They are often even less mechanically resilient than sputtered individual layers.
  • the cured acrylate film is then coated with an oxidic intermediate layer, to which an acrylate film is in turn applied. This procedure is repeated several times if necessary.
  • the permeation values of a layer stack produced in this way i.e. a combination of individual oxide barrier layers with acrylate layers as intermediate layers, is below the measurement limit of conventional permeation measuring devices. Disadvantages arise here above all in the necessary use of complex system technology.
  • a liquid film initially forms on the substrate, which has to be cured. This leads to increased system contamination, which shortens maintenance cycles.
  • the intermediate layer functioning as a barrier layer is usually produced by means of magnetron sputtering.
  • magnetron sputtering it is disadvantageous that the use of sputtering technology means that a comparatively slow process is used. This results in very high product costs, which result from the low productivity of the technologies used.
  • the invention is therefore based on the technical problem of creating a barrier layer system and a method for producing such a barrier layer system with which the problems from the prior art can be overcome.
  • the barrier layer system should have a high barrier effect against oxygen and water vapor.
  • the barrier layer system is intended to produce a barrier effect both on substrates with flat surfaces, such as for example on plastic films, and on substrates with a profiled surface structure, as is the case with, for example Semiconductor components is given.
  • the barrier layer system should be able to be used as a flexible substrate, have an optical transparency and be biocompatible.
  • a layer system according to the invention with barrier properties against oxygen and water vapor initially comprises an alternating layer system consisting of
  • the alternating layer system of a layer system according to the invention consists of at least two aluminum oxide layers and at least two titanium oxide layers which are deposited alternately on top of one another.
  • the barrier effect of a layer system according to the invention can be further increased if more than two aluminum oxide layers and two titanium oxide layers are deposited alternately on top of one another within the alternating layer system. For economic reasons, it is not expedient to deposit more than six aluminum oxide layers and six titanium oxide layers alternately on top of one another.
  • a layer system according to the invention comprises a first parylene layer which is deposited on a first side of the alternating layer system and has a layer thickness of 0.1 ⁇ m to 50 ⁇ m.
  • the first parylene layer preferably has a layer thickness of 1 ⁇ m to 10 ⁇ m. This layer thickness range fulfills both requirements with regard to good barrier properties of the layer and the economic efficiency of the layer deposition process.
  • an alternating layer system is first formed in which at least two aluminum oxide layers and at least two titanium oxide layers are deposited alternately on top of one another.
  • the aluminum oxide layers and the titanium oxide layers are deposited
  • ALD atomic layer deposition
  • the aluminum oxide layers and titanium oxide layers deposited in the method according to the invention by means of ALD are therefore also jointly referred to below as ALD layers for short.
  • At least one precursor is usually let into a first working chamber, as a result of which functional groups of the precursor react with the surface of a substrate arranged in the working chamber, as a result of which a layer is formed on the surface of the substrate.
  • the deposition of an aluminum oxide layer by means of ALD for a layer system according to the invention is preferably carried out by means of two precursors.
  • a first precursor is first admitted into the first working chamber, from which molecules on the
  • the molecules of the first precursor that do not adhere to the substrate surface or the working chamber walls are removed from the first working chamber by means of a flushing gas.
  • a second precursor is then admitted into the first working chamber, with molecules of the second precursor reacting with the molecules of the first precursor adhering to the surface of the substrate to be coated and consequently forming a layer on the surface of the substrate to be coated.
  • Trimethylaluminum and water are suitable as first and second precursors for the formation of an aluminum oxide layer by means of ALD for a layer system according to the invention.
  • a titanium oxide layer is also formed by means of two precursors in the method according to the invention. Titanium tetrachloride and water, for example, can be used as the first and second precursors.
  • One requirement of a layer system according to the invention is that it has barrier properties with regard to oxygen and water vapor. It is therefore necessary for the individual ALD layers of the alternating layer system of a barrier layer system according to the invention to be deposited as completely closed layers as possible. In the method according to the invention, therefore, both the individual aluminum oxide layers and the individual titanium oxide layers are Alternating layer system deposited with a layer thickness of at least 5 nm each.
  • both the individual aluminum oxide layers and the individual titanium oxide layers of the alternating layer system of a barrier layer system according to the invention are deposited with a layer thickness of 5 nm to 20 nm each.
  • the ALD layers are deposited with a layer thickness of 5 nm to 10 nm.
  • this layer thickness range on the one hand, closed aluminum oxide layers and closed titanium oxide layers with good barrier properties are formed and, on the other hand, from an economic point of view and / or with functional requirements, such as transparency of the layer system with respect to light radiation, it is advantageous if the individual layers of the alternating layer system are not made too thick .
  • an aluminum oxide layer and only then a titanium oxide layer is formed on a substrate.
  • temperatures above room temperature are set within a working chamber selected for the ALD layer deposition process, whereby it is usually more advantageous to support the chemical reactions the higher the temperature is set.
  • How high the temperature in the working chamber is set depends, among other things, on the material of a substrate to be coated and its temperature resistance.
  • temperatures of at least 60 ° C. are set within a first working chamber selected for the ALD processes for depositing the aluminum oxide layers and the titanium oxide layers.
  • How high the temperature in the working chamber is set above 60 ° C depends, among other things, on the material of the substrate to be coated and its temperature sensitivity.
  • the temperature within the first working chamber can be increased to a temperature of at least 60 ° C., for example by means of a radiant heater. Furthermore, it is possible to form a substrate carrier, on which a substrate to be coated with the ALD layers is located, with a heating element, such as a heating plate, for example.
  • the temperature within the first working chamber is set to a temperature in the range from 60.degree. C. to 130.degree.
  • a temperature in the range from 60.degree. C. to 130.degree.
  • both temperature-sensitive substrates such as plastic films, can be coated and, on the other hand, a high deposition rate can be set in this temperature range.
  • the temperature within the first working chamber is set to a temperature in the range from 80.degree. C. to 120.degree. In this temperature range, low-defect aluminum oxide and titanium oxide layers are deposited using ALD at high process speeds.
  • a first parylene layer with a layer thickness of 0.1 ⁇ m to 50 ⁇ m and preferably a layer thickness of 1 ⁇ m to 10 ⁇ m is deposited at least on a first side of the alternating layer system composed of aluminum oxide and titanium oxide layers.
  • a known chemical vapor deposition process is selected as the layer deposition method, which is also referred to as “CVD” for short in relation to the English technical term “Chemical Vapor Deposition” and which is disclosed in US Pat. No. 3,556,881, for example.
  • the CVD deposition process for the parylene layer is preferably carried out at room temperature.
  • the parylene layer is deposited at temperatures in the range from 20 ° C to 40 ° C. Due to the different temperature requirements when depositing the ALD layers on the one hand and the parylene layer on the other, the parylene layer can preferably be deposited within a second working chamber, which differs from the first working chamber in which the alternating layer system is deposited. Alternatively, however, the alternating layer system and the parylene layer can also be deposited within a working chamber if the working chamber includes, among other things, means with which the different temperature requirements within the working chamber required for the ALD processes and the CVD process can be set.
  • parylene layer poly-para xylylene
  • parylene layer poly-para xylylene
  • parylene C / poly chloro-p-xylylene
  • Parylene F / poly tetrafluoro-p-xylylene
  • Parylene AF4 / poly a, a, a ', a'-tetrafluoro-p-xylylene
  • Parylene D / poly diichloro-p-xylylene or a mixed form of at least two of the parylene embodiments listed above.
  • the precursors for the parylene types mentioned are commercially available.
  • a parylene layer can also consist of parylene types other than those mentioned, i.e. H. Parylene types with other substituents such as bromine, alkyl, acyl, amino or methylamino, aldehyde, cyano and ethynyl groups.
  • a parylene layer made of parylene C is a very economical embodiment.
  • Such a layer causes only low precursor costs, enables a very good process yield, shows a very good barrier effect and has a biocompatibility certified according to ISO 10993. However, the temperature resistance of such a layer is only moderate.
  • parylene F layer material causes higher precursor costs, leads to a lower process yield than parylene C, has a lower barrier effect than parylene C and D, has no certified biocompatibility, but has a better temperature resistance than parylene C.
  • Parylene AF4 also causes higher precursor costs with a lower process yield than Parylene C, shows a lower barrier effect than Parylene C and D, but has better temperature resistance than Parylene F and has a certified biocompatibility.
  • the parylene type Parylene N requires higher precursor costs with a lower process yield compared to Parylene C, has a lower barrier effect than Parylene C, D, F and AF4, has only a lower temperature resistance than Parylene C, but has a certified biocompatibility and is also halogen-free.
  • a parylene layer made of parylene D can usually only be deposited with a low process yield, but has a better temperature resistance than parylene C, causes higher precursor costs and also has no certified biocompatibility.
  • the adhesion of the at least one parylene layer to the previously deposited alternating layer system composed of aluminum oxide and titanium oxide layers can be improved if an adhesion promoter layer is deposited between the alternating layer system and the at least one parylene layer or the alternating layer system has a
  • a silicon-containing layer based on a silane or a silane derivative is preferably deposited as an adhesion promoter layer.
  • 3-Methacryloyloxypropyltrimethoxysilane for example, is suitable as the silane.
  • barrier layer system is deposited on a substrate and, for example, for encapsulating electrical
  • a layer system according to the invention can, however, also itself be used as a flexible substrate which has barrier properties with respect to oxygen and water vapor. For this purpose, however, at least one parylene layer is deposited on both sides of the alternating layer system.
  • Such a layer system according to the invention with barrier properties against oxygen and water vapor can be produced, for example, as follows: At least one first parylene layer is first applied to a substrate by means of CVD, then an alternating layer system of aluminum oxide and titanium oxide layers by means of ALD and then again deposited at least one second parylene layer by means of CVD. Finally, the substrate is removed from the layer stack.
  • a layer system according to the invention is pliable and thus flexible, is characterized by very good barrier properties with respect to oxygen and water vapor and can therefore be used as a flexible substrate with barrier properties.
  • the at least one first parylene layer and / or the at least one second parylene layer with a layer thickness greater than 5 ⁇ m in order to give the layer system the required inherent stability.
  • an elastic mediator layer can be formed between the alternating layer system and the at least one first parylene layer and / or the alternating layer system and the at least one second parylene layer.
  • a silicon-containing layer as described above, can again be used as the elastic mediator layer.
  • the first parylene layer, the second parylene layer and the silicon-containing adhesion promoter layers are preferably deposited in one working chamber and the aluminum oxide and titanium oxide layers are deposited in another working chamber.
  • a release agent is applied to the substrate or a so-called sacrificial layer is deposited on the substrate before the deposition of the first parylene layer, which is destroyed when the substrate is separated from the layer stack will.
  • materials for a release agent or a sacrificial layer for example, surfactants; Polymers (such as photoresists or polyvinyl alcohol) or oxides (such as silicon oxide) are suitable.
  • the layer stack can, for example, be pulled off the substrate mechanically.
  • a glass or a semiconductor wafer, for example, can be used as the substrate.
  • the sacrificial layer used can be removed using a suitable solvent. If, for example, polyvinyl alcohol is used as a release agent or as a sacrificial layer, water, for example, can be used as a solvent.
  • an embodiment of a layer system according to the invention with barrier properties with regard to oxygen and water vapor is an alternating layer system consisting of two to six Aluminum oxide layers and two to six titanium oxide layers, which are arranged alternately and directly one on top of the other (i.e. without further intermediate layers) and comprise at least one parylene layer, the parylene layer either being deposited directly on one side of the alternating layer system or with only one adhesion promoter layer between the parylene layer and the alternating shift system is arranged.
  • FIG. 1 a schematic sectional illustration of a layer system according to the invention deposited on a substrate
  • FIG. 2 shows a schematic sectional illustration of an alternative layer system according to the invention deposited on a substrate
  • 3a, 3b are schematic sectional representations of a further alternative layer system according to the invention.
  • a layer system according to the invention deposited on a substrate 11 is shown schematically in section.
  • the layer system according to the invention initially comprises an alternating layer system consisting of two aluminum oxide layers 12 and two titanium oxide layers 13, which were deposited alternately on top of one another on the substrate 11.
  • the alternating layer system of a barrier layer system according to the invention can comprise up to six aluminum layers 12 and up to six titanium oxide layers 13, which are deposited alternately on top of one another.
  • the individual layers are each 5 nm to 20 nm thick.
  • a plastic film, a glass, a semiconductor wafer or an electrical component such as an integrated circuit, for example, can be used as the substrate 11.
  • the alternating deposition of the aluminum oxide layers 12 and the titanium oxide layers 13 took place in a first working chamber by means of known AFD deposition processes. During the layer deposition, temperatures of more than 60 ° C are reached in the first working chamber set.
  • a parylene layer 14, consisting of the aluminum oxide layers 12 and the titanium oxide layers 13, with a layer thickness of 0.1 ⁇ m to 50 ⁇ m is then deposited in a second working chamber by means of a known CVD deposition process.
  • a layer system according to the invention can alternatively also have a plurality of parylene layers 14 deposited directly on top of one another.
  • Both aluminum oxide and titanium oxide layers deposited by means of ALD and parylene layers deposited by means of CVD are characterized by the fact that they can also be deposited over the entire area on structured surfaces and three-dimensional objects.
  • Another advantage of a layer system according to the invention is that a parylene layer deposited by means of CVD also covers the side edges of the underlying layers and, if necessary, even covers the entire substrate, including its rear side.
  • a layer system according to the invention therefore has very good barrier properties against oxygen and water vapor and is therefore also particularly suitable for encapsulating electrical components which usually have a structured surface.
  • Such an electrical component can comprise, for example, at least one semiconductor component and / or at least one organic component.
  • a layer system according to the invention can be deposited directly on the electrical component.
  • the substrate 11 is then designed as an electrical component.
  • the substrate 11 can also be designed as a plastic film, the plastic film coated with the layer system according to the invention then being used as an encapsulation film for an electrical component.
  • an electrical component can also be produced on a substrate, wherein the substrate is designed as a barrier layer system according to the invention and wherein the substrate with the electrical component located thereon is then encapsulated by means of a further barrier layer system according to the invention.
  • an alternative layer system according to the invention is shown schematically in section, which is deposited on a substrate 21.
  • the substrate 21 is designed as a plastic film consisting of the material polyethylene naphthalate (abbreviation “PEN”).
  • PEN polyethylene naphthalate
  • the alternative layer system according to the invention from FIG. 2 initially comprises an alternating layer system consisting of four aluminum oxide layers 22 and four titanium oxide layers 23, which were deposited alternately on top of one another on the substrate 21 with a layer thickness of 5 nm each.
  • the aluminum oxide and titanium oxide layers were deposited by means of ALD within a first working chamber.
  • An adhesion promoter layer 25 was then produced on the alternating layer system, which ensures better adhesion to a subsequently deposited 2 ⁇ m thick parylene layer 24.
  • the parylene layer 24, consisting of parylene C, is preferably deposited in a second working chamber by means of CVD.
  • a silicon-containing layer in the form of a silane layer was produced as the adhesion promoter layer 25 by admitting a silane as a precursor into the second working chamber before the parylene layer 24 was deposited. In the layer stack described for FIG.
  • a WVTR barrier of ⁇ 6.6 * 10 6 g / (m 2 d) can be determined. In the case of a layer system according to the invention, it was thus possible to demonstrate very good barrier properties.
  • FIGS. 3a and 3b A further alternative layer system according to the invention with barrier properties with respect to oxygen and water vapor is shown schematically as a section in FIGS. 3a and 3b.
  • the layer system according to FIGS. 3a and 3b initially comprises an alternating layer system consisting of three aluminum oxide layers 32 and three titanium oxide layers 33, which are arranged alternately one above the other.
  • a first parylene layer 34a is formed on one side of the alternating layer system and a second parylene layer 34b is formed on the other side of the alternating layer system, a first adhesion promoter layer 35a being deposited between the first parylene layer 34a and the alternating layer system and a second adhesion promoter layer 35b between the second parylene layer 34b and the alternating layer system is.
  • Such a layer system according to the invention can be used as a flexible substrate and at the same time has barrier properties with respect to oxygen and water vapor.
  • the parylene layer 34 a is first deposited on a substrate 31 by means of CVD within a working chamber.
  • the optional adhesion promoter layer 35a can also be deposited in the same working chamber by, for example, admitting a silane into the working chamber.
  • the aluminum oxide layers 32 and the Titanium oxide layers 33 produced alternately by means of ALD.
  • the adhesion promoter layer 35b and the parylene layer 34b are then deposited again in the working chamber suitable for CVD processes.
  • the same method steps are preferably used as for the formation of the adhesion promoter layer 35a.
  • the substrate 31 is separated from the rest of the layer stack in that the layer stack is peeled off from the substrate 31, for example.
  • a semiconductor wafer or a glass for example, can be used as the substrate 31.
  • the separation of the substrate 31 from the rest of the layer stack can be simplified if a release agent is applied to the substrate 31 or a sacrificial layer is deposited on the substrate 31 before the parylene layer 34a is deposited.
  • a surfactant-containing solution for example, can be applied to the substrate 31 as a release agent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Laminated Bodies (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

The invention relates to a barrier layer system having barrier properties with respect to oxygen and water vapour and to a method for producing a layer system which has barrier properties with respect to oxygen and water vapour, said method having the following method steps: a) forming an alternating layer system consisting of at least two aluminium oxide layers (12, 22; 32) and at least two titanium oxide layers (13; 23; 33), in which the aluminium oxide layers (12; 22; 32) and the titanium oxide layers (13; 23; 33) are deposited one on top of the other in alternation; b) wherein the aluminium oxide layers (12; 22, 32) and the titanium oxide layers (13; 23; 33) are deposited by means of ALD and in each case with a layer thickness of 5 nm to 20 nm; c) depositing a first parylene layer (14; 24; 34a) with a layer thickness of 0.1 μm to 50 μm on a first side of the alternating layer system by means of CVD.

Description

Barriereschichtsystem und Verfahren zum Herstellen eines Barriereschichtsystems Barrier layer system and method for producing a barrier layer system
Beschreibung description
Die Erfindung betrifft ein Schichtsystem und ein Verfahren zum Herstellen eines solchen Schichtsystems, welches Barriereeigenschaften gegenüber Sauerstoff und Wasserdampf aufweist. The invention relates to a layer system and a method for producing such a layer system which has barrier properties against oxygen and water vapor.
Elektronisch aktive Materialien, die in verschiedensten elektrischen Baugruppen eingesetzt werden, weisen oftmals eine hohe Empfindlichkeit gegenüber Feuchtigkeit und Luftsauerstoff auf. Um diese Materialien zu schützen, ist es bekannt, derartige Baugruppen zu verkapseln. Das geschieht zum einen durch das direkte Abscheiden einer Schutzschicht auf den zu schützenden Materialien bzw. durch das Einhausen der Baugruppen mittels zusätzlicher Bauteile. So werden beispielsweise Solarzellen oftmals mittels Glas vor Feuchtigkeit und anderen äußeren Einflüssen geschützt. Um Gewicht zu sparen und um auch zusätzliche Freiheitsgrade hinsichtlich des Designs zu erreichen, werden zum Verkapseln auch Kunststofffolien verwendet. Solche Kunststofffolien müssen für eine ausreichende Schutzwirkung beschichtet werden. Auf ihnen wird deshalb mindestens eine sogenannte Permeationssperrschicht (im Folgenden auch als Barriereschicht bezeichnet) abgeschieden. Electronically active materials that are used in a wide variety of electrical assemblies are often highly sensitive to moisture and atmospheric oxygen. In order to protect these materials, it is known to encapsulate such assemblies. This is done on the one hand by the direct deposition of a protective layer on the materials to be protected or by housing the assemblies using additional components. For example, solar cells are often protected from moisture and other external influences by means of glass. In order to save weight and to achieve additional degrees of freedom in terms of design, plastic films are also used for encapsulation. Such plastic films must be coated for an adequate protective effect. For this reason, at least one so-called permeation barrier layer (hereinafter also referred to as a barrier layer) is deposited on them.
Barriereschichten setzen verschiedenen permeierenden Substanzen teilweise einen sehr unterschiedlichen Widerstand entgegen. Zur Charakterisierung von Barriereschichten wird häufig die Permeation von Sauerstoff (OTR) und Wasserdampf (WVTR) durch die mit der Barriereschicht versehenen Substrate unter definierten Bedingungen herangezogen (WVTR gemäß DIN 53122-2-A; OTR gemäß DIN 53380-3). Barrier layers sometimes offer very different levels of resistance to different permeating substances. The permeation of oxygen (OTR) and water vapor (WVTR) through the substrates provided with the barrier layer under defined conditions is often used to characterize barrier layers (WVTR according to DIN 53122-2-A; OTR according to DIN 53380-3).
Durch das Beschichten mit einer Barriereschicht wird die Permeation durch ein beschichtetes Substrat gegenüber einem unbeschichteten Substrat um einen Faktor verringert, der im einstelligen Bereich liegen oder viele Größenordnungen betragen kann. Häufig werden neben vorgegebenen Barrierewerten auch noch verschiedene andere Zielparameter von einer Barriereschicht erwartet. Beispielhaft stehen hierfür optische, mechanische sowie technologisch-ökonomische Anforderungen. So sollen Barriereschichten oftmals im sichtbaren Spektralbereich oder darüber hinaus nahezu vollständig transparent sein. Werden Barriereschichten in Schichtsystemen eingesetzt, ist es häufig vorteilhaft, wenn Beschichtungsschritte zum Aufbringen einzelner Teile des Schichtsystems miteinander kombinierbar sind. Coating with a barrier layer reduces the permeation through a coated substrate compared to an uncoated substrate by a factor that can be in the single-digit range or many orders of magnitude. In addition to specified barrier values, various other target parameters are also often expected from a barrier layer. Examples of this are optical, mechanical and technological-economic requirements. Barrier layers should often be almost completely transparent in the visible spectral range or beyond. If barrier layers are used in layer systems, it is often advantageous if Coating steps for applying individual parts of the layer system can be combined with one another.
Zum Herstellen von Barriereschichten werden häufig sogenannte PECVD-Verfahren (plasma enhanced Chemical vapor deposition) eingesetzt. Diese können beim Beschichten verschiedenster Substrate für unterschiedliche Schichtmaterialien zum Einsatz gelangen. Es ist beispielsweise bekannt, auf 13 pm PET-Substraten Si02- und Si3N4-Schichten einer Dicke von 20 bis 30 nm abzuscheiden [A. S. da Silva Sobrinho et al., J. Vac. Sei. Technol. A 16 (6), Nov/Dec 1998, p. 3190-3198] Bei einem Arbeitsdruck von 10 Pa lassen sich auf diese Weise Permeationswerte von WVTR = 0,3 g/m2d und OTR = 0,5 cm3/m2d erreichen. So-called PECVD processes (plasma enhanced chemical vapor deposition) are often used to produce barrier layers. These can be used when coating a wide variety of substrates for different layer materials. It is known, for example, to deposit Si0 2 and Si 3 N 4 layers with a thickness of 20 to 30 nm on 13 μm PET substrates [AS da Silva Sobrinho et al., J. Vac. May be. Technol. A 16 (6), Nov / Dec 1998, p. 3190-3198] At a working pressure of 10 Pa, permeation values of WVTR = 0.3 g / m 2 d and OTR = 0.5 cm 3 / m 2 d can be achieved in this way.
Beim Abscheiden von Si02 für transparente Barriereschichten auf PET Substraten mittels PECVD lässt sich eine Sauerstoffbarriere von OTR = 0,7 cm3/m2d realisieren [R. J. Nelson and H. Chatham, Society of Vacuum Coaters, 34th Annual Technical Conference Proceedings (1991) p. 113-117] In einer anderen Quelle werden zu dieser Technologie für transparenteDuring the deposition of Si0 2 for transparent barrier layers on PET substrates by PECVD can be an oxygen barrier of OTR = 0.7 cm 3 / m 2 d realize [Nelson RJ and H. Chatham, Society of Vacuum Coaters, 34 th Annual Technical Conference Proceedings ( 1991) p. 113-117] In another source are about this technology for transparent
Barriereschichten auf PET-Substraten Permeationswerte in der Größenordnung WVTR = 0,3 g/m2d und OTR = 0,5 cm3/m2d angegeben [M. Izu, B. Dotter, S. R. Ovshinsky, Society of Vacuum Coaters, 36th Annual Technical Conference Proceedings (1993) p. 333-340] Nachteile der bekannten PECVD-Verfahren bestehen vor allem darin, dass nur relativ geringe Barrierewirkungen erreicht werden. Das macht solche Barriereschichten insbesondere für die Verkapselung elektrischer Produkte uninteressant. Ein weiterer Nachteil besteht in dem gegenüber PVD-Verfahren hohen Arbeitsdruck, der für eine Durchführung eines solchen Verfahrens erforderlich ist. Soll ein derartiger Beschichtungsschritt in komplexe Produktionsabläufe in Vakuumanlagen integriert werden, wird unter Umständen ein hoher Aufwand für Maßnahmen der Druckentkopplung erforderlich. Eine Kombination mit anderen Beschichtungsprozessen wird aus diesem Grunde zumeist unwirtschaftlich. Barrier layers on PET substrates give permeation values of the order of magnitude WVTR = 0.3 g / m 2 d and OTR = 0.5 cm 3 / m 2 d [M. (1993) p Izu, B. yolk, SR Ovshinsky, Society of Vacuum Coaters, 36th Annual Technical Conference Proceedings. 333-340] The main disadvantages of the known PECVD methods are that only relatively low barrier effects are achieved. This makes such barrier layers uninteresting, especially for the encapsulation of electrical products. Another disadvantage is the high working pressure compared to PVD processes, which is required to carry out such a process. If such a coating step is to be integrated into complex production processes in vacuum systems, a great deal of effort may be required for pressure decoupling measures. For this reason, a combination with other coating processes is usually uneconomical.
Es ist ferner bekannt, Barriereschichten durch Sputtern aufzubringen. Gesputterte Einzel- schichten zeigen oft bessere Barriereeigenschaften als PECVD-Schichten. Für gesputtertes AINO auf PET werden als Permeationswerte beispielsweise WVTR = 0,2 g/m2d und OTR = 1 cm3/m2d angegeben [Thin Solid Films, Vol. 388 (2001), p. 78-86] Daneben sind zahlreiche andere Materialien bekannt, die insbesondere durch reaktives Sputtern zum Herstellen von transparenten Barriereschichten verwendet werden. Die auf diese Weise hergestellten Schichten weisen jedoch ebenfalls zu geringe Barrierewirkungen auf. Ein weiterer Nachteil derartiger Schichten liegt in ihrer geringen mechanischen Belastbarkeit. Schädigungen, die durch technologisch unvermeidbare Beanspruchungen während der Weiterverarbeitung oder der Benutzung auftreten, führen meist zu einer deutlichen Verschlechterung der Barrierewirkung. Das macht gesputterte Einzelschichten für Barriereanwendungen häufig unbrauchbar. Ein weiterer Nachteil gesputterter Schichten besteht in deren hohen Kosten, die durch die geringe Produktivität des Sputterprozesses verursacht werden. It is also known to apply barrier layers by sputtering. Sputtered individual layers often show better barrier properties than PECVD layers. For sputtered AINO on PET, the permeation values given are, for example, WVTR = 0.2 g / m 2 d and OTR = 1 cm 3 / m 2 d [Thin Solid Films, Vol. 388 (2001), p. 78-86] In addition, numerous other materials are known which are used, in particular, by reactive sputtering for the production of transparent barrier layers. However, the layers produced in this way also have insufficient barrier effects. Another disadvantage such layers are due to their low mechanical strength. Damage caused by technologically unavoidable stresses during further processing or use usually leads to a significant deterioration in the barrier effect. This often makes sputtered individual layers unusable for barrier applications. Another disadvantage of sputtered layers is their high costs, which are caused by the low productivity of the sputtering process.
Es ist weiterhin bekannt, Einzelschichten als Barriereschichten aufzudampfen. Mittels solcher PVD-Verfahren können ebenfalls verschiedene Materialien direkt oder reaktiv auf verschiedensten Substraten abgeschieden werden. Für Barriereanwendungen ist beispielsweise die reaktive Bedampfung von PET-Substraten mit Al203 bekannt [Surface and Coatings Technology, Vol.125 (2000), p. 354-360] H ierbei werden Permeationswerte von WVTR = 1 g/m2d und OTR = 5 cm3/m2d erreicht. Diese Barrierewirkung ist ebenfalls viel zu gering, um derart beschichtete Materialien als Barriereschichten für elektrische Produkte verwenden zu können. Sie sind häufig mechanisch noch weniger belastbar als gesputterte Einzelschichten. Von Vorteil sind allerdings die sehr hohen Beschichtungsraten, welche mit Verdampfungsprozessen erreicht werden. Diese liegen üblicherweise um den Faktor 100 über denen, welche beim Sputtern erreicht werden. Es ist ebenso bekannt, beim Abscheiden von Barriereschichten, Magnetronplasmen für eine Plasmapolymerisation einzusetzen (EP 0 815 283 B1); [So Fujimaki, H. Kashiwase, Y. It is also known to vapor-deposit individual layers as barrier layers. By means of such PVD processes, different materials can also be deposited directly or reactively on a wide variety of substrates. For barrier applications, for example, reactive vapor deposition of PET substrates with Al 2 O 3 is known [Surface and Coatings Technology, Vol.125 (2000), p. 354-360] Here, permeation values of WVTR = 1 g / m 2 d and OTR = 5 cm 3 / m 2 d are achieved. This barrier effect is also much too weak for materials coated in this way to be able to be used as barrier layers for electrical products. They are often even less mechanically resilient than sputtered individual layers. However, the very high coating rates that can be achieved with evaporation processes are advantageous. These are usually 100 times higher than those achieved with sputtering. It is also known to use magnetron plasmas for plasma polymerization when depositing barrier layers (EP 0 815 283 B1); [See Fujimaki, H. Kashiwase, Y.
Kokaku, Vacuum, Vol. 59, (2000), p. 657-664] Hierbei handelt es sich um PECVD-Prozesse, die direkt durch das Plasma einer Magnetronentladung aufrechterhalten werden. Kokaku, Vacuum, Vol. 59, (2000), p. 657-664] These are PECVD processes that are sustained directly by the plasma of a magnetron discharge.
Beispielhaft steht hierfür das Verwenden eines Magnetronplasmas für PECVD-Beschichtung zur Abscheidung von Schichten mit einem Kohlenstoffgerüst, wobei als Precursor CH4 dient. Derartige Schichten weisen jedoch ebenfalls für hohe Anforderungen eine nur ungenügende Barrierewirkung auf. An example of this is the use of a magnetron plasma for PECVD coating to deposit layers with a carbon structure, with CH 4 serving as the precursor. Such layers, however, also only have an inadequate barrier effect for high requirements.
Weiterhin ist es bekannt, Barriereschichten bzw. Barriereschichtsysteme in mehreren Beschichtungsschritten aufzubringen. Ein Verfahren aus dieser Gattung ist der sogenannte PML(Polymermultilayer)-Prozess [Materials Research Society, (1999), p. 247-254]; [J. D. Affinito, M. E. Gross, C. A. Coronado, G. L. Graff, E. N. Greenweil and P.M. Martin, Society of Vacuum Coaters, 39th Annual Technical Conference Proceedings, (1996), p. 392-397] Beim PML-Prozess wird mittels Verdampfer ein flüssiger Acrylat-Film auf ein Substrat aufgebracht, der mittels Elektronenstrahltechnik oder UV-Bestrahlung ausgehärtet wird. Dieser Film weist selbst keine besonders hohe Barrierewirkung auf. Anschließend erfolgt eine Beschichtung des ausgehärteten Acrylatfilms mit einer oxidischen Zwischenschicht, auf die wiederum ein Acrylatfilm aufgebracht wird. Diese Vorgehensweise wird bei Bedarf mehrfach wiederholt. Die Permeationswerte eines derart erzeugten Schichtstapels, also einer Kombination einzelner oxidischer Barriereschichten mit Acrylatschichten als Zwischenschichten, liegt unterhalb der Messgrenze von konventionellen Permeationsmessgeräten. Nachteile ergeben sich hierbei vor allem im notwendigen Einsatz aufwendiger Anlagentechnik. Außerdem bildet sich zunächst ein flüssiger Film auf dem Substrat, der ausgehärtet werden muss. Das führt zu einer verstärkten Anlagenverschmutzung, was Wartungszyklen verkürzt. Bei derartigenIt is also known to apply barrier layers or barrier layer systems in several coating steps. A method from this genus is the so-called PML (polymer multilayer) process [Materials Research Society, (1999), p. 247-254]; [JD Affinito, ME Gross, CA Coronado, GL Graff, EN Green Weil and PM Martin, Society of Vacuum Coaters, 39 th Annual Technical Conference Proceedings, (1996), p. 392-397] In the PML process, a liquid acrylate film is applied to a substrate using an evaporator, which is then cured using electron beam technology or UV radiation. This film itself does not have a particularly high barrier effect. The cured acrylate film is then coated with an oxidic intermediate layer, to which an acrylate film is in turn applied. This procedure is repeated several times if necessary. The permeation values of a layer stack produced in this way, i.e. a combination of individual oxide barrier layers with acrylate layers as intermediate layers, is below the measurement limit of conventional permeation measuring devices. Disadvantages arise here above all in the necessary use of complex system technology. In addition, a liquid film initially forms on the substrate, which has to be cured. This leads to increased system contamination, which shortens maintenance cycles. With such
Beschichtungsprozessen wird die als Barriereschicht fungierende Zwischenschicht meist mittels Magnetronsputtern hergestellt. Von Nachteil ist auch hierbei, dass durch die Verwendung der Sputtertechnologie auf einen vergleichsweise langsamen Prozess zurückgegriffen wird. Dadurch ergeben sich sehr hohe Produktkosten, die aus der geringen Produktivität der verwendeten Technologien herrühren. In coating processes, the intermediate layer functioning as a barrier layer is usually produced by means of magnetron sputtering. Here, too, it is disadvantageous that the use of sputtering technology means that a comparatively slow process is used. This results in very high product costs, which result from the low productivity of the technologies used.
Es ist außerdem bekannt, dass sich die mechanische Beständigkeit anorganischer Aufdampfschichten verbessern lässt, wenn während des Verdampfens eine organische Modifizierung vorgenommen wird. Dabei erfolgt der Einbau organischer Bestandteile in die sich während des Schichtwachstums ausbildende anorganische Matrix. Offenbar kommt es durch den Einbau dieser weiteren Bestandteile in die anorganische Matrix zu einer Erhöhung der Elastizität der gesamten Schicht, was die Gefahr von Brüchen in der Schicht deutlich reduziert. Stellvertretend, als zumindest für Barriereanwendungen geeignet, sei in diesem Zusammenhang ein Kombinationsprozess genannt, der eine Elektronenstrahlverdampfung von SiOx mit dem Einlass von HMDSO kombiniert (DE 195 48 160 C 1 ). Für elektrischeIt is also known that the mechanical resistance of inorganic vapor deposition layers can be improved if an organic modification is carried out during the vaporization. Organic components are incorporated into the inorganic matrix that forms during the layer growth. Apparently, the incorporation of these additional components into the inorganic matrix increases the elasticity of the entire layer, which significantly reduces the risk of breaks in the layer. A combination process that combines electron beam evaporation of SiO x with the inlet of HMDSO (DE 195 48 160 C 1) should be mentioned in this context as being suitable at least for barrier applications. For electrical
Komponenten erforderliche niedrige Permeationsraten lassen sich mit derart hergestellten Schichten allerdings nicht erzielen. However, the low permeation rates required for components cannot be achieved with layers produced in this way.
Der Erfindung liegt daher das technische Problem zugrunde, ein Barriereschichtsystem und ein Verfahren zum Herstellen eines solchen Barriereschichtsystems zu schaffen, mit denen die Probleme aus dem Stand der Technik überwunden werden können. Insbesondere soll das Barriereschichtsystem eine hohe Barrierewirkung gegenüber Sauerstoff und Wasserdampf aufweisen. Das Barriereschichtsystem soll eine Barrierewirkung sowohl auf Substraten mit ebenen Oberflächen, wie zum Beispiel auf Kunstofffolien, bewirken als auch auf Substraten mit profilierter Oberflächenstruktur, wie dies zum Beispiel bei Halbleiterbauelementen gegeben ist. Des Weiteren soll das Barriereschichtsystem als flexibles Substrat verwendet werden können, eine optische Transparenz aufweisen sowie biokompatibel sein. Die Lösung des technischen Problems ergibt sich durch Gegenstände mit den Merkmalen der Patentansprüche 1 und 8. Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den abhängigen Ansprüchen. The invention is therefore based on the technical problem of creating a barrier layer system and a method for producing such a barrier layer system with which the problems from the prior art can be overcome. In particular, the barrier layer system should have a high barrier effect against oxygen and water vapor. The barrier layer system is intended to produce a barrier effect both on substrates with flat surfaces, such as for example on plastic films, and on substrates with a profiled surface structure, as is the case with, for example Semiconductor components is given. Furthermore, the barrier layer system should be able to be used as a flexible substrate, have an optical transparency and be biocompatible. The solution to the technical problem results from subjects having the features of patent claims 1 and 8. Further advantageous embodiments of the invention emerge from the dependent claims.
Ein erfindungsgemäßes Schichtsystem mit Barriereeigenschaften gegenüber Sauerstoff und Wasserdampf umfasst zunächst ein Wechselschichtsystem, bestehend ausA layer system according to the invention with barrier properties against oxygen and water vapor initially comprises an alternating layer system consisting of
Aluminiumoxidschichten und Titanoxidschichten, bei welchem die Aluminiumoxidschichten und die Titanoxidschichten im Wechsel übereinander abgeschieden sind. Dabei weisen die Aluminiumoxidschichten und die Titanoxidschichten jeweils eine Schichtdicke von 5 nm bis 20 nm auf. Um eine hinreichende Barrierewirkung zu erzielen, besteht das Wechselschichtsystem eines erfindungsgemäßen Schichtsystems aus mindestens zwei Aluminiumoxidschichten und mindestens zwei Titanoxidschichten, die im Wechsel übereinander abgeschieden sind. Die Barrierewirkung eines erfindungsgemäßen Schichtsystems kann weiter erhöht werden, wenn mehr als zwei Aluminiumoxidschichten und zwei Titanoxidschichten innerhalb des Wechselschichtsystems im Wechsel übereinander abgeschieden sind. Aus wirtschaftlichen Gründen ist es nicht zweckmäßig, mehr als sechs Aluminiumoxidschichten und sechs Titanoxidschichten im Wechsel übereinander abzuscheiden. Aluminum oxide layers and titanium oxide layers, in which the aluminum oxide layers and the titanium oxide layers are deposited alternately on top of one another. The aluminum oxide layers and the titanium oxide layers each have a layer thickness of 5 nm to 20 nm. In order to achieve a sufficient barrier effect, the alternating layer system of a layer system according to the invention consists of at least two aluminum oxide layers and at least two titanium oxide layers which are deposited alternately on top of one another. The barrier effect of a layer system according to the invention can be further increased if more than two aluminum oxide layers and two titanium oxide layers are deposited alternately on top of one another within the alternating layer system. For economic reasons, it is not expedient to deposit more than six aluminum oxide layers and six titanium oxide layers alternately on top of one another.
Des Weiteren umfasst ein erfindungsgemäßes Schichtsystem eine auf einer ersten Seite des Wechselschichtsystems abgeschiedene erste Paryleneschicht, welche eine Schichtdicke von 0,1 pm bis 50 pm aufweist. Bevorzugt weist die erste Paryleneschicht eine Schichtdicke von 1 pm bis 10 pm auf. Dieser Schichtdickenbereich erfüllt sowohl Anforderungen hinsichtlich guter Barriereeigenschaften der Schicht als auch der Wirtschaftlichkeit des Schichtabscheideverfahrens. Furthermore, a layer system according to the invention comprises a first parylene layer which is deposited on a first side of the alternating layer system and has a layer thickness of 0.1 μm to 50 μm. The first parylene layer preferably has a layer thickness of 1 μm to 10 μm. This layer thickness range fulfills both requirements with regard to good barrier properties of the layer and the economic efficiency of the layer deposition process.
Beim erfindungsgemäßen Verfahren zum Herstellen eines Schichtsystems, welches Barriereeigenschaften gegenüber Sauerstoff und Wasserdampf aufweist, wir zunächst ein Wechselschichtsystem ausgebildet, bei welchem mindestens zwei Aluminiumoxidschichten und mindestens zwei Titanoxidschichten im Wechsel übereinander abgeschieden werden. Zum Abscheiden der Aluminiumoxidschichten und der Titanoxidschichten wird erfindungsgemäß ein bekannter Prozess der Atomlagenabscheidung verwendet, für welchen in Anlehnung an den englischen Fachbegriff „Atomic Layer Deposition" auch das Kürzel „ALD" verwendet wird. Die beim erfindungsgemäßen Verfahren mittels ALD abgeschiedenen Aluminiumoxidschichten und Titanoxidschichten werden deshalb nachfolgend gemeinsam auch verkürzt als ALD-Schichten bezeichnet. In the method according to the invention for producing a layer system which has barrier properties against oxygen and water vapor, an alternating layer system is first formed in which at least two aluminum oxide layers and at least two titanium oxide layers are deposited alternately on top of one another. The aluminum oxide layers and the titanium oxide layers are deposited According to the invention, a known process of atomic layer deposition is used, for which the abbreviation “ALD” is also used based on the English technical term “Atomic Layer Deposition”. The aluminum oxide layers and titanium oxide layers deposited in the method according to the invention by means of ALD are therefore also jointly referred to below as ALD layers for short.
Bei einem ALD-Prozess wird üblicherweise mindestens ein Precursor in eine erste Arbeitskammer eingelassen, infolgedessen funktionale Gruppen des Precursor mit der Oberfläche eines in der Arbeitskammer angeordneten Substrates reagieren, wodurch sich eine Schicht auf der Oberfläche des Substrates ausbildet. Bei dieser Vorgehensweise können sehr dünne Schichten auf einer Substratoberfläche ausgebildet werden. In an ALD process, at least one precursor is usually let into a first working chamber, as a result of which functional groups of the precursor react with the surface of a substrate arranged in the working chamber, as a result of which a layer is formed on the surface of the substrate. With this approach, very thin layers can be formed on a substrate surface.
Das Abscheiden einer Aluminiumoxidschicht mittels ALD für ein erfindungsgemäßes Schichtsystem erfolgt bevorzugt mittels zweier Precursoren. H ierbei wird zunächst ein erster Precursor in die erste Arbeitskammer eingelassen, von welchem Moleküle auf derThe deposition of an aluminum oxide layer by means of ALD for a layer system according to the invention is preferably carried out by means of two precursors. Here, a first precursor is first admitted into the first working chamber, from which molecules on the
Oberfläche eines zu beschichtenden Substrates anhaften. Mittels eines Spülgases werden die nicht an der Substratoberfläche oder den Arbeitskammerwandungen anhaftenden Moleküle des ersten Precursors aus der ersten Arbeitskammer entfernt. Danach wird ein zweiter Precursor in die erste Arbeitskammer eingelassen, wobei Moleküle des zweiten Precursors mit den an der Oberfläche des zu beschichtenden Substrates anhaftenden Molekülen des ersten Precursors reagieren und infolgedessen eine Schicht auf der Oberfläche des zu beschichtenden Substrates ausbilden. Als erster und zweiter Precursor für das Ausbilden einer Aluminiumoxidschicht mittels ALD für ein erfindungsgemäßes Schichtsystem sind zum Beispiel Trimethylaluminium und Wasser geeignet. Adhere to the surface of a substrate to be coated. The molecules of the first precursor that do not adhere to the substrate surface or the working chamber walls are removed from the first working chamber by means of a flushing gas. A second precursor is then admitted into the first working chamber, with molecules of the second precursor reacting with the molecules of the first precursor adhering to the surface of the substrate to be coated and consequently forming a layer on the surface of the substrate to be coated. Trimethylaluminum and water, for example, are suitable as first and second precursors for the formation of an aluminum oxide layer by means of ALD for a layer system according to the invention.
Analog wird eine Titanoxidschicht beim erfindungsgemäßen Verfahren ebenfalls mittels zweier Precursoren ausgebildet. Als erster und zweiter Precursor können hierbei zum Beispiel Titantetrachlorid und Wasser verwendet werden. Eine Anforderung an ein erfindungsgemäßes Schichtsystem besteht darin, dass dieses Barriereeigenschaften bezüglich Sauerstoff und Wasserdampf aufweist. Deshalb ist es erforderlich, dass die einzelnen ALD-Schichten des Wechselschichtsystems eines erfindungsgemäßen Barriereschichtsystems möglichst als vollständig geschlossene Schichten abgeschieden werden. Beim erfindungsgemäßen Verfahren werden daher sowohl die Aluminiumoxideinzelschichten als auch die Titanoxideinzelschichten des Wechselschichtsystems mit eine Schichtdicke von jeweils mindestens 5 nm abgeschieden.Analogously, a titanium oxide layer is also formed by means of two precursors in the method according to the invention. Titanium tetrachloride and water, for example, can be used as the first and second precursors. One requirement of a layer system according to the invention is that it has barrier properties with regard to oxygen and water vapor. It is therefore necessary for the individual ALD layers of the alternating layer system of a barrier layer system according to the invention to be deposited as completely closed layers as possible. In the method according to the invention, therefore, both the individual aluminum oxide layers and the individual titanium oxide layers are Alternating layer system deposited with a layer thickness of at least 5 nm each.
Bei einer solchen Mindestschichtdicke werden geschlossene Schichten bei den Aluminiumoxidschichten und den Titanoxidschichten ausgebildet. Zum Ausbilden einer mindestens 5 nm dicken Aluminiumoxidschicht bzw. einer mindestens 5 nm dicken Titanoxidschicht können die zuvor beschriebenen Arbeitsschritte für das Abscheiden der beiden Schichten auch jeweils mehrfach hinter durchgeführt werden, bis eine Schichtdicke von mindestens 5 nm für eine abzuscheidende Aluminiumoxidschicht bzw. Titanoxidschicht erzielt wird. Da mit zunehmender Schichtdicke der ALD-Schichten die Barriereeigenschaften nicht beliebig gesteigert werden können, werden bei einer Ausführungsform sowohl die Aluminiumoxideinzelschichten als auch die Titanoxideinzelschichten des Wechselschichtsystems eines erfindungsgemäßen Barriereschichtsystems mit einer Schichtdicke von jeweils 5 nm bis 20 nm abgeschieden. With such a minimum layer thickness, closed layers are formed in the aluminum oxide layers and the titanium oxide layers. To form an aluminum oxide layer at least 5 nm thick or a titanium oxide layer at least 5 nm thick, the steps described above for depositing the two layers can also be carried out several times behind until a layer thickness of at least 5 nm is achieved for an aluminum oxide layer or titanium oxide layer to be deposited . Since the barrier properties cannot be increased arbitrarily with increasing layer thickness of the ALD layers, in one embodiment both the individual aluminum oxide layers and the individual titanium oxide layers of the alternating layer system of a barrier layer system according to the invention are deposited with a layer thickness of 5 nm to 20 nm each.
Bei einer bevorzugten Ausführungsform werden die ALD-Schichten mit einer Schichtdicke von 5 nm bis 10 nm abgeschieden. In diesem Schichtdickenbereich werden einerseits geschlossene Aluminiumoxidschichten und geschlossene Titanoxidschichten mit guten Barriereeigenschaften ausgebildet und andererseits ist es bei wirtschaftlicher Betrachtung und/oder bei funktionalen Vorgaben, wie zum Beispiel einer Transparenz des Schichtsystems bezüglich Lichtstrahlung, vorteilhalft, wenn die Einzelschichten des Wechselschichtsystems nicht zu dick ausgebildet werden. In a preferred embodiment, the ALD layers are deposited with a layer thickness of 5 nm to 10 nm. In this layer thickness range, on the one hand, closed aluminum oxide layers and closed titanium oxide layers with good barrier properties are formed and, on the other hand, from an economic point of view and / or with functional requirements, such as transparency of the layer system with respect to light radiation, it is advantageous if the individual layers of the alternating layer system are not made too thick .
Bei einer weiteren bevorzugten Ausführungsform wird bei einem Wechselschichtsystem zuerst eine Aluminiumoxidschicht und erst dann eine Titanoxidschicht auf einem Substrat ausgebildet. In a further preferred embodiment, in an alternating layer system, first an aluminum oxide layer and only then a titanium oxide layer is formed on a substrate.
Für schichtbildende chemische Reaktionen bei ALD-Schichtabscheideprozessen ist es vorteilhaft, wenn innerhalb einer für den ALD-Schichtabscheideprozess gewählten Arbeitskammer Temperaturen oberhalb der Raumtemperatur eingestellt werden, wobei es üblicherweise vorteilhafter für die Unterstützung der chemischen Reaktionen ist, je höher die Temperatur eingestellt wird. Wie hoch die Temperatur in der Arbeitskammer eingestellt wird, ist unter anderem von dem Material eines zu beschichtenden Substrates und dessen Temperaturbeständigkeit abhängig. Bei einer Ausführungsform werden innerhalb einer für die ALD-Prozesse zum Abscheiden der Aluminiumoxidschichten und der Titanoxidschichten gewählten ersten Arbeitskammer Temperaturen von mindestens 60 °C eingestellt. Wie hoch die Temperatur in der Arbeitskammer über 60 °C eingestellt wird, ist unter anderem von dem Material eines zu beschichtenden Substrates und dessen Temperaturempfindlichkeit abhängig. DieFor layer-forming chemical reactions in ALD layer deposition processes, it is advantageous if temperatures above room temperature are set within a working chamber selected for the ALD layer deposition process, whereby it is usually more advantageous to support the chemical reactions the higher the temperature is set. How high the temperature in the working chamber is set depends, among other things, on the material of a substrate to be coated and its temperature resistance. In one embodiment, temperatures of at least 60 ° C. are set within a first working chamber selected for the ALD processes for depositing the aluminum oxide layers and the titanium oxide layers. How high the temperature in the working chamber is set above 60 ° C depends, among other things, on the material of the substrate to be coated and its temperature sensitivity. the
Temperatur innerhalb der ersten Arbeitskammer kann auf eine Temperatur von mindestens 60 °C, zum Beispiel mittels Strahlungsheizer, erhöht werden. Des Weiteren ist es möglich, einen Substratträger, auf welchen sich ein mit den ALD-Schichten zu beschichtendes Substrat befindet, mit einem Heizelement, wie zum Beispiel einer Heizplatte, auszubilden. The temperature within the first working chamber can be increased to a temperature of at least 60 ° C., for example by means of a radiant heater. Furthermore, it is possible to form a substrate carrier, on which a substrate to be coated with the ALD layers is located, with a heating element, such as a heating plate, for example.
Bei einer weiteren Ausführungsform wird die Temperatur innerhalb der ersten Arbeitskammer auf eine Temperatur im Bereich von 60 °C bis 130 °C eingestellt. Innerhalb dieses Temperarturbereichs können auf der einen Seite sowohl temperaturempfindliche Substrate, wie beispielsweise Kunststofffolien, beschichtet werden und auf der anderen Seite ist in diesem Temperaturbereich eine hohe Abscheiderate einstellbar. In a further embodiment, the temperature within the first working chamber is set to a temperature in the range from 60.degree. C. to 130.degree. Within this temperature range, on the one hand, both temperature-sensitive substrates, such as plastic films, can be coated and, on the other hand, a high deposition rate can be set in this temperature range.
Bei einer bevorzugten Ausführungsform wird die Temperatur innerhalb der ersten Arbeitskammer auf eine Temperatur im Bereich von 80 °C bis 120 °C eingestellt. In diesem Temperaturbereich werden mittels ALD defektarme Aluminiumoxid- und Titanoxidschichten bei hoher Prozessgeschwindigkeit abgeschieden. In a preferred embodiment, the temperature within the first working chamber is set to a temperature in the range from 80.degree. C. to 120.degree. In this temperature range, low-defect aluminum oxide and titanium oxide layers are deposited using ALD at high process speeds.
Um ein erfindungsgemäßes Schichtsystem zu vervollständigen, wird beim erfindungsgemäßen Verfahren zumindest auf einer ersten Seite des Wechselschichtsystems aus Aluminiumoxid- und Titanoxidschichten eine erste Paryleneschicht mit einer Schichtdicke von 0,1 pm bis 50 pm und bevorzugt mit einer Schichtdicke von 1 pm bis 10 pm abgeschieden. Als Schichtabscheideverfahren wird hierbei ein bekannter Prozess der chemischen Dampfabscheidung gewählt, welcher in Bezug auf den englischen Fachbegriff „Chemical Vapor Deposition" auch verkürzt als „CVD" bezeichnet wird und welcher zum Beispiel in US 3 556 881 A offenbart ist. Der CVD-Abscheideprozess für die Paryleneschicht wird bevorzugt bei Raumtemperatur ausgeführt. Ein solcher CVD-Abscheideprozess für eine Paryleneschicht läuft bei Temperaturen von -40 °C bis 40 °C, und somit insbesondere auch bei Raumtemperatur, stabil und stellt deshalb ein wirtschaftliches Abscheideverfahren dar, welches keinen zusätzlichen Aufwand für eine Kühlung oder Erwärmung eines zu beschichtenden Substrates erfordert. Bei einer Ausführungsform wird daher die Paryleneschicht bei Temperaturen im Bereich von 20 °C bis 40 °C abgeschieden. Aufgrund der unterschiedlichen Temperaturerfordernisse beim Abscheiden der ALD- Schichten einerseits und der Paryleneschicht andererseits, kann das Abscheiden der Paryleneschicht bevorzugt innerhalb einer zweiten Arbeitskammer durchgeführt werden, welche sich von der ersten Arbeitskammer, in welcher das Wechselschichtsystem abgeschieden wird, unterscheidet. Alternativ können aber auch das Wechselschichtsystem und die Paryleneschicht innerhalb einer Arbeitskammer abgeschieden werden, wenn die Arbeitskammer unter anderem Mittel umfasst, mit denen die für die ALD-Prozesse und den CVD-Prozess erforderlichen unterschiedlichen Temperaturerfordernisse innerhalb der Arbeitskammer eingestellt werden können. In order to complete a layer system according to the invention, in the method according to the invention, a first parylene layer with a layer thickness of 0.1 μm to 50 μm and preferably a layer thickness of 1 μm to 10 μm is deposited at least on a first side of the alternating layer system composed of aluminum oxide and titanium oxide layers. A known chemical vapor deposition process is selected as the layer deposition method, which is also referred to as “CVD” for short in relation to the English technical term “Chemical Vapor Deposition” and which is disclosed in US Pat. No. 3,556,881, for example. The CVD deposition process for the parylene layer is preferably carried out at room temperature. Such a CVD deposition process for a parylene layer runs in a stable manner at temperatures of -40 ° C to 40 ° C, and thus in particular also at room temperature, and therefore represents an economical deposition process that does not require any additional effort for cooling or heating a substrate to be coated requires. In one embodiment, therefore, the parylene layer is deposited at temperatures in the range from 20 ° C to 40 ° C. Due to the different temperature requirements when depositing the ALD layers on the one hand and the parylene layer on the other, the parylene layer can preferably be deposited within a second working chamber, which differs from the first working chamber in which the alternating layer system is deposited. Alternatively, however, the alternating layer system and the parylene layer can also be deposited within a working chamber if the working chamber includes, among other things, means with which the different temperature requirements within the working chamber required for the ALD processes and the CVD process can be set.
Als Paryleneschicht (Polv-para xylylene) sind verschiedene Parylene-Typen mit jeweils unterschiedlichen Substituenten besonders geeignet, wie beispielsweise Parylene C / Poly(chloro-p-xylylen); Parylene F / Poly(tetrafluoro-p-xylylen); Parylene AF4 / Poly(a, a, a',a'- tetrafluoro-p-xylylene); Parylene N / Poly(p-xylylen); Parylene D / Poly(dichloro-p-xylylen) oder eine Mischform aus mindestens zwei der zuvor aufgeführten Parylene-Ausführungsformen. Die Precursoren für die genannten Parylene-Typen sind kommerziell verfügbar. Alternativ kann eine Paryleneschicht auch aus anderen als den genannten Parylene-Typen bestehen, d. h. Parylene-Typen mit anderen Substituenten wie bspw. Brom, Alkyl-, Acyl-, Amino- bzw. Methylamino-, Aldehyd-, Cyano- und Ethinylgruppen. Various types of parylene, each with different substituents, are particularly suitable as the parylene layer (poly-para xylylene), such as, for example, parylene C / poly (chloro-p-xylylene); Parylene F / poly (tetrafluoro-p-xylylene); Parylene AF4 / poly (a, a, a ', a'-tetrafluoro-p-xylylene); Parylene N / poly (p-xylylene); Parylene D / poly (dichloro-p-xylylene) or a mixed form of at least two of the parylene embodiments listed above. The precursors for the parylene types mentioned are commercially available. Alternatively, a parylene layer can also consist of parylene types other than those mentioned, i.e. H. Parylene types with other substituents such as bromine, alkyl, acyl, amino or methylamino, aldehyde, cyano and ethynyl groups.
Eine Paryleneschicht aus Parylene C stellt eine sehr wirtschaftliche Ausführungsform dar.A parylene layer made of parylene C is a very economical embodiment.
Eine solche Schicht verursacht nur geringe Precursorkosten, ermöglicht eine sehr gute Prozessausbeute, zeigt eine sehr gute Barrierewirkung und weist eine nach ISO 10993 zertifizierte Biokompatibilität auf. Die Temperaturbeständigkeit einer solchen Schicht ist jedoch nur moderat. Such a layer causes only low precursor costs, enables a very good process yield, shows a very good barrier effect and has a biocompatibility certified according to ISO 10993. However, the temperature resistance of such a layer is only moderate.
Das Schichtmaterial Parylene F verursacht höhere Precursorkosten, führt zu einer geringeren Prozessausbeute als bei Parylene C, zeigt eine geringere Barrierewirkung als Parylene C und D, hat keine zertifizierte Biokompatibilität, weist aber eine bessere Temperaturbeständigkeit als Parylene C auf. The parylene F layer material causes higher precursor costs, leads to a lower process yield than parylene C, has a lower barrier effect than parylene C and D, has no certified biocompatibility, but has a better temperature resistance than parylene C.
Parylene AF4 verursacht ebenfalls höhere Precursorkosten bei geringer Prozessausbeute als Parylene C, zeigt eine geringere Barrierewirkung als Parylene C und D, hat aber eine bessere Temperaturbeständigkeit als Parylene F und verfügt über eine zertifizierte Biokompatibilität. Der Parylenetyp Parylene N erfordert höhere Precursorkosten bei geringer Prozessausbeute gegenüber Parylene C, hat eine geringere Barrierewirkung als Parylene C, D, F und AF4, weist nur eine geringere Temperaturbeständigkeit als Parylene C auf, verfügt aber über eine zertifizierte Biokompatibilität und ist auch halogenfrei. Parylene AF4 also causes higher precursor costs with a lower process yield than Parylene C, shows a lower barrier effect than Parylene C and D, but has better temperature resistance than Parylene F and has a certified biocompatibility. The parylene type Parylene N requires higher precursor costs with a lower process yield compared to Parylene C, has a lower barrier effect than Parylene C, D, F and AF4, has only a lower temperature resistance than Parylene C, but has a certified biocompatibility and is also halogen-free.
Eine Paryleneschicht aus Parylene D lässt sich üblicherweise nur mit einer geringen Prozessausbeute abscheiden, verfügt aber über eine bessere Temperaturbeständigkeit als Parylene C, verursacht höhere Precursorkosten und hat auch keine zertifizierte Biokompatibilität. A parylene layer made of parylene D can usually only be deposited with a low process yield, but has a better temperature resistance than parylene C, causes higher precursor costs and also has no certified biocompatibility.
Das Anhaften der mindestens einen Paryleneschicht an das zuvor abgeschiedene Wechselschichtsystem aus Aluminiumoxid- und Titanoxidschicht kann verbessert werden, wenn zwischen dem Wechselschichtsystem und der mindestens einen Paryleneschicht eine Haftvermittlerschicht abgeschieden oder das Wechselschichtsystem mit einerThe adhesion of the at least one parylene layer to the previously deposited alternating layer system composed of aluminum oxide and titanium oxide layers can be improved if an adhesion promoter layer is deposited between the alternating layer system and the at least one parylene layer or the alternating layer system has a
Oberflächenbehandlung, wie beipsielsweise einem Plasma, behandelt wird. Bevorzugt wird bei einem erfindungsgemäßen Schichtsystem eine siliziumhaltige Schicht auf Basis eines Silans oder eines Silanderivats als Haftvermittlerschicht abgeschieden. Als Silan ist beispielsweise 3-Methacryloyloxypropyltrimethoxysilan geeignet. Infolge chemischer Schichtabscheidung wird dadurch eine Silanschicht und somit eine siliziumhaltige Schicht auf der Oberfläche des Wechselschichtsystems ausgebildet, welche das Anhaften einer nachfolgend abgeschiedenen Paryleneschicht verbessert. Surface treatment, such as a plasma, is treated. In a layer system according to the invention, a silicon-containing layer based on a silane or a silane derivative is preferably deposited as an adhesion promoter layer. 3-Methacryloyloxypropyltrimethoxysilane, for example, is suitable as the silane. As a result of chemical layer deposition, a silane layer and thus a silicon-containing layer is formed on the surface of the alternating layer system, which improves the adhesion of a subsequently deposited parylene layer.
Zuvor wurde beschrieben, dass ein erfindungsgemäßes Barriereschichtsystem auf einem Substrat abgeschieden wird und zum Beispiel zum Verkapseln von elektrischenIt was previously described that a barrier layer system according to the invention is deposited on a substrate and, for example, for encapsulating electrical
Bauelementen, welche auch eine strukturierte bzw. dreidimensional geformte Oberfläche aufweisen können, verwendet werden kann. Ein erfindungsgemäßes Schichtsystem kann aber auch selber als flexibles Substrat verwendet werden, welches Barriereeigenschaften bezüglich Sauerstoff und Wasserdampf aufweist. Hierzu wird jedoch auf beiden Seiten des Wechselschichtsystems jeweils mindestens eine Paryleneschicht abgeschieden. Components which can also have a structured or three-dimensionally shaped surface can be used. A layer system according to the invention can, however, also itself be used as a flexible substrate which has barrier properties with respect to oxygen and water vapor. For this purpose, however, at least one parylene layer is deposited on both sides of the alternating layer system.
Ein solches erfindungsgemäßes Schichtsystem mit Barriereeigenschaften gegenüber Sauerstoff und Wasserdampf kann zum Beispiel wie folgt hergestellt werden: Auf einem Substrat wird zunächst mindestens eine erste Paryleneschicht mittels CVD, anschließend ein Wechselschichtsystem aus Aluminiumoxid- und Titanoxidschichten mittels ALD und dann wieder mindestens eine zweite Paryleneschicht mittels CVD abgeschieden. Abschließend wird das Substrat vom Schichtstapel entfernt. Ein derartiges erfindungsgemäßes Schichtsystem ist biegsam und somit flexibel, zeichnet sich durch sehr gute Barriereeigenschaften bezüglich Sauerstoff und Wasserdampf aus und kann deshalb als flexibles Substrat mit Barriereeigenschaften verwendet werden. Such a layer system according to the invention with barrier properties against oxygen and water vapor can be produced, for example, as follows: At least one first parylene layer is first applied to a substrate by means of CVD, then an alternating layer system of aluminum oxide and titanium oxide layers by means of ALD and then again deposited at least one second parylene layer by means of CVD. Finally, the substrate is removed from the layer stack. Such a layer system according to the invention is pliable and thus flexible, is characterized by very good barrier properties with respect to oxygen and water vapor and can therefore be used as a flexible substrate with barrier properties.
Bei solch einem Anwendungsfall ist es vorteilhaft, die mindestens eine erste Paryleneschicht und oder die mindestens eine zweite Paryleneschicht mit einer Schichtdicke größer als 5 pm auszubilden, um dem Schichtsystem eine benötigte Eigenstabilität zu verleihen. In such an application, it is advantageous to form the at least one first parylene layer and / or the at least one second parylene layer with a layer thickness greater than 5 μm in order to give the layer system the required inherent stability.
Auch bei dieser Ausführungsform kann eine Elaftvermittlerschicht zwischen dem Wechselschichtsystem und der mindestens einen ersten Paryleneschicht und/oder dem Wechselschichtsystem und der mindestens einen zweiten Paryleneschicht ausgebildet werden. Als Elaftvermittlerschicht kann wiederum eine siliziumhaltige Schicht, wie zuvor beschrieben, zur Anwendung gelangen. Vorzugsweise erfolgt das Abscheiden der ersten Paryleneschicht, der zweiten Paryleneschicht und der siliziumhaltigen Haftvermittlerschichten in einer Arbeitskammer und das Abscheiden der Aluminiumoxid- und Titanoxidschichten in einer anderen Arbeitskammer. Damit das Substrat nach dem Abscheiden aller Schichten vom Schichtstapel besser abgetrennt werden kann, ist es vorteilhaft, wenn vor dem Abscheiden der ersten Paryleneschicht ein Trennmittel auf das Substrat aufgetragen oder eine sogenannte Opferschicht auf dem Substrat abgeschieden wird, welche beim Abtrennen des Substrates vom Schichtstapel zerstört wird. Als Materialien für ein Trennmittel oder eine Opferschicht sind zum Beispiel Tenside; Polymere (wie beispielsweise Fotolacke oder Polyvinylalkohol) oder Oxide (wie beispielsweise Siliziumoxid) geeignet. Um das Substrat vom Schichtstapel zu trennen, kann der Schichtstapel beispielsweise mechanisch vom Substrat abgezogen werden. Als Substrat kann hierbei zum Beispiel ein Glas oder ein Halbleiterwafer verwendet werden. Alternativ kann die verwendete Opferschicht durch Nutzung eines geeigneten Lösemittels entfernt werden. Wird zum Beispiel Polyvinylalkohol als Trennmittel bzw. als Opferschicht verwendet, kann zum Beispiel Wasser als Lösemittel verwendet werden. In this embodiment too, an elastic mediator layer can be formed between the alternating layer system and the at least one first parylene layer and / or the alternating layer system and the at least one second parylene layer. A silicon-containing layer, as described above, can again be used as the elastic mediator layer. The first parylene layer, the second parylene layer and the silicon-containing adhesion promoter layers are preferably deposited in one working chamber and the aluminum oxide and titanium oxide layers are deposited in another working chamber. So that the substrate can be better separated from the layer stack after the deposition of all layers, it is advantageous if a release agent is applied to the substrate or a so-called sacrificial layer is deposited on the substrate before the deposition of the first parylene layer, which is destroyed when the substrate is separated from the layer stack will. As materials for a release agent or a sacrificial layer, for example, surfactants; Polymers (such as photoresists or polyvinyl alcohol) or oxides (such as silicon oxide) are suitable. In order to separate the substrate from the layer stack, the layer stack can, for example, be pulled off the substrate mechanically. A glass or a semiconductor wafer, for example, can be used as the substrate. Alternatively, the sacrificial layer used can be removed using a suitable solvent. If, for example, polyvinyl alcohol is used as a release agent or as a sacrificial layer, water, for example, can be used as a solvent.
Zusammenfassend sei noch einmal festgehalten, dass eine Ausführungsform eines erfindungsgemäßen Schichtsystems mit Barriereeigenschaften bezüglich Sauerstoff und Wasserdampf ein Wechselschichtsystem, bestehend aus zwei bis sechs Aluminiumoxidschichten und zwei bis sechs Titanoxidschichten, welche abwechselnd und unmittelbar aufeinanderfolgend (also ohne weitere Zwischenschichten), übereinander angeordnet sind, und mindestens eine Paryleneschicht umfasst, wobei die Paryleneschicht entweder direkt auf einer Seite des Wechselschichtsystems abgeschieden ist oder wobei lediglich eine Haftvermittlerschicht zwischen der Paryleneschicht und dem Wechselschichtsystem angeordnet ist. In summary, it should be stated once again that an embodiment of a layer system according to the invention with barrier properties with regard to oxygen and water vapor is an alternating layer system consisting of two to six Aluminum oxide layers and two to six titanium oxide layers, which are arranged alternately and directly one on top of the other (i.e. without further intermediate layers) and comprise at least one parylene layer, the parylene layer either being deposited directly on one side of the alternating layer system or with only one adhesion promoter layer between the parylene layer and the alternating shift system is arranged.
Als alternative Ausführungsform ist auch möglich mehrere zuvor beschriebene Wechselschichtsysteme übereinander abzuscheiden, zwischen denen jeweils mindestens eine Paryleneschicht ausgebildet ist. As an alternative embodiment, it is also possible to deposit several above-described alternating layer systems on top of one another, between each of which at least one parylene layer is formed.
Die vorliegende Erfindung wird nachfolgend anhand von Ausführungsbeispielen näher erläutert. Die Fig. zeigen: Fig. 1 eine schematische Schnittdarstellung eines auf einem Substrat abgeschiedenen erfindungsgemäßen Schichtsystems, The present invention is explained in more detail below on the basis of exemplary embodiments. The figures show: FIG. 1 a schematic sectional illustration of a layer system according to the invention deposited on a substrate,
Fig. 2 eine schematische Schnittdarstellung eines auf einem Substrat abgeschiedenen alternativen erfindungsgemäßen Schichtsystems, 2 shows a schematic sectional illustration of an alternative layer system according to the invention deposited on a substrate,
Fig. 3a, 3b schematische Schnittdarstellungen eines weiteren alternativen erfindungsgemäßen Schichtsystems. 3a, 3b are schematic sectional representations of a further alternative layer system according to the invention.
In Fig. 1 ist ein auf einem Substrat 11 abgeschiedenes erfindungsgemäßes Schichtsystem schematisch im Schnitt dargestellt. Das erfindungsgemäße Schichtsystem umfasst zunächst ein Wechselschichtsystem, bestehend aus zwei Aluminiumoxidschichten 12 und zwei Titanoxidschichten 13, welche abwechselnd übereinander auf dem Substrat 1 1 abgeschieden wurden. Das Wechselschichtsystem eines erfindungsgemäßen Barriereschichtsystems kann bis zu sechs Aluminiumschichten 12 und bis zu sechs Titanoxidschichten 13 umfassen, welche abwechselnd übereinander abgeschieden sind. Dabei weisen die Einzelschichten eine Schichtdicke von jeweils 5 nm bis 20 nm auf. Als Substrat 11 kann zum Beispiel eine Kunststofffolie, ein Glas, ein Halbleiterwafer oder ein elektrisches Bauelement wie beispielsweise eine integrierte Schaltung verwendet werden. In FIG. 1, a layer system according to the invention deposited on a substrate 11 is shown schematically in section. The layer system according to the invention initially comprises an alternating layer system consisting of two aluminum oxide layers 12 and two titanium oxide layers 13, which were deposited alternately on top of one another on the substrate 11. The alternating layer system of a barrier layer system according to the invention can comprise up to six aluminum layers 12 and up to six titanium oxide layers 13, which are deposited alternately on top of one another. The individual layers are each 5 nm to 20 nm thick. A plastic film, a glass, a semiconductor wafer or an electrical component such as an integrated circuit, for example, can be used as the substrate 11.
Das wechselweise Abscheiden der Aluminiumoxidschichten 12 und der Titanoxidschichten 13 erfolgte in einer ersten Arbeitskammer mittels bekannter AFD-Abscheideprozesse. Bei der Schichtabscheidung werden in der ersten Arbeitskammer Temperaturen größer 60 °C eingestellt. In einer zweiten Arbeitskammer wird dann mittels eines bekannten CVD- Abscheideprozesses eine Paryleneschicht 14 auf dem Wechselschichtsystem, bestehend aus den Aluminiumoxidschichten 12 und den Titanoxidschichten 13, mit einer Schichtdicke von 0,1 pm bis 50 pm abgeschieden. Ein erfindungsgemäßes Schichtsystem kann alternativ auch mehrere unmittelbar übereinander abgeschiedene Paryleneschichten 14 aufweisen. The alternating deposition of the aluminum oxide layers 12 and the titanium oxide layers 13 took place in a first working chamber by means of known AFD deposition processes. During the layer deposition, temperatures of more than 60 ° C are reached in the first working chamber set. A parylene layer 14, consisting of the aluminum oxide layers 12 and the titanium oxide layers 13, with a layer thickness of 0.1 μm to 50 μm is then deposited in a second working chamber by means of a known CVD deposition process. A layer system according to the invention can alternatively also have a plurality of parylene layers 14 deposited directly on top of one another.
Sowohl mittels ALD abgeschiedene Aluminiumoxid- und Titanoxidschichten als auch mittels CVD abgeschiedene Paryleneschichten zeichnen sich dadurch aus, dass diese auch flächendeckend auf strukturierten Oberflächen und dreidimensionalen Objekten abgeschieden werden können. Ein weiterer Vorteil eines erfindungsgemäßen Schichtsystems besteht darin, dass eine mittels CVD abgeschiedene Paryleneschicht auch die Seitenränder darunterliegender Schichten und wenn erforderlich, sogar das komplette Substrat, inklusive dessen Rückseite, abdeckt. Ein erfindungsgemäßes Schichtsystem weist deshalb sehr gute Barriereeigenschaften gegenüber Sauerstoff und Wasserdampf auf und ist daher auch besonders gut zum Verkapseln von elektrischen Bauelementen geeignet, welche üblicherweise eine strukturierte Oberfläche aufweisen. Solch ein elektrisches Bauelement kann zum Beispiel mindestens ein Halbleiterbauelement und/oder mindestens ein organisches Bauelement umfassen. Dabei kann ein erfindungsgemäßes Schichtsystem bei einer Ausführungsform direkt auf dem elektrischen Bauelement abgeschieden werden. Bezogen auf das zu Fig. 1 beschriebene Ausführungsbeispiel ist dann das Substrat 1 1 als elektrisches Bauelement ausgebildet. Alternativ kann bei einem solchen Anwendungsfall auch das Substrat 1 1 als Kunststofffolie ausgebildet sein, wobei dann die mit dem erfindungsgemäßen Schichtsystem beschichtete Kunststofffolie als Verkapselungsfolie für ein elektrisches Bauelement verwendet wird. Bei einer weiteren alternativen Ausführungsform kann ein elektrisches Bauelement auch auf einem Substrat hergestellt werden, wobei das Substrat als erfindungsgemäßes Barriereschichtsystem ausgebildet ist und wobei das Substrat mit dem sich darauf befindenden elektrischen Bauelement anschließend mittels eines weiteren erfindungsgemäßen Barriereschichtsystems verkapselt wird. Both aluminum oxide and titanium oxide layers deposited by means of ALD and parylene layers deposited by means of CVD are characterized by the fact that they can also be deposited over the entire area on structured surfaces and three-dimensional objects. Another advantage of a layer system according to the invention is that a parylene layer deposited by means of CVD also covers the side edges of the underlying layers and, if necessary, even covers the entire substrate, including its rear side. A layer system according to the invention therefore has very good barrier properties against oxygen and water vapor and is therefore also particularly suitable for encapsulating electrical components which usually have a structured surface. Such an electrical component can comprise, for example, at least one semiconductor component and / or at least one organic component. In one embodiment, a layer system according to the invention can be deposited directly on the electrical component. With reference to the exemplary embodiment described with reference to FIG. 1, the substrate 11 is then designed as an electrical component. Alternatively, in such an application, the substrate 11 can also be designed as a plastic film, the plastic film coated with the layer system according to the invention then being used as an encapsulation film for an electrical component. In a further alternative embodiment, an electrical component can also be produced on a substrate, wherein the substrate is designed as a barrier layer system according to the invention and wherein the substrate with the electrical component located thereon is then encapsulated by means of a further barrier layer system according to the invention.
In Fig. 2 ist ein alternatives erfindungsgemäßes Schichtsystem schematisch im Schnitt dargestellt, welches auf einem Substrat 21 abgeschieden ist. Das Substrat 21 ist bei diesem Ausführungsbeispiel als Kunststofffolie, bestehend aus dem Material Polyethylennaphthalat (Kürzel „PEN") ausgebildet. Das alternative erfindungsgemäße Schichtsystem aus Fig. 2 umfasst zunächst ein Wechselschichtsystem, bestehend aus vier Aluminiumoxidschichten 22 und vier Titanoxidschichten 23, welche abwechselnd übereinander auf dem Substrat 21 mit einer Schichtdicke von jeweils 5 nm abgeschieden wurden. Erfindungsgemäß wurden die Aluminiumoxid- und die Titanoxidschichten mittels ALD innerhalb einer ersten Arbeitskammer abgeschieden. Auf dem Wechselschichtsystem wurde dann eine Haftvermittlerschicht 25 hergestellt, welche eine bessere Haftung zu einer nachfolgend abgeschiedenen, 2 gm dicken, Paryleneschicht 24 gewährleistet. Die Paryleneschicht 24, bestehend aus Parylene C, wird bevorzugt in einer zweiten Arbeitskammer mittels CVD abgeschieden. Als Haftvermittlerschicht 25 wurde eine siliziumhaltige Schicht in Form einer Silanschicht hergestellt, indem vor dem Abscheiden der Paryleneschicht 24 ein Silan als Precursor in die zweite Arbeitskammer eingelassen wurde. Bei dem zu Fig. 2 beschriebenen Schichtstapel, bestehend aus dem PEN-Substrat 21 , dem Wechselschichtsystem aus Aluminiumoxidschichten 22 und Titanoxidschichten 23, der Haftvermittlerschicht 25 und der Paryleneschicht 24 konnte bei Umgebungsbedingungen von 38 °C und 90 % Fuftfeuchtigkeit eine Barriere bezüglich WVTR von < 6,6* 106 g/(m2d) ermittelt werden. Bei einem erfindungsgemäßen Schichtsystem konnten somit sehr gute Barriereeigenschaften nachgewiesen werden. In FIG. 2, an alternative layer system according to the invention is shown schematically in section, which is deposited on a substrate 21. In this exemplary embodiment, the substrate 21 is designed as a plastic film consisting of the material polyethylene naphthalate (abbreviation “PEN”). The alternative layer system according to the invention from FIG. 2 initially comprises an alternating layer system consisting of four aluminum oxide layers 22 and four titanium oxide layers 23, which were deposited alternately on top of one another on the substrate 21 with a layer thickness of 5 nm each. According to the invention, the aluminum oxide and titanium oxide layers were deposited by means of ALD within a first working chamber. An adhesion promoter layer 25 was then produced on the alternating layer system, which ensures better adhesion to a subsequently deposited 2 μm thick parylene layer 24. The parylene layer 24, consisting of parylene C, is preferably deposited in a second working chamber by means of CVD. A silicon-containing layer in the form of a silane layer was produced as the adhesion promoter layer 25 by admitting a silane as a precursor into the second working chamber before the parylene layer 24 was deposited. In the layer stack described for FIG. 2, consisting of the PEN substrate 21, the alternating layer system of aluminum oxide layers 22 and titanium oxide layers 23, the adhesion promoter layer 25 and the parylene layer 24, a WVTR barrier of < 6.6 * 10 6 g / (m 2 d) can be determined. In the case of a layer system according to the invention, it was thus possible to demonstrate very good barrier properties.
In den Fig. 3a und 3b ist ein weiteres alternatives erfindungsgemäßes Schichtsystem mit Barriereeigenschaften bezüglich Sauerstoff und Wasserdampf schematisch als Schnitt dargestellt. Das Schichtsystem gemäß der Fig. 3a und 3b umfasst zunächst ein Wechselschichtsystem, bestehend aus drei Aluminiumoxidschichten 32 und drei Titanoxidschichten 33, welche abwechselnd übereinander angeordnet sind. Auf einer Seite des Wechselschichtsystems ist eine erste Paryleneschicht 34a und auf der anderen Seite des Wechselschichtsystems eine zweite Paryleneschicht 34b ausgebildet, wobei zwischen der ersten Paryleneschicht 34a und dem Wechselschichtsystem eine erste Haftvermittlerschicht 35a und zwischen der zweiten Paryleneschicht 34b und dem Wechselschichtsystem eine zweite Haftvermittlerschicht 35b abgeschieden ist. Ein derartiges erfindungsgemäßes Schichtsystem kann als flexibles Substrat verwendet werden und weist gleichzeitig Barriereeigenschaften bezüglich Sauerstoff und Wasserdampf auf. A further alternative layer system according to the invention with barrier properties with respect to oxygen and water vapor is shown schematically as a section in FIGS. 3a and 3b. The layer system according to FIGS. 3a and 3b initially comprises an alternating layer system consisting of three aluminum oxide layers 32 and three titanium oxide layers 33, which are arranged alternately one above the other. A first parylene layer 34a is formed on one side of the alternating layer system and a second parylene layer 34b is formed on the other side of the alternating layer system, a first adhesion promoter layer 35a being deposited between the first parylene layer 34a and the alternating layer system and a second adhesion promoter layer 35b between the second parylene layer 34b and the alternating layer system is. Such a layer system according to the invention can be used as a flexible substrate and at the same time has barrier properties with respect to oxygen and water vapor.
Beim Herstellen des in den Fig. 3a und 3b dargestellten Schichtsystems wird zunächst die Paryleneschicht 34 a mittels CVD innerhalb einer Arbeitskammer auf einem Substrat 31 abgeschieden. In derselben Arbeitskammer kann auch die optionale Haftvermittlerschicht 35a abgeschieden werden, indem zum Beispiel ein Silan in die Arbeitskammer eingelassen wird. In einer zweiten Arbeitskammer werden dann die Aluminiumoxidschichten 32 und die Titanoxidschichten 33 wechselweise mittels ALD hergestellt. Bei einem weiteren Verfahrensschritt werden dann wieder in der für CVD-Prozesse geeigneten Arbeitskammer die Haftvermittlerschicht 35b und die Paryleneschicht 34b abgeschieden. Zum Ausbilden der Haftvermittlerschicht 35b werden vorzugsweise die gleichen Verfahrensschritte verwendet, wie für das Ausbilden der Haftvermittlerschicht 35a. Abschließend wird das Substrat 31 vom restlichen Schichtstapel abgetrennt, indem der Schichtstapel zum Beispiel vom Substrat 31 abgezogen wird. Als Substrat 31 kann beispielsweise ein Halbeiterwafer oder ein Glas verwendet werden. Das Abtrennen des Substrates 31 vom restlichen Schichtstapel kann vereinfacht werden, wenn vor dem Abscheiden der Paryleneschicht 34a ein Trennmittel auf das Substrat 31 aufgetragen oder eine Opferschicht auf das Substrat 31 abgeschieden wird. Als Trennmittel kann zum Beispiel eine tensidhaltige Lösung auf das Substrat 31 aufgetragen werden. When producing the layer system shown in FIGS. 3 a and 3 b, the parylene layer 34 a is first deposited on a substrate 31 by means of CVD within a working chamber. The optional adhesion promoter layer 35a can also be deposited in the same working chamber by, for example, admitting a silane into the working chamber. The aluminum oxide layers 32 and the Titanium oxide layers 33 produced alternately by means of ALD. In a further process step, the adhesion promoter layer 35b and the parylene layer 34b are then deposited again in the working chamber suitable for CVD processes. To form the adhesion promoter layer 35b, the same method steps are preferably used as for the formation of the adhesion promoter layer 35a. Finally, the substrate 31 is separated from the rest of the layer stack in that the layer stack is peeled off from the substrate 31, for example. A semiconductor wafer or a glass, for example, can be used as the substrate 31. The separation of the substrate 31 from the rest of the layer stack can be simplified if a release agent is applied to the substrate 31 or a sacrificial layer is deposited on the substrate 31 before the parylene layer 34a is deposited. A surfactant-containing solution, for example, can be applied to the substrate 31 as a release agent.

Claims

Patentansprüche Claims
1. Schichtsystem mit Barriereeigenschaften gegenüber Sauerstoff und Wasserdampf, umfassend: a) ein Wechselschichtsystem, bestehend aus mindestens zwei Aluminiumoxidschichten (12; 22; 32) und mindestens zwei Titanoxidschichten (13; 23; 33), bei welchem die Aluminiumoxidschichten (12; 22; 32) und die Titanoxidschichten (13; 23; 33) im Wechsel übereinander abgeschieden sind; b) wobei die Aluminiumoxidschichten (12; 22; 32) und die Titanoxidschichten (13; 23; 33) jeweils eine Schichtdicke von 5 nm bis 20 nm aufweisen; c) und mindestens eine auf einer ersten Seite des Wechselschichtsystems abgeschiedene erste Paryleneschicht (14; 24; 34a), welche eine Schichtdicke von 0,1 pm bis 50 pm aufweist. 2. Schichtsystem nach Anspruch 1, dadurch gekennzeichnet, dass auf der zweiten Seite des Wechselschichtsystems mindestens eine zweite Paryleneschicht (34b) mit einer Schichtdicke von 0,1 pm bis 50 pm ausgebildet ist. 1. A layer system with barrier properties against oxygen and water vapor, comprising: a) an alternating layer system consisting of at least two aluminum oxide layers (12; 22; 32) and at least two titanium oxide layers (13; 23; 33), in which the aluminum oxide layers (12; 22; 32) and the titanium oxide layers (13; 23; 33) are deposited alternately on top of one another; b) the aluminum oxide layers (12; 22; 32) and the titanium oxide layers (13; 23; 33) each having a layer thickness of 5 nm to 20 nm; c) and at least one first parylene layer (14; 24; 34a) deposited on a first side of the alternating layer system and having a layer thickness of 0.1 μm to 50 μm. 2. Layer system according to claim 1, characterized in that at least one second parylene layer (34b) with a layer thickness of 0.1 μm to 50 μm is formed on the second side of the alternating layer system.
3. Schichtsystem nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass zwischen dem Wechselschichtsystem und der mindestens einen ersten Paryleneschicht (24; 34a) und/oder zwischen dem Wechselschichtsystem und der mindestens einen zweiten Paryleneschicht (34b) eine siliziumhaltige Schicht (25; 35a; 35b) ausgebildet ist. 3. Layer system according to claim 1 or 2, characterized in that between the alternating layer system and the at least one first parylene layer (24; 34a) and / or between the alternating layer system and the at least one second parylene layer (34b) a silicon-containing layer (25; 35a; 35b) is formed.
4. Schichtsystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die mindestens eine erste Paryleneschicht (14; 24; 34a) und/oder die mindestens eine zweite Paryleneschicht (34b) aus mindestens einem Material aus der Gruppe Parylene C / Poly(chloro-p-xylylen); Parylene F / Polly(tetrafluoro-p-xylylen); Parylene AF4 / Poly(a, a, a',a'-tetrafluoro-p-xylylene); Parylene N / Poly(p-xylylen); Parylene D / Poly(dichloro-p-xylylen) besteht. 4. Layer system according to one of the preceding claims, characterized in that the at least one first parylene layer (14; 24; 34a) and / or the at least one second parylene layer (34b) made of at least one material from the group parylene C / poly (chloro- p-xylylene); Parylene F / Polly (tetrafluoro-p-xylylene); Parylene AF4 / poly (a, a, a ', a'-tetrafluoro-p-xylylene); Parylene N / poly (p-xylylene); Parylene D / Poly (dichloro-p-xylylene).
5. Schichtsystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Schichtsystem auf einem Substrat (11; 21 ; 31) abgeschieden ist. 5. Layer system according to one of the preceding claims, characterized in that the layer system is deposited on a substrate (11; 21; 31).
6. Schichtsystem nach Anspruch 5, dadurch gekennzeichnet, dass das Substrat (11; 21; 31) eine Kunststofffolie, ein Glas oder einen Halbleiterwafer umfasst. 6. Layer system according to claim 5, characterized in that the substrate (11; 21; 31) comprises a plastic film, a glass or a semiconductor wafer.
7. Schichtsystem nach Anspruch 5, dadurch gekennzeichnet, dass das Substrat (11; 21; 31) mindestens ein Halbleiterbauelement und/oder mindestens ein organisches Bauelement umfasst. 8. Verfahren zum Herstellen eines Schichtsystems, welches Barriereeigenschaften gegenüber Sauerstoff und Wasserdampf aufweist, gekennzeichnet durch folgende Verfahrensschritte: a) Ausbilden eines Wechselschichtsystems, bestehend aus mindestens zwei Aluminiumoxidschichten (12; 22; 32) und mindestens zwei Titanoxidschichten (13; 23; 33), bei welchem die Aluminiumoxidschichten (12; 22; 32) und die Titanoxidschichten (13; 23; 33) im Wechsel übereinander abgeschieden werden; b) wobei die Aluminiumoxidschichten (12; 22; 32) und die Titanoxidschichten (13; 23; 33) mittels ALD-Schichtabscheidung und jeweils mit einer Schichtdicke von 5 nm bis 20 nm abgeschieden werden; c) Abscheiden einer ersten Paryleneschicht (14; 24; 34a) mit einer Schichtdicke von 0,1 pm bis 50 pm auf einer ersten Seite des Wechselschichtsystems mittels CVD. 7. Layer system according to claim 5, characterized in that the substrate (11; 21; 31) comprises at least one semiconductor component and / or at least one organic component. 8. A method for producing a layer system which has barrier properties against oxygen and water vapor, characterized by the following method steps: a) Forming an alternating layer system consisting of at least two aluminum oxide layers (12; 22; 32) and at least two titanium oxide layers (13; 23; 33) in which the aluminum oxide layers (12; 22; 32) and the titanium oxide layers (13; 23; 33) are deposited alternately on top of one another; b) the aluminum oxide layers (12; 22; 32) and the titanium oxide layers (13; 23; 33) being deposited by means of ALD layer deposition and each with a layer thickness of 5 nm to 20 nm; c) Deposition of a first parylene layer (14; 24; 34a) with a layer thickness of 0.1 μm to 50 μm on a first side of the alternating layer system by means of CVD.
Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass auf der zweiten Seite des Wechselschichtsystems mindestens eine zweite Paryleneschicht (34b) mit einer Schichtdicke von 0,1 pm bis 50 pm ausgebildet wird. Method according to Claim 8, characterized in that at least one second parylene layer (34b) with a layer thickness of 0.1 μm to 50 μm is formed on the second side of the alternating layer system.
10. Verfahren nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass zwischen dem Wechselschichtsystem und der mindestens einen ersten Paryleneschicht (24; 34a) und/oder zwischen dem Wechselschichtsystem und der mindestens einen zweiten10. The method according to claim 8 or 9, characterized in that between the alternating layer system and the at least one first parylene layer (24; 34a) and / or between the alternating layer system and the at least one second
Paryleneschicht (34b) eine siliziumhaltige Schicht (25; 35a; 35b) ausgebildet wird. Parylene layer (34b) a silicon-containing layer (25; 35a; 35b) is formed.
11 . Verfahren nach einem der vorhergehenden Verfahrensansprüche, dadurch gekennzeichnet, dass die ALD-Schichtabscheidung bei einer Temperatur von mindestens 60 °C durchgeführt wird. 11. Method according to one of the preceding method claims, characterized in that the ALD layer deposition is carried out at a temperature of at least 60 ° C.
12. Verfahren nach einem der vorhergehenden Verfahrensansprüche, dadurch gekennzeichnet, dass die mindestens eine erste Paryleneschicht (14; 24; 34a) und/oder die mindestens eine zweite Paryleneschicht (34b) bei einer Temperatur im Bereich von 20 °C bis 40 °C) abgeschieden werden/wird. 12. The method according to any one of the preceding method claims, characterized in that the at least one first parylene layer (14; 24; 34a) and / or the at least one second parylene layer (34b) at a temperature in the range from 20 ° C to 40 ° C) will be deposited.
13. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass das Schichtsystem auf einem Substrat (11; 21 ; 31) abgeschieden wird. 13. The method according to claim 9, characterized in that the layer system is deposited on a substrate (11; 21; 31).
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass eine Kunststofffolie, ein Glas oder ein Halbleiterwafer als Substrat (1 1; 21 ; 31) verwendet wird. 14. The method according to claim 13, characterized in that a plastic film, a glass or a semiconductor wafer is used as the substrate (1 1; 21; 31).
15. Verfahren nach Anspruch 13 oder 14, dadurch gekennzeichnet, dass das Substrat (31) nach dem Abscheiden des Schichtsystems vom Schichtsystem abgetrennt wird. 16. Verfahren nach Anspruch 15, dadurch gekennzeichnet, dass vor dem Abscheiden des Schichtsystems auf dem Substrat (31) ein Trennmittel auf das Substrat (31) aufgetragen oder eine Opferschicht auf dem Substrat (31) abgeschieden wird. 15. The method according to claim 13 or 14, characterized in that the substrate (31) is separated from the layer system after the deposition of the layer system. 16. The method according to claim 15, characterized in that before the layer system is deposited on the substrate (31), a release agent is applied to the substrate (31) or a sacrificial layer is deposited on the substrate (31).
EP21715230.5A 2020-03-26 2021-03-25 Barrier layer system and method for producing a barrier layer system Pending EP4127261A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020108362.9A DE102020108362A1 (en) 2020-03-26 2020-03-26 Barrier layer system and method for producing a barrier layer system
PCT/EP2021/057852 WO2021191398A1 (en) 2020-03-26 2021-03-25 Barrier layer system and method for producing a barrier layer system

Publications (1)

Publication Number Publication Date
EP4127261A1 true EP4127261A1 (en) 2023-02-08

Family

ID=75278037

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21715230.5A Pending EP4127261A1 (en) 2020-03-26 2021-03-25 Barrier layer system and method for producing a barrier layer system

Country Status (5)

Country Link
US (1) US20230077923A1 (en)
EP (1) EP4127261A1 (en)
KR (1) KR20220158784A (en)
DE (1) DE102020108362A1 (en)
WO (1) WO2021191398A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3556881A (en) 1962-03-01 1971-01-19 Union Carbide Corp Encapsulated chemical product
US4383003A (en) * 1980-09-22 1983-05-10 General Electric Company Transfer lamination of copper thin sheets and films, method and product
DE59609370D1 (en) 1995-03-14 2002-07-25 Empa DEPOSITION OF DIFFUSION BARRIERS IN A LOW PRESSURE PLASMA CHAMBER
DE19548160C1 (en) 1995-12-22 1997-05-07 Fraunhofer Ges Forschung Production of organically modified oxide, oxynitride or nitride coatings
US20170130061A1 (en) * 2015-11-09 2017-05-11 Hzo, Inc. Hybrid parylene-metal oxide interstacked coatings
DK3567619T3 (en) * 2018-05-08 2021-01-04 Abiomed Europe Gmbh CORROSION RESISTANT PERMANENT MAGNET AND INTRAVASCULAR BLOOD PUMP INCLUDING MAGNET

Also Published As

Publication number Publication date
DE102020108362A1 (en) 2021-09-30
WO2021191398A1 (en) 2021-09-30
KR20220158784A (en) 2022-12-01
US20230077923A1 (en) 2023-03-16

Similar Documents

Publication Publication Date Title
EP1711643B1 (en) Method for the production of an ultra barrier layer system
DE102014105939B4 (en) Process for producing an anti-reflection coating on a silicone surface and optical element
EP1727925A1 (en) Method and device for forming thin silicon nitride layers on the surface of substrates
DE3833501A1 (en) METHOD AND DEVICE FOR APPLYING MULTILAYER OPTICAL INTERFERENCE LAYERS ON SUBSTRATES WITH A COMPLEX SURFACE SHAPE
DE2751221A1 (en) PROCESS FOR APPLYING A REFLECTION-REDUCING COATING TO BACKING MADE OF ORGANIC MATERIAL
WO2009127373A1 (en) Transparent barrier layer system
DE102011017403A1 (en) Method for depositing a transparent barrier layer system
DE10223359B4 (en) Micromechanical component and method for producing an anti-adhesion layer on a micromechanical component
EP2288646B1 (en) Method for depositing a scratch protection coating on a plastic substrate
EP1778890B1 (en) Method for production of reactors for the decomposition of gases
WO2009118034A1 (en) Method for producing a multicomponent, polymer- and metal-containing layer system, device and coated article
EP2699705B1 (en) Method of depositing a transparent barrier coating system
EP4127261A1 (en) Barrier layer system and method for producing a barrier layer system
EP2468915B1 (en) Method for separating dielectric layers in a vacuum and use of the method
DE102008028540A1 (en) Depositing gradient layer on plastics substrate, e.g. scratch-resistant layer on lens, uses magnetron plasma enhanced chemical vapor deposition to give increasing organic compound content
EP3133184B1 (en) Method of forming a layer having high light transmission and/or low light reflection
EP1294959B1 (en) Method for producing a multi-functional, multi-ply layer on a transparent plastic substrate and a multi-functional multi-ply layer produced according to said method
DE10201492B4 (en) Optical layer system
DE102016100914B4 (en) Method for producing a porous refractive index gradient layer
DE2737792C3 (en) Process for improving the adhesion of poly-p-xylylenes to substrates by applying an organosilane layer
DE102006043943A1 (en) Method for applying layers to substrates with curved surfaces
DE102016100907B4 (en) Method for producing a reflection-reducing layer system
DE102016118440A1 (en) Activated 3-D nano surface, process for its preparation and its use
DE102019135574A1 (en) Method for producing a heterogeneously structured coating of an optoelectronic component, as well as an optoelectronic component with such a coating
EP2558609B1 (en) Method for coating a substrate inside a vacuum chamber by means of plasma-assisted chemical vapor deposition

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220928

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)