EP4123622A1 - Method for determining a trajectory of an aircraft - Google Patents

Method for determining a trajectory of an aircraft Download PDF

Info

Publication number
EP4123622A1
EP4123622A1 EP22182113.5A EP22182113A EP4123622A1 EP 4123622 A1 EP4123622 A1 EP 4123622A1 EP 22182113 A EP22182113 A EP 22182113A EP 4123622 A1 EP4123622 A1 EP 4123622A1
Authority
EP
European Patent Office
Prior art keywords
aircraft
target
sections
trajectory
zones
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP22182113.5A
Other languages
German (de)
French (fr)
Other versions
EP4123622B1 (en
Inventor
Damien Goubinat
Christophe Pierre
Guillaume Gouttebroze
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP4123622A1 publication Critical patent/EP4123622A1/en
Application granted granted Critical
Publication of EP4123622B1 publication Critical patent/EP4123622B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0004Transmission of traffic-related information to or from an aircraft
    • G08G5/0008Transmission of traffic-related information to or from an aircraft with other aircraft
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/003Flight plan management
    • G08G5/0034Assembly of a flight plan
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/003Flight plan management
    • G08G5/0039Modification of a flight plan
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0043Traffic management of multiple aircrafts from the ground
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/006Navigation or guidance aids for a single aircraft in accordance with predefined flight zones, e.g. to avoid prohibited zones
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0073Surveillance aids
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0069Navigation or guidance aids for a single aircraft specially adapted for an unmanned aircraft
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0073Surveillance aids
    • G08G5/0086Surveillance aids for monitoring terrain

Definitions

  • the present invention relates to a method for determining a trajectory of an aircraft, a method of synchronization between several aircraft as well as the associated devices.
  • FMS Flight Management System
  • Operators can include “fuses” in the trajectory that allow the flight to be adjusted in time in order to hit the target at the appropriate time. It is known to those skilled in the art to use isosceles triangles to make said fuses. These isosceles triangles make it possible to lengthen the trajectory to guard against hazards. These triangles have a determined length so as to contain a quantity of time that is easy for the pilot to remember (one minute for example). Depending on the progress of the mission and the hazards encountered, the pilots follow or remove these fuses from their trajectory so as to lengthen or shorten their trajectory and thus respect the time constraint.
  • the present invention aims to at least partially remedy this need.
  • the present invention aims to facilitate the use of secure areas in order to generate possibilities of loss of time during a flight by the use of predetermined trajectory shapes.
  • a first object of the invention relates to a method for determining a trajectory of an aircraft intended to fly over an operating terrain with a view to performing an action on a target at a given instant.
  • the field of operation has a plurality of secure areas and a plurality of unsecured areas.
  • the trajectory comprises a plurality of intermediate points between a starting point of said trajectory and the target, said intermediate points being positioned on borders between secure zones and unsecured zones.
  • the method is implemented by computer means.
  • the determination method comprises a step of calculating a set of sections between said starting point, said intermediate points and said target.
  • the set of sections includes a first type of sections extending over non-secure areas and a second type of sections extending over secure areas.
  • the first type of sections has a generally rectilinear shape so as to limit the time spent by the aircraft in the unsecured zones and the said second type of sections has a sinuous shape so as to allow a reserve of time to adjust the position of the aircraft vis-à-vis the target.
  • the invention proposes to determine or assign risk levels to the different areas of the operating terrain. For reasons of implementation of the operation, it is sometimes necessary for the aircraft to fly over unsecured areas presenting a high level of risk. In an unsecured zone, the aim is to minimize the temporal presence of the aircraft. The trajectory will then have a globally rectilinear shape.
  • rectilinear shape is meant a shape which is in a straight line.
  • the secure areas presenting a lower level of risk will be able to constitute time reservoirs. In these secure zones, the trajectory of the aircraft will be able to take a sinuous shape to allow an extension of the flight time with a view to synchronizing the aircraft with the target.
  • the method thus makes it possible to lengthen the trajectory using trajectory portions which are flyable and whose length/duration can vary during the flight.
  • the portions of trajectories are determined in advance and constitute "patterns" of loss of time. These patterns of time loss can result from numerical optimization or even come from the expertise of the pilots. Finally, the method improves the overall autonomy of the aircraft.
  • the trajectory frame constitutes a basic trajectory discretized at different intermediate points.
  • This trajectory frame takes into account the geometric constraints and the tactical constraints of the operating terrain.
  • the trajectory portions of this trajectory frame are however all rectilinear between the various intermediate points. In order to constitute time reservoirs, a part of these rectilinear portions are modified into sinuous portions. These modifications are made from trajectory primitives.
  • the trajectory primitives come from a database which includes standardized portions of trajectories representing different types of trajectories (fast, furtive, LLF for "Low Level Flight", according to a time loss criterion, depending a fuel economy criterion) for different aircraft. For each aircraft, different aerodynamic or payload configurations are taken into account.
  • the trajectory frame is obtained from a trajectory planning and from a time constraint associated with the given instant of performance of the action on the target.
  • Another object of the invention relates to a device for determining a trajectory of an aircraft intended to fly over an operating terrain with a view to carrying out an action on a target at a given instant.
  • the field of operation has a plurality of secure areas and a plurality of unsecured areas.
  • the trajectory comprises a plurality of intermediate points between a starting point of said trajectory and the target, said intermediate points being positioned on borders between secured zones and unsecured zones.
  • the device comprises, more particularly, a module for calculating a set of sections between said starting point, said intermediate points and said target, said set of sections comprising a first type of sections extending over unsecured zones and a second type of sections extending over secure areas.
  • the first type of sections has a generally rectilinear shape so as to limit the time spent by the aircraft in said unsecured zone and the second type of sections has a sinuous shape so as to allow a reserve of time to adjust a position of the aircraft on the target at the given instant in order to perform the action.
  • the device comprises a tactical situation database and an intelligent algorithm adapted to determine a level of risk for each of the zones from said tactical situation database.
  • the intelligent algorithm is based on data from the tactical situation augmented by data from operational experts and past missions. All this combined information is then processed by a block derived from artificial intelligence which, by learning, can associate a level of danger and a type of threat likely to be encountered in a zone in question.
  • Another object of the invention relates to a method for synchronizing actions on a target between a first aircraft intended to fly over an operating field with a view to carrying out a first action on said target at a first given instant and at least one second aircraft intended to fly on said operating terrain with a view to carrying out a second action on said target at a given second instant.
  • the field of operation has a plurality of secure areas and a plurality of unsecured areas.
  • Each aircraft has a trajectory comprising a plurality of intermediate points between a starting point and the target. The intermediate points are positioned on borders between secured zones and unsecured zones.
  • the method is implemented by computer means.
  • the method comprising for each aircraft, a step of calculating a set of sections between said starting point, said intermediate points and said target, said set of sections comprising a first type of sections extending over unsecured zones and a second type of sections extending over secure areas.
  • the first type of sections has a globally rectilinear shape so as to limit the time spent by said aircraft in unsecured areas.
  • the second type of sections has a sinuous shape so as to allow a reserve of time to adjust the position of said aircraft on the target at said given instant with a view to carrying out said action.
  • the first given instant and the second given instant are selected so as to synchronize the first action performed by the first aircraft and the second action performed by the second aircraft on said target.
  • Another object of the invention relates to a synchronization device for the synchronization of actions on a target between a first aircraft intended to fly over an operating field with a view to carrying out a first action on said target at a first given instant and at least one second aircraft intended to fly over said operating terrain with a view to carrying out a second action on said target at a given second instant.
  • the field of operation has a plurality of secure areas and a plurality of unsecured areas.
  • Each aircraft has a trajectory comprising a plurality of intermediate points between a starting point and the target. Intermediate points are positioned on borders between secure areas and unsecured areas.
  • the synchronization device comprises a calculation module suitable for calculating, for each of said aircraft, a set of sections between said starting point, said intermediate points and said target.
  • the set of sections comprises a first type of sections extending over unsecured areas and a second type of sections extending over secure areas, said first type of sections having a generally rectilinear shape so as to limit the time spent by the aircraft in said unsecured zone and said second section having a sinuous shape so as to allow a reserve of time to adjust the position of the aircraft on the target at said given instant in order to perform the action.
  • the first given instant and the second given instant are selected so as to synchronize the first action performed by the first aircraft and the second action performed by the second aircraft on said target.
  • Another object of the invention relates to a platform suitable for communicating with a first aircraft and at least with a second aircraft for the synchronization of actions on a target, said platform comprising a synchronization device according to one of the preceding objects.
  • the SITAC tactical situation database is suitable for storing all of the information describing the characteristics of an operating terrain 11, such as Topo topographical characteristics and Oppo enemy presences.
  • the intelligent algorithm 101 is adapted to divide the operating terrain 11 into a plurality of zones Z1, Z2, Z3, Z3 and to attribute to each of these zones a risk level N1, N2.
  • a first level of risk N1 corresponds to a low level of dangerousness.
  • a second level of risk N2 corresponds to a high level of dangerousness.
  • a first zone Z1 and a third zone Z3 present a low level of risk N1.
  • These zones Z1, Z3 are called secure zones.
  • a second zone Z2 and a fourth zone Z4 present a high level of risk N2.
  • These zones Z2, Z4 are said to be unsecured.
  • the intelligent algorithm 101 is thus adapted to manage the risk levels of the different zones.
  • the discretization module 102 is adapted to determine a trajectory frame of the aircraft 10 on the secure zones Z1, Z3 and on the non protected Z2, Z4. As is more particularly illustrated in the figure 2 , this trajectory frame comprises a succession of segments S1, S2, S3, S4 arranged between a starting point 12 of the aircraft 10 and a target 13.
  • the segments S1, S2, S3, S4 are in the form of lines connecting a plurality of intermediate points P1, P2, P3, P4.
  • a first segment S1 connects the starting point 12 to a first intermediate point P1.
  • a second segment S2 connects the first intermediate point P1 to a second intermediate point P2.
  • a third segment S3 connects the second intermediate point P2 to a third intermediate point P3.
  • a fourth segment S4 connects the third intermediate point P3 to a fourth intermediate point P4.
  • a fifth segment S5 connects the fourth intermediate point P4 to the target 13.
  • the intermediate points P1, P2, P3, P4 are positioned on borders between the secure zones Z1, Z3 and the unsecured zones Z2, Z4.
  • the first intermediate point P1 is at the interface between the first secure zone Z1 and the second unsecured zone Z2.
  • the second intermediate point P2 is also at the interface between the first secure zone Z1 and the second unsecured zone Z2.
  • the third intermediate point P3 is at the interface between the first secure zone Z1 and the fourth unsecured zone Z4.
  • the fourth intermediate point P4 is at the interface between the fourth non-secure zone Z4 and the third secure zone Z3.
  • the trajectory frame is obtained from a Planif trajectory planning and a time constraint associated with a given instant T id of performing an action on the target 13.
  • the discretization module 102 then makes it possible to introduce the trajectory frame on the operating site 11 taking into account the safety constraints of each zone Z1, Z2, Z3, Z4 and the time constraint T id .
  • Database 104 is adapted to store a plurality of Prim primitives. These primitives are standardized trajectories, responding to specific issues for a specific aircraft in a given configuration.
  • This database of primitives includes the various aircraft such as fighters, drones, UCAV drones (for "Unmanned Combat Air Vehicle"), surveillance drones, helicopters, remote carriers, etc. . as well as their different configurations (depending on the payloads, etc.) which represent a performance model for the trajectory.
  • Primitives can represent trajectories that are, for example, fastest in time, shortest in distance, stealthest, most fuel-efficient, etc.
  • the calculation module 103 is suitable for determining a set of sections T1, T2, T3, T4 between the starting point 12, the intermediate points P1, P2, P3, P4 and the target 13. This calculation module 103 thus receives the location of the plurality of intermediate points P1, P2, P3, P4 on the operating terrain 11 as well as the segments S1, S2, S3, S4 between the starting point 12 and the target 13.
  • the calculation module 13 also receives one or more primitives coming from the database 104. From these different elements, the calculation module 103 is able to deliver an adapted trajectory.
  • This trajectory thus comprises two types of sections. In a first type of sections, a second section T2 and a fourth section T4 have rectilinear shapes which extend respectively in the second unsecured zone Z2 and in the fourth unsecured zone Z4.
  • the first type of sections of rectilinear shape thus makes it possible to limit the time spent by the aircraft 10 in the unsecured zones Z2, Z4.
  • the second section T2 thus corresponds to the second segment S2 of the trajectory frame and the fourth section T4 corresponds to the fourth segment S4 of said trajectory frame.
  • a first section T1, a third section T3 and a fifth section T5 have sinuous shapes which extend respectively in the first secure zone Z1 and in the third secure zone Z3.
  • the second type of sections of sinuous shape makes it possible to authorize a reserve of time to adjust a position of the aircraft 10 on the target 13 at the given instant T id with a view to carrying out the action on the target 13.
  • the device 100 for determining the trajectory thus makes it possible to place time “patterns” at strategic locations for carrying out the mission.
  • the device 100 determines the different presumed safe zones of the mission zone. The time loss "patterns" can then be inserted into the trajectory in an optimal way.
  • the figure 4 illustrates the steps of a method for determining a trajectory of the aircraft 10 implemented by the device 100 for determining the picture 3 .
  • This determination method comprises a step E1 of dividing the operating terrain 11 into a plurality of zones Z1, Z2, Z3, Z4. For each of these areas, a risk level N1, N2 is associated.
  • the trajectory frame of the aircraft 10 is determined on the secure zones Z1, Z3 and on the non-secure zones Z2, Z4. As has already been specified, this trajectory frame comprises a succession of segments S1, S2, S3, S4, S5 between the starting point 12, the intermediate points P1, P2, P3, P4 and the target 13.
  • This frame of trajectory is obtained from the trajectory planning Planif and the time constraint associated with the given instant T id of performing the action on the target 13.
  • a set of sections T1, T2, T3, T4, T5 is calculated. This set of sections is determined from the trajectory frame and from at least one trajectory primitive Prim chosen from among a plurality of trajectory primitives.
  • trajectory of the aircraft 10 can be updated by this determination method during the flight of the aircraft 10 on the operating field 11.
  • determination method is suitable for managing the impact of hazards on different sections with propagation of effects.
  • the figure 5 illustrates an operating field 11 flown over by two aircraft 10, 10'.
  • the first aircraft 10 follows a first trajectory from the first starting point 12 to the target 13 passing through a first group of first intermediate points P1, P2, P3, P4. This trajectory was more particularly detailed during the description of the figure 1 .
  • the second aircraft 10' follows a second trajectory from a second starting point 12' to the target 13 passing through a second group of intermediate points P'1, P'2, P'3, P'4.
  • the intermediate points P'1, P'2, P'3, P'4 of this second group of points are positioned on borders between the secure zones Z1, Z3 and the unsecured zones Z2, Z4.
  • the first intermediate point P'1 is at the interface between the first secure zone Z1 and the second unsecured zone Z2.
  • the second intermediate point P'2 is also at the interface between the first secure zone Z1 and the second unsecured zone Z2.
  • the third intermediate point P'3 is at the interface between the first secure zone Z1 and the fourth unsecured area Z4.
  • the fourth intermediate point P'4 is at the interface between the fourth unsecured zone Z4 and the third secured zone Z3.
  • the trajectory of the second aircraft 10' comprises two types of sections.
  • a first type of sections a second section T'2 and a fourth section T'4 have rectilinear shapes which extend respectively in the second unsecured zone Z2 and in the fourth unsecured zone Z4.
  • the first type of sections of rectilinear shape thus makes it possible to limit the time spent by the second aircraft 10' in the unsecured zones Z2, Z4.
  • a first section T'1 and a third section T'3 have sinuous shapes which extend respectively in the first secure zone Z1 and in the third secure zone Z3.
  • the second type of sections of sinuous shape makes it possible to authorize a reserve of time to adjust a position of the second aircraft 10' on the target 13 at the given instant T' id in order to carry out the action on the target 13. actions of the first aircraft 10 and of the second aircraft 10' on the target 13 must be synchronized for good success of the operation.
  • the discretization module 202 is suitable for determining a first trajectory frame for the first aircraft 10 and a second trajectory frame for the second aircraft 10' on the secure zones Z1, Z3 and on the non-secure zones Z2, Z4.
  • the first trajectory frame is determined from the trajectory planning Planif and the time constraint T id associated with the first aircraft 10.
  • the second trajectory frame is determined from the trajectory planning Planif and the time constraint T′ id associated with the second aircraft 10'.
  • the first given instant T id and the second given instant T′ id are selected beforehand so as to synchronize the first action carried out by the first aircraft 10 and the second action performed by the second aircraft 10' on the target 13.
  • the calculation module 203 is suitable for determining a first set of sections T1, T2, T3, T4 between the first starting point 12, the first group of intermediate points P1, P2, P3, P4 and the target 13. This calculation module calculation 203 thus receives the location of the plurality of the first group of intermediate points P1, P2, P3, P4 on the operating terrain 11.
  • the calculation module 203 is adapted to determine a second set of sections T '1, T'2, T'3, T'4 between the second starting point 12', the first group of intermediate points P1, P2, P3, P4 and the target 13. This calculation module 203 is thus able to receive the location of the plurality of the second group of intermediate points P'1, P'2, 'P3, P'4 on the operating terrain 11.
  • the calculation module 203 is able to also receive a first primitive Prim for the determination of the first set of sections T1, T2, T3, T4 and a second primitive Prim' for the determination of the second set of sections T'1, T'2 , T'3, T'4.
  • the first primitive Prim and the second primitive Prim' are identical. Alternatively, the first primitive Prim and the second primitive Prim' are different.
  • the synchronization device 200 can be arranged on a 10" platform, for example a platform installed on another aircraft.
  • This 10" platform is suitable for communicating with the first aircraft 10 and the second aircraft 10' for the synchronization of actions on the target 13.
  • the synchronization takes place on the aircraft (10 or 10′) with which the most imminent given instant (Id or Id′) is associated with a view to carrying out the action on the target.
  • the first aircraft 10 and the second aircraft 10' have a constant speed and a constant altitude
  • the synchronization then consists in modifying the departure time of the second aircraft 10'.
  • the first aircraft 10 and the second aircraft 10' are synchronized by modifying the characteristics of length, variation in route angle between segments, speed and/or altitude of the respective trajectories of the first aircraft 10 and/or the second aircraft 10'.
  • the figure 7 illustrates the steps of a method for synchronizing actions on the target 13 between the first aircraft 10 and the second aircraft 10'.
  • This determination method comprises a step E′1 of dividing up the operating terrain 11 into a plurality of zones Z1, Z2, Z3, Z4. For each of these areas, a risk level N1, N2 is associated.
  • the first trajectory frame of the first aircraft 10 and the second trajectory frame of the second aircraft 10′ are determined on the secure zones Z1, Z3 and on the unsecured zones Z2, Z4.
  • the first trajectory frame is obtained from the trajectory planning Planif and the first temporal constraint T id .
  • the second trajectory frame is obtained from the trajectory planning Planif and the second temporal constraint T′ id .
  • the first given instant T id and the second given instant T′ id are selected beforehand so as to synchronize the first action performed by the first aircraft 10 and the second action performed by the second aircraft 10′ on the target 13.
  • a first set of sections T1, T2, T3, T4 and a second set of sections T'1, T'2, T'3, T'4 are calculated.
  • the first set of sections is determined from the first trajectory frame and from at least one first trajectory primitive Prim chosen from among a plurality of trajectory primitives.
  • the second set of sections is determined from the second trajectory frame and from at least one second trajectory primitive Prim' chosen from among a plurality of trajectory primitives.
  • the invention thus proposes to combine global and local optimization methods augmented by the contribution of data via data-fusion and/or artificial intelligence. Acceptable zones for a loss of time are determined as well as more realistic patterns (flyable trajectory) for the fuse sections.
  • the invention also proposes to determine by an intelligent algorithm safe zones to introduce these time patterns and ensure compliance with time constraints, to use different trajectory primitives to create the trajectory under constraints according to the operational context of the zone , these trajectory primitives being in adequacy with a level of threat/dangerousness expressed by the intelligent algorithm.
  • the invention also makes it possible to determine routes and trajectories for each aircraft, in a constrained environment with insertion of loss of time patterns.
  • the invention thus facilitates the planning of missions but also the planning of new flights during a change in the tactical situation or during an unforeseen event.
  • multi-carrier spatio-temporal synchronization makes it possible to reduce the mental load of the pilot while automating the calculations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Traffic Control Systems (AREA)

Abstract

L'invention concerne un procédé de détermination d'une trajectoire d'un aéronef (10) destiné à voler sur un terrain d'opération (11) en vue de réaliser une action sur une cible (13) à un instant donné (Ti<sub>d</sub>). Le procédé comprend une étape de calcul (E3) d'un ensemble de tronçons (T1, T2, T3, T4, T5) entre un point de départ (12), des points intermédiaires (P1, P2, P3, P4) et la cible (13). Un premier type de tronçons (T2, T4) a une forme globalement rectiligne de sorte à limiter le temps passé par l'aéronef (10) dans des zones non sécurisées (Z2, Z4). Un second type de tronçons (T1, T3, T5) a une forme sinueuse de sorte à autoriser une réserve de temps pour ajuster une position de l'aéronef (10) sur la cible (13) audit instant donné (Ti<sub>d</sub>) en vue de réaliser l'action.The invention relates to a method for determining a trajectory of an aircraft (10) intended to fly over an operating field (11) with a view to carrying out an action on a target (13) at a given instant (Ti< sub>d</sub>). The method comprises a step of calculating (E3) a set of sections (T1, T2, T3, T4, T5) between a starting point (12), intermediate points (P1, P2, P3, P4) and the target (13). A first type of sections (T2, T4) has a generally rectilinear shape so as to limit the time spent by the aircraft (10) in unsecured zones (Z2, Z4). A second type of sections (T1, T3, T5) has a sinuous shape so as to allow a reserve of time to adjust a position of the aircraft (10) on the target (13) at said given instant (Ti<sub>d </sub>) in order to perform the action.

Description

Domaine techniqueTechnical area

La présente invention concerne un procédé de détermination d'une trajectoire d'un aéronef, un procédé de synchronisation entre plusieurs aéronefs ainsi que les dispositifs associés.The present invention relates to a method for determining a trajectory of an aircraft, a method of synchronization between several aircraft as well as the associated devices.

Technique antérieurePrior technique

Pour toute opération militaire aérienne envisagée sur une cible déterminée mobile ou fixe, la phase de préparation de l'action est primordiale. Aujourd'hui, ce sont des opérateurs qui préparent les missions manuellement au sol à l'aide d'une situation tactique disponible suffisamment en avance. Sur la base de ces événements, ces opérateurs déterminent un plan de vol et une trajectoire à suivre par l'aéronef pour accomplir sa mission. Ces éléments sont ensuite intégrés au système de gestion de vol désigné par la terminologie anglo-saxonne de « Flight Management System » (FMS), qui met cette trajectoire à disposition du pilote.For any military air operation envisaged on a specific mobile or fixed target, the action preparation phase is essential. Today, it is operators who prepare missions manually on the ground using a tactical situation available sufficiently in advance. Based on these events, these operators determine a flight plan and a trajectory to be followed by the aircraft to accomplish its mission. These elements are then integrated into the flight management system designated by the English terminology of “Flight Management System” (FMS), which makes this trajectory available to the pilot.

Les opérateurs peuvent inclurent dans la trajectoire « des fusibles » qui permettent d'ajuster temporellement le vol en vue de frapper la cible au moment opportun. Il est connu de l'homme du métier d'utiliser des triangles isocèles pour réaliser lesdits fusibles. Ces triangles isocèles permettent de rallonger la trajectoire pour se prémunir d'aléas. Ces triangles ont une longueur déterminée de sorte à contenir une quantité de temps simple à retenir pour le pilote (une minute par exemple). En fonction de l'avancée de la mission et des aléas rencontrés, les pilotes suivent ou enlèvent ces fusibles de leur trajectoire de façon à rallonger ou raccourcir leur trajectoire et ainsi respecter la contrainte temporelle.Operators can include “fuses” in the trajectory that allow the flight to be adjusted in time in order to hit the target at the appropriate time. It is known to those skilled in the art to use isosceles triangles to make said fuses. These isosceles triangles make it possible to lengthen the trajectory to guard against hazards. These triangles have a determined length so as to contain a quantity of time that is easy for the pilot to remember (one minute for example). Depending on the progress of the mission and the hazards encountered, the pilots follow or remove these fuses from their trajectory so as to lengthen or shorten their trajectory and thus respect the time constraint.

Bien que l'utilisation des triangles isocèles permette d'ajuster la trajectoire de l'aéronef au cours du vol, elle nécessite cependant de la part du pilote une attention particulière pour décider d'enlever ou de suivre ces triangles. La charge mentale du pilote est alors augmentée au cours du vol avec ce procédé de gestion de la trajectoire. En outre, l'évolution de la situation tactique sur le terrain d'opération n'est pas réellement prise en compte car le pilote peut ne pas avoir un accès direct à ces informations. Il ne peut donc pas décider en toute connaissance de cause de l'opportunité d'enlever ou de suivre ces fusibles d'un point de vue tactique.Although the use of isosceles triangles makes it possible to adjust the trajectory of the aircraft during the flight, it nevertheless requires special attention on the part of the pilot to decide whether to remove or follow these triangles. The mental load of the pilot is then increased during the flight with this trajectory management method. In addition, the evolution of the tactical situation on the operating field is not really taken into account because the pilot may not have direct access to these information. He cannot therefore make an informed decision on whether to remove or follow these fuses from a tactical point of view.

Il existe donc un besoin de proposer un procédé de détermination d'une trajectoire d'un aéronef qui soit plus simple à mettre en œuvre et qui prenne en compte l'évolution de la situation tactique sur le terrain d'opération.There is therefore a need to propose a method for determining a trajectory of an aircraft which is simpler to implement and which takes into account the evolution of the tactical situation on the operating terrain.

Exposé de l'inventionDisclosure of Invention

La présente invention vise à remédier au moins en partie à ce besoin.The present invention aims to at least partially remedy this need.

Plus particulièrement, la présente invention a pour objectif de faciliter l'utilisation de zones sécurisées afin de générer des possibilités de pertes de temps au cours d'un vol par l'utilisation de formes de trajectoire prédéterminées.More particularly, the present invention aims to facilitate the use of secure areas in order to generate possibilities of loss of time during a flight by the use of predetermined trajectory shapes.

Un premier objet de l'invention concerne un procédé de détermination d'une trajectoire d'un aéronef destiné à voler sur un terrain d'opération en vue de réaliser une action sur une cible à un instant donné. Le terrain d'opération comporte une pluralité de zones sécurisées et une pluralité de zones non sécurisées. La trajectoire comporte une pluralité de points intermédiaires entre un point de départ de ladite trajectoire et la cible, lesdits points intermédiaires étant positionnés sur des frontières entre des zones sécurisés et des zones non sécurisées. Le procédé est mis en œuvre par des moyens informatiques. Le procédé de détermination comprend une étape de calcul d'un ensemble de tronçons entre ledit point de départ, lesdits points intermédiaires et ladite cible. L'ensemble de tronçons comporte un premier type de tronçons s'étendant sur des zones non sécurisées et un second type de tronçons s'étendant sur des zones sécurisées. Le premier type de tronçons a une forme globalement rectiligne de sorte à limiter le temps passé par l'aéronef dans les zone non sécurisées et ledit second type de tronçons a une forme sinueuse de sorte à autoriser une réserve de temps pour ajuster dans le temps la position de l'aéronef vis-à-vis de la cible.A first object of the invention relates to a method for determining a trajectory of an aircraft intended to fly over an operating terrain with a view to performing an action on a target at a given instant. The field of operation has a plurality of secure areas and a plurality of unsecured areas. The trajectory comprises a plurality of intermediate points between a starting point of said trajectory and the target, said intermediate points being positioned on borders between secure zones and unsecured zones. The method is implemented by computer means. The determination method comprises a step of calculating a set of sections between said starting point, said intermediate points and said target. The set of sections includes a first type of sections extending over non-secure areas and a second type of sections extending over secure areas. The first type of sections has a generally rectilinear shape so as to limit the time spent by the aircraft in the unsecured zones and the said second type of sections has a sinuous shape so as to allow a reserve of time to adjust the position of the aircraft vis-à-vis the target.

Ainsi, l'invention propose de déterminer ou d'attribuer aux différentes zones du terrain d'opération des niveaux de risque. Pour des raisons de mise en œuvre de l'opération, il est parfois nécessaire à l'aéronef de survoler des zones non sécurisées présentant un haut niveau de risque. Dans une zone non sécurisée, on cherche à minimiser la présence temporelle de l'aéronef. La trajectoire va alors présenter une forme globalement rectiligne. Par « forme rectiligne », on entend une forme qui est en ligne droite. Les zones sécurisées présentant un niveau de risque moindre vont pouvoir constituer des réservoirs de temps. Dans ces zones sécurisées, la trajectoire de l'aéronef va pouvoir prendre une forme sinueuse pour permettre un rallongement du temps de vol en vue de synchroniser l'aéronef avec la cible. Il est ainsi possible de modifier des paramètres de distance, de durée, de variation d'angle de route entre segments, de vitesse, de pente sur le tronçon pour obtenir une telle forme sinueuse. La forme sinueuse est également appelée forme non-rectiligne. Le procédé permet ainsi d'allonger la trajectoire à l'aide de portions de trajectoire qui sont volables et dont la longueur/durée peut varier au cours du vol. Les portions de trajectoires sont déterminées à l'avance et constituent des « patterns » de perte de temps. Ces patterns de perte de temps peuvent résulter d'une optimisation numérique ou bien être issus de l'expertise des pilotes. Enfin, le procédé améliore l'autonomie globale de l'aéronef.Thus, the invention proposes to determine or assign risk levels to the different areas of the operating terrain. For reasons of implementation of the operation, it is sometimes necessary for the aircraft to fly over unsecured areas presenting a high level of risk. In an unsecured zone, the aim is to minimize the temporal presence of the aircraft. The trajectory will then have a globally rectilinear shape. By "rectilinear shape" is meant a shape which is in a straight line. The secure areas presenting a lower level of risk will be able to constitute time reservoirs. In these secure zones, the trajectory of the aircraft will be able to take a sinuous shape to allow an extension of the flight time with a view to synchronizing the aircraft with the target. It is thus possible to modify the parameters of distance, duration, variation in road angle between segments, speed, slope on the section to obtain such a sinuous shape. The curvy shape is also called the non-straight shape. The method thus makes it possible to lengthen the trajectory using trajectory portions which are flyable and whose length/duration can vary during the flight. The portions of trajectories are determined in advance and constitute "patterns" of loss of time. These patterns of time loss can result from numerical optimization or even come from the expertise of the pilots. Finally, the method improves the overall autonomy of the aircraft.

Dans un mode de réalisation particulier, l'étape de calcul de l'ensemble de tronçons est réalisée à partir :

  • d'une trame de trajectoire, ladite trame de trajectoire comportant une succession de segments entre le point de départ, les points intermédiaires et la cible ;
  • d'au moins une primitive de trajectoire choisie parmi une pluralité de primitives de trajectoire.
In a particular embodiment, the step of calculating the set of sections is carried out from:
  • a trajectory frame, said trajectory frame comprising a succession of segments between the starting point, the intermediate points and the target;
  • at least one trajectory primitive chosen from among a plurality of trajectory primitives.

La trame de trajectoire constitue une trajectoire de base discrétisée en différents points intermédiaires. Cette trame de trajectoire tient compte des contraintes géométriques et des contraintes tactiques du terrain d'opération. Les portions de trajectoire de cette trame de trajectoire sont cependant toutes rectilignes entre les différents points intermédiaires. Afin de constituer des réservoirs de temps, une partie de ces portions rectilignes sont modifiée en portions sinueuses. Ces modifications sont réalisées à partir de primitives de trajectoire. Les primitives de trajectoire sont issues d'une base de données qui comprend des portions normalisées de trajectoires représentant différents types de trajectoires (rapides, furtives, LLF pour « Low Level Flight », en fonction d'un critère de perte de temps, en fonction d'un critère d'économie de carburant) pour différents aéronefs. Pour chaque aéronef, différentes configurations aérodynamiques ou d'emports sont prises en compte.The trajectory frame constitutes a basic trajectory discretized at different intermediate points. This trajectory frame takes into account the geometric constraints and the tactical constraints of the operating terrain. The trajectory portions of this trajectory frame are however all rectilinear between the various intermediate points. In order to constitute time reservoirs, a part of these rectilinear portions are modified into sinuous portions. These modifications are made from trajectory primitives. The trajectory primitives come from a database which includes standardized portions of trajectories representing different types of trajectories (fast, furtive, LLF for "Low Level Flight", according to a time loss criterion, depending a fuel economy criterion) for different aircraft. For each aircraft, different aerodynamic or payload configurations are taken into account.

Dans un mode de réalisation particulier, la trame de trajectoire est obtenue à partir d'une planification de trajectoire et d'une contrainte temporelle associée à l'instant donné de réalisation de l'action sur la cible.In a particular embodiment, the trajectory frame is obtained from a trajectory planning and from a time constraint associated with the given instant of performance of the action on the target.

Cela permet une adaptation en temps réel de la trajectoire en fonction des évolutions du contexte opérationnel du terrain d'opération.This allows real-time adaptation of the trajectory according to changes in the operational context of the field of operation.

Un autre objet de l'invention concerne un dispositif pour la détermination d'une trajectoire d'un aéronef destiné à voler sur un terrain d'opération en vue de réaliser une action sur une cible à un instant donné. Le terrain d'opération comporte une pluralité de zones sécurisées et une pluralité de zones non sécurisées. La trajectoire comporte une pluralité de points intermédiaires entre un point de départ de ladite trajectoire et la cible, lesdits points intermédiaires étant positionnés sur des frontières entre des zones sécurisées et des zones non sécurisées. Le dispositif comprend, plus particulièrement, un module de calcul d'un ensemble de tronçons entre ledit point de départ, lesdits points intermédiaires et ladite cible, ledit ensemble de tronçons comportant un premier type de tronçons s'étendant sur des zones non sécurisées et un second type de tronçons s'étendant sur des zones sécurisées. Le premier type de tronçons a une forme globalement rectiligne de sorte à limiter le temps passé par l'aéronef dans ladite zone non sécurisée et le second type de tronçons a une forme sinueuse de sorte à autoriser une réserve de temps pour ajuster une position de l'aéronef sur la cible audit instant donné en vue de réaliser l'action.Another object of the invention relates to a device for determining a trajectory of an aircraft intended to fly over an operating terrain with a view to carrying out an action on a target at a given instant. The field of operation has a plurality of secure areas and a plurality of unsecured areas. The trajectory comprises a plurality of intermediate points between a starting point of said trajectory and the target, said intermediate points being positioned on borders between secured zones and unsecured zones. The device comprises, more particularly, a module for calculating a set of sections between said starting point, said intermediate points and said target, said set of sections comprising a first type of sections extending over unsecured zones and a second type of sections extending over secure areas. The first type of sections has a generally rectilinear shape so as to limit the time spent by the aircraft in said unsecured zone and the second type of sections has a sinuous shape so as to allow a reserve of time to adjust a position of the aircraft on the target at the given instant in order to perform the action.

Dans un mode de réalisation particulier, le dispositif comprend une base de données de situation tactique et un algorithme intelligent adapté pour déterminer un niveau de risque pour chacune des zones à partir de ladite base de données de situation tactique.In a particular embodiment, the device comprises a tactical situation database and an intelligent algorithm adapted to determine a level of risk for each of the zones from said tactical situation database.

L'algorithme intelligent se base sur les données issues de la situation tactique augmentée par des données issues des experts opérationnels et des missions passées. Toutes ces informations combinées sont alors traitées par un bloc issu de l'intelligence artificielle qui par apprentissage pourra associer un niveau de dangerosité et un type de menace susceptible d'être rencontré dans une zone considérée.The intelligent algorithm is based on data from the tactical situation augmented by data from operational experts and past missions. All this combined information is then processed by a block derived from artificial intelligence which, by learning, can associate a level of danger and a type of threat likely to be encountered in a zone in question.

Un autre objet de l'invention concerne un procédé de synchronisation d'actions sur une cible entre un premier aéronef destiné à voler sur un terrain d'opération en vue de réaliser une première action sur ladite cible à un premier instant donné et au moins un second aéronef destiné à voler sur ledit terrain d'opération en vue de réaliser une seconde action sur ladite cible à un second instant donné. Le terrain d'opération comporte une pluralité de zones sécurisées et une pluralité de zones non sécurisées. Chaque aéronef a une trajectoire comportant une pluralité de points intermédiaires entre un point de départ et la cible. Les points intermédiaires sont positionnés sur des frontières entre des zones sécurisées et des zones non sécurisées. Le procédé est mis en œuvre par des moyens informatiques. Le procédé comprenant pour chaque aéronef, une étape de calcul d'un ensemble de tronçons entre ledit point de départ, lesdits points intermédiaires et ladite cible, ledit ensemble de tronçons comportant un premier type de tronçons s'étendant sur des zones non sécurisées et un second type de tronçons s'étendant sur des zones sécurisées. Le premier type de tronçons a une forme globalement rectiligne de sorte à limiter le temps passé par ledit aéronef dans les zones non sécurisées. Le second type de tronçons a une forme sinueuse de sorte à autoriser une réserve de temps pour ajuster la position dudit aéronef sur la cible audit instant donné en vue de réaliser ladite action. Le premier instant donné et le second instant donné sont sélectionnés de sorte à synchroniser la première action réalisée par le premier aéronef et la seconde action réalisée par le second aéronef sur ladite cible.Another object of the invention relates to a method for synchronizing actions on a target between a first aircraft intended to fly over an operating field with a view to carrying out a first action on said target at a first given instant and at least one second aircraft intended to fly on said operating terrain with a view to carrying out a second action on said target at a given second instant. The field of operation has a plurality of secure areas and a plurality of unsecured areas. Each aircraft has a trajectory comprising a plurality of intermediate points between a starting point and the target. The intermediate points are positioned on borders between secured zones and unsecured zones. The method is implemented by computer means. The method comprising for each aircraft, a step of calculating a set of sections between said starting point, said intermediate points and said target, said set of sections comprising a first type of sections extending over unsecured zones and a second type of sections extending over secure areas. The first type of sections has a globally rectilinear shape so as to limit the time spent by said aircraft in unsecured areas. The second type of sections has a sinuous shape so as to allow a reserve of time to adjust the position of said aircraft on the target at said given instant with a view to carrying out said action. The first given instant and the second given instant are selected so as to synchronize the first action performed by the first aircraft and the second action performed by the second aircraft on said target.

Il est ainsi possible de déterminer des trajectoires de plusieurs aéronefs synchronisées spatio-temporellement dans un environnement contraint en vue d'assurer un succès de la mission.It is thus possible to determine the trajectories of several spatiotemporally synchronized aircraft in a constrained environment with a view to ensuring the success of the mission.

Un autre objet de l'invention concerne un dispositif de synchronisation pour la synchronisation d'actions sur une cible entre un premier aéronef destiné à voler sur un terrain d'opération en vue de réaliser une première action sur ladite cible à un premier instant donné et au moins un second aéronef destiné à voler sur ledit terrain d'opération en vue de réaliser une seconde action sur ladite cible à un second instant donné. Le terrain d'opération comporte une pluralité de zones sécurisées et une pluralité de zones non sécurisées. Chaque aéronef a une trajectoire comportant une pluralité de points intermédiaires entre un point de départ et la cible. Les points intermédiaires sont positionnés sur des frontières entre des zones sécurisées et des zones non sécurisées. Le dispositif de synchronisation comprend un module de calcul adapté pour calculer, pour chacun desdits aéronefs, un ensemble de tronçons entre ledit point de départ, lesdits points intermédiaires et ladite cible. L'ensemble de tronçons comporte un premier type de tronçons s'étendant sur des zones non sécurisées et un second type de tronçons s'étendant sur des zones sécurisées, ledit premier type de tronçons ayant une forme globalement rectiligne de sorte à limiter le temps passé par l'aéronef dans ladite zone non sécurisée et ledit second tronçon ayant une forme sinueuse de sorte à autoriser une réserve de temps pour ajuster la position de l'aéronef sur la cible audit instant donné en vue de réaliser l'action. Le premier instant donné et le second instant donné sont sélectionnés de sorte à synchroniser la première action réalisée par le premier aéronef et la seconde action réalisée par le second aéronef sur ladite cible.Another object of the invention relates to a synchronization device for the synchronization of actions on a target between a first aircraft intended to fly over an operating field with a view to carrying out a first action on said target at a first given instant and at least one second aircraft intended to fly over said operating terrain with a view to carrying out a second action on said target at a given second instant. The field of operation has a plurality of secure areas and a plurality of unsecured areas. Each aircraft has a trajectory comprising a plurality of intermediate points between a starting point and the target. Intermediate points are positioned on borders between secure areas and unsecured areas. The synchronization device comprises a calculation module suitable for calculating, for each of said aircraft, a set of sections between said starting point, said intermediate points and said target. The set of sections comprises a first type of sections extending over unsecured areas and a second type of sections extending over secure areas, said first type of sections having a generally rectilinear shape so as to limit the time spent by the aircraft in said unsecured zone and said second section having a sinuous shape so as to allow a reserve of time to adjust the position of the aircraft on the target at said given instant in order to perform the action. The first given instant and the second given instant are selected so as to synchronize the first action performed by the first aircraft and the second action performed by the second aircraft on said target.

Un autre objet de l'invention concerne une plateforme adaptée pour communiquer avec un premier aéronef et au moins avec un second aéronef pour la synchronisation d'actions sur une cible, ladite plateforme comprenant un dispositif de synchronisation selon un des objets précédents.Another object of the invention relates to a platform suitable for communicating with a first aircraft and at least with a second aircraft for the synchronization of actions on a target, said platform comprising a synchronization device according to one of the preceding objects.

La présente invention sera mieux comprise à la lecture de la description détaillée de modes de réalisation pris à titre d'exemples nullement limitatifs et illustrés par les dessins annexés sur lesquels :

  • [Fig 1] la figure 1 illustre un terrain d'opération sur lequel est positionnée une trajectoire d'un aéronef obtenu selon un procédé de détermination d'une trajectoire selon l'invention ;
  • [Fig 2] la figure 2 illustre le terrain d'opération de la figure 1 avec un trame de trajectoire utilisée pour déterminer la trajectoire de l'aéronef ;
  • [Fig 3] la figure 3 illustre un dispositif pour la détermination de la trajectoire de l'aéronef de la figure 1 ;
  • [Fig 4] la figure 4 illustre les étapes d'un procédé de détermination de la trajectoire de l'aéronef de la figure 1 ;
  • [Fig 5] la figure 5 illustre un terrain d'opération sur lequel sont positionnées des trajectoires de deux aéronefs en vue de réaliser des actions synchronisées sur une cible selon un procédé de synchronisation ;
  • [Fig 6] la figure 6 illustre un dispositif de synchronisation pour la synchronisation d'actions des aéronefs de la figure 5 ;
  • [Fig 7] la figure 7 illustre les étapes d'un procédé de synchronisation pour la synchronisation d'actions des aéronefs de la figure 5.
The present invention will be better understood on reading the detailed description of embodiments taken by way of non-limiting examples and illustrated by the appended drawings in which:
  • [ Fig 1 ] the figure 1 illustrates an operating terrain on which is positioned a trajectory of an aircraft obtained according to a method for determining a trajectory according to the invention;
  • [ Fig 2 ] the figure 2 illustrates the field of operation of the figure 1 with a trajectory frame used to determine the trajectory of the aircraft;
  • [ Fig.3 ] the picture 3 illustrates a device for determining the trajectory of the aircraft from the figure 1 ;
  • [ Fig 4 ] the figure 4 illustrates the steps of a method for determining the trajectory of the aircraft from the figure 1 ;
  • [ Fig.5 ] the figure 5 illustrates an operating terrain on which the trajectories of two aircraft are positioned with a view to carrying out synchronized actions on a target according to a synchronization method;
  • [ Fig 6 ] the figure 6 illustrates a synchronization device for the synchronization of actions of the aircraft of the figure 5 ;
  • [ Fig 7 ] the figure 7 illustrates the steps of a synchronization method for the synchronization of actions of the aircraft of the figure 5 .

L'invention n'est pas limitée aux modes de réalisation et variantes présentées et d'autres modes de réalisation et variantes apparaîtront clairement à l'homme du métier.The invention is not limited to the embodiments and variants presented and other embodiments and variants will appear clearly to those skilled in the art.

La figure 3 illustre ainsi un dispositif 100 pour la détermination de la trajectoire d'un aéronef 10. Ce dispositif 100 comprend :

  • une base de données de situation tactique SITAC ;
  • un algorithme intelligent 101 ;
  • un module de discrétisation 102 ;
  • un module de calcul 103 ;
  • une base de données 104 de primitives.
The picture 3 thus illustrates a device 100 for determining the trajectory of an aircraft 10. This device 100 comprises:
  • a SITAC tactical situation database;
  • an intelligent algorithm 101;
  • a discretization module 102;
  • a calculation module 103;
  • a database 104 of primitives.

La base de données de situation tactique SITAC est adaptée pour stocker l'ensemble des informations décrivant les caractéristiques d'un terrain d'opération 11, telles que des caractéristiques topographiques Topo et des présences ennemies Oppo.The SITAC tactical situation database is suitable for storing all of the information describing the characteristics of an operating terrain 11, such as Topo topographical characteristics and Oppo enemy presences.

L'algorithme intelligent 101 est adapté pour découper le terrain d'opération 11 en une pluralité de zones Z1, Z2, Z3, Z3 et à attribuer à chacune de ces zones un niveau de risque N1, N2. Un premier niveau de risque N1 correspond à un niveau faible de dangerosité. Un second niveau de risque N2 correspond à un niveau élevé de dangerosité. Ainsi, dans le terrain d'opération 11 illustré aux figures 1 et 2, une première zone Z1 et une troisième zone Z3 présentent un niveau de risque N1 faible. Ces zones Z1, Z3 sont dites des zones sécurisée. De la même manière, une seconde zone Z2 et une quatrième zone Z4 présentent un niveau de risque N2 élevé. Ces zones Z2, Z4 sont dites non sécurisées. L'algorithme intelligent 101 est ainsi adapté pour gérer les niveaux de risque des différentes zones.The intelligent algorithm 101 is adapted to divide the operating terrain 11 into a plurality of zones Z1, Z2, Z3, Z3 and to attribute to each of these zones a risk level N1, N2. A first level of risk N1 corresponds to a low level of dangerousness. A second level of risk N2 corresponds to a high level of dangerousness. Thus, in the field of operation 11 illustrated in figures 1 and 2 , a first zone Z1 and a third zone Z3 present a low level of risk N1. These zones Z1, Z3 are called secure zones. In the same way, a second zone Z2 and a fourth zone Z4 present a high level of risk N2. These zones Z2, Z4 are said to be unsecured. The intelligent algorithm 101 is thus adapted to manage the risk levels of the different zones.

Le module de discrétisation 102 est adapté pour déterminer une trame de trajectoire de l'aéronef 10 sur les zones sécurisées Z1, Z3 et sur les zones non sécurisées Z2, Z4. Comme il est plus particulièrement illustré sur la figure 2, cette trame de trajectoire comprend une succession de segments S1, S2, S3, S4 disposés entre un point de départ 12 de l'aéronef 10 et une cible 13. Les segments S1, S2, S3, S4 se présentent sous la forme de traits reliant une pluralité de points intermédiaires P1, P2, P3, P4. Ainsi, un premier segment S1 relie le point de départ 12 à un premier point intermédiaire P1. Un second segment S2 relie le premier point intermédiaire P1 à un second point intermédiaire P2. Un troisième segment S3 relie le second point intermédiaire P2 à un troisième point intermédiaire P3. Un quatrième segment S4 relie le troisième point intermédiaire P3 à un quatrième point intermédiaire P4. Un cinquième segment S5 relie le quatrième point intermédiaire P4 à la cible 13. Les points intermédiaires P1, P2, P3, P4 sont positionnés sur des frontières entre les zones sécurisées Z1, Z3 et les zones non sécurisées Z2, Z4. C'est ainsi que le premier point intermédiaire P1 est à l'interface entre la première zone sécurisée Z1 et la seconde zone non sécurisée Z2. Le second point intermédiaire P2 est également à l'interface entre la première zone sécurisée Z1 et la seconde zone non sécurisée Z2. Le troisième point intermédiaire P3 est à l'interface entre la première zone sécurisée Z1 et la quatrième zone non sécurisée Z4. Le quatrième point intermédiaire P4 est à l'interface entre la quatrième zone non sécurisée Z4 et la troisième zone sécurisée Z3.The discretization module 102 is adapted to determine a trajectory frame of the aircraft 10 on the secure zones Z1, Z3 and on the non protected Z2, Z4. As is more particularly illustrated in the figure 2 , this trajectory frame comprises a succession of segments S1, S2, S3, S4 arranged between a starting point 12 of the aircraft 10 and a target 13. The segments S1, S2, S3, S4 are in the form of lines connecting a plurality of intermediate points P1, P2, P3, P4. Thus, a first segment S1 connects the starting point 12 to a first intermediate point P1. A second segment S2 connects the first intermediate point P1 to a second intermediate point P2. A third segment S3 connects the second intermediate point P2 to a third intermediate point P3. A fourth segment S4 connects the third intermediate point P3 to a fourth intermediate point P4. A fifth segment S5 connects the fourth intermediate point P4 to the target 13. The intermediate points P1, P2, P3, P4 are positioned on borders between the secure zones Z1, Z3 and the unsecured zones Z2, Z4. Thus the first intermediate point P1 is at the interface between the first secure zone Z1 and the second unsecured zone Z2. The second intermediate point P2 is also at the interface between the first secure zone Z1 and the second unsecured zone Z2. The third intermediate point P3 is at the interface between the first secure zone Z1 and the fourth unsecured zone Z4. The fourth intermediate point P4 is at the interface between the fourth non-secure zone Z4 and the third secure zone Z3.

La trame de trajectoire est obtenue à partir d'une planification de trajectoire Planif et d'une contrainte temporelle associée à un instant donné Tid de réalisation d'une action sur la cible 13. Le module de discrétisation 102 permet alors d'introduire la trame de trajectoire sur le terrain d'opération 11 en tenant compte des contraintes de sûreté de chaque zone Z1, Z2, Z3, Z4 et de la contrainte temporelle Tid.The trajectory frame is obtained from a Planif trajectory planning and a time constraint associated with a given instant T id of performing an action on the target 13. The discretization module 102 then makes it possible to introduce the trajectory frame on the operating site 11 taking into account the safety constraints of each zone Z1, Z2, Z3, Z4 and the time constraint T id .

La base de données 104 est adaptée pour stocker une pluralité de primitives Prim. Ces primitives sont des trajectoires normalisées, répondant à des problématiques spécifiques pour un aéronef précis dans une configuration donnée. Cette base de données de primitives comprend les différents aéronefs tels que les chasseurs, drones, drones UCAV (pour « Unmanned Combat Air Vehicle » en anglais), drones de surveillance, hélicoptères, effecteurs déportés (ou « remote carrier » en anglais), etc. ainsi que leurs différentes configurations (dépendants des emports, ...) qui représentent un modèle de performance pour la trajectoire. Pour chaque module de performance, une ou plusieurs primitives sont en regard de chaque niveau de dangerosité et de types de menaces détectés. Les primitives peuvent représenter des trajectoires qui sont, par exemple, les plus rapides en temps les plus courtes en distance, les plus furtives, les plus économes en carburant, etc.Database 104 is adapted to store a plurality of Prim primitives. These primitives are standardized trajectories, responding to specific issues for a specific aircraft in a given configuration. This database of primitives includes the various aircraft such as fighters, drones, UCAV drones (for "Unmanned Combat Air Vehicle"), surveillance drones, helicopters, remote carriers, etc. . as well as their different configurations (depending on the payloads, etc.) which represent a performance model for the trajectory. For each performance module, one or more primitives are next to each level of dangerousness and types of threats detected. Primitives can represent trajectories that are, for example, fastest in time, shortest in distance, stealthest, most fuel-efficient, etc.

Le module de calcul 103 est adapté pour déterminer un ensemble de tronçons T1, T2, T3, T4 entre le point de départ 12, les points intermédiaires P1, P2, P3, P4 et la cible 13. Ce module de calcul 103 reçoit ainsi la localisation de la pluralité des points intermédiaires P1, P2, P3, P4 sur le terrain d'opération 11 ainsi que les segments S1, S2, S3, S4 entre le point de départ 12 et la cible 13. Le module de calcul 13 reçoit également une ou plusieurs primitives provenant de la base de données 104. A partir de ces différents éléments, le module de calcul 103 est apte à délivrer une trajectoire adaptée. Cette trajectoire comprend ainsi deux types de tronçons. Dans un premier type de tronçons, un second tronçon T2 et un quatrième tronçon T4 présentent des formes rectilignes qui s'étendent respectivement dans la seconde zone non sécurisées Z2 et dans la quatrième zone non sécurisée Z4. Le premier type de tronçons de forme rectiligne permet ainsi de limiter le temps passé par l'aéronef 10 dans les zones non sécurisées Z2, Z4. Le second tronçon T2 correspond ainsi au second segment S2 de la trame de trajectoire et le quatrième tronçon T4 correspond au quatrième segment S4 de ladite trame de trajectoire. Dans un second type de tronçons, un premier tronçon T1, un troisième tronçon T3 et un cinquième tronçon T5 présentent des formes sinueuses qui s'étendent respectivement dans la première zone sécurisée Z1 et dans la troisième zone sécurisée Z3. Le second type de tronçons de forme sinueuse permet d'autoriser une réserve de temps pour ajuster une position de l'aéronef 10 sur la cible 13 à l'instant donné Tid en vue de réaliser l'action sur la cible 13. Cette réserve de temps autorise le pilote de l'aéronef à avoir « des fusibles » dans sa trajectoire ce qui lui permet d'adapter au mieux son vol aux contraintes de temps durant l'opération. Le dispositif 100 pour la détermination de la trajectoire permet ainsi de placer des « patterns » de temps à des endroits stratégiques pour la réalisation de la mission. En utilisant les différentes informations issues de la situation tactique, par data fusion, le dispositif 100 détermine les différentes zones présumées sûres de la zone de mission. Les « patterns » de perte de temps peuvent alors être insérés dans la trajectoire de manière optimale.The calculation module 103 is suitable for determining a set of sections T1, T2, T3, T4 between the starting point 12, the intermediate points P1, P2, P3, P4 and the target 13. This calculation module 103 thus receives the location of the plurality of intermediate points P1, P2, P3, P4 on the operating terrain 11 as well as the segments S1, S2, S3, S4 between the starting point 12 and the target 13. The calculation module 13 also receives one or more primitives coming from the database 104. From these different elements, the calculation module 103 is able to deliver an adapted trajectory. This trajectory thus comprises two types of sections. In a first type of sections, a second section T2 and a fourth section T4 have rectilinear shapes which extend respectively in the second unsecured zone Z2 and in the fourth unsecured zone Z4. The first type of sections of rectilinear shape thus makes it possible to limit the time spent by the aircraft 10 in the unsecured zones Z2, Z4. The second section T2 thus corresponds to the second segment S2 of the trajectory frame and the fourth section T4 corresponds to the fourth segment S4 of said trajectory frame. In a second type of sections, a first section T1, a third section T3 and a fifth section T5 have sinuous shapes which extend respectively in the first secure zone Z1 and in the third secure zone Z3. The second type of sections of sinuous shape makes it possible to authorize a reserve of time to adjust a position of the aircraft 10 on the target 13 at the given instant T id with a view to carrying out the action on the target 13. This reserve of time authorizes the pilot of the aircraft to have “fuses” in his trajectory which allows him to best adapt his flight to the time constraints during the operation. The device 100 for determining the trajectory thus makes it possible to place time “patterns” at strategic locations for carrying out the mission. By using the different information coming from the tactical situation, by data fusion, the device 100 determines the different presumed safe zones of the mission zone. The time loss "patterns" can then be inserted into the trajectory in an optimal way.

La figure 4 illustre les étapes d'un procédé de détermination d'une trajectoire de l'aéronef 10 mis en œuvre par le dispositif de détermination 100 de la figure 3. Ce procédé de détermination comprend une étape E1 de découpage du terrain d'opération 11 en une pluralité de zones Z1, Z2, Z3, Z4. Pour chacune de ces zones, un niveau de risque N1, N2 est associé. Dans une étape E2 de discrétisation, la trame de trajectoire de l'aéronef 10 est déterminée sur les zones sécurisées Z1, Z3 et sur les zones non sécurisée Z2, Z4. Comme il a déjà été précisé, cette trame de trajectoire comprend une succession de segments S1, S2, S3, S4, S5 entre le point de départ 12, les points intermédiaires P1, P2, P3, P4 et la cible 13. Cette trame de trajectoire est obtenue à partir de la planification de trajectoire Planif et de la contrainte temporelle associée à l'instant donné Tid de réalisation de l'action sur la cible 13. Dans une étape de calcule E3, un ensemble de tronçons T1, T2, T3, T4, T5 est calculé. Cet ensemble de tronçons est déterminé à partir de la trame de trajectoire et d'au moins une primitive de trajectoire Prim choisie parmi une pluralité de primitives de trajectoire.The figure 4 illustrates the steps of a method for determining a trajectory of the aircraft 10 implemented by the device 100 for determining the picture 3 . This determination method comprises a step E1 of dividing the operating terrain 11 into a plurality of zones Z1, Z2, Z3, Z4. For each of these areas, a risk level N1, N2 is associated. In a step E2 of discretization, the trajectory frame of the aircraft 10 is determined on the secure zones Z1, Z3 and on the non-secure zones Z2, Z4. As has already been specified, this trajectory frame comprises a succession of segments S1, S2, S3, S4, S5 between the starting point 12, the intermediate points P1, P2, P3, P4 and the target 13. This frame of trajectory is obtained from the trajectory planning Planif and the time constraint associated with the given instant T id of performing the action on the target 13. In a calculation step E3, a set of sections T1, T2, T3, T4, T5 is calculated. This set of sections is determined from the trajectory frame and from at least one trajectory primitive Prim chosen from among a plurality of trajectory primitives.

On notera que la trajectoire de l'aéronef 10 peut être mise à jour par ce procédé de détermination au cours du vol de l'aéronef 10 sur le terrain d'opération 11. En outre, le procédé de détermination est adapté pour gérer l'impact d'aléas sur différents tronçons avec propagation des effets.It will be noted that the trajectory of the aircraft 10 can be updated by this determination method during the flight of the aircraft 10 on the operating field 11. In addition, the determination method is suitable for managing the impact of hazards on different sections with propagation of effects.

La figure 5 illustre un terrain d'opération 11 survolé par deux aéronefs 10, 10'. Le premier aéronef 10 suit une première trajectoire du premier point de départ 12 jusqu'à la cible 13 en passant par un premier groupe de premiers points intermédiaires P1, P2, P3, P4. Cette trajectoire a été plus particulièrement détaillée lors de la description de la figure 1.The figure 5 illustrates an operating field 11 flown over by two aircraft 10, 10'. The first aircraft 10 follows a first trajectory from the first starting point 12 to the target 13 passing through a first group of first intermediate points P1, P2, P3, P4. This trajectory was more particularly detailed during the description of the figure 1 .

Le second aéronef 10' suit une seconde trajectoire d'un second point de départ 12' jusqu'à la cible 13 en passant par un second groupe de points intermédiaires P'1, P'2, P'3, P'4. Les points intermédiaires P'1, P'2, P'3, P'4 de ce second groupe de points sont positionnés sur des frontières entre les zones sécurisées Z1, Z3 et les zones non sécurisées Z2, Z4. C'est ainsi que le premier point intermédiaire P'1 est à l'interface entre la première zone sécurisée Z1 et la seconde zone non sécurisée Z2. Le second point intermédiaire P'2 est également à l'interface entre la première zone sécurisée Z1 et la seconde zone non sécurisée Z2. Le troisième point intermédiaire P'3 est à l'interface entre la première zone sécurisée Z1 et la quatrième zone non sécurisée Z4. Le quatrième point intermédiaire P'4 est à l'interface entre la quatrième zone non sécurisée Z4 et la troisième zone sécurisée Z3. La trajectoire du second aéronef 10' comprend deux types de tronçons. Dans un premier type de tronçons, un second tronçon T'2 et un quatrième tronçon T'4 présentent des formes rectilignes qui s'étendent respectivement dans la seconde zone non sécurisées Z2 et dans la quatrième zone non sécurisée Z4. Le premier type de tronçons de forme rectiligne permet ainsi de limiter le temps passé par le second aéronef 10' dans les zones non sécurisées Z2, Z4. Dans un second type de tronçons, un premier tronçon T'1 et un troisième tronçon T'3 présentent des formes sinueuses qui s'étendent respectivement dans la première zone sécurisée Z1 et dans la troisième zone sécurisée Z3. Le second type de tronçons de forme sinueuse permet d'autoriser une réserve de temps pour ajuster une position du second aéronef 10' sur la cible 13 à l'instant donné T'id en vue de réaliser l'action sur la cible 13. Les actions du premier aéronef 10 et du second aéronef 10' sur la cible 13 doivent être synchronisées pour un bon succès de l'opération.The second aircraft 10' follows a second trajectory from a second starting point 12' to the target 13 passing through a second group of intermediate points P'1, P'2, P'3, P'4. The intermediate points P'1, P'2, P'3, P'4 of this second group of points are positioned on borders between the secure zones Z1, Z3 and the unsecured zones Z2, Z4. Thus the first intermediate point P'1 is at the interface between the first secure zone Z1 and the second unsecured zone Z2. The second intermediate point P'2 is also at the interface between the first secure zone Z1 and the second unsecured zone Z2. The third intermediate point P'3 is at the interface between the first secure zone Z1 and the fourth unsecured area Z4. The fourth intermediate point P'4 is at the interface between the fourth unsecured zone Z4 and the third secured zone Z3. The trajectory of the second aircraft 10' comprises two types of sections. In a first type of sections, a second section T'2 and a fourth section T'4 have rectilinear shapes which extend respectively in the second unsecured zone Z2 and in the fourth unsecured zone Z4. The first type of sections of rectilinear shape thus makes it possible to limit the time spent by the second aircraft 10' in the unsecured zones Z2, Z4. In a second type of sections, a first section T'1 and a third section T'3 have sinuous shapes which extend respectively in the first secure zone Z1 and in the third secure zone Z3. The second type of sections of sinuous shape makes it possible to authorize a reserve of time to adjust a position of the second aircraft 10' on the target 13 at the given instant T' id in order to carry out the action on the target 13. actions of the first aircraft 10 and of the second aircraft 10' on the target 13 must be synchronized for good success of the operation.

La figure 6 illustre un dispositif de synchronisation 200 pour la synchronisation d'actions sur la cible 13. Ce dispositif 200 comprend, de la même manière que pour le dispositif 100 de la figure 3 :

  • une base de données de situation tactique SITAC ;
  • un algorithme intelligent 201 ;
  • un module de discrétisation 202 ;
  • un module de calcul 203 ;
  • une base de données 204 de primitives.
The figure 6 illustrates a synchronization device 200 for the synchronization of actions on the target 13. This device 200 comprises, in the same way as for the device 100 of the picture 3 :
  • a SITAC tactical situation database;
  • an intelligent algorithm 201;
  • a discretization module 202;
  • a calculation module 203;
  • a database 204 of primitives.

Le module de discrétisation 202 est adapté pour déterminer une première trame de trajectoire pour le premier aéronef 10 et une seconde trame de trajectoire pour le second aéronef 10' sur les zones sécurisées Z1, Z3 et sur les zones non sécurisées Z2, Z4. La première trame de trajectoire est déterminée à partir de la planification de trajectoire Planif et de la contrainte temporelle Tid associée au premier aéronef 10. La seconde trame de trajectoire est déterminée à partir de la planification de trajectoire Planif et de la contrainte temporelle T'id associé au second aéronef 10'. Le premier instant donné Tid et le second instant donné T'id sont préalablement sélectionnés de sorte à synchroniser la première action réalisée par le premier aéronef 10 et la seconde action réalisée par le second aéronef 10' sur la cible 13.The discretization module 202 is suitable for determining a first trajectory frame for the first aircraft 10 and a second trajectory frame for the second aircraft 10' on the secure zones Z1, Z3 and on the non-secure zones Z2, Z4. The first trajectory frame is determined from the trajectory planning Planif and the time constraint T id associated with the first aircraft 10. The second trajectory frame is determined from the trajectory planning Planif and the time constraint T′ id associated with the second aircraft 10'. The first given instant T id and the second given instant T′ id are selected beforehand so as to synchronize the first action carried out by the first aircraft 10 and the second action performed by the second aircraft 10' on the target 13.

Le module de calcul 203 est adapté pour déterminer un premier ensemble de tronçons T1, T2, T3, T4 entre le premier point de départ 12, le premier groupe de points intermédiaires P1, P2, P3, P4 et la cible 13. Ce module de calcul 203 reçoit ainsi la localisation de la pluralité du premier groupe de points intermédiaires P1, P2, P3, P4 sur le terrain d'opération 11. De la même manière, le module de calcul 203 est adapté pour déterminer un second ensemble de tronçons T'1, T'2, T'3, T'4 entre le second point de départ 12', le premier groupe de points intermédiaires P1, P2, P3, P4 et la cible 13. Ce module de calcul 203 est apte ainsi à recevoir la localisation de la pluralité du second groupe de points intermédiaires P'1, P'2, 'P3, P'4 sur le terrain d'opération 11.The calculation module 203 is suitable for determining a first set of sections T1, T2, T3, T4 between the first starting point 12, the first group of intermediate points P1, P2, P3, P4 and the target 13. This calculation module calculation 203 thus receives the location of the plurality of the first group of intermediate points P1, P2, P3, P4 on the operating terrain 11. In the same way, the calculation module 203 is adapted to determine a second set of sections T '1, T'2, T'3, T'4 between the second starting point 12', the first group of intermediate points P1, P2, P3, P4 and the target 13. This calculation module 203 is thus able to receive the location of the plurality of the second group of intermediate points P'1, P'2, 'P3, P'4 on the operating terrain 11.

Le module de calcul 203 est apte à recevoir également une première primitive Prim pour la détermination du premier ensemble de tronçons T1, T2, T3, T4 et une seconde primitive Prim' pour la détermination du second ensemble de tronçons T'1, T'2, T'3, T'4. La première primitive Prim et la seconde primitive Prim' sont identiques. En variante, la première primitive Prim et la seconde primitive Prim' sont différentes.The calculation module 203 is able to also receive a first primitive Prim for the determination of the first set of sections T1, T2, T3, T4 and a second primitive Prim' for the determination of the second set of sections T'1, T'2 , T'3, T'4. The first primitive Prim and the second primitive Prim' are identical. Alternatively, the first primitive Prim and the second primitive Prim' are different.

Le dispositif de synchronisation 200 peut être disposé sur une plateforme 10", par exemple une plateforme installée sur un autre aéronef. Cette plateforme 10" est adaptée pour communiquer avec le premier aéronef 10 et le second aéronef 10' pour la synchronisation des actions sur la cible 13. Préférentiellement, la synchronisation se fait sur l'aéronef (10 ou 10') auquel est associé l'instant donné (Id ou Id') le plus imminent en vue de réaliser l'action sur la cible. Dans un mode de réalisation particulier le premier aéronef 10 et le second aéronef 10' ont une vitesse constante et une altitude constante, la synchronisation consiste alors à modifier le temps de départ du second aéronef 10'. Dans un autre mode de réalisation, le premier aéronef 10 et le second aéronef 10' sont synchronisés en modifiant les caractéristiques de longueur, de variation d'angle de route entre segments, de vitesse et/ou d'altitude des trajectoires respectives du premier aéronef 10 et/ou du second aéronef 10'.The synchronization device 200 can be arranged on a 10" platform, for example a platform installed on another aircraft. This 10" platform is suitable for communicating with the first aircraft 10 and the second aircraft 10' for the synchronization of actions on the target 13. Preferably, the synchronization takes place on the aircraft (10 or 10′) with which the most imminent given instant (Id or Id′) is associated with a view to carrying out the action on the target. In a particular embodiment, the first aircraft 10 and the second aircraft 10' have a constant speed and a constant altitude, the synchronization then consists in modifying the departure time of the second aircraft 10'. In another embodiment, the first aircraft 10 and the second aircraft 10' are synchronized by modifying the characteristics of length, variation in route angle between segments, speed and/or altitude of the respective trajectories of the first aircraft 10 and/or the second aircraft 10'.

La figure 7 illustre les étapes d'un procédé de synchronisation d'actions sur la cible 13 entre le premier aéronef 10 et le second aéronef 10'. Ce procédé de détermination comprend une étape E'1 de découpage du terrain d'opération 11 en une pluralité de zones Z1, Z2, Z3, Z4. Pour chacune de ces zones, un niveau de risque N1, N2 est associé. Dans une étape E'2 de discrétisation, la première trame de trajectoire du premier aéronef 10 et la seconde trame de trajectoire du second aéronef 10' sont déterminées sur les zones sécurisées Z1, Z3 et sur les zones non sécurisée Z2, Z4. La première trame de trajectoire est obtenue à partir de la planification de trajectoire Planif et de la première contrainte temporelle Tid. La seconde trame de trajectoire est obtenue à partir de la planification de trajectoire Planif et de la seconde contrainte temporelle T'id. Le premier instant donné Tid et le second instant donné T'id sont préalablement sélectionnés de sorte à synchroniser la première action réalisée par le premier aéronef 10 et la seconde action réalisée par le second aéronef 10' sur la cible 13.The figure 7 illustrates the steps of a method for synchronizing actions on the target 13 between the first aircraft 10 and the second aircraft 10'. This determination method comprises a step E′1 of dividing up the operating terrain 11 into a plurality of zones Z1, Z2, Z3, Z4. For each of these areas, a risk level N1, N2 is associated. In a discretization step E′2, the first trajectory frame of the first aircraft 10 and the second trajectory frame of the second aircraft 10′ are determined on the secure zones Z1, Z3 and on the unsecured zones Z2, Z4. The first trajectory frame is obtained from the trajectory planning Planif and the first temporal constraint T id . The second trajectory frame is obtained from the trajectory planning Planif and the second temporal constraint T′ id . The first given instant T id and the second given instant T′ id are selected beforehand so as to synchronize the first action performed by the first aircraft 10 and the second action performed by the second aircraft 10′ on the target 13.

Dans une étape E'3, un premier ensemble de tronçons T1, T2, T3, T4 et un second ensemble de tronçons T'1, T'2, T'3, T'4 sont calculés. Le premier ensemble de tronçons est déterminé à partir de la première trame de trajectoire et d'au moins une première primitive de trajectoire Prim choisie parmi une pluralité de primitives de trajectoire. Le second ensemble de tronçons est déterminé à partir de la seconde trame de trajectoire et d'au moins une seconde primitive de trajectoire Prim' choisie parmi une pluralité de primitives de trajectoire.In a step E'3, a first set of sections T1, T2, T3, T4 and a second set of sections T'1, T'2, T'3, T'4 are calculated. The first set of sections is determined from the first trajectory frame and from at least one first trajectory primitive Prim chosen from among a plurality of trajectory primitives. The second set of sections is determined from the second trajectory frame and from at least one second trajectory primitive Prim' chosen from among a plurality of trajectory primitives.

L'invention propose ainsi de combiner des méthodes d'optimisations globales et locales augmentées par l'apport de données via du data-fusion et/ou de l'intelligence artificielle. Des zones acceptables pour une perte de temps sont déterminées ainsi que des patterns plus réalistes (trajectoire volable) pour les tronçons fusibles.The invention thus proposes to combine global and local optimization methods augmented by the contribution of data via data-fusion and/or artificial intelligence. Acceptable zones for a loss of time are determined as well as more realistic patterns (flyable trajectory) for the fuse sections.

L'invention propose également de déterminer par un algorithme intelligent des zones sûres pour introduire ces patterns de temps et assurer le respect des contraintes de temps, d'utiliser différentes primitives de trajectoires pour créer la trajectoire sous contraintes en fonction du contexte opérationnelle de la zone, ces primitives de trajectoire étant en adéquation avec un niveau de menace/dangerosité exprimé par l'algorithme intelligent. L'invention permet également de déterminer des routes et trajectoires pour chaque aéronef, dans un environnement contraint avec insertion de pattern de perte de temps.The invention also proposes to determine by an intelligent algorithm safe zones to introduce these time patterns and ensure compliance with time constraints, to use different trajectory primitives to create the trajectory under constraints according to the operational context of the zone , these trajectory primitives being in adequacy with a level of threat/dangerousness expressed by the intelligent algorithm. The invention also makes it possible to determine routes and trajectories for each aircraft, in a constrained environment with insertion of loss of time patterns.

L'invention facilite ainsi la planification des missions mais également la planification de nouveaux vols lors d'une évolution de la situation tactique ou lors d'un évènement imprévu.The invention thus facilitates the planning of missions but also the planning of new flights during a change in the tactical situation or during an unforeseen event.

En outre, au niveau opérationnel, la synchronisation spatio-temporelle multi-porteur permet de faire diminuer la charge mentale du pilote tout en automatisant les calculs.In addition, at the operational level, multi-carrier spatio-temporal synchronization makes it possible to reduce the mental load of the pilot while automating the calculations.

Claims (9)

Procédé de détermination d'une trajectoire d'un aéronef (10) destiné à voler sur un terrain d'opération (11) en vue de réaliser une action sur une cible (13) à un instant donné (Id), ledit terrain d'opération (11) comportant une pluralité de zones sécurisées (Z1, Z3) et une pluralité de zones non sécurisées (Z2, Z4), ladite trajectoire comportant une pluralité de points intermédiaires (P1, P2, P3, P4) entre un point de départ (12) de ladite trajectoire et la cible (13), lesdits points intermédiaires (P1, P2, P3, P4, P5) étant positionnés sur des frontières entre des zones sécurisés et des zones non sécurisées, ledit procédé étant mis en œuvre par des moyens informatiques, caractérisé en ce que ledit procédé de détermination comprend une étape de calcul (E3) d'un ensemble de tronçons (T1, T2, T3, T4, T5) entre ledit point de départ (12), lesdits points intermédiaires (P1, P2, P3, P4) et ladite cible (13), ledit ensemble de tronçons (T1, T2, T3, T4) comportant un premier type de tronçons (T2, T4) s'étendant sur des zones non sécurisées (Z2, Z4) et un second type de tronçons (T1, T3) s'étendant sur des zones sécurisées (Z1, Z3), ledit premier type de tronçons (T2, T4) ayant une forme globalement rectiligne de sorte à limiter le temps passé par l'aéronef (10) dans les zones non sécurisées (Z2, Z4) et ledit second type de tronçons (T1, T3) ayant une forme sinueuse de sorte à autoriser une réserve de temps pour ajuster une position de l'aéronef (10) sur la cible (13) audit instant donné (Tid) en vue de réaliser l'action.Method for determining a trajectory of an aircraft (10) intended to fly over an operating terrain (11) with a view to carrying out an action on a target (13) at a given instant (Id), said operational terrain operation (11) comprising a plurality of secure zones (Z1, Z3) and a plurality of non-secure zones (Z2, Z4), said trajectory comprising a plurality of intermediate points (P1, P2, P3, P4) between a starting point (12) of said trajectory and the target (13), said intermediate points (P1, P2, P3, P4, P5) being positioned on borders between secured zones and unsecured zones, said method being implemented by computer means, characterized in that said determination method comprises a step of calculating (E3) a set of sections (T1, T2, T3, T4, T5) between said starting point (12), said intermediate points (P1 , P2, P3, P4) and said target (13), said set of sections (T1, T2, T3, T4) comprising a first type of sections (T2, T4) extending over unsecured areas (Z2, Z4) and a second type of sections (T1, T3) extending over secured areas (Z1, Z3), said first type of sections (T2, T4) having a generally rectilinear shape so as to limit the time spent by the aircraft (10) in the unsecured zones (Z2, Z4) and said second type of sections (T1, T3) having a sinuous shape so as to allow a reserve of time to adjust a position of the aircraft (10) on the target (13) at said given instant (T id ) in order to perform the action. Procédé de détermination d'une trajectoire selon la revendication 1, dans lequel l'étape de calcul (E3) de l'ensemble de tronçons (T1, T2, T3, T4, T5) est réalisée à partir : - d'une trame de trajectoire, ladite trame de trajectoire comportant une succession de segments (S1, S2, S3, S4, S5) entre le point de départ (12), les points intermédiaires (P1, P2, P3, P4) et la cible (13) ; - d'au moins une primitive de trajectoire (Prim) choisie parmi une pluralité de primitives de trajectoire. Method for determining a trajectory according to claim 1, in which the step of calculating (E3) the set of sections (T1, T2, T3, T4, T5) is carried out from: - a trajectory frame, said trajectory frame comprising a succession of segments (S1, S2, S3, S4, S5) between the starting point (12), the intermediate points (P1, P2, P3, P4) and the target (13); - at least one trajectory primitive (Prim) chosen from among a plurality of trajectory primitives. Procédé de détermination d'une trajectoire selon la revendication 2, dans lequel la trame de trajectoire est obtenue à partir d'une planification de trajectoire (Planif) et d'une contrainte temporelle associée à l'instant donné (Tid) de réalisation de l'action sur la cible (13).Method for determining a trajectory according to claim 2, in which the trajectory frame is obtained from a trajectory planning (Planif) and from a time constraint associated with the given instant (T id ) of carrying out the action on the target (13). Procédé de détermination d'une trajectoire selon l'une quelconque des revendications 1 à 3, dans lequel ladite trajectoire est mise à jour au cours du vol de l'aéronef (10) sur le terrain d'opération (11).Method for determining a trajectory according to any one of Claims 1 to 3, in which the said trajectory is updated during the flight of the aircraft (10) over the operating terrain (11). Dispositif pour la détermination d'une trajectoire d'un aéronef (10) destiné à voler sur un terrain d'opération (11) en vue de réaliser une action sur une cible (13) à un instant donné (Id), ledit terrain d'opération (11) comportant une pluralité de zones sécurisées (Z2, Z4) et une pluralité de zones non sécurisées (Z1, Z3), ladite trajectoire comportant une pluralité de points intermédiaires (P1, P2, P3, P4) entre un point de départ (12) de ladite trajectoire et la cible (13), lesdits points intermédiaires (P1, P2, P3, P4, P5) étant positionnés sur des frontières entre des zones sécurisés et des zones non sécurisées, ledit dispositif comprenant : - un module de calcul (103) d'un ensemble de tronçons (T1, T2, T3, T4, T5) entre ledit point de départ (12), lesdits points intermédiaires (P1, P2, P3, P4) et ladite cible (13), ledit ensemble de tronçons (T1, T2, T3, T4) comportant un premier type de tronçons (T2, T4) s'étendant sur des zones non sécurisées (Z2, Z4) et un second type de tronçons (T1, T3) s'étendant sur des zones sécurisées (Z1, Z3), ledit premier type tronçons (T2, T4) ayant une forme globalement rectiligne de sorte à limiter le temps passé par l'aéronef (10) dans les zones non sécurisées (Z2, Z4) et ledit second type de tronçons (T1, T3, T5) ayant une forme sinueuse de sorte à autoriser une réserve de temps pour ajuster une position de l'aéronef (10) sur la cible (13) audit instant donné (Tid) en vue de réaliser l'action. Device for determining a trajectory of an aircraft (10) intended to fly over an operating terrain (11) with a view to carrying out an action on a target (13) at a given instant (Id), said terrain d operation (11) comprising a plurality of secure zones (Z2, Z4) and a plurality of non-secure zones (Z1, Z3), said trajectory comprising a plurality of intermediate points (P1, P2, P3, P4) between a point of departure (12) of said trajectory and the target (13), said intermediate points (P1, P2, P3, P4, P5) being positioned on borders between secured zones and unsecured zones, said device comprising: - a calculation module (103) of a set of sections (T1, T2, T3, T4, T5) between said starting point (12), said intermediate points (P1, P2, P3, P4) and said target ( 13), said set of sections (T1, T2, T3, T4) comprising a first type of sections (T2, T4) extending over unsecured areas (Z2, Z4) and a second type of sections (T1, T3 ) extending over secure areas (Z1, Z3), said first type of sections (T2, T4) having a generally rectilinear shape so as to limit the time spent by the aircraft (10) in the unsecured areas (Z2, Z4) and said second type of sections (T1, T3, T5) having a sinuous shape so as to allow a reserve of time to adjust a position of the aircraft (10) on the target (13) at said given instant (T id ) in order to perform the action. Dispositif pour la détermination d'une trajectoire selon la revendication 5, dans lequel ledit dispositif (100) comprend une base de données de situation tactique (SITAC) et un algorithme intelligent (101) adapté pour déterminer un niveau de risque (N1, N2) pour chacune des zones (Z1, Z2, Z3, Z4) à partir de ladite base de données de situation tactique (SITAC).Device for determining a trajectory according to claim 5, wherein said device (100) comprises a tactical situation database (SITAC) and an intelligent algorithm (101) adapted to determine a level of risk (N1, N2) for each of the zones (Z1, Z2, Z3, Z4) from said tactical situation database (SITAC). Procédé de synchronisation d'actions sur une cible (13) entre un premier aéronef (10) destiné à voler sur un terrain d'opération (11) en vue de réaliser une première action sur ladite cible (13) à un premier instant donné (Tid) et au moins un second aéronef (10') destiné à voler sur ledit terrain d'opération (11) en vue de réaliser une seconde action sur ladite cible (13) à un second instant donné (T'id), ledit terrain d'opération (11) comportant une pluralité de zones sécurisées (Z1, Z3) et une pluralité de zones non sécurisées (Z2, Z4), chaque aéronef (10, 10') ayant une trajectoire comportant une pluralité de points intermédiaires (P1, P2, P3, P4 ; P'1, P'2, P'3, P'4) entre un point de départ (12, 12') et la cible (13), lesdits points intermédiaires étant positionnés sur des frontières entre des zones sécurisées et des zones non sécurisées, ledit procédé étant mis en œuvre par des moyens informatiques, ledit procédé comprend pour chaque aéronef (10 ; 10'), une étape de calcul (E'3) d'un ensemble de tronçons (T1, T2, T3, T4, T5 ; T'1, T'2, T'3, T'4, T'5) entre ledit point de départ (12, 12'), lesdits points intermédiaires (P1, P2, P3, P4 ; P'1, P'2, P'3, P'4) et ladite cible (13), ledit ensemble de tronçons (T1, T2, T3, T4, T5 ; T'1, T'2, T'3, T'4, T'5) comportant un premier type de tronçons (T2, T4 ; T'2 ; T'4) s'étendant sur des zones non sécurisées (Z2, Z4) et un second type de tronçons (T1, T3 ; T'1, T'3) s'étendant sur des zones sécurisées (Z1, Z3), ledit premier type de tronçons (T2, T4 ; T'2 ; T'4) ayant une forme globalement rectiligne de sorte à limiter le temps passé par l'aéronef (10 ; 10') dans les zones non sécurisées (Z2, Z4) et ledit second type de tronçons (T1, T3, T5 ; T'1, T'3, T'5) ayant une forme sinueuse de sorte à autoriser une réserve de temps pour ajuster la position de l'aéronef (10 ; 10') sur la cible (13) audit instant donné (Tid ; T'id ) en vue de réaliser ladite action, ledit premier instant donné (Tid ) et ledit second instant donné (T'id ) étant sélectionnés de sorte à synchroniser la première action réalisée par le premier aéronef (10) et la seconde action réalisée par le second aéronef (10') sur ladite cible (13).Method for synchronizing actions on a target (13) between a first aircraft (10) intended to fly over an operating field (11) with a view to performing a first action on said target (13) at a first given instant ( T id ) and at least one second aircraft (10') intended to fly on said operating terrain (11) with a view to performing a second action on said target (13) at a given second instant (T' id ), said operating field (11) comprising a plurality of secure areas (Z1, Z3) and a plurality of unsecured areas (Z2, Z4), each aircraft (10, 10') having a trajectory comprising a plurality of intermediate points (P1, P2, P3, P4; P'1, P'2, P'3, P'4) between a starting point (12, 12') and the target (13), said intermediate points being positioned on borders between secure zones and unsecured zones, said method being implemented by computer means, said method comprises for each aircraft (10; 10'), a calculation step (E'3 ) of a set of sections (T1, T2, T3, T4, T5; T'1, T'2, T'3, T'4, T'5) between said starting point (12, 12'), said intermediate points (P1, P2, P3, P4; P'1, P'2, P'3, P'4) and said target (13), said set of sections (T1, T2, T3, T4, T5; T'1, T'2, T'3, T'4, T'5) comprising a first type of sections (T2, T4; T'2;T'4) extending over unsecured zones (Z2, Z4) and a second type of sections (T1, T3; T'1, T'3) extending over secure areas (Z1, Z3), said first type of sections (T2, T4; T'2;T' 4) having a generally rectilinear shape so to limit the time spent by the aircraft (10; 10') in the unsecured zones (Z2, Z4) and said second type of sections (T1, T3, T5; T'1, T'3, T'5) having a sinuous shape so as to allow a reserve of time to adjust the position of the aircraft (10; 10') on the target (13) at said given instant (T id ; T' id ) with a view to performing said action, said first given instant (T id ) and said second instant given (T' id ) being selected so as to synchronize the first action performed by the first aircraft (10) and the second action performed by the second aircraft (10') on said target (13). Dispositif de synchronisation pour la synchronisation d'actions sur une cible (13) entre un premier aéronef (10) destiné à voler sur un terrain d'opération (11) en vue de réaliser une première action sur ladite cible (13) à un premier instant donné (Tid) et au moins un second aéronef (10') destiné à voler sur ledit terrain d'opération (11) en vue de réaliser une seconde action sur ladite cible (13) à un second instant donné (T'id), ledit terrain d'opération (11) comportant une pluralité de zones sécurisées (Z1, Z3) et une pluralité de zones non sécurisées (Z2, Z4), chaque aéronef (10, 10') ayant une trajectoire comportant une pluralité de points intermédiaires (P1, P2, P3, P4 ; P'1, P'2, P'3, P'4) entre un point de départ (12, 12') et la cible (13), lesdits points intermédiaires étant positionnés sur des frontières entre des zones sécurisées et des zones non sécurisées, ledit dispositif de synchronisation (200) comprend un module de calcul (203) adapté pour calculer, pour chacun desdits aéronefs (10, 10'), un ensemble de tronçons (T1, T2, T3, T4, T5 ; T'1, T'2, T'3, T'4, T'5) entre ledit point de départ (12, 12'), lesdits points intermédiaires (P1, P2, P3, P4 ; P'1, P'2, P'3, P'4) et ladite cible (13), ledit ensemble de tronçons comportant un premier type de tronçons (T2, T4 ; T'2, T'4) s'étendant sur des zones non sécurisées (Z2, Z4) et un second type de tronçons (T1, T3, T5 ; T'1, T'3, T'5) s'étendant sur des zones sécurisées (Z1, Z3 ), ledit premier type de tronçons (T2, T4 ; T'2, T'4) ayant une forme globalement rectiligne de sorte à limiter le temps passé par l'aéronef (10, 10') dans les zones non sécurisées (Z2, Z4) et ledit second type de tronçons (T1, T3, T5 ; T'1, T'3, T'5) ayant une forme sinueuse de sorte à autoriser une réserve de temps pour ajuster la position de l'aéronef (10, 10') sur la cible (13) audit instant donné (Tid ; T'id) en vue de réaliser l'action, ledit premier instant donné (Tid) et ledit second instant donné (T'id) étant sélectionnés de sorte à synchroniser la première action réalisée par le premier aéronef (10) et la seconde action réalisée par le second aéronef (10') sur ladite cible (13).Synchronization device for synchronizing actions on a target (13) between a first aircraft (10) intended to fly over an operating field (11) with a view to carrying out a first action on said target (13) at a first given instant (T id ) and at least one second aircraft (10') intended to fly on said operating field (11) with a view to performing a second action on said target (13) at a second given instant (T' id ), said operating terrain (11) comprising a plurality of secure zones (Z1, Z3) and a plurality of unsecured zones (Z2, Z4), each aircraft (10, 10') having a trajectory comprising a plurality of points intermediate points (P1, P2, P3, P4; P'1, P'2, P'3, P'4) between a starting point (12, 12') and the target (13), said intermediate points being positioned on boundaries between secure areas and non-secure areas, said synchronization device (200) comprises a calculation module (203) adapted to calculate, for each of ssaid aircraft (10, 10'), a set of sections (T1, T2, T3, T4, T5; T'1, T'2, T'3, T'4, T'5) between said starting point (12, 12'), said intermediate points (P1, P2, P3, P4; P'1, P'2, P'3, P'4) and said target (13) , said set of sections comprising a first type of sections (T2, T4; T'2, T'4) extending over unsecured areas (Z2, Z4) and a second type of sections (T1, T3, T5; T'1, T'3, T'5) extending over secure zones (Z1, Z3), said first type of sections (T2, T4; T'2, T'4) having a generally rectilinear shape so to limit the time spent by the aircraft (10, 10') in the unsecured zones (Z2, Z4) and said second type of sections (T1, T3, T5; T'1, T'3, T'5) having a sinuous shape so as to allow a reserve of time to adjust the position of the aircraft (10, 10') on the target (13) at said given instant (T id ; T' id ) with a view to carrying out the action , said first given instant (T id ) and said second given instant (T' id ) being selected so as to synchronize the first action performed by the first aircraft (10) and the a second action performed by the second aircraft (10') on said target (13). Plateforme adaptée pour communiquer avec un premier aéronef (10) et au moins avec un second aéronef (10') pour la synchronisation d'actions sur une cible (13), ladite plateforme (10‴) comprenant un dispositif de synchronisation (200) selon la revendication 8.Platform suitable for communicating with a first aircraft (10) and at least with a second aircraft (10') for the synchronization of actions on a target (13), said platform (10‴) comprising a synchronization device (200) according claim 8.
EP22182113.5A 2021-07-15 2022-06-30 Method for determining a trajectory of an aircraft Active EP4123622B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR2107655A FR3125348B1 (en) 2021-07-15 2021-07-15 METHOD FOR DETERMINING AN AIRCRAFT TRAJECTORY

Publications (2)

Publication Number Publication Date
EP4123622A1 true EP4123622A1 (en) 2023-01-25
EP4123622B1 EP4123622B1 (en) 2024-05-01

Family

ID=79601601

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22182113.5A Active EP4123622B1 (en) 2021-07-15 2022-06-30 Method for determining a trajectory of an aircraft

Country Status (3)

Country Link
US (1) US20230017760A1 (en)
EP (1) EP4123622B1 (en)
FR (1) FR3125348B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8843303B1 (en) * 2012-12-17 2014-09-23 Rockwell Collins, Inc. Risk-aware contingency flight re-planner system and related method
US20200369384A1 (en) * 2017-12-21 2020-11-26 AV8OR IP Limited Autonomous Unmanned Aerial Vehicle and Method of Control Thereof
WO2021001768A1 (en) * 2019-07-01 2021-01-07 Uavia Method for determining the path of an unmanned aerial device and other associated methods

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8843303B1 (en) * 2012-12-17 2014-09-23 Rockwell Collins, Inc. Risk-aware contingency flight re-planner system and related method
US20200369384A1 (en) * 2017-12-21 2020-11-26 AV8OR IP Limited Autonomous Unmanned Aerial Vehicle and Method of Control Thereof
WO2021001768A1 (en) * 2019-07-01 2021-01-07 Uavia Method for determining the path of an unmanned aerial device and other associated methods

Also Published As

Publication number Publication date
EP4123622B1 (en) 2024-05-01
FR3125348A1 (en) 2023-01-20
US20230017760A1 (en) 2023-01-19
FR3125348B1 (en) 2023-06-02

Similar Documents

Publication Publication Date Title
EP2463844B1 (en) Method and device for creating an optimum flight path to be followed by an aircraft
EP2506236B1 (en) Method and device for automatically managing the vertical profile of an aircraft flight plan.
EP2375299B1 (en) Flight management system for an unmanned aircraft
EP2267682B1 (en) Method for assisting flight control of low-altittude flight
CA2472288C (en) Method and apparatus to produce a flight plan for a tactical flight of a plane
FR2905480A1 (en) METHOD OF CHANGING THE ROAD FOLLOWED BY AN AIRCRAFT, THE AIRCRAFT ORIGINALLY FOLLOWING A PREDEFINED TRACK, THE METHOD FOR AN ANCILLARY RETURN OF THE AIRCRAFT ON THE PREDEFINED TRACK.
FR2894367A1 (en) METHOD FOR DETERMINING THE HORIZONTAL PROFILE OF A FLIGHT PLAN RESPECTING A VERTICAL FLIGHT PROFILE IMPOSE
FR2922642A1 (en) METHOD AND DEVICE FOR CREATING A FLIGHT PLAN OF AN AIRCRAFT
EP1756791A1 (en) Aircraft path verification assistance method
EP3489929A1 (en) Electronic system for remote control of drones, associated method and computer program
FR2920232A1 (en) METHOD AND DEVICE FOR AIDING THE CONTROL OF AN AIRCRAFT
FR3068125A1 (en) METHOD FOR AIDING THE CONTROL OF THE ENERGY SITUATION OF AN AIRCRAFT, COMPUTER PROGRAM PRODUCT AND ASSOCIATED CONTROL ASSISTANCE SYSTEM
FR3007854A1 (en) METHOD AND APPARATUS FOR CALCULATING A FLIGHT PLAN OF AN AIRCRAFT IN THE APPROACH PHASE OF A LANDING TRAIL
CA2591961C (en) Method and device for determining the width of a safety corridor for an aircraft and method and system for securing the automatic low-altitude flight of an aircraft
EP4066224A1 (en) Decision assistance device and method for managing aerial conflicts
FR3030794A1 (en) METHOD AND SYSTEM FOR GUIDING AN AIRCRAFT
WO2020127703A1 (en) Piloting device designed to be integrated into a preexisting aircraft
EP4123622B1 (en) Method for determining a trajectory of an aircraft
FR2928726A1 (en) JUNCTION OF A CIVIL TRAJECTORY AND A MILITARY TRAJECTORY
EP2278504A1 (en) Method for routing physical connections in integrated modular avionic
FR2935211A1 (en) METHOD AND DEVICE FOR ASSISTING THE PREPARATION AND MANAGEMENT OF MISSIONS IN AN AIRCRAFT
EP3489930B1 (en) Mission computing system for an aircraft, comprising a computation engine for the aircraft path during the mission and associated method
EP2757349B1 (en) Method for defining a fallback route for a mobile machine, associated fallback method to join such a route for a mobile machine, associated module and computer program.
FR2935181A1 (en) METHOD AND SUPPORT DEVICE FOR ASSISTING THE PREPARATION AND MANAGEMENT OF MISSIONS IN AIRCRAFT
FR3068490A1 (en) METHOD FOR CALCULATING A VERTICAL TRACK OF AN AIRCRAFT FROM ITS CURRENT POSITION, COMPUTER PROGRAM PRODUCT AND CALCULATION SYSTEM THEREFOR

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230427

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230725

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: G08G 5/00 20060101AFI20231114BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240104

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THALES

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602022003182

Country of ref document: DE