EP4113023A1 - Système d'humidification et de refroidissement d'un flux d'air et procédé de nettoyage d'un panneau d'évaporation d'un tel système - Google Patents

Système d'humidification et de refroidissement d'un flux d'air et procédé de nettoyage d'un panneau d'évaporation d'un tel système Download PDF

Info

Publication number
EP4113023A1
EP4113023A1 EP21305910.8A EP21305910A EP4113023A1 EP 4113023 A1 EP4113023 A1 EP 4113023A1 EP 21305910 A EP21305910 A EP 21305910A EP 4113023 A1 EP4113023 A1 EP 4113023A1
Authority
EP
European Patent Office
Prior art keywords
water
evaporation
panel
porous
configuration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21305910.8A
Other languages
German (de)
English (en)
Inventor
Jean-François FRAMBOT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Devatec SA
Original Assignee
Devatec SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Devatec SA filed Critical Devatec SA
Priority to EP21305910.8A priority Critical patent/EP4113023A1/fr
Priority to CA3165876A priority patent/CA3165876A1/fr
Priority to US17/855,771 priority patent/US20230003401A1/en
Publication of EP4113023A1 publication Critical patent/EP4113023A1/fr
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/02Air-humidification, e.g. cooling by humidification by evaporation of water in the air
    • F24F6/04Air-humidification, e.g. cooling by humidification by evaporation of water in the air using stationary unheated wet elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B13/00Accessories or details of general applicability for machines or apparatus for cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0008Control or safety arrangements for air-humidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/22Cleaning ducts or apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/22Cleaning ducts or apparatus
    • F24F2221/225Cleaning ducts or apparatus using a liquid

Definitions

  • This type of humidification and cooling system allows the evaporation of water by means of an adiabatic process. Passing through the water-soaked porous evaporator panels, the airflow causes the water in the evaporator panels to evaporate without the need for an external power source. The heat required for the vaporization of water is provided directly by the air. The air flow is thus cooled and its humidity level increases.
  • the water supply device makes it possible to control the water supply to the evaporation panels according to a setpoint, so as to, for example, maintain a substantially constant humidity rate, increase or reduce the rate of humidity in the room where the humidification and cooling system is located.
  • the control of the humidity level results in a maintenance, an increase or a reduction of the total exchange surface of the system.
  • the position of the interface between the impregnated portion and the dry portion of each of the evaporative panels varies during operation of the system.
  • the water dispersed on the evaporation panels still contains a fraction of minerals.
  • the evaporation mechanism results in the deposition of these minerals on the evaporation panels and more particularly at the level of the interface between the impregnated portion and the dry portion of each of the panels. This mineral buildup damages the evaporative panels by decreasing the porosity of the panels thereby reducing their effectiveness.
  • An object of the invention is to provide a humidification and cooling system which allows regular cleaning of the evaporator panels while maintaining control of the level of humidification and cooling during these cleaning phases.
  • the invention relates to a humidification and cooling system of the aforementioned type, in which the control unit comprises a plurality of control members configured to respectively control each of the supply flow rates, the control members being independently controllable between at least one evaporation configuration in which the water supply rate is substantially equal to a water flow rate evaporated by the associated porous evaporation panel, and a cleaning configuration in which the water supply rate is greater than a rate of water evaporated by the associated porous evaporation panel fully impregnated so as to generate a flow of water out of said associated porous evaporation panel.
  • the dispersing members can be supplied independently of each other depending on the total exchange surface required.
  • the feed rate generates a flow out of the evaporation panel, at the bottom of the panel, carrying by gravity the minerals deposited on the evaporation panel. This flow does not modify the evaporation conditions of the evaporation panel and thus allows cleaning of the evaporation panel.
  • the configuration of the various control members independently of each other, it is then possible to proceed with the cleaning of the various porous evaporation panels while guaranteeing precise control of the humidity level of the ambient air.
  • the figure 1 schematically represents a humidification and cooling system 10 according to the invention.
  • the system 10 includes a frame 12, a plurality of porous evaporation panels 14 mounted on the frame 12, a plurality of water dispersing members 18, and a power device 22 including a control unit 24 configured to power each of the water dispersal members with a corresponding feed rate.
  • the supply device 22 further comprises a water recovery receptacle 26 arranged under the evaporation panels 14.
  • the frame 12 delimits an entrance 28, an exit 30 and a passage 32 between the entrance 28 and the exit 30.
  • the entrance 28 extends in a first plane of elevation and the exit 30 extends in a second elevation plane substantially parallel to the first elevation plane.
  • the first elevation plane and the second elevation plane are substantially parallel to a vertical plane.
  • the surface of the inlet 28 and the surface of the outlet 30 are preferably substantially identical.
  • the inlet 28 and the outlet 30 have for example a substantially rectangular shape.
  • the frame 12 is for example made of steel.
  • system 10 includes a porous first evaporative panel 29, a porous second evaporative panel 31, a porous third evaporative panel 34, a porous fourth evaporative panel 36, and a porous fifth evaporative panel 38.
  • the porous evaporation panels 14 are preferably aligned next to each other in a direction substantially perpendicular to an elevation direction.
  • the direction of elevation is substantially coincident with a vertical direction when the system 10 according to the invention is in operation.
  • porous evaporation panels 14 are aligned in the elevation direction.
  • the system 10 comprises a first row of porous evaporation panels 14 extending along a first direction substantially perpendicular to the direction of elevation, and a second row of porous evaporation panels 14 s extending in a second direction substantially parallel to the first direction, the first direction and the second direction extending in the same plane of elevation.
  • Each porous evaporation panel 14 extends mainly along a direction of elongation substantially parallel to the direction of elevation.
  • the porous evaporation panels 14 are identical to each other.
  • Each porous evaporative panel is mounted on frame 12 within passage 32, between inlet 28 and outlet 30.
  • the porous evaporation panels 14 are mounted on the frame 12 in a removable manner, that is to say that the porous evaporation panels 14 can be detached from the frame 12 and extracted from the passage 32 for example during operations installation.
  • the porous evaporation panels 14 are for example extracted from the frame 12 along an extraction direction substantially parallel to the first and second planes.
  • the porous evaporation panels 14 are extracted in an extraction direction substantially perpendicular to the first plane and to the second plane.
  • an air flow F which enters through the inlet 28 of the frame 12, located upstream of the passage 32, crosses the passage 32 passing through the porous evaporation panels 14 to exit through the outlet 30, located in downstream of the passage 32, having evaporated a quantity of water present in the porous evaporation panel or panels 14, as we will see in more detail later in the description.
  • the air flow F thus passes through the porous evaporation panels 14 in a direction substantially perpendicular to the main direction of elongation of the porous evaporation panels 14.
  • the porous evaporation panels 14 are mounted on the frame 12 so that the air flow F passing through the passage 32 necessarily passes through one of the porous evaporation panels 14.
  • Each porous evaporation panel 14 has for example a substantially parallelepipedic shape.
  • Each panel 14 comprises two side surfaces 40 opposite each other, an upper surface 42, a lower surface 44 opposite the upper surface 42, both connected to the side surfaces 40.
  • the side surfaces 40 extend in a plane substantially parallel to the foreground and the second plane.
  • the upper surface 42 and the lower surface 44 extend in planes substantially perpendicular to the first plane and to the second plane.
  • each panel 14 comprises a plurality of corrugated sheets of inorganic fibers, for example glass fibers, assembled together to form circulation channels for the air flow F.
  • the thickness of each of the corrugated sheets is between 0.1 mm and 0.6 mm, for example 0.3 mm.
  • the corrugation period of the channels is preferably between 3 mm and 25 mm, for example 10 mm.
  • the height of the corrugations is preferably between 2 mm and 10 mm, for example 5 mm.
  • Each water dispersing member 18 is disposed above a respective porous evaporation panel 14 in the elevation direction.
  • the system 10 comprises as many water dispersion members 18 as there are porous evaporation panels 14.
  • the system 10 comprises five water dispersing members 18, respectively a first dispersing member 43, a second dispersing member 45, a third dispersing member 46, a fourth dispersing member 48 and a fifth dispersing member 50, arranged above each of the five porous evaporation panels 14.
  • Each dispersing member 18 is adapted to disperse a volume of water on the corresponding evaporation panel 14 so as to impregnate at least a portion 54 of said evaporation panel 14 with the volume of water ( figure 3 to 5 ).
  • the water dispersing member 18 disperses the volume of water on the upper surface 42 of the evaporation panel 14.
  • the volume of water permeates the evaporation panel 14 from an upper part of the panel 14 towards a lower part of the panel 14 by gravity.
  • the evaporation panel 14 then comprises a dry portion 52 and an impregnated portion 54 separated by an interface 56, as visible in particular on the picture 3 .
  • the position of the interface 56 depends in particular on the volume of water dispersed by the water dispersion member 18, and more particularly on the feed rate which feeds the dispersion member 18, and on the evaporation conditions. , i.e. the ambient temperature and humidity around the system.
  • the volume of water in the impregnated portion 54 of the porous evaporation panel 14 is intended to be evaporated by the passage of the air flow F through the porous evaporation panel 14. The air flow F is then cooled and moistened.
  • the impregnated portion 54 comprises at least one exchange surface 55 in contact with the air flow F allowing the evaporation of the volume of water.
  • a total exchange surface 53 of the system is formed by the sum of the exchange surfaces of each of the impregnated portions 54 of each of the evaporation panels 14.
  • each water dispersion member 18 is formed by a dispersion ramp extending mainly in a direction substantially perpendicular to the main direction of extension of the evaporation panel 14, so as to disperse the water so as to evenly across the top surface 42 of the evaporator panel 14.
  • control unit 24 is configured to supply water to the first dispersing member 43 with a first feed rate, the second dispersing member 45 with a second feed rate, the third disperser 46 with a third feed rate, fourth disperser member 48 with a fourth feed rate, and fifth disperser member 50 with a fifth feed rate.
  • control unit 24 comprises a plurality of control members 57 configured to respectively control each of the water supply flow rates.
  • the controls 57 can be controlled independently of each other.
  • the control unit 24, through the control devices 57 can control the different feed rates independently of each other.
  • Each control member 57 is for example a regulating valve.
  • the ratio between the minimum flow of the valve and the maximum flow of the valve is very high, generally greater than 30.
  • control unit 24 comprises a first control member 58, a second control member 60, a third control member 62, a fourth control member 64 and a fifth control member 66.
  • Each of the controls 57 is controllable between at least one evaporation configuration in which the water supply flow rate is substantially equal to a flow rate of water evaporated by the associated porous evaporation panel 14, and a cleaning configuration wherein the water supply rate is greater than a rate of water evaporated by the associated porous evaporation panel 14 fully impregnated so as to generate a flow of water 59 out of the associated porous evaporation panel 14.
  • each control member 57 is also controllable between the evaporation configuration, the cleaning configuration, and a closed configuration in which the feed rate is zero.
  • the feed rate is controllable so as to increase or reduce the exchange surface 55 of the porous evaporation panel 14, that is to say to increase or reduce the volume of the portion impregnated 54 of the evaporation panel 14.
  • the feed rate is for example between 1 l/h and 50 l/h.
  • the evaporation panel 14 In the evaporation configuration, the evaporation panel 14 always includes at least one impregnated portion 54 of water.
  • the water supply rate makes it possible to generate a flow of water 59 by gravity at the level of the lower part of the evaporation panel 14.
  • This flow 59 carries with it the minerals deposited on the panel of evaporation. evaporation 14.
  • the water supply rate is 1.5 times to 2.5 times greater than the rate of water evaporated by the associated evaporation panel.
  • the evaporation panel 14 is totally impregnated with water.
  • the exchange surface 55 is maximum.
  • the water dispersed by the dispersing members 18 is, for example, mains water, reverse osmosis water or deionized water.
  • the conductivity of osmosed water is for example between 1 ⁇ S/cm and 50 ⁇ S/cm.
  • the conductivity of deionized water is typically between 0.1 ⁇ S/cm and 1 ⁇ S/cm.
  • the supply device 22 preferably comprises a plurality of water supply lines 68. Each supply line 68 is fluidly connected to a corresponding water dispersal member 18.
  • the supply device thus comprises as many supply lines 68 as dispersion members 18.
  • the supply device 22 comprises five supply lines 68, respectively a first supply line 70 , a second supply line 72, a third supply line 74, a fourth supply line 76 and a fifth supply line 78, respectively connected to the first dispersion member 43, second dispersion member 45, third member disperser 46, fourth disperser 48 and fifth disperser 50.
  • Each control member 57 is connected to a respective supply line 68 so as to control the feed rate provided by the water supply line 68.
  • Each of the supply lines 68 is fluidically connected to a source of fluid 80, preferably a single source of fluid, for example formed by a water supply network or a reservoir.
  • a source of fluid 80 preferably a single source of fluid, for example formed by a water supply network or a reservoir.
  • Each of the control members 57 is thus arranged between the fluid source 80 and the corresponding water dispersion member on the corresponding supply line 68.
  • the control unit 24 is advantageously configured to control each of the water supply flow rates according to a set value.
  • the control unit 24 is slaved to the setpoint value.
  • the system 10 according to the invention makes it possible, for example, to maintain a constant humidity level and/or a substantially constant temperature over time in the room in which the system is located.
  • the humidity level and/or the temperature are controlled by the total exchange surface 53 of the evaporation panels 14, that is to say by the total volume of the portions of panels 14 impregnated with water in contact with the air.
  • maintaining the setpoint requires maintaining, increasing or decreasing the total exchange surface 53.
  • the water recovery receptacle 26 is arranged under the porous evaporation panels 14 and makes it possible to collect the flow or flows of water 59 originating from the lower surface 44 of the evaporation panels 14.
  • the receptacle 26 is for example connected fluidically to a drain line 82 configured to drain collected water and minerals.
  • a method for cleaning at least one porous evaporation panel 14 of a system 10 for humidifying and cooling an air flow F as described above will now be described with reference to the figures 3 to 5 .
  • the method firstly comprises a step of supplying water to the first dispersion member 43 of the first evaporation panel 29 so as to impregnate at least part of the first evaporation panel 29.
  • the first control member 58 is then in the evaporation configuration.
  • the first feed rate is increased to increase the volume of the impregnated portion 54 of the first evaporation panel 29 until the entire first evaporation panel 29 is impregnated.
  • the other control members 60, 62, 64, 66 are in the closed configuration, that is to say the other dispersion members 45, 46, 48, 50 are not supplied with water.
  • the first dispersion member 43 is then fed with a first feed rate higher than a flow rate of water evaporated by the first porous evaporation panel 29 which is completely impregnated.
  • the first control member 58 is in the cleaning configuration. This generates a flow of water 59 at the level of the lower part of the first panel 29 carrying with it the minerals deposited on the first panel 29. The flow 59 and the minerals are collected in the recovery receptacle 26.
  • the other organs controls that is to say the third control member 62, the fourth control member 64 and the fifth control member 66 are in the closed configuration.
  • the total exchange surface 53 is increased by controlling the second feed rate until all of the second evaporation panel 31 is impregnated. Then when the second evaporation panel 31 is completely impregnated, the water the third dispersion member 46 by positioning the third control member 62 in the evaporation configuration.
  • the second dispersing member 45 is then supplied with water with a second feed rate greater than a flow rate of water evaporated by the second porous evaporation panel 31 completely impregnated so as to generate a flow of water 59 out of the second evaporation panel 31.
  • the second control member 60 is then in the cleaning configuration.
  • the first and the second control members 58, 60 are in the cleaning configuration allowing cleaning of the first and second evaporation panels 29, 31.
  • the third control member 46 allows the adjustment of the total exchange surface 53 ( figure 4 ) of system 10.
  • the dispersion members 18 are supplied successively one after the other as soon as an evaporation panel 14 is completely impregnated. Each time an evaporation panel 14 is completely impregnated, the corresponding control member 57 is switched to the cleaning configuration to allow cleaning of the associated panel 14.
  • the first feed rate is controlled so that the first evaporation panel 29 is partially impregnated.
  • the first control member 58 is moved into the evaporation configuration.
  • the second control member 60 is maintained in the cleaning configuration allowing the cleaning of the second evaporation panel 31 to continue.
  • the first control member 58 is in the closed configuration.
  • the third feed rate is controlled until, if necessary, completely impregnating the third evaporation panel 34.
  • the fourth evaporation panel 36 is supplied with water.
  • the third control member 62 is in the cleaning configuration allowing cleaning of the third panel 34.
  • the fourth control member 64 is in the configuration of evaporation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Humidification (AREA)

Abstract

L'invention concerne un système (10) d'humidification et de refroidissement d'un flux d'air comprenant :- un châssis (12),- des panneaux d'évaporation poreux (14) montés sur le châssis (12),- des organes de dispersion d'eau (18) disposés au-dessus des panneaux,- un dispositif d'alimentation (22) comprenant une unité de contrôle (24) configurée pour alimenter en eau les organes de dispersion (18).L'unité de contrôle (24) comprend des organes de commande (57) contrôlables indépendamment les uns des autres entre une configuration d'évaporation dans laquelle le débit d'alimentation en eau est égal à un débit d'eau évaporée par le panneau d'évaporation poreux (14) associé, et une configuration de nettoyage dans laquelle le débit d'alimentation en eau est supérieur à un débit d'eau évaporée par le panneau d'évaporation poreux (14) pour générer un écoulement d'eau.

Description

  • La présente invention concerne, selon un premier aspect, un système d'humidification et de refroidissement d'un flux d'air, ledit système comprenant :
    • un châssis délimitant une entrée, une sortie et un passage entre l'entrée et la sortie, le flux d'air étant destiné à traverser le passage,
    • une pluralité de panneaux d'évaporation poreux montés sur le châssis et disposés dans le passage, chaque panneau d'évaporation poreux s'étendant principalement selon une direction sensiblement verticale,
    • une pluralité d'organes de dispersion d'eau, chaque organe de dispersion étant disposé au-dessus d'un panneau d'évaporation poreux correspondant, chacun des organes de dispersion étant adapté pour disperser un volume d'eau sur le panneau d'évaporation poreux correspondant de sorte à imprégner au moins une portion dudit panneau d'évaporation poreux avec le volume d'eau, la portion imprégnée comprenant au moins une surface d'échange destinée à être en contact avec le flux d'air et à permettre une évaporation du volume d'eau, une surface d'échange totale étant formée par la somme des surfaces d'échange de chacun des panneaux d'évaporation,
    • un dispositif d'alimentation comprenant une unité de contrôle configurée pour alimenter en eau les organes de dispersion avec des débits d'alimentation correspondants.
  • Ce type de système d'humidification et de refroidissement permet l'évaporation de l'eau au moyen d'un processus adiabatique. En traversant les panneaux d'évaporation poreux imprégnés d'eau, le flux d'air provoque une évaporation de l'eau présente dans les panneaux d'évaporation sans qu'une source d'énergie extérieure ne soit nécessaire. La chaleur requise pour la vaporisation de l'eau est fournie directement par l'air. Le flux d'air est ainsi refroidi et son taux d'humidité augmente.
  • Le dispositif d'alimentation en eau permet de contrôler l'alimentation en eau des panneaux d'évaporation en fonction d'une consigne, de sorte à, par exemple, maintenir un taux d'humidité sensiblement constant, augmenter ou réduire le taux d'humidité dans la pièce où se trouve le système d'humidification et de refroidissement. Le contrôle du taux d'humidité entraine un maintien, une augmentation ou une réduction de la surface d'échange totale du système.
  • La position de l'interface entre la portion imprégnée et la portion sèche de chacun des panneaux d'évaporation varie lors du fonctionnement du système.
  • Même si elle est déionisée ou osmosée, l'eau dispersée sur les panneaux d'évaporation contient toujours une fraction de minéraux. Le mécanisme d'évaporation entraîne le dépôt de ces minéraux sur les panneaux d'évaporation et plus particulièrement au niveau de l'interface entre la portion imprégnée et la portion sèche de chacun des panneaux. Cette accumulation de minéraux endommage les panneaux d'évaporation en diminuant la porosité des panneaux réduisant ainsi leur efficacité.
  • Un objet de l'invention est de proposer un système d'humidification et de refroidissement qui permette un nettoyage régulier des panneaux d'évaporation tout en maintenant un contrôle du niveau d'humidification et de refroidissement pendant ces phases de nettoyage.
  • A cet effet, l'invention concerne un système d'humidification et de refroidissement du type précité, dans lequel l'unité de contrôle comprend une pluralité d'organes de commande configurés pour contrôler respectivement chacun des débits d'alimentation, les organe de commande étant contrôlables indépendamment les uns des autres entre au moins une configuration d'évaporation dans laquelle le débit d'alimentation en eau est sensiblement égal à un débit d'eau évaporée par le panneau d'évaporation poreux associé, et une configuration de nettoyage dans laquelle le débit d'alimentation en eau est supérieur à un débit d'eau évaporée par le panneau d'évaporation poreux associé totalement imprégné de sorte à générer un écoulement d'eau hors dudit panneau d'évaporation poreux associé.
  • Ainsi, les organes de dispersion peuvent être alimentés indépendamment les uns des autres en fonction de la surface d'échange totale nécessaire. Dans la configuration d'évaporation, le débit d'alimentation génère un écoulement hors du panneau d'évaporation, au niveau de la partie inférieure du panneau, entrainant par gravité les minéraux déposés sur le panneau d'évaporation. Cet écoulement ne modifie pas les conditions d'évaporation du panneau d'évaporation et permet ainsi un nettoyage du panneau d'évaporation. Ainsi, en contrôlant la configuration des différents organes de commande indépendamment les uns des autres, il est alors possible de procéder au nettoyage des différents panneaux d'évaporation poreux tout en garantissant un contrôle précis du taux d'humidité de l'air ambiant.
  • Selon des modes de réalisation différents ou complémentaires, le système d'humidification et de refroidissement comprend en outre une ou plusieurs des caractéristiques suivantes, prises isolément ou selon toutes les combinaisons possibles :
    • chaque organe de commande est en outre contrôlable entre la configuration d'évaporation, la configuration de nettoyage et une configuration fermée dans laquelle le débit d'alimentation est nul,
    • dans la configuration d'évaporation, le débit d'alimentation est contrôlable de sorte à augmenter ou réduire la surface d'échange du panneau d'évaporation poreux,
    • dans la configuration de nettoyage, le débit d'alimentation en eau est 1,5 fois à 2,5 fois supérieur au débit d'eau évaporée par le panneau d'évaporation associé,
    • le dispositif d'alimentation comprend une pluralité de lignes d'alimentation en eau, chaque ligne d'alimentation étant connectée fluidiquement à un organe de dispersion correspondant, chaque organe de commande étant connecté à une ligne d'alimentation respective,
    • l'unité de contrôle est configurée pour contrôler les débits d'alimentation en eau en fonction d'une consigne,
    • le dispositif d'alimentation comprend en outre un réceptacle de récupération d'eau disposé sous les panneaux d'évaporation poreux destiné à collecter l'écoulement d'eau.
  • Selon un deuxième aspect, l'invention concerne un procédé de nettoyage d'au moins un panneau d'évaporation poreux d'un système d'humidification et de refroidissement d'un flux d'air tel que décrit ci-dessus, le système comprenant au moins un premier et un deuxième panneaux d'évaporation poreux, un premier et un deuxième organes de dispersion d'eau, et un premier et un deuxième organe de commande, le procédé comprenant les étapes suivantes :
    • alimenter en eau le premier organe de dispersion, le premier organe de commande étant dans la configuration d'évaporation, le premier panneau d'évaporation étant partiellement imprégné,
    • augmenter la surface d'échange totale en contrôlant le premier débit d'alimentation jusqu'à imprégner la totalité du premier panneau d'évaporation,
    • lorsque le premier panneau d'évaporation poreux est totalement imprégné, alimenter en eau le deuxième organe de dispersion, le deuxième organe de commande étant dans la configuration d'évaporation,
    • alimenter en eau le premier organe de dispersion avec un premier débit d'alimentation supérieur à un débit d'eau évaporée par le premier panneau d'évaporation poreux totalement imprégné de sorte à générer un écoulement d'eau hors dudit panneau d'évaporation poreux, le premier organe de commande étant dans la configuration de nettoyage.
  • Selon des modes de réalisation différents ou complémentaires, le procédé comprend en outre une ou plusieurs des caractéristiques suivantes, prises isolément ou selon toutes les combinaisons possibles :
    • le système comprend au moins un troisième panneau, un troisième organe de dispersion d'eau, et un troisième organe de commande, le procédé comprenant les étapes suivantes :
      • augmenter la surface d'échange totale en contrôlant le deuxième débit d'alimentation jusqu'à imprégner la totalité du deuxième panneau d'évaporation,
      • lorsque le deuxième panneau d'évaporation poreux est totalement imprégné, alimenter en eau le troisième organe de dispersion, le troisième organe de commande étant dans la configuration d'évaporation,
      • alimenter en eau le deuxième organe de dispersion avec un deuxième débit d'alimentation supérieur à un débit d'eau évaporée par le deuxième panneau d'évaporation poreux totalement imprégné de sorte à générer un écoulement d'eau hors dudit panneau d'évaporation poreux, le deuxième organe de commande étant dans la configuration de nettoyage,
    • le procédé comprend l'étape suivante : réduire la surface d'échange totale en contrôlant le débit d'alimentation en eau du premier organe de dispersion pour réduire la surface d'échange du premier panneau d'évaporation,
    • le système comprend au moins un quatrième panneau, un quatrième organe de dispersion d'eau, et un quatrième organe de commande, le procédé comprenant les étapes suivantes :
    • stopper l'alimentation en eau du premier organe de dispersion, le premier organe de commande étant dans la position fermée,
    • augmenter la surface d'échange totale en alimentant en eau le quatrième organe de dispersion d'eau, le quatrième organe de commande étant dans la configuration d'évaporation.
  • D'autres aspects et avantages de l'invention apparaîtront à la lecture de la description qui suit, donnée à titre d'exemple et faite en référence aux figures annexées, parmi lesquelles :
    • la figure 1 est une représentation schématique d'un système d'humidification et de refroidissement selon l'invention,
    • la figure 2 est une coupe transversale schématique du système de la figure 1,
    • les figures 3 à 5 sont des représentations schématiques du système d'humidification et de refroidissement de la figure 1 pour trois états de fonctionnement distincts.
  • La figure 1 représente de manière schématique un système d'humification et de refroidissement 10 selon l'invention.
  • Le système 10 comprend un châssis 12, une pluralité de panneaux d'évaporation 14 poreux montés sur le châssis 12, une pluralité d'organes de dispersion d'eau 18 et un dispositif d'alimentation 22 comprenant une unité de contrôle 24 configurée pour alimenter chacun des organes de dispersion d'eau avec un débit d'alimentation correspondant. De préférence, le dispositif d'alimentation 22 comprend en outre un réceptacle de récupération d'eau 26 disposé sous les panneaux d'évaporation 14.
  • Comme visible sur la figure 2, le châssis 12 délimite une entrée 28, une sortie 30 et un passage 32 entre l'entrée 28 et la sortie 30. De préférence, l'entrée 28 s'étend dans un premier plan d'élévation et la sortie 30 s'étend dans un deuxième plan d'élévation sensiblement parallèle au premier plan d'élévation. Lors du fonctionnement du système 10, le premier plan d'élévation et le deuxième plan d'élévation sont sensiblement parallèle à un plan vertical. La surface de l'entrée 28 et la surface de la sortie 30 sont de préférence sensiblement identiques. L'entrée 28 et la sortie 30 ont par exemple une forme sensiblement rectangulaire. Le châssis 12 est par exemple en acier.
  • Le nombre de panneaux d'évaporation poreux 14 est par exemple compris entre deux et vingt, par exemple cinq comme illustré sur les figures 1 à 5. En particulier, dans l'exemple des figures 1 à 5, le système 10 comprend un premier panneau d'évaporation poreux 29, un deuxième panneau d'évaporation poreux 31, un troisième panneau d'évaporation poreux 34, un quatrième panneau d'évaporation 36 poreux et un cinquième panneau d'évaporation 38 poreux.
  • Les panneaux d'évaporation poreux 14 sont de préférence alignés les uns à côté des autres selon une direction sensiblement perpendiculaire à une direction d'élévation. La direction d'élévation est sensiblement confondue avec une direction verticale lorsque le système 10 selon l'invention est en fonctionnement.
  • En variante (non représentée), les panneaux d'évaporation poreux 14 sont alignés selon la direction d'élévation.
  • En variante encore (non représentée), le système 10 comprend une première rangée de panneaux d'évaporation poreux 14 s'étendant selon une première direction sensiblement perpendiculaire à la direction d'élévation, et une deuxième rangée de panneaux d'évaporation poreux 14 s'étendant selon une deuxième direction sensiblement parallèle à la première direction, la première direction et la deuxième direction s'étendant dans un même plan d'élévation.
  • Chaque panneau d'évaporation poreux 14 s'étend principalement selon une direction d'élongation sensiblement parallèle à la direction d'élévation.
  • De préférence, les panneaux d'évaporation poreux 14 sont identiques entre eux.
  • Chaque panneau d'évaporation poreux est monté sur le châssis 12 à l'intérieur du passage 32, entre l'entrée 28 et la sortie 30.
  • De préférence, les panneaux d'évaporation poreux 14 sont montés sur le châssis 12 de manière amovible, c'est-à-dire que les panneaux d'évaporation poreux 14 peuvent être désolidarisés du châssis 12 et extraits hors du passage 32 par exemple lors des opérations d'installation. Les panneaux d'évaporation poreux 14 sont par exemple extraits du châssis 12 selon une direction d'extraction sensiblement parallèle au premier et deuxième plans. En variante, les panneaux d'évaporation poreux 14 sont extraits selon une direction d'extraction sensiblement perpendiculaire au premier plan et au deuxième plan.
  • Ainsi, un flux d'air F qui pénètre par l'entrée 28 du châssis 12, située en amont du passage 32, traverse le passage 32 en passant au travers des panneaux d'évaporation poreux 14 pour ressortir par la sortie 30, située en aval du passage 32, en ayant évaporé une quantité d'eau présente dans le ou les panneaux d'évaporation poreux 14, comme nous le verrons plus détail plus loin dans la description. Le flux d'air F traverse ainsi les panneaux d'évaporation poreux 14 selon une direction sensiblement perpendiculaire à la direction principale d'élongation des panneaux d'évaporation poreux 14.
  • Les panneaux d'évaporation poreux 14 sont montés sur le châssis 12 de sorte que le flux d'air F qui traverse le passage 32 traverse obligatoirement un des panneaux d'évaporation poreux 14.
  • Chaque panneau d'évaporation poreux 14 a par exemple une forme sensiblement parallélépipédique. Chaque panneau 14 comprend deux surfaces latérales 40 opposées entre elles, une surface supérieure 42, une surface inférieure 44 à l'opposé de la surface supérieure 42, toutes deux reliées aux surfaces latérales 40. Les surfaces latérales 40 s'étendent dans un plan sensiblement parallèle au premier plan et au deuxième plan. La surface supérieure 42 et la surface inférieure 44 s'étendent dans des plans sensiblement perpendiculaires au premier plan et au deuxième plan.
  • Par exemple, chaque panneau 14 comprend une pluralité de feuilles ondulées en fibres non organiques, par exemple des fibres de verre, assemblées entre elles pour former des canaux de circulation pour le flux d'air F. De préférence, l'épaisseur de chacune des feuilles ondulées est comprise entre 0,1 mm et 0,6 mm, par exemple 0,3 mm. La période d'ondulation des canaux est de préférence comprise entre 3 mm et 25 mm, par exemple 10 mm. La hauteur des ondulations est de préférence comprises entre 2 mm et 10 mm, par exemple 5 mm.
  • Chaque organe de dispersion d'eau 18 est disposé au-dessus d'un panneau d'évaporation poreux 14 respectif selon la direction d'élévation.
  • De manière générale, le système 10 comprend autant d'organes de dispersion d'eau 18 que de panneaux d'évaporation poreux 14. Ainsi, dans l'exemple illustré par les figures 1 à 5, le système 10 comprend cinq organes de dispersion d'eau 18, respectivement un premier organe de dispersion 43, un deuxième organe de dispersion 45, un troisième organe de dispersion 46, un quatrième organe de dispersion 48 et un cinquième organe de dispersion 50, disposés au-dessus de chacun des cinq panneaux d'évaporation poreux 14.
  • Chaque organe de dispersion 18 est adapté pour disperser un volume d'eau sur le panneau d'évaporation 14 correspondant de sorte à imprégner au moins une portion 54 dudit panneau d'évaporation 14 avec le volume d'eau (figure 3 à 5). En particulier, l'organe de dispersion d'eau 18 disperse le volume d'eau sur la surface supérieure 42 du panneau d'évaporation 14. Le volume d'eau imprègne le panneau d'évaporation 14 depuis une partie supérieure du panneau 14 vers une partie inférieure du panneau 14 par gravité. Le panneau d'évaporation 14 comprend alors une portion sèche 52 et une portion imprégnée 54 séparée par une interface 56, comme visible en particulier sur la figure 3. La position de l'interface 56 dépend en particulier du volume d'eau dispersé par l'organe de dispersion d'eau 18, et plus particulièrement du débit d'alimentation qui alimente l'organe de dispersion 18, et des conditions d'évaporation, c'est-à-dire de la température et de l'humidité ambiante autour du système.
  • Le volume d'eau de la portion imprégnée 54 du panneau d'évaporation poreux 14 est destiné à être évaporé par le passage du flux d'air F au travers du panneau d'évaporation poreux 14. Le flux d'air F est alors refroidi et humidifié.
  • La portion imprégnée 54 comprend au moins une surface d'échange 55 en contact avec le flux d'air F permettant l'évaporation du volume d'eau.
  • Une surface d'échange totale 53 du système est formée par la somme des surfaces d'échange de chacune des portions imprégnées 54 de chacun des panneaux d'évaporation 14.
  • De préférence, chaque organe de dispersion d'eau 18 est formé par une rampe de dispersion s'étendant principalement selon une direction sensiblement perpendiculaire à la direction principale d'extension du panneau d'évaporation 14, de sorte à disperser l'eau de manière uniforme sur la surface supérieure 42 du panneau d'évaporation 14.
  • Dans l'exemple illustré, l'unité de contrôle 24 est configurée pour alimenter en eau le premier organe de dispersion 43 avec un premier débit d'alimentation, le deuxième organe de dispersion 45 avec un deuxième débit d'alimentation, le troisième organe de dispersion 46 avec un troisième débit d'alimentation, le quatrième organe de dispersion 48 avec un quatrième débit d'alimentation et le cinquième organe de dispersion 50 avec un cinquième débit d'alimentation.
  • Selon l'invention, l'unité de contrôle 24 comprend une pluralité d'organes de commande 57 configurés pour contrôler respectivement chacun des débits d'alimentation en eau. Les organes de commandes 57 sont contrôlables indépendamment les uns des autres. Dit autrement, l'unité de contrôle 24, par le biais des organes de commande 57, peut contrôler les différents débits d'alimentations indépendamment les uns des autres.
  • Chaque organe de commande 57 est par exemple une vanne de régulation. Le ratio entre le débit minimal de la vanne et le débit maximal de la vanne est très élevé, généralement supérieur à 30.
  • Dans l'exemple des figures 1 à 5, l'unité de contrôle 24 comprend un premier organe de commande 58, un deuxième organe de commande 60, un troisième organe de commande 62, un quatrième organe de commande 64 et un cinquième organe de commande 66.
  • Chacun des organes de commande 57 est contrôlable entre au moins une configuration d'évaporation dans laquelle le débit d'alimentation en eau est sensiblement égal à un débit d'eau évaporée par le panneau d'évaporation poreux 14 associé, et une configuration de nettoyage dans laquelle le débit d'alimentation en eau est supérieur à un débit d'eau évaporée par le panneau d'évaporation poreux 14 associé totalement imprégné de sorte à générer un écoulement d'eau 59 hors du panneau d'évaporation poreux 14 associé.
  • De préférence, chaque organe de commande 57 est en outre contrôlable entre la configuration d'évaporation, la configuration de nettoyage, et une configuration fermée dans laquelle le débit d'alimentation est nul.
  • Dans la configuration d'évaporation, le débit d'alimentation est contrôlable de sorte à augmenter ou réduire la surface d'échange 55 du panneau d'évaporation poreux 14, c'est-à-dire à augmenter ou réduire le volume de la portion imprégnée 54 du panneau d'évaporation 14. Dans la configuration d'évaporation, le débit d'alimentation est par exemple compris entre 1 l/h et 50 l/h.
  • Dans la configuration d'évaporation, le panneau d'évaporation 14 comprend toujours au moins une portion imprégnée 54 d'eau.
  • Dans la configuration de nettoyage, le débit d'alimentation en eau permet de générer un écoulement d'eau 59 par gravité au niveau de la partie inférieure du panneau d'évaporation 14. Cet écoulement 59 entraîne avec lui les minéraux déposés sur le panneau d'évaporation 14.
  • De préférence, dans la configuration de nettoyage, le débit d'alimentation en eau est 1,5 fois à 2,5 fois supérieur au débit d'eau évaporée par le panneau d'évaporation associé. Dans la configuration de nettoyage, le panneau d'évaporation 14 est totalement imprégné d'eau. La surface d'échange 55 est maximale.
  • L'eau dispersée par les organes de dispersion 18 est par exemple de l'eau du réseau, de l'eau osmosée ou de l'eau déionisée. La conductivité de l'eau osmosée est par exemple comprise entre 1 µS/cm et 50 pS/cm. La conductivité de l'eau déionisée est typiquement comprise entre 0,1 µS/cm et 1 µS/cm.
  • Le dispositif d'alimentation 22 comprend de préférence une pluralité de lignes d'alimentation 68 en eau. Chaque ligne d'alimentation 68 est connectée fluidiquement à un organe de dispersion d'eau 18 correspondant. Le dispositif d'alimentation comprend ainsi autant de lignes d'alimentation 68 que d'organes de dispersion 18. Dans l'exemple illustré, le dispositif d'alimentation 22 comprend cinq lignes d'alimentation 68, respectivement une première ligne d'alimentation 70, une deuxième ligne d'alimentation 72, une troisième ligne d'alimentation 74, une quatrième ligne d'alimentation 76 et une cinquième ligne d'alimentation 78, connectées respectivement au premier organe de dispersion 43, deuxième organe de dispersion 45, troisième organe de dispersion 46, quatrième organe de dispersion 48 et cinquième organe de dispersion 50.
  • Chaque organe de commande 57 est connecté à une ligne d'alimentation 68 respective de sorte à contrôler le débit d'alimentation fourni par la ligne d'alimentation 68 en eau.
  • Chacune des lignes d'alimentation 68 est connectée fluidiquement à une source de fluide 80, de préférence une unique source de fluide, par exemple formé par un réseau d'arrivée d'eau ou un réservoir. Chacun des organes de commande 57 est ainsi disposé entre la source de fluide 80 et l'organe de dispersion d'eau correspondant sur la ligne d'alimentation correspondante 68.
  • L'unité de contrôle 24 est avantageusement configurée pour contrôler chacun des débits d'alimentation en eau en fonction d'une valeur de consigne. De préférence, l'unité de contrôle 24 est asservie à la valeur de consigne. Ainsi, le système 10 selon l'invention permet par exemple de maintenir un taux d'humidité constant et/ou une température sensiblement constante au cours du temps dans la pièce dans laquelle se trouve le système.
  • Le taux d'humidité et/ou la température sont contrôlés par la surface d'échange totale 53 des panneaux d'évaporation 14, c'est-à-dire par le volume total des portions de panneaux 14 imprégnées d'eau en contact avec l'air. Selon les conditions extérieures au système 10, le maintien de la consigne nécessite un maintien, une augmentation ou une diminution de la surface d'échange totale 53.
  • Le réceptacle de récupération 26 d'eau est disposé sous les panneaux d'évaporation poreux 14 et permet de collecter le ou les écoulements d'eau 59 issus de la surface inférieure 44 des panneaux d'évaporation 14. Le réceptacle 26 est par exemple connecté fluidiquement à une ligne d'évacuation 82 configurée pour évacuer l'eau et les minéraux collectés.
  • Un procédé de nettoyage d'au moins un panneau d'évaporation poreux 14 d'un système 10 d'humidification et de refroidissement d'un flux d'air F tel que décrit ci-dessus va maintenant être décrit en référence aux figures 3 à 5.
  • Le procédé comprend tout d'abord une étape d'alimentation en eau du premier organe de dispersion 43 du premier panneau d'évaporation 29 de sorte à imprégner au moins une partie du premier panneau d'évaporation 29. Le premier organe de commande 58 est alors dans la configuration d'évaporation.
  • Lorsque le maintien de la valeur de consigne nécessite une augmentation de la surface d'échange totale 53, le premier débit d'alimentation est augmenté pour augmenter le volume de la portion imprégnée 54 du premier panneau d'évaporation 29 jusqu'à ce que la totalité du premier panneau d'évaporation 29 soit imprégné. A ce stade, les autres organes de commandes 60, 62, 64, 66 sont dans la configuration fermée, c'est-à-dire que les autres organes de dispersion 45, 46, 48, 50 ne sont pas alimentés en eau.
  • Au besoin, c'est-à-dire si le maintien de la consigne nécessite que la surface d'échange totale 53 augmente encore, lorsque le premier panneau d'évaporation 29 est totalement imprégné, on alimente en eau le deuxième organe de dispersion 45. Le deuxième organe de commande 60 est alors dans la configuration d'évaporation. Une portion du deuxième panneau 29 est imprégnée.
  • On alimente alors le premier organe de dispersion 43 avec un premier débit d'alimentation supérieur à un débit d'eau évaporée par le premier panneau d'évaporation poreux 29 totalement imprégné. Dit autrement, le premier organe de commande 58 est dans la configuration de nettoyage. Ceci génère un écoulement d'eau 59 au niveau de la partie inférieure du premier panneau 29 entrainant avec les lui les minéraux déposés sur le premier panneau 29. L'écoulement 59 et les minéraux sont collectés dans le réceptacle de récupération 26. Les autres organes de commandes, c'est-à-dire le troisième organe de commande 62, le quatrième organe de commande 64 et le cinquième organe de commande 66 sont dans la configuration fermée.
  • Cet état est illustré par la figure 3. Le maintien de la consigne nécessite que la surface d'échange totale 53 soit supérieure à 20% de la surface d'échange totale maximale, c'est-à-dire que plus d'un panneau d'évaporation doit être totalement imprégné.
  • Toujours si nécessaire, on augmente la surface d'échange totale 53 en contrôlant le deuxième débit d'alimentation jusqu'à imprégner la totalité du deuxième panneau d'évaporation 31. Puis lorsque le deuxième panneau d'évaporation 31 est totalement imprégné, on alimente en eau le troisième organe de dispersion 46 en positionnant le troisième organe de commande 62 dans la configuration d'évaporation.
  • On alimente alors en eau le deuxième organe de dispersion 45 avec un deuxième débit d'alimentation supérieur à un débit d'eau évaporée par le deuxième panneau d'évaporation poreux 31 totalement imprégné de sorte à générer un écoulement d'eau 59 hors du deuxième panneau d'évaporation 31. Le deuxième organe de commande 60 est alors dans la configuration de nettoyage.
  • A ce stade, comme illustré sur la figure 4, le premier et le deuxième organes de commande 58, 60 sont dans la configuration de nettoyage permettant un nettoyage des premier et deuxième panneaux d'évaporation 29, 31. Le troisième organe de commande 46 permet l'ajustement de la surface d'échange totale 53 (figure 4) du système 10.
  • De manière générale, pour augmenter la surface d'échange totale 53 du système 10, les organes de dispersion 18 sont alimentés successivement les uns à la suite des autres dès qu'un panneau d'évaporation 14 est totalement imprégné. A chaque fois qu'un panneau d'évaporation 14 est totalement imprégné, l'organe de commande 57 correspondant est basculé dans la configuration de nettoyage pour permettre un nettoyage du panneau associé 14.
  • De retour à l'état illustré par la figure 4, si le maintien de la valeur de consigne nécessite une réduction de la surface d'échange totale 53, on contrôle le premier débit d'alimentation de sorte que le premier panneau d'évaporation 29 soit partiellement imprégné. Dit autrement, le premier organe de commande 58 est déplacé dans la configuration d'évaporation. Le deuxième organe de commande 60 est maintenu dans la configuration de nettoyage permettant de poursuivre le nettoyage du deuxième panneau d'évaporation 31.
  • Au besoin, s'il est nécessaire de réduire encore la surface d'échange totale 53, par exemple pour qu'elle représente moins de 40% de la surface d'échange totale maximale comme illustré sur la figure 5, on finit par ne plus alimenter le premier organe de dispersion d'eau 43. Le premier organe de commande 58 est dans la configuration fermée.
  • S'il est à nouveau nécessaire d'augmenter la surface d'échange totale 53, de préférence, on contrôle le troisième débit d'alimentation jusqu'à, au besoin, totalement imprégner le troisième panneau d'évaporation 34. Lorsque le troisième panneau d'évaporation 34 est totalement imprégné, on alimente en eau le quatrième panneau d'évaporation 36. Le troisième organe de commande 62 est dans la configuration de nettoyage permettant un nettoyage du troisième panneau 34. Le quatrième organe de commande 64 est dans la configuration d'évaporation.
  • On comprend alors qu'au cours du fonctionnement du système 10 selon l'invention, il est possible de procéder à un nettoyage des différents panneaux d'évaporation poreux 14 du système 10 tout en maintenant un contrôle précis du taux d'humidité et de la température.

Claims (11)

  1. Système (10) d'humidification et de refroidissement d'un flux d'air (F), ledit système (10) comprenant :
    - un châssis (12) délimitant une entrée (28), une sortie (30) et un passage (32) entre l'entrée (28) et la sortie (30), le flux d'air (F) étant destiné à traverser le passage (32),
    - une pluralité de panneaux d'évaporation poreux (14) montés sur le châssis (12) et disposés dans le passage (32), chaque panneau d'évaporation poreux (14) s'étendant principalement selon une direction sensiblement verticale,
    - une pluralité d'organes de dispersion d'eau (18), chaque organe de dispersion (18) étant disposé au-dessus d'un panneau d'évaporation poreux (14) correspondant, chacun des organes de dispersion (18) étant adapté pour disperser un volume d'eau sur le panneau d'évaporation poreux (14) correspondant de sorte à imprégner au moins une portion (54) dudit panneau d'évaporation poreux (14) avec le volume d'eau, la portion imprégnée (54) comprenant au moins une surface d'échange (55) destinée à être en contact avec le flux d'air (F) et à permettre une évaporation du volume d'eau, une surface d'échange totale (53) étant formée par la somme des surfaces d'échange de chacun des panneaux d'évaporation (14),
    - un dispositif d'alimentation (22) comprenant une unité de contrôle (24) configurée pour alimenter en eau les organes de dispersion (18) avec des débits d'alimentation correspondants,
    caractérisé en ce que l'unité de contrôle (24) comprend une pluralité d'organes de commande (57) configurés pour contrôler respectivement chacun des débits d'alimentation, les organe de commande (57) étant contrôlables indépendamment les uns des autres entre au moins une configuration d'évaporation dans laquelle le débit d'alimentation en eau est sensiblement égal à un débit d'eau évaporée par le panneau d'évaporation poreux (14) associé, et une configuration de nettoyage dans laquelle le débit d'alimentation en eau est supérieur à un débit d'eau évaporée par le panneau d'évaporation poreux (14) associé totalement imprégné de sorte à générer un écoulement d'eau (59) hors dudit panneau d'évaporation (14) poreux associé.
  2. Système (10) selon la revendication 1, dans lequel chaque organe de commande (57) est en outre contrôlable entre la configuration d'évaporation, la configuration de nettoyage et une configuration fermée dans laquelle le débit d'alimentation est nul.
  3. Système (10) selon la revendication 1 ou 2, dans lequel, dans la configuration d'évaporation, le débit d'alimentation est contrôlable de sorte à augmenter ou réduire la surface d'échange (55) du panneau d'évaporation poreux (14).
  4. Système selon l'une quelconque des revendications 1 à 3, dans lequel, dans la configuration de nettoyage, le débit d'alimentation en eau est 1,5 fois à 2,5 fois supérieur au débit d'eau évaporée par le panneau d'évaporation (14) associé.
  5. Système selon l'une quelconque des revendications 1 à 4, dans lequel le dispositif d'alimentation (22) comprend une pluralité de lignes d'alimentation en eau (68), chaque ligne d'alimentation (68) étant connectée fluidiquement à un organe de dispersion (18) correspondant, chaque organe de commande (57) étant connecté à une ligne d'alimentation (68) respective.
  6. Système (10) selon l'une quelconque des revendications 1 à 5, dans lequel l'unité de contrôle (24) est configurée pour contrôler les débits d'alimentation en eau en fonction d'une consigne.
  7. Système (10) selon l'une quelconque des revendications 1 à 6, dans lequel le dispositif d'alimentation (22) comprend en outre un réceptacle de récupération (26) d'eau disposé sous les panneaux d'évaporation poreux (14) destiné à collecter l'écoulement d'eau (59).
  8. Procédé de nettoyage d'au moins un panneau d'évaporation poreux (14) d'un système (10) de d'humidification et de refroidissement d'un flux d'air (F) selon l'une quelconque des revendications 1 à 7, le système (10) comprenant au moins un premier et un deuxième panneaux d'évaporation poreux (29, 31), un premier et un deuxième organes de dispersion d'eau (43, 45), et un premier et un deuxième organe de commande (58, 60), le procédé comprenant les étapes suivantes :
    - alimenter en eau le premier organe de dispersion (43), le premier organe de commande (58) étant dans la configuration d'évaporation, le premier panneau d'évaporation (29) étant partiellement imprégné,
    - augmenter la surface d'échange totale (53) en contrôlant le premier débit d'alimentation jusqu'à imprégner la totalité du premier panneau d'évaporation (29),
    - lorsque le premier panneau d'évaporation poreux (29) est totalement imprégné, alimenter en eau le deuxième organe de dispersion (45), le deuxième organe de commande (60) étant dans la configuration d'évaporation,
    - alimenter en eau le premier organe de dispersion (43) avec un premier débit d'alimentation supérieur à un débit d'eau évaporée par le premier panneau d'évaporation poreux (29) totalement imprégné de sorte à générer un écoulement d'eau (59) hors dudit panneau d'évaporation poreux (29), le premier organe de commande (58) étant dans la configuration de nettoyage.
  9. Procédé de nettoyage selon la revendication 8, le système comprenant au moins un troisième panneau (34), un troisième organe de dispersion d'eau (46), et un troisième organe de commande (62), le procédé comprenant les étapes suivantes :
    - augmenter la surface d'échange totale (53) en contrôlant le deuxième débit d'alimentation jusqu'à imprégner la totalité du deuxième panneau d'évaporation (31),
    - lorsque le deuxième panneau d'évaporation poreux (31) est totalement imprégné, alimenter en eau le troisième organe de dispersion (46), le troisième organe de commande (62) étant dans la configuration d'évaporation,
    - alimenter en eau le deuxième organe de dispersion (45) avec un deuxième débit d'alimentation supérieur à un débit d'eau évaporée par le deuxième panneau d'évaporation poreux (31) totalement imprégné de sorte à générer un écoulement d'eau (59) hors dudit panneau d'évaporation poreux (31), le deuxième organe de commande (60) étant dans la configuration de nettoyage.
  10. Procédé de nettoyage selon la revendication 9, comprenant l'étape suivante :
    - réduire la surface d'échange totale (53) en contrôlant le débit d'alimentation en eau du premier organe de dispersion (43) pour réduire la surface d'échange (55) du premier panneau d'évaporation (29).
  11. Procédé de nettoyage selon la revendication 10, le système (10) comprenant au moins un quatrième panneau (36), un quatrième organe de dispersion d'eau (48), et un quatrième organe de commande (64), le procédé comprenant les étapes suivantes :
    - stopper l'alimentation en eau du premier organe de dispersion (43), le premier organe de commande (58) étant dans la position fermée,
    - augmenter la surface d'échange totale (53) en alimentant en eau le quatrième organe de dispersion d'eau (48), le quatrième organe de commande (64) étant dans la configuration d'évaporation.
EP21305910.8A 2021-07-01 2021-07-01 Système d'humidification et de refroidissement d'un flux d'air et procédé de nettoyage d'un panneau d'évaporation d'un tel système Pending EP4113023A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21305910.8A EP4113023A1 (fr) 2021-07-01 2021-07-01 Système d'humidification et de refroidissement d'un flux d'air et procédé de nettoyage d'un panneau d'évaporation d'un tel système
CA3165876A CA3165876A1 (fr) 2021-07-01 2022-06-28 Systeme d'humidification et de refroidissement d'un flux d'air et procede de nettoyage d'un panneau d'evaporation d'un tel systeme
US17/855,771 US20230003401A1 (en) 2021-07-01 2022-06-30 Air Flow Cooling and Humidifying System and Cleaning Method for an Evaporation Panel of such a System

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP21305910.8A EP4113023A1 (fr) 2021-07-01 2021-07-01 Système d'humidification et de refroidissement d'un flux d'air et procédé de nettoyage d'un panneau d'évaporation d'un tel système

Publications (1)

Publication Number Publication Date
EP4113023A1 true EP4113023A1 (fr) 2023-01-04

Family

ID=76920710

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21305910.8A Pending EP4113023A1 (fr) 2021-07-01 2021-07-01 Système d'humidification et de refroidissement d'un flux d'air et procédé de nettoyage d'un panneau d'évaporation d'un tel système

Country Status (3)

Country Link
US (1) US20230003401A1 (fr)
EP (1) EP4113023A1 (fr)
CA (1) CA3165876A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3339902A (en) * 1965-04-29 1967-09-05 Lau Blower Co Humidifier
US3395900A (en) * 1966-06-10 1968-08-06 Munters & Co Gas and liquid contact apparatus
US4145384A (en) * 1977-07-13 1979-03-20 Carrier Corporation Humidifier
EP3271660A1 (fr) * 2015-05-27 2018-01-24 Samsung Electronics Co., Ltd. Appareil d'humidification
KR20190069202A (ko) * 2017-12-11 2019-06-19 주식회사 에스티 천장 매립형 기화식 가습기

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2013201234A1 (en) * 2012-03-08 2013-09-26 Ff Seeley Nominees Pty Ltd Wetting of Evapoartive Cooler Pads
US10955156B1 (en) * 2019-12-11 2021-03-23 Sten Kreuger Air conditioning and humidity control system and methods of making and using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3339902A (en) * 1965-04-29 1967-09-05 Lau Blower Co Humidifier
US3395900A (en) * 1966-06-10 1968-08-06 Munters & Co Gas and liquid contact apparatus
US4145384A (en) * 1977-07-13 1979-03-20 Carrier Corporation Humidifier
EP3271660A1 (fr) * 2015-05-27 2018-01-24 Samsung Electronics Co., Ltd. Appareil d'humidification
KR20190069202A (ko) * 2017-12-11 2019-06-19 주식회사 에스티 천장 매립형 기화식 가습기

Also Published As

Publication number Publication date
CA3165876A1 (fr) 2023-01-01
US20230003401A1 (en) 2023-01-05

Similar Documents

Publication Publication Date Title
EP0488909B1 (fr) Procédé pour réguler le conditionnement d'un gaz et dispositif de conditionnement de gaz
EP3034976B1 (fr) Installation de sechage d'un voile de non-tisse humide
EP2376662B1 (fr) Procédé et section de refroidissement d'une bande métallique en défilement par projection d'un liquide
EP1532411B1 (fr) Dispositif de sechage de produits tels que notamment des boues de stations d epuration
FR2958662A1 (fr) Installation pour le traitement de surface de pieces manufacturees
EP4113023A1 (fr) Système d'humidification et de refroidissement d'un flux d'air et procédé de nettoyage d'un panneau d'évaporation d'un tel système
FR2848875A1 (fr) Procede et dispositif de traitement des effluents de cellule d'electrolyse pour la production d'aluminium
CN104120630B (zh) 一种全自动纸面加湿机
EP2635722A1 (fr) Procédé et dispositif de revêtement de substrats en continu
EP1648372B1 (fr) Installation comprenant une machine de fabrication de comprimes en particulier a usage therapeutique
FR2969268A1 (fr) Tour de refroidissement et procede de regulation associe.
EP0118363A2 (fr) Installation et procédé de chauffage du type à combustion submergée
CA2479369A1 (fr) Procede et dispositif de conduite d'un tunnel cryogenique, tunnel cryogenique associe
FR2963793A1 (fr) Procede et dispositif de confinement des gaz de cuve dans une cuve d'electrolyse de l'aluminium
EP3579964B1 (fr) Dispositif pour la production et le traitement de flux gazeux a travers un volume de liquide regule automatiquement
CN109675772A (zh) 一种自动恒温涂胶烘道
FR2684022A1 (fr) Dispositif permettant l'epuration par lavage, et le conditionnement de l'air ou d'un gaz.
EP3620725B1 (fr) Dispositif de chauffage d'eau pour appareil de désherbage multiposte apte à fournir une température constante en sortie de buse de 95 à 99°c
CN220219940U (zh) 一种瓦楞纸防裂加湿***
WO2024033524A1 (fr) Hotte d'aspiration
DE15569C (de) Neuerungen an Vacuum-Verdampf- und Koch-Apparaten für Zuckersäfte und andere Flüssigkeiten
FR2735207A1 (fr) Procede de lubrification d'organes mecaniques et dispositifs permettant de le mettre en oeuvre
FR3093100A1 (fr) Système de largage d'un liquide
FR3017807A1 (fr) Procede et installation pour le nettoyage et/ou le degraissage de pieces manufacturees au moyen d'un jet de traitement
WO1997030623A1 (fr) Dispositif et procede de mise en hygiene par micronisation d'eau sous vide

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17P Request for examination filed

Effective date: 20221213

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20240422