EP4103521A1 - Procédé et installation de phyto-épuration pour le traitement d'une eau usée - Google Patents

Procédé et installation de phyto-épuration pour le traitement d'une eau usée

Info

Publication number
EP4103521A1
EP4103521A1 EP21704515.2A EP21704515A EP4103521A1 EP 4103521 A1 EP4103521 A1 EP 4103521A1 EP 21704515 A EP21704515 A EP 21704515A EP 4103521 A1 EP4103521 A1 EP 4103521A1
Authority
EP
European Patent Office
Prior art keywords
water
bioreactor
bed
reactor
bio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21704515.2A
Other languages
German (de)
English (en)
Inventor
Philippe Sauvignet
Béatrice HOUSSAIS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Veolia Water Solutions and Technologies Support SAS
Original Assignee
Veolia Water Solutions and Technologies Support SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Veolia Water Solutions and Technologies Support SAS filed Critical Veolia Water Solutions and Technologies Support SAS
Publication of EP4103521A1 publication Critical patent/EP4103521A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/002Grey water, e.g. from clothes washers, showers or dishwashers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/005Black water originating from toilets
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/26Reducing the size of particles, liquid droplets or bubbles, e.g. by crushing, grinding, spraying, creation of microbubbles or nanobubbles
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/301Aerobic and anaerobic treatment in the same reactor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/32Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
    • C02F3/327Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae characterised by animals and plants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • TITLE Phyto-purification process and installation for the treatment of wastewater Technical field
  • the invention relates to the field of methods and installations for the treatment of wastewater.
  • the invention relates to the treatment of urban wastewater.
  • the invention thus finds its application in particular in the field of water reuse.
  • FR2984874B1 proposes a process and an installation for the reuse of wastewater implementing a biological treatment of water in a bioreactor by activated sludge then microfiltration of the water originating from this biological treatment then treatment of part of the filtrate obtained. by reverse osmosis.
  • the other part of the filtrate can be reused in industry or for domestic purposes after having undergone a disinfection step for services that are not very demanding in terms of water quality.
  • the permeate leaving the reverse osmosis unit is subjected to a conditioning treatment by mineralization followed by disinfection and can be used for more demanding services in terms of water quality.
  • This type of technique which combines conventional biological treatment and membrane filtration by reverse osmosis, however has the drawback of being costly to realize and operate. Indeed, it involves in particular the use of aeration devices and reagents of the coagulant and flocculant type, depending on the separation technology used, to carry out the biological treatment, as well as the production of sludge by the latter. which also need to be dealt with at a later date.
  • the mineralization step also consumes chemicals. The associated costs in terms of corresponding equipment and reagents are therefore high.
  • Phyto-purification consists in creating an artificial wetland made up of basins filled with a mineral substrate and planted with plants, in particular macrophytes. These plants are selected for their root system and / or their highly developed rhizomes on which the biomass is fixed. These are mainly emerged macrophytes, such as for example Phragmites australis, Typha latifolia, Scripus Lacustris. Wastewater passes through such ponds, and macrophytes transfer oxygen through their root systems and rhizomes to the bottom of them, providing an environment below the water level that is conducive to leaching.
  • a disadvantage of the use of phyto-purification to purify urban water lies in the surface necessary to implement it.
  • An objective of the present invention is to provide a technique for treating wastewater making it possible to obtain treated water meeting high quality criteria, and thus allowing its reuse to be considered and thus reducing the consumption of water resources.
  • Another object of the present invention is to disclose such a technique which, at least in some embodiments, allows complete reuse of wastewater without any release of waste to the environment.
  • Another objective of the present invention is to provide such a technique which is less costly in energy than the techniques for reusing wastewater known from the prior art.
  • An objective of the present invention is to disclose such a technique which does not produce sludge or odors.
  • Another objective of the invention is to provide an installation for implementing such a method.
  • Another objective is to offer decentralized wastewater treatment which allows water to be recycled for use in sustainable buildings, such as office buildings, hotels, housing estates, "eco-districts” or hamlets with of few natural water resources.
  • a process for the biological treatment of wastewater using a bioreactor comprising a bed of chemically inert aggregate in which macrophytes emerged are rooted, characterized in that it comprises: a preliminary dilution step consisting in diluting the water to be treated according to a dilution ratio between 8 and 50 and preferably between 10 and 20, the organization of food and emptying said bioreactor with water thus diluted, according to tidal cycles lasting less than 2 hours, and preferably less than 1 hour, during each of which at least part of said bed of chemically inert aggregate is depleted and then submerged by said water so as to provide in said bed of chemically inert aggregate successive periods of aeration and non-aeration, a step of evacuating the filtered water, said preliminary dilution step consisting in diluting said water to be treated with water originating at least in part from said process.
  • the term “tidal cycle” therefore means a cycle during which the bioreactor is at least partly filled with diluted water and then emptied thereof.
  • the proposed technique makes it possible to do away with the use of activated sludge and the associated drawbacks, by implementing a phyto-purification step under specific conditions that do not produce an odor and do not require large implantation surfaces.
  • the reduction in the organic matter content of water is essentially effected by the biofilm developing on the surface of the chemically inert aggregate.
  • the roots of macrophytes rooted in the aggregate allow them to filter the water and thus retain some of the suspended matter they contain. Macrophytes also contribute to the reduction of nitrogenous and phosphorous organic matter present in these waters.
  • An important feature of the process lies in the dilution of the water to be treated with water constituted at least in part by treated water. According to the invention, this dilution must be carried out according to a ratio of the volume of dilution water to the volume of waste water of between 8 and 50 and preferably between 10 and 20.
  • Such a dilution according to such a ratio makes it possible to bring to the bio-reactor dilute water little loaded with suspended matter and organic matter, and thus to avoid the clogging of the bed of aggregate and consequently to ensure good aeration of the roots. macrophytes.
  • This dilution step can be carried out with only treated water, or again partly with treated water and partly with make-up water such as rain water.
  • Another important feature of the process according to the invention lies in the mode of feeding and emptying of the bio-reactor according to tidal cycles.
  • Such tidal cycles allow a forced aeration of the aggregate bed with the oxygen of the air present around the aggregates when the water withdraws from it, aeration which promotes the action of microorganisms and therefore the purification of the water.
  • Such cycles thus make it possible to arrange aerobic and anoxic phases within the aggregate bed favorable to the degradation of nitrogen pollution in water.
  • each of these cycles (feed + drain) must last less than 2 hours, preferably less than 1 hour.
  • the bed will be ventilated for 30% to 50% of the duration thereof.
  • the method according to the invention has the advantage of not using aerators.
  • the method is therefore less expensive than the methods of the prior art using such equipment.
  • said process can be supplemented by at least one adsorption step consisting in passing the water drained from said bioreactor over a bed of adsorbent material, and / or by at least one membrane filtration step. consisting of passing the water drained from said bio-reactor or the water coming from said adsorption step over filtration membranes, such as low pressure microfiltration and / or ultrafiltration membranes and / or nanofiltration membranes and / or reverse osmosis membranes.
  • filtration membranes such as low pressure microfiltration and / or ultrafiltration membranes and / or nanofiltration membranes and / or reverse osmosis membranes.
  • the method comprises a stage of dilaceration of the compacted organic matter contained in the water, said dilaceration stage being carried out before, during or after said preliminary dilution stage.
  • the purpose of such a shredding step is to break down the compacted organic matter (such as faeces) present, if applicable, in the urban wastewater to be treated and therefore to bring more homogeneous water into the bio-reactor that is less likely to clog. the bed of chemically inert aggregate.
  • the method comprises a final step of disinfecting the water coming from said at least one filtration step.
  • the objective of such disinfection is to obtain, at the end of the process, water of sufficient quality to allow its reuse.
  • different ways of organizing the supply and the emptying of the latter can be envisaged.
  • the supply of said bio-reactor is clocked and the emptying of the latter is continuous.
  • timed feed is understood to mean the fact that the feed to the reactor with dilute water is not carried out with a constant flow rate during the tidal cycle. Thus, for example, the feed can be carried out first at a given rate and then stopped.
  • the supply of said bioreactor is continuous and the emptying of said bioreactor is timed.
  • timed emptying is understood to mean the fact that the emptying of the reactor is not carried out at a constant rate during the tidal cycle. Thus, for example, the emptying can be carried out first at a given flow rate and then stopped.
  • the process according to the invention will preferably be carried out by keeping an upper zone of the bed of chemically inert aggregate dry, the supply of the bioreactor with dilute water being carried out under said zone. superior.
  • a dry zone makes it possible to further reduce the risk of the appearance of bad odors and of larval organisms such as mosquitoes.
  • the dilution step is carried out using water originating from said bioreactor and / or from said adsorption step and / or from said membrane filtration step.
  • the invention also relates to an installation for the biological treatment of wastewater with the method described above, characterized in that it comprises a dilution tank, a bio-reactor comprising a basin accommodating a bed of chemically inert aggregate and macrophytes emerged rooted in said aggregate, means for feeding said bio-reactor from the dilution tank and means for emptying said bio-reactor according to tidal cycles, and means for conveying part of the treated water to said dilution tank.
  • the term “dilution tank” is understood to mean a simple tank making it possible to carry out a dilution.
  • said chemically inert aggregate forming the bed of the bioreactor consists of beads having an average diameter of between 5 mm and 50 mm and preferably between 5 and 10 mm.
  • Such a size of beads optimizes the volume of air that can be lodged in the interstices separating them and facilitates the emptying of the bio- reactor.
  • said balls are balls of expanded clay. This material has the advantage of being light, of retaining its properties over time, and of having a very high specific surface on which such a large surface of biofilm can form, allowing the purification of water.
  • the installation preferably further comprises an adsorption unit on an adsorbent material such as activated carbon supplied with water coming from said bioreactor and / or at least one membrane filtration unit for water coming from said bioreactor. of said bioreactor or of said adsorption unit.
  • an adsorption unit on an adsorbent material such as activated carbon supplied with water coming from said bioreactor and / or at least one membrane filtration unit for water coming from said bioreactor. of said bioreactor or of said adsorption unit.
  • Such equipment makes it possible to further reduce the content of organic matter and suspended matter in the treated water.
  • the installation further comprises means for shredding compact organic matter such as faeces which may be contained in said waste water.
  • such means could be constituted by a macerator pump.
  • the destructuring of the compact organic materials made possible by such means leads to obtaining wastewater that is more homogeneous and therefore less likely to block the interstices existing between the granulate balls.
  • the installation further comprises at least one unit for disinfecting the filtered water coming from said at least one filtration unit.
  • Such a unit makes it possible to obtain water of sufficient bacteriological quality to allow its reuse as water for human consumption, in particular as drinking water. It is also possible to envisage the reuse of such water for watering gardens or else for supplying devices leading to gray water such as washing machines or dishwashers.
  • said means for supplying said bioreactor comprise a supply line provided with a valve and said means for emptying said bioreactor comprise an evacuation line provided in the lower part of the bioreactor.
  • said means for supplying said bioreactor comprise a supply line and said means for emptying said bioreactor comprise an evacuation line provided with a pump provided in the lower part of said bioreactor.
  • the bio-reactor of the installation according to the invention is provided on the roof of a building, the macrophytes emerging from the latter then forming a green cover of said building.
  • the green roof technique can make it possible on a large scale to reduce the negative impacts linked to climate change. On a city scale, it improves air quality, regulates temperature, and also optimizes rainwater management. It also eliminates the need for irrigation and the supply of nutrients to the vegetation, saves energy costs and provides acoustic insulation for buildings.
  • Figure 1 is a sectional view of an embodiment of a bioreactor that can be used in the context of an installation according to the invention.
  • FIG. 2 is a diagram of an installation according to the invention incorporating such a bioreactor.
  • a bioreactor 4 comprises a basin 10 having a depth which may be between 20 cm and 1 m and preferably between 30 cm and 50 cm.
  • a layer of draining gravel 11 can be placed in the bottom of this basin 10 over a height of between 0 and 10 cm.
  • the bio-reactor 4 comprises a bed 12 of chemically inert mineral aggregate, here expanded clay balls having a diameter of 5 mm to 10 mm, provided above the layer of gravel over a height of between 20 and 90 cm .
  • Emerged macrophytes 13 are rooted in said bed 12 of aggregate.
  • Means 14 for supplying the bio-reactor 4 with water comprise a simple pipe 14a opening into the bed 12 of aggregate at a distance of approximately 3 cm to 5 cm below the surface 12a thereof so as to provide a zone hair 12b across the top of it.
  • Means 15 for emptying the bioreactor 4 for their part comprise a pipe 15a allowing the evacuation of the treated water by gravity.
  • the installation according to the invention comprises a dilution tank 1 capable of receiving on the one hand waste water by means of supply means 2 comprising a pipe provided with a macerator pump 2a and d '' on the other hand the dilution water via a recycling pipe B.
  • the installation furthermore comprises the bio-reactor 4 described above with reference to FIG. 1, and a pipe allowing it to bring the water coming from the dilution tank 1 into the latter.
  • the installation also comprises an adsorption unit 5 comprising a bed of granular activated carbon, and a pipe 4a making it possible to bring the water coming from the bioreactor 4 into the latter.
  • the installation also includes a chlorination or ozonation unit 6 provided downstream of the adsorption unit 5 and a pipe 5a provided with a pump (not shown) for conveying the filtered water from unit 5 to that -this.
  • the installation also comprises a first membrane filtration unit 7 comprising low pressure microfiltration and / or ultrafiltration membranes and a pipe 6a provided with a pump (not shown) for conveying the chlorinated or ozonated water in the unit 6. to this one.
  • the installation also includes a second membrane filtration unit 8 comprising high pressure nanofiltration and / or reverse osmosis membranes and a pipe 7a provided with a pump (not shown) for conveying the water coming from the first filtration unit. membranes 7 in the second membrane filtration unit 8 towards it.
  • the installation also includes a disinfection unit 9 provided downstream of the reverse osmosis stage 8 and a pipe 8a provided with a pump (not shown) for conveying the water filtered through a membrane into the low membrane filtration unit. press 7 towards it.
  • the installation comprises a pipe 9a for discharging treated water.
  • the pipe S for supplying the tank 1 with dilution water may be connected either to the pipe 4a, or to the pipe 5a, or to the pipe 6a, or to the pipe 7a.
  • a level probe lb slaved to a set of automatic valves (not shown) is provided in the dilution tank 1 to control the dilution of the wastewater by the dilution water conveyed through the pipe B. Thanks to this level probe lb , the. water drained from the bioreactor 4, from the adsorption unit 5, or from the oxidation unit 6, or from the low pressure filtration unit 7 are directed into the dilution tank 1 when the water level in the dilution tank 1 detected by this probe is below a predetermined level. The treated water is directed to the units considered when the water level in the dilution tank 1 is greater than or equal to this predetermined level.
  • the wastewater conveyed by the macerator pump 2a, and whose compacted organic matter (faeces) have been destructured by the action thereof, are diluted in the dilution tank with l dilution water according to a ratio of the volume of dilution water to the volume of wastewater between 8 and 50 and preferably between between 10 and 20.
  • the diluted water is conveyed from the dilution tank 1 and admitted by the means 14 into the basin 10 of the bioreactor 4 below the dry zone 12b of the bed 12 of granulate beads.
  • the pump 15b of the emptying means is not actuated.
  • the water gradually rises in the bed 12.
  • the pump 15b of the emptying means is, after a predetermined time, actuated to empty the basin 10 faster than it fills.
  • the bed 12 is thus irrigated and then exposed to the air according to a tidal cycle the total duration of which is less than 2 hours, preferably less than one hour.
  • Such a cycle makes it possible to ensure forced aeration of the bed of clay balls and the bringing into contact of the microorganisms contained in this bed with the oxygen contained in the air.
  • the pump 15b can again be stopped and another tidal cycle started.
  • the basin is therefore fed and emptied according to a repeating tidal cycle.
  • this cycle lasts less than two hours, preferably less than an hour.
  • the bed is depleted for a period representing 30% to 50% of the total duration of the cycle.
  • each cycle having a duration of less than two hours, preferably one hour the bed is never in an anaerobic condition. The development of anaerobic biomass which generates bad odors is thus prevented.
  • the water passing through the reactor is thus filtered by the roots and rhizomes of the macrophytes and biologically purified mainly by the microorganisms developing in bed 12.
  • the water coming from the bioreactor 4 is then conveyed by line 4a to the upper part of the filtration unit 5 containing a bed of powdered activated carbon and passes through the latter before being recovered in its lower part.
  • This passage adsorbs dissolved organic matter and micropollutants that may be present in the water coming from the bioreactor 4.
  • the water coming from the activated carbon filtration unit 5 is then conveyed to the unit 6 via the pipe 5a where it undergoes oxidation.
  • the object of this oxidation is to prevent the clogging of the membranes used in the low pressure membrane filtration unit 7 to which the water is conveyed from the oxidation unit 6 via the pipe 6a.
  • the filtered water coming from the low pressure membrane filtration unit 7 is then routed through line 7a into the high pressure membrane filtration unit (nanofiltration and / or reverse osmosis) 8.
  • the filtered water coming from the high pressure membrane filtration unit 8 is then conveyed through the pipe 8a to the final disinfection unit.
  • the disinfected water is evacuated through line 9a.
  • This water is of sufficient quality to allow its use, for example for the operation of flushing water or supply water for washing machines or washing machines. dishes, or even for use as drinking water when regulatory provisions allow.
  • the process was tested with wastewater having the following composition: a suspended solids content (SS) of between S00 and 1000 mg / L, a COD (chemical oxygen demand) of between 200 and 500 mg O2 / L, an organic nitrogen content (NTK) of between 8 and 35 mg / L, and a total phosphorus content of 1 to 5 mg / L.
  • SS suspended solids content
  • COD chemical oxygen demand
  • NNK organic nitrogen content
  • the bioreactor used may correspond to that shown in FIG. 1 but with the modifications consisting in removing the pump 15b from the emptying means and in providing a supply valve on the pipe. 14a means for supplying diluted water.
  • the repetition of the tidal cycles will be created by intermittently closing this supply valve.
  • the basin of the bio-reactor will be able to empty and the bed of aggregate will thus be aerated.
  • the feed valve is reopened, the aggregate bed will again be submerged.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

Procédé et installation de traitement biologique d'eaux usées mettant en œuvre un bio- réacteur (4) comprenant un lit (12) de granulat chimiquement inerte dans lequel des macrophytes émergés (13) sont enracinés, caractérisé en ce qu'il comprend : - une étape préliminaire de dilution consistant à diluer des eaux à traiter selon un ratio de dilution compris entre 8 et 50 et préférentiellement entre 10 et 20, - l'organisation de l'alimentation et de la vidange dudit bio-réacteur (4) en eaux ainsi diluées selon des cycles de marée d'une durée inférieure à deux heures, préférentiellement inférieure à une heure, durant chacun desquels au moins une partie dudit lit (12) de granulat chimiquement inerte se trouve dénoyé puis submergé par lesdites eaux de façon à ménager dans ledit lit (12) de granulat chimiquement inerte des périodes successives d'aération et de non aération, - une étape d'évacuation des eaux traitées, ladite étape préliminaire de dilution consistant à diluer lesdites eaux à traiter avec des eaux provenant au moins en partie dudit procédé.

Description

DESCRIPTION
TITRE : Procédé et installation de phyto-épuration pour le traitement d'une eau usée Domaine technique
L'invention concerne le domaine des procédés et installation pour le traitement des eaux usées.
Plus particulièrement, l'invention concerne le traitement des eaux usées urbaines. L'invention trouve notamment ainsi son application dans le domaine de la réutilisation des eaux.
Elle peut ainsi être mise en oeuvre pour réaliser des stations décentralisées d'assainissement semi-collectif ou non collectif, avec optionnellement la possibilité de réutiliser l'eau produite. Ainsi, la présente invention s'inscrit dans une démarche de développement durable.
Art antérieur
Il a déjà été proposé dans l'état de la technique des procédés visant à traiter les eaux usées en vue de leur réutilisation à titre d'eau de consommation. Bien qu'une telle réutilisation, à tout le moins à titre d'eau potable, se heurte encore à des contraintes règlementaires et administratives dans de nombreux états, il ne fait aucun doute qu'elle s'inscrit au rang des solutions qui permettront dans l'avenir de répondre au défi croissant de la gestion des ressources en eau en vue de satisfaire les besoins toujours croissants de la population mondiale.
Ainsi, par exemple, FR2984874B1 propose un procédé et une installation de réutilisation d'eaux usées mettant en oeuvre un traitement biologique des eaux dans un bioréacteur par boues activées puis microfiltration des eaux provenant de ce traitement biologique puis traitement d'une partie du filtrat obtenu par osmose inverse. L'autre partie du filtrat peut être réutilisée dans l'industrie ou à titre domestique après avoir subi une étape de désinfection pour des services peu exigeants quant à la qualité d'eau. Le perméat sortant de l'unité d'osmose inverse est quant à lui soumis à un traitement de conditionnement par minéralisation suivie d'une désinfection et peut être utilisé pour des services plus exigeants quant à la qualité de l'eau. Ce type de technique, qui combine traitement biologique classique et filtration membranaire par osmose inverse, présente toutefois l'inconvénient d'être coûteuse à réaliser et à exploiter. En effet, elle implique notamment l'utilisation de dispositifs d'aération et de réactifs de type coagulants et floculants, en fonction de la technologie de séparation utilisée, pour mener à bien le traitement biologique, ainsi que la production de boues par celui-ci qui doivent aussi ultérieurement être traitées. L'étape de minéralisation est également consommatrice de produits chimiques. Les coûts associés en termes d'équipements correspondants et de réactifs sont donc élevés.
Il a été proposé dans l'état de la technique concernant le traitement des eaux en général de remplacer les étapes classiques de traitement biologique par boues activés par une phyto-épuration dans des bassins conçus à cet effet. La phyto-épuration consiste à créer une zone humide artificielle constituée de bassins remplis d'un substrat minéral et plantés de végétaux, notamment des macrophytes. Ces végétaux sont sélectionnés pour leur système racinaire et/ou leurs rhizomes très développés sur lesquels se fixe la biomasse. Il s'agit principalement de macrophytes émergés, tels que par exemple Phragmites australis, Typha latifolia, Scripus Lacustris. Les eaux usées passent à travers de tels bassins et les macrophytes transfèrent l'oxygène à travers leurs systèmes racinaires et leurs rhizomes jusqu'au fond de ceux-ci en assurant la formation sous le niveau de l'eau d'un environnement propice à l'établissement de micro-organismes aérobies qui assurent la dégradation de la pollution carbonée, de la pollution azotée et une partie du phosphore. Une petite quantité des nutriments, en particuliers l'azote sous forme de nitrates et le phosphate est aussi absorbée par les plantes. Une technique de traitement d'eau mettant en œuvre une telle phyto-épuration est par exemple décrite dans EP1414756B1.
Un inconvénient de l'utilisation de la phyto-épuration pour assainir les eaux urbaines réside dans la surface nécessaire pour mettre en œuvre celle-ci.
Un autre inconvénient réside dans la production d'odeurs provenant de la dégradation biologique de la matière organique contenue dans les eaux usées. En effet, des conditions d'anaérobiose se créent dans le fond des bassins, conditions qui conduisent à la production de gaz malodorants (ammoniac, sulfure d'hydrogène, mercaptans notamment) qui passent dans l'atmosphère.
Objectifs de l'invention Un objectif de la présente invention est de proposer une technique de traitement des eaux usées permettant d'obtenir une eau traitée respectant des critères de qualité élevés, et permettant ainsi d'envisager sa réutilisation et permettant ainsi de réduire la consommation des ressources en eau.
Un autre objectif de la présente invention est de divulguer une telle technique qui, au moins dans certains modes de réalisation, permet une réutilisation complète des eaux usées sans aucun rejet de déchets dans l'environnement.
Encore un objectif de la présente invention, est de proposer une telle technique moins coûteuse en énergie que les techniques de réutilisation des eaux usées connues de l'art antérieur.
Un objectif de la présente invention est de divulguer une telle technique ne produisant pas de boues ni d'odeurs.
Un autre objectif de l'invention est de proposer une installation pour la mise en oeuvre d'un tel procédé.
Un autre objectif est de proposer un traitement des eaux usées décentralisé qui permet un recyclage de l'eau pour un usage dans des bâtiments durables, tels que immeubles de bureaux, des hôtels, des lotissements, des « éco-quartiers » ou des hameaux disposant de peu de ressources naturelles en eau.
Description de l'invention
Ces objectifs, ainsi que d'autres qui apparaîtront par la suite, sont atteints grâce à l'invention qui concerne un procédé de traitement biologique d'eaux usées mettant en oeuvre un bio-réacteur comprenant un lit de granulat chimiquement inerte dans lequel des macrophytes émergés sont enracinés, caractérisé en ce qu'il comprend : une étape préliminaire de dilution consistant à diluer des eaux à traiter selon un ratio de dilution compris entre 8 et 50 et préférentiellement entre 10 et 20, l'organisation de l'alimentation et de la vidange dudit bio-réacteur en eaux ainsi diluées, selon des cycles de marée d'une durée inférieure à 2 heures, et préférentiellement inférieure à 1 heure, durant chacun desquels au moins une partie dudit lit de granulat chimiquement inerte se trouve dénoyé puis submergé par lesdites eaux de façon à ménager dans ledit lit de granulat chimiquement inerte des périodes successives d'aération et de non aération, une étape d'évacuation des eaux filtrées, ladite étape préliminaire de dilution consistant à diluer lesdites eaux à traiter avec des eaux provenant au moins en partie dudit procédé.
On entend donc par « cycle de marée, » un cycle pendant lequel le bio-réacteur est au moins en partie rempli d'eaux diluées puis vidangé de celles-ci. Selon l'invention, la technique proposée permet de s'affranchir de l'utilisation de boues activées et des inconvénients associés, en mettant en œuvre une étape de phyto-épuration dans des conditions particulières ne produisant pas d'odeur et ne nécessitant pas de surfaces d'implantation importantes. L'abattement de la teneur des eaux en matières organiques est essentiellement effectué par le biofilm se développant à la surface du granulat chimiquement inerte. Les racines des macrophytes enracinées dans le granulat permettent quant à elles de filtrer les eaux et ainsi d'en retenir une partie des matières en suspension qu'elles contiennent. Les macrophytes concourent également à l'abattement de la matière organique azotée et phosphorée présentes dans ces eaux.
Une particularité importante du procédé réside dans la dilution des eaux à traiter par des eaux constituées au moins en partie par des eaux traitées. Selon l'invention, cette dilution doit être effectuée selon un ratio du volume d'eau de dilution sur le volume d'eaux usées compris entre 8 et 50 et préférentiellement entre 10 et 20.
Une telle dilution selon un tel ratio permet d'amener au bio-réacteur des eaux diluées peu chargées en matières en suspension et en matière organique, et d'éviter ainsi le colmatage du lit de granulat et corollairement d'assurer la bonne aération des racines des macrophytes. Cette étape de dilution pourra être effectuée avec seulement de l'eau traitée, ou encore en partie avec de l'eau traitée et en partie avec de l'eau d'appoint telle que de l'eau de pluie.
Une autre particularité importante du procédé selon l'invention réside dans le mode d'alimentation et de vidange du bio-réacteur selon des cycles de marée. De tels cycles de marée permettent une aération forcée du lit de granulat avec l'oxygène de l'air présent autour des granulats lorsque l'eau s'en retire, aération qui favorise l'action des micro organismes et donc l'épuration des eaux. De tels cycles permettent ainsi de ménager des phases d'aérobie et d'anoxie au sein du lit granulat propice à la dégradation de la pollution azotée des eaux. Selon l'invention chacun de ces cycles (alimentation + vidange) doit être d'une durée inférieure à 2 heures, préférentiellement inférieure à 1 heure. De cette manière, le lit de granulat et les racines des macrophytes se trouvent suffisamment souvent aérés pour oxygéner efficacement la biomasse qu'ils accueillent et optimiser ainsi la dégradation de la matière organique contenue dans les eaux. De tels cycles (alimentation + vidange) et leur durée inférieure à 2 heures, préférentiellement inférieure à 1 heure, permettent aussi d'éviter l'apparition de zones anaérobies dans le lit de granulat propices au dégagement de mauvaises odeurs.
Préférentiellement, durant chaque cycle le lit se trouvera aéré pendant 30 % à 50 % de la durée de celui-ci.
On notera aussi que le procédé selon l'invention présente l'avantage de ne pas mettre en oeuvre d'aérateurs. Le procédé est donc moins coûteux que les procédés de l'art antérieur mettant en oeuvre de tels équipements.
Selon une variante préférentielle de l'invention, ledit procédé peut être complété par au moins une étape d'adsorption consistant à faire transiter les eaux vidangées dudit bio réacteur sur un lit de matériau adsorbant, et/ou par au moins une étape de filtration membranaire consistant faire transiter les eaux vidangées dudit bio-réacteur ou les eaux provenant de ladite étape d'adsorption sur des membranes de filtration, telles que de membranes basses pression de microfiltration et/ou d'ultrafiltration et/ou des membranes de nanofiltration et/ou des membranes d'osmose inverse.
Selon une variante préférentielle de l'invention, le procédé comprend une étape de dilacération des matières organiques compactées contenues dans les eaux, ladite étape de dilacération étant effectuée avant, pendant ou après ladite étape préliminaire de dilution. Une telle étape de dilacération a pour objectif de déstructurer les matières organiques compactées (telle que les fèces) présentes le cas échéant dans les eaux usées urbaines à traiter et donc d'amener dans le bio-réacteur des eaux plus homogènes et moins susceptibles de colmater le lit de granulat chimiquement inerte.
Selon une autre variante de l'invention, le procédé comprend une étape finale de désinfection des eaux provenant de ladite au moins une étape de filtration. Une telle désinfection a pour objectif d'obtenir en fin de procédé une eau de qualité suffisante pour permettre sa réutilisation. Afin d'obtenir les cycles de marée dans le bio-réacteur, différentes façons d'organiser l'alimentation et la vidange de celui-ci peuvent être envisagées.
Ainsi selon une variante, l'alimentation dudit bio-réacteur est cadencée et la vidange de celui-ci est continue. On entend par « alimentation cadencée » le fait que l'alimentation du réacteur en eaux diluées n'est pas effectuée avec un débit constant durant le cycle de marée. Ainsi, par exemple, l'alimentation peut être effectuée d'abord à un débit donné puis stoppée.
Selon une autre variante, l'alimentation dudit bio-réacteur est continue et la vidange dudit bio-réacteur est cadencée. On entend par « vidange cadencée » le fait que la vidange du réacteur n'est pas effectuée selon un débit constant durant le cycle de marée. Ainsi, par exemple, la vidange peut être effectuée d'abord à un débit donné puis stoppée.
Quelle que soit la façon choisie pour organiser les cycles de marée, le procédé selon l'invention sera préférentiellement mené en maintenant sèche une zone supérieure du lit de granulat chimiquement inerte, l'alimentation du bio-réacteur en eaux diluées se faisant sous ladite zone supérieure. Une telle zone sèche permet de diminuer encore le risque d'apparition de mauvaises odeurs et d'organismes larvaires tels que les moustiques.
Selon une variante préférentielle de l'invention, l'étape de dilution est effectuée en utilisant de l'eau provenant dudit bio-réacteur et/ou de ladite étape d'adsorption et/ou de ladite étape de filtration membranaire. L'invention concerne aussi une installation pour le traitement biologique d'eaux usées avec le procédé décrit ci-dessus caractérisée en ce qu'elle comprend une bâche de dilution, un bio-réacteur comprenant un bassin accueillant un lit de granulat chimiquement inerte et des macrophytes émergés enracinés dans ledit granulat, des moyens d'alimentation dudit bio-réacteur depuis la bâche de dilution et des moyens de vidange dudit bio-réacteur selon des cycles de marée, et des moyens d'acheminement d'une partie des eaux traitées vers ladite bâche de dilution. Au sens de la présente invention, on entend par « bâche de dilution » un simple bac permettant d'effectuer une dilution.
Selon une variante préférentielle, ledit granulat chimiquement inerte formant le lit du bio réacteur est constitué de billes présentant un diamètre moyen compris entre 5 mm et 50 mm et préférentiellement entre 5 et 10 mm. Une telle taille de billes optimise le volume d'air pouvant se loger dans les interstices séparant celles-ci et facilite la vidange du bio- réacteur. Également préférentiellement, lesdites billes sont des billes d'argile expansée. Ce matériau présente l'avantage d'être léger, de conserver ses propriétés dans le temps, et de posséder une surface spécifique très élevée sur laquelle peut se former une surface aussi importante de biofilm permettant l'épuration de l'eau. Selon une variante de l'invention, l'installation comprend préférentiellement de plus une unité d'adsorption sur un matériau adsorbant tel que du charbon actif alimentée en eaux provenant dudit bio-réacteur et/ou au moins une unité de filtration membranaire des eaux provenant dudit bio-réacteur ou de ladite unité de d'adsorption.
De tels équipements permettent d'abattre encore la teneur en matières organiques et en matières en suspensions des eaux traitées.
Selon une variante préférentielle de l'invention, l'installation comprend de plus des moyens de dilacération des matières organiques compactes telles que les fèces pouvant être contenues dans lesdites eaux usées. Avantageusement, de tels moyens pourront être constitués par une pompe dilacératrice. La déstructuration des matières organiques compactes permise par de tels moyens conduit à l'obtention d'eaux usées plus homogènes et donc moins susceptibles de boucher les interstices existant entre les billes de granulat. Selon une variante, l'installation comprend de plus au moins une unité de désinfection des eaux filtrées provenant de ladite au moins une unité de filtration. Une telle unité permet l'obtention d'une eau de qualité bactériologique suffisante pour autoriser sa réutilisation en tant qu'eau de consommation humaine, notamment en tant qu'eau potable. On peut aussi envisager la réutilisation d'une telle eau pour l'arrosage de jardins ou encore pour alimenter des appareils conduisant à des eaux grises tels que les lave-linges ou des lave- vaisselles.
Selon une variante, lesdits moyens d'alimentation dudit bio-réacteur comprennent une canalisation d'alimentation pourvue d'une vanne et lesdits moyens de vidange dudit bio réacteur comprennent une canalisation d'évacuation prévue dans la partie inférieure du bio-réacteur.
Selon une autre variante, lesdits moyens d'alimentation dudit bio-réacteur comprennent une canalisation d'alimentation et lesdits moyens de vidange dudit bio-réacteur comprennent une canalisation d'évacuation pourvue d'une pompe prévue dans la partie inférieure dudit bio-réacteur. Également selon une variante, le bio-réacteur de l'installation selon l'invention est prévu sur la toiture d'un bâtiment, les macrophytes émergés de celui-ci formant alors une couverture végétalisée dudit bâtiment.
La technique des toitures végétalisées peut permettre à grande échelle de réduire les impacts négatifs liés aux évolutions climatiques. A l'échelle de la ville, elle permet d'améliorer la qualité de l'air, de réguler la température, et aussi d'optimiser la gestion des eaux pluviales. Elle rend aussi inutile l'irrigation et l'apport de nutriments à la végétation, permet une économie de dépenses énergétiques et procure une isolation acoustique des bâtiments. Figures
L'invention, ainsi que les différents avantages qu'elle présente, seront mieux compris grâce à la description qui va suivre d'un mode non limitatif de réalisation de celle-ci donné en référence aux figures dans lesquelles :
[Fig. 1] La figure 1 est un une vue en coupe d'un mode de réalisation d'un bio-réacteur pouvant être utilisé dans le cadre d'une installation selon l'invention.
[Fig. 2] La figure 2 est un schéma d'une installation selon l'invention intégrant un tel bio réacteur.
Description d'un mode de réalisation
Installation En référence à la figure 1, un bio-réacteur 4 comprend un bassin 10 présentant une profondeur pouvant être comprise entre 20 cm et lm et préférentiellement entre 30 cm et 50 cm. Une couche de graviers drainants 11 peut être disposée dans le fond de ce bassin 10 sur une hauteur comprise entre 0 et 10 cm. Le bio-réacteur 4 comprend un lit 12 de granulat minéral chimiquement inerte, ici des billes d'argile expansée présentant un diamètre de 5 mm à 10 mm, prévu au-dessus de la couche de graviers sur une hauteur comprise entre 20 et 90 cm. Des macrophytes émergés 13 sont enracinées dans ledit lit 12 de granulat.
Des moyens d'alimentation 14 du bio-réacteur 4 en eaux comprennent une simple canalisation 14a débouchant dans le lit 12 de granulat à une distance d'environ 3 cm à 5 cm sous la surface 12a de celui-ci de façon à ménager une zone sèche 12b dans la partie supérieure de celui-ci. Des moyens de vidange 15 du bio-réacteur 4 comprennent quant à eux une canalisation 15a permettant une évacuation des eaux traitées de façon gravitaire.
En référence à la figure 2, l'installation selon l'invention comprend une bâche de dilution 1 apte à recevoir d'une part des eaux usées grâce à des moyens d'amenée 2 comprenant une canalisation pourvue d'une pompe dilacératrice 2a et d'autre part de l'eau de dilution par une canalisation de recyclage B.
L'installation comprend par ailleurs le bio-réacteur 4 décrit ci-dessus en référence à la figure 1, et une canalisation la permettant d'amener les eaux provenant de la bâche de dilution 1 dans celui-ci. L'installation comprend aussi une unité d'adsorption 5 comprenant un lit de charbon actif en grains, et une canalisation 4a permettant d'amener les eaux provenant du bio-réacteur 4 dans celui-ci.
L'installation comprend aussi une unité de chloration ou d'ozonation 6 prévue en aval de l'unité d'adsorption 5 et une canalisation 5a pourvue d'une pompe (non représentée) pour acheminer les eaux filtrées de l'unité 5 vers celle-ci.
L'installation comprend aussi une première unité de filtration membranaire 7 comprenant des membranes basse pression de microfiltration et/ou d'ultrafiltration et une canalisation 6a pourvue d'une pompe (non représentée) pour acheminer les eaux chlorées ou ozonées dans l'unité 6 vers celle-ci. L'installation comprend aussi une seconde unité de filtration membranaire 8 comprenant des membranes hautes pression de nanofiltration et/ou d'osmose inverse et une canalisation 7a pourvue d'une pompe (non représentée) pour acheminer les eaux provenant de la première unité de filtration membranaires 7 dans la seconde unité de filtration membranaire 8 vers celle-ci. L'installation comprend aussi une unité de désinfection 9 prévue en aval de l'étape d'osmose inverse 8 et une canalisation 8a pourvue d'une pompe (non représentée) pour acheminer les eaux filtrées sur membrane dans l'unité de filtration membranaire basse pression 7 vers celle-ci.
Enfin, l'installation comprend une canalisation 9a d'évacuation d'eau traitée. Selon les modes de réalisation, la canalisation S d'alimentation de la bâche 1 en eau de dilution pourra être reliée soit à la canalisation 4a, soit à la canalisation 5a, soit à la canalisation 6a, soit à la canalisation 7a.
Une sonde de niveau lb asservie à un jeu de vannes automatiques (non représenté) est prévue dans la bâche de dilution 1 pour contrôler la dilution des eaux usées par l'eau de dilution acheminée par la canalisation B. Grâce à cette sonde de niveau lb, les. eaux vidangées du bioréacteur 4, de l'unité d'adsorption 5, ou de l'unité d'oxydation 6, ou de l'unité de filtration basse pression 7 sont dirigées dans la bâche de dilution 1 lorsque le niveau des eaux dans la bâche de dilution 1 détecté par cette sonde est inférieur à un niveau prédéterminé. Les eaux traitées sont dirigées vers les unités considérées lorsque le niveau des eaux dans la bâche de dilution 1 est supérieur ou égal à ce niveau prédéterminé. Procédé
Lors d'une première étape de procédé, les eaux usées acheminées par la pompe dilacératrice 2a, et dont les matières organiques compactées (fèces) ont été déstructurées par l'action de celle-ci, sont diluées dans la bâche de dilution par de l'eau de dilution selon un ratio du volume d'eau de dilution sur le volume d'eaux usées compris entre 8 et 50 et préférentiellement entre compris entre 10 et 20.
Les eaux diluées sont acheminées de la bâche de dilution 1 et admise par les moyens 14 dans le bassin 10 du bio-réacteur 4 en dessous de la zone sèche 12b du lit 12 de billes de granulat. Parallèlement, la pompe 15b des moyens de vidange n'est pas actionnée. Les eaux montent progressivement dans le lit 12. La pompe 15b des moyens de vidange est, après un temps prédéterminé, actionnée pour vider le bassin 10 plus vite qu'il ne se remplit. Le lit 12 se trouve ainsi irrigué puis exposé à l'air selon un cycle de marée dont la durée totale est inférieure à 2 heures, préférentiellement inférieure à une heure. Un tel cycle permettant d'assurer une aération forcée du lit de billes d'argile et la mise en contact des micro-organismes contenus dans ce lit avec l'oxygène contenu dans l'air. Après un cycle, la pompe 15b peut de nouveau être stoppée et un autre cycle de marée entamée.
L'alimentation et la vidange du bassin se font donc selon un cycle de marée qui se répète. En pratique ce cycle est d'une durée inférieure à deux heures, préférentiellement inférieure à une heure. Au cours de chaque cycle, le lit se trouve dénoyé durant une durée représentant 30 % à 50 % de la durée totale du cycle.
La répétition des cycles de marée crée une alternance de conditions aérobies et anoxiques permettant à la biomasse de dégrader non seulement la pollution carbonée des eaux mais aussi leur pollution azotée.
De plus, chaque cycle ayant une durée inférieure à deux heures, préférentiellement à une heure, le lit ne se trouve jamais en condition d'anaérobiose. Le développement de biomasse anaérobie génératrice de mauvaises odeurs est ainsi empêché.
Les eaux transitant dans le réacteur sont ainsi filtrées par les racines et rhizomes des macrophytes et épurées biologiquement essentiellement par les micro-organismes se développant dans le lit 12.
On notera que l'absence d'un niveau d'eau au-dessus du lit 12 empêche le développement des algues en surface, la présence des moustiques et le dégagement d'odeurs.
Les eaux provenant du bio-réacteur 4 sont ensuite acheminées par la canalisation 4a dans la partie supérieure de l'unité de filtration 5 renfermant un lit de charbon actif en poudre et transitent dans celle-ci avant d'être récupérées dans sa partie inférieure. Ce passage permet d'adsorber les matières organiques dissoutes et les micropolluants pouvant être présents dans les eaux provenant du bio-réacteur 4.
Les eaux provenant de l'unité de filtration sur charbon actif 5 sont ensuite acheminées vers l'unité 6 par la canalisation 5a où elles subissent une oxydation. Cette oxydation a pour objet de prévenir le colmatage des membranes mises en oeuvre dans l'unité de filtration membranaire basse pression 7 vers laquelle les eaux sont acheminées depuis l'unité d'oxydation 6 par la canalisation 6a.
Les eaux filtrées provenant de l'unité de filtration membranaire basse pression 7 sont ensuite acheminées par la canalisation 7a dans l'unité de filtration membranaire haute pression (nanofiltration et/ou osmose inverse) 8.
Les eaux filtrées provenant de l'unité de filtration membranaire haute pression 8 sont ensuite acheminées par la canalisation 8a dans l'unité de désinfection finale.
Les eaux désinfectées sont évacuées par la canalisation 9a.
Ces eaux présentent une qualité suffisante pour permettre leur utilisation, par exemple pour le fonctionnement de chasse d'eau ou d'eau d'alimentation de lave-linges ou de lave- vaisselle, ou même pour une utilisation en tant qu'eau potable quand les disposition réglementaire le permettent.
Le procédé a été testé avec des eaux usées présentant la composition suivante : une teneur en matières en suspension (MES) comprise entre S00 et 1000 mg/L, une DCO (demande chimique en oxygène) comprise entre 200 et 500 mg O2/L, une teneur en azote organique (NTK) comprise entre 8 et 35 mg/L, et une teneur en phosphore total de 1 à 5 mg/L.
L'eau provenant de l'unité de filtration basse pression 7 a été analysée. Les résultats de cette analyse figurent dans le tableau 1 ci-dessous.
[Tableau 1]
Ces résultats montrent que les eaux traitées grâce au procédé sont d'une qualité permettant sa réutilisation.
Autre mode de réalisation Dans un autre mode de réalisation, le bio-réacteur utilisé pourra correspondre à celui représenté à la figure 1 mais avec les modifications consistant à supprimer la pompe 15b des moyens de vidange et à prévoir une vanne d'alimentation sur la canalisation 14a des moyens d'alimentation en eaux diluées.
Dans un tel autre mode de réalisation, la répétition des cycles de marée sera créée en fermant par intermittence cette vanne d'alimentation. Ainsi, lorsque la vanne sera fermée, le bassin du bio-réacteur pourra se vider et le lit de granulat se trouvera ainsi aéré. Lorsque la vanne d'alimentation sera rouverte, le lit de granulat sera de nouveau submergé. Ainsi, en fermant par intermittence une telle vanne d'alimentation, les cycles de marée pourront se succéder.

Claims

REVENDICATIONS
1. Procédé de traitement biologique d'eaux usées mettant en oeuvre un bio-réacteur comprenant un lit de granulat chimiquement inerte dans lequel des macrophytes émergés sont enracinés, caractérisé en ce qu'il comprend : une étape préliminaire de dilution consistant à diluer des eaux à traiter selon un ratio de dilution compris entre 8 et 50 et préférentiellement entre 10 et 20, l'organisation de l'alimentation et de la vidange dudit bio-réacteur en eaux ainsi diluées selon des cycles de marée d'une durée inférieure à deux heures, préférentiellement à une heure, durant chacun desquels au moins une partie dudit lit de granulat chimiquement inerte se trouve dénoyé puis submergé par lesdites eaux de façon à ménager dans ledit lit de granulat chimiquement inerte des périodes successives d'aération et de non aération, une étape d'évacuation des eaux traitées, ladite étape préliminaire de dilution consistant à diluer lesdites eaux à traiter avec des eaux provenant au moins en partie dudit procédé.
2. Procédé selon la revendication 1 caractérisé en ce qu'il comprend au moins une étape d'adsorption consistant à faire transiter les eaux vidangées dudit bio-réacteur sur un lit de matériau adsorbant et/ou au moins une étape de filtration membranaire consistant faire transiter les eaux vidangées dudit bio-réacteur ou les eaux provenant de ladite étape d'adsorption sur des membranes de filtration.
B. Procédé selon la revendication 1 ou 2 caractérisé en ce qu'il comprend une étape de dilacération des eaux, ladite étape de dilacération étant effectuée avant, pendant ou après ladite étape préliminaire de dilution.
4. Procédé selon l'une des revendications 1 à 3 caractérisé en ce qu'il comprend une étape finale de désinfection.
5. Procédé selon l'une des revendications 1 à 4 caractérisé en ce que ladite alimentation dudit bio-réacteur est cadencée et en ce que ladite vidange dudit bio-réacteur est continue.
6. Procédé selon l'une des revendications 1 à 4 caractérisé en ce que ladite alimentation dudit bio-réacteur est continue et en ce que ladite vidange dudit bio-réacteur est cadencée.
7. Procédé selon l'une des revendication 1 à 6 caractérisé en ce qu'il est mené en maintenant sèche une zone supérieure dudit lit de granulat chimiquement inerte, l'alimentation du bio-réacteur en eaux diluées se faisant sous ladite zone supérieure.
8. Procédé selon l'une des revendications 1 à 7 caractérisé en ce que l'étape de dilution est effectuée en utilisant de l'eau provenant dudit bio-réacteur et/ou de ladite étape d'adsorption et/ou de ladite au moins une étape de filtration.
9. Installation pour le traitement biologique d'eaux usées avec le procédé selon l'une des revendications 1 à 8 caractérisée en ce qu'elle comprend une bâche de dilution (1), un bio-réacteur (4) comprenant un bassin (10) accueillant un lit (12) de granulat chimiquement inerte et des macrophytes émergés (13) enracinés dans ledit granulat, des moyens d'alimentation (14) dudit bio-réacteur (4) depuis la bâche de dilution (1), des moyens de vidange dudit bio-réacteur (4) selon des cycles de marée et des moyens d'acheminement d'une partie des eaux traitées vers ladite bâche de dilution.
10. Installation selon la revendication 9 caractérisée en ce que ledit granulat chimiquement inerte est constitué de billes d'argile expansée présentant un diamètre moyen compris entre 5 mm et 50 mm, préférentiellement entre 5 mm et 10 mm.
11. Installation selon l'une des revendications 9 à 10 caractérisée en ce qu'elle comprend une unité d'adsorption (5) sur un matériau adsorbant tel que du charbon actif alimentée en eaux provenant dudit bio-réacteur (4) et/ou au moins une unité de filtration membranaire (7) des eaux provenant dudit bio-réacteur (4) ou de ladite unité de d'adsorption (5).
12. Installation selon l'une des revendications 9 à 11 caractérisée en ce qu'elle comprend des moyens de dilacération (2a) desdites eaux.
13. Installation selon l'une des revendications 9 à 12 caractérisée en ce qu'elle comprend au moins une unité de désinfection (9) des eaux filtrées provenant de ladite au moins une unité de filtration (7,8).
14. Installation selon l'une des revendications 9 à 13 caractérisée en ce que lesdits moyens d'alimentation dudit bio-réacteur (4) comprennent une canalisation d'alimentation pourvue d'une vanne et en ce que lesdits moyens de vidange dudit bio réacteur (4) comprennent une canalisation d'évacuation prévue dans la partie inférieure du bio-réacteur (4).
15. Installation selon l'une des revendications 9 à 13 caractérisée en ce que lesdits moyens d'alimentation dudit bio-réacteur (4) comprennent une canalisation d'alimentation et en ce que lesdits moyens de vidange dudit bio-réacteur (4) comprennent une canalisation d'évacuation (15) pourvue d'une pompe (15a) prévue dans la partie inférieure dudit bio-réacteur (4).
16. Installation selon l'une des revendications 9 à 15 caractérisée en ce que ledit bio réacteur (4) est prévu sur la toiture d'un bâtiment, lesdits macrophytes émergés (13) dudit bio-réacteur (4) formant une couverture végétalisée dudit bâtiment.
EP21704515.2A 2020-02-10 2021-02-10 Procédé et installation de phyto-épuration pour le traitement d'une eau usée Pending EP4103521A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2001319A FR3107054B1 (fr) 2020-02-10 2020-02-10 Procédé et installation de phyto-épuration pour le traitement d’une eau usée
PCT/EP2021/053149 WO2021160644A1 (fr) 2020-02-10 2021-02-10 Procédé et installation de phyto-épuration pour le traitement d'une eau usée

Publications (1)

Publication Number Publication Date
EP4103521A1 true EP4103521A1 (fr) 2022-12-21

Family

ID=70295408

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21704515.2A Pending EP4103521A1 (fr) 2020-02-10 2021-02-10 Procédé et installation de phyto-épuration pour le traitement d'une eau usée

Country Status (3)

Country Link
EP (1) EP4103521A1 (fr)
FR (1) FR3107054B1 (fr)
WO (1) WO2021160644A1 (fr)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITTO20010691A1 (it) 2001-07-13 2003-01-13 Giovanni Battista Marchello Sistema di fitodepurazione artificiale.
IT1400160B1 (it) * 2010-03-16 2013-05-17 Ccs Aosta S R L "sistema di fitodepurazione biotecnologica"
US8303816B2 (en) * 2011-08-22 2012-11-06 Modular Wetland Systems, Inc. Wetland biofilter chamber with peripheral catch basin and method of use thereof
FR2984874B1 (fr) 2011-12-23 2014-01-10 Degremont Procede de traitement d'eaux usees industrielles ou urbaines pour une reutilisation, et installation pour mettre en oeuvre ce procede

Also Published As

Publication number Publication date
FR3107054B1 (fr) 2022-05-13
WO2021160644A1 (fr) 2021-08-19
FR3107054A1 (fr) 2021-08-13

Similar Documents

Publication Publication Date Title
US8246829B2 (en) Systems and methods for water treatment and remediation
EP0877721B1 (fr) Procede de traitement des effluents liquides aqueux contenant des matieres organiques et minerales en vue de leur valorisation
EP1857419B1 (fr) Procede et installation de traitement d'effluents
EP3242859B1 (fr) Dispositif de traitement des eaux usées, de type filtre planté à percolation verticale, comprenant un système d'aération actif d'une couche inférieure saturée
EP0809611B1 (fr) Installation pour le traitement biologique des eaux en vue de leur potabilisation
RU2701827C1 (ru) Способ очистки сточных вод с получением очищенной воды и обеззараженных отходов
EP2704998A2 (fr) Procede et installation de traitement d'effluents
FR2924111A1 (fr) Installation de traitement biologique d'une eau a moyens d'agitation et/ou de decolmatage mecanique et/ou hydraulique et procede de traitement d'eau correspondant
WO2021160644A1 (fr) Procédé et installation de phyto-épuration pour le traitement d'une eau usée
WO2007063198A1 (fr) Procede et installation de traitement d'effluents charges en micro-organismes.
FR3013347A1 (fr) Procede et station de gestion des effluents issus des activites agronomiques, par traitement hybride de phytoepuration.
EP4007741A1 (fr) Ouvrage d'assainissement des eaux usées
EP0558421B1 (fr) Procédé d'épuration d'excréments animaliers et son dispositif
WO2015107174A1 (fr) Dispositif de traitement d'eaux usées
FR2799457A1 (fr) Filtre, plante de roseaux, epurateur d'effluents domestiques , industriels, compose de 2 bassins aeres, fonctionnant, en alternance par percolation d'effluent brut sur 1m2/habitant
EP0687653B1 (fr) Procédé et installation de traitement des matières de vidange domestiques
FR2906239A1 (fr) Bassin de traitement des eaux usees par lits a macrophytes.
Steffen Water 061-Water Treatment and Disposal II
FR2828189A1 (fr) Procede de traitement d'effluents issus de l'assainissement non collectif
EP3684734A1 (fr) Procede et installation de traitement des eaux usees contenant des micropolluants d'origine pharmaceutique
EP1142836A1 (fr) Procédé et installation pour la nitrification d'eaux polluées
MXPA99011199A (en) Method and device for sewage treatment
FR2687996A1 (fr) Procede d'epuration, par voie biologique, des effluents a forte concentration en azote ammoniacal.

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220722

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20240306