EP4088086A1 - Konfokale messvorrichtung zur 3d-vermessung einer objektoberfläche - Google Patents

Konfokale messvorrichtung zur 3d-vermessung einer objektoberfläche

Info

Publication number
EP4088086A1
EP4088086A1 EP20839124.3A EP20839124A EP4088086A1 EP 4088086 A1 EP4088086 A1 EP 4088086A1 EP 20839124 A EP20839124 A EP 20839124A EP 4088086 A1 EP4088086 A1 EP 4088086A1
Authority
EP
European Patent Office
Prior art keywords
array
measuring light
beam path
optics
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20839124.3A
Other languages
English (en)
French (fr)
Inventor
Korbinian PRAUSE
Michael Layh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochschule Fuer Angewandte Wissenschaften Kempten Koerperschaft Des Oeffentlichen Rechts
Original Assignee
Hochschule Fuer Angewandte Wissenschaften Kempten Koerperschaft Des Oeffentlichen Rechts
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochschule Fuer Angewandte Wissenschaften Kempten Koerperschaft Des Oeffentlichen Rechts filed Critical Hochschule Fuer Angewandte Wissenschaften Kempten Koerperschaft Des Oeffentlichen Rechts
Publication of EP4088086A1 publication Critical patent/EP4088086A1/de
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/50Using chromatic effects to achieve wavelength-dependent depth resolution

Definitions

  • the invention relates to a confocal measuring device for 3D measurement of an object surface.
  • WO 2010/084478 A2 discloses devices for high-resolution microscopy and photolithography using micromirrors.
  • No. 9,188,874 B1 discloses an imaging system with a spot array for maskless lithography and for parallel confocal microscopy.
  • This object is achieved according to the invention by a confocal measuring device with the features specified in claim 1.
  • the multiplexer optics according to the invention avoids the need for a diaphragm array that is complex to adjust. At the same time, there is the possibility of high spatial resolution and parallel multichannel measurement via the lens array and the spatially resolved detection device.
  • the individual perforated diaphragm serves as a multiplexer for spatial filtering of the beam paths of all the individual channels of the measuring light beam path that are assigned to the respective array lenses and emanate from the object surface. An array filtering via a diaphragm array, which would have to be adjusted in a complex manner, is no longer necessary.
  • the multiplexer optics can be designed as a single multiplexer lens.
  • the collimation optics can be designed as a single collimation lens.
  • the measuring light from the light source can be coupled into a beam path of the measuring light between the chromatic telescope and the spatially resolved detection device, in particular via a polarizing beam splitter.
  • a 1/4 plate can be part of a coupling optics. This can be arranged between the coupling-in, polarizing beam splitter and the lens array.
  • a telecentric beam path in the chromatic telescope according to claim 2 reduces the requirements for positioning a diaphragm of the chromatic telescope. Scale errors in the 3D measurement of the object surface can be avoided.
  • a detection array according to claim 3 enables multi-channel measurement.
  • the detection array can be designed as a CCD or a CMOS array.
  • the design of the detection device according to claim 4 increases the degrees of freedom of data acquisition and data evaluation.
  • the partial beam paths of the measuring light can each be guided via a telescope to image a detection entry plane onto the respective detection array. This mapping can be telecentric.
  • a gradient filter according to claim 5 enables data evaluation that is described for a single-channel measurement in the specialist article by Kim et al. “Chromatic confocal microscopy with a novel wavelength detection method using transmittance”, Optics Express, Vol. 21, No. 5, pages 6286 to 6294, 2013 or in KR 10-1368486 A.
  • This evaluation technology can be applied to the pixel-by-pixel channels of the Detection device are transmitted with the detection arrays, so that the individual channels can be evaluated in parallel.
  • An adaptation of the grid spacing according to claim 6 optimizes a spatial resolution of the confocal measuring device.
  • the adjustment of the grid spacing can be selected so that exactly one detector pixel is assigned to each array lens.
  • the grid spacing can also be adapted in such a way that a plurality of detector pixels is assigned to exactly one array lens.
  • a bandpass filter according to claim 7 can be used to limit the spectral range of the measurement light to a spectral range for which the chromatic telescope is designed.
  • a correspondingly selected spectral range can, for example, be in the range between 400 and 600 nm, in particular between 400 and 500 nm.
  • a combination of a spectral high-pass filter and a spectral low-pass filter can also be used.
  • FIG. 1 schematically shows a confocal measuring device for 3D measurement of an object surface
  • Fig. 2 is a light field diagram in which, to clarify the effect of a grid-shaped illumination of the object to be measured, an illumination swinkel (NA) of measuring light emanating from a measuring point on the object surface, depending on a distance x of a measuring point an optical axis of the measuring device is shown; and
  • FIG. 3 shows, in a representation similar to FIG. 1, a further embodiment of a confocal measuring device for 3D measurement of an object surface.
  • NA illumination swinkel
  • a confocal measuring device 1 is used for the 3D measurement of an upper surface 2 of an object 3.
  • a light source 4 of the measuring device 1 generates measuring light 5. Shown in FIG. 1 are exemplary individual beams of the measuring light 5 to clarify a beam path through the measuring device 1.
  • the light source 4 is designed as a point light source and can end through an exit be formed by an optical fiber.
  • the measuring light 5 is broadband and can be, for example, white light with wavelengths in the range between 400 nm and 750 nm. Other wavelength bands in the UV, VIS, NIR and / or in the IR range are possible depending on the light source or depending on the subsequent processing of the measuring light 5.
  • FIG. 1 runs upwards and perpendicular to the beam path of a main beam of the measuring light between the light source 4 and the object 3.
  • the y-axis runs perpendicular to the plane of the drawing in FIG. 1 towards the viewer.
  • the z-axis ver runs in FIG. 1 to the right parallel to the direction of the main ray between the light source 4 and the object 3.
  • the measuring light 5 is first of all collimated via a collimation lens 6, which, like other lenses in the beam path of the measuring device 1 in FIG. 1, is indicated by a double arrow, and passes through a non-polarizing beam splitter 7.
  • the measuring light 5 is then via a Fo Focusing lens 8 is focused, so that a focus in a focal plane 9 results.
  • a pinhole diaphragm 10, which can have the function of a spatial filter, is arranged in the focal plane 9 at the location of the focus.
  • the measuring light 5 After passing through the perforated diaphragm 10, the measuring light 5 is collimated by a further collimation lens 11.
  • the measurement light 5 collimated in this way passes through a lens array 12 with a plurality of array lenses 13 which are arranged in rows and columns in the xy plane and of which five array lenses 13 are shown schematically in FIG. 1.
  • the array lenses 13 are designed as pillow lenses with an individual lens size (xy extension) of 350 mth ⁇ 350 mth.
  • the array lenses 13 are arranged closely packed in the xy plane. A distance between adjacent Ar ray lenses 13 is therefore also 350 mth.
  • the array lenses 13 have each has a focal length of 1.59 mm.
  • a “pixel” of the lens array has a typical extension of 350 mth. Alternatively, such a pixel can also have a different extent in the range between 10 mth and 1,000 mhi, for example in the range between 50 mth and 500 mth.
  • the entire lens array 12 has an extension of 10 mm ⁇ 10 mm in the xy plane. A total of around 900 array lenses 13 are therefore present.
  • the number of array lens ends 13 can also be significantly larger in alternative designs of the lens array 12 and can for example have up to 1,000, up to 5,000, up to 10,000, up to 100,000 or even up to 1,000,000 array lenses 13.
  • the lens array 12 can be manufactured using techniques that are disclosed in the specialist articles by Gissibl et al., Nature Photonics, Vol. 10, pages 554 to 561, 2016, and Nature Communications, 7: 11763,
  • a hyperchromatic objective 14 downstream in the beam path of the measuring light 5 in the lens array 12 as an example of a chromatic telescope forms an arrangement plane 15 of the array lenses 13 of the lens array 12 in an object plane 16 in which the surface 2 of the object 3 is arranged.
  • Components of the chromatic telescope 14 are two telescope lenses 17, 18 with a telecentric diaphragm 19 between them. The latter is arranged in a pupil plane 19 a of the chromatic telescope 14.
  • a focal length of the hyperchromatic objective 14 is strongly dependent on the wavelength of the measuring light 5.
  • the measuring light reflected from the surface 2 in turn passes through the hyperchromatic objective 14 and the lens array 12 and then the collimation lens 11, which then acts as a focusing lens Measurement light 5 a selection of transmitted portions of the measurement light 5 instead.
  • the lens array 12, the pinhole 10 and the intermediate lens 11 are components of a pinhole multiplexer 20.
  • the lens 11 of this pinhole multiplexer 20 is a multiplexer optics.
  • This multiple xer optics 11 is arranged at a distance of a sum of a focal length £ L of the array lenses 13 and a focal length f MO of the multiplexer optics 11 itself.
  • This sum-distance relationship does not have to be adhered to exactly, but a deviation, for example in the range of 20%, between the distance between the multiplexer optics 11 and the lens array 12 on the one hand and the sum of the focal lengths £ L and f MO on the other hand is permissible.
  • the multiplex optics 11 are arranged after the lens array 12.
  • a beam path within the chromatic telescope 14 is telecentric. Principal rays emanating from object points on the surface 2 of the object 3 therefore run parallel to one another between the object plane 16 and the lens 18. The same applies to the course of the main rays between the telescope lens 17 and the lens array 12.
  • the perforated diaphragm 10 is in turn arranged at a distance of the focal length fivio of the multiplexer optics 11 after this.
  • the lens 8 between the beam splitter 7 and the perforated diaphragm 10 represents collimation optics which are arranged downstream of the perforated diaphragm 10 in the beam path of the measuring light 5 emanating from the object plane 16.
  • the perforated diaphragm 10 serves as a multiplexer for spatial filtering of the beam paths of all the individual channels of the measuring light beam path assigned to the respective array lenses 13. There is no need for spatial filtering in the form of a pinhole array, which would have to be laboriously adjusted.
  • the folding mirror 21 can also be dispensed with.
  • the partial measuring light beam 5A reflected by the beam splitter 22 strikes a first detector array 23 of a spatially resolved detection device 24.
  • the partial measuring light beam 5B transmitted by the beam splitter 22 first passes through a linear color filter 25 and then strikes a further detector array 26 of the detection device 24.
  • the detection device 24 is arranged downstream of the collimation optics, that is to say the lens 8, in the beam path of the measuring light 5 emanating from the object plane 16.
  • the light source 4, the lenses 6 and 8 and the intermediate beam splitter 7 are components of an illumination device 27 of the measuring device 1.
  • the pixel resolution of the detector pixels of the detection arrays 23 and 26 is adapted to the array arrangement of the array lenses 13 of the lens array in such a way that in each case one array lens 13 is assigned to a detector pixel.
  • a grid spacing of the array lenses 13 of the lens array 12 is therefore adapted to a grid spacing of the detector pixels of the detector arrays 23 and 26.
  • Part of the measuring device 1 is also a central control device 28 which is in signal connection with the detector arrays 23, 26 and with the light source 4 in a manner not shown.
  • FIG. 2 abstractly shows the location-resolving effect of the pinhole multiplexer 20 with the lens array 12 and the pinhole 10.
  • a measurement light field is shown as a two-dimensional function. In the dimension x, that is on the x-axis, a distance between the respective measuring or object point of the object 3, from which the measuring light 5 emanates, from a central optical axis oA (cf. FIG. 1) of the measuring light Beam path shown. On the diagram axis “NA” of FIG. 2, which is perpendicular to this, an illumination or beam angle of a respective measuring light beam is shown, which emanates from the object point.
  • the spruce fields fo focused illumination points FBP are shown at the location of object points which correspond to the respective positions of the array lenses 13 of the focal array 12. Due to the focusing of the focused illumination points FBP, they each have only one x-coordinate, but a beam angle Bandwidth, so that the focused illumination points FBP in the angular dimension NA cover a bandwidth between the values -NAo and + NAo.
  • defocused illumination points DBP are shown in FIG. 2, which appear in the x / NA light field representation according to FIG. 2 as shear, that is to say as lines running at an angle.
  • each defocused illumination point DBP has a course over a total distance of xo, for example from -xo / 2 to + X0 / 2.
  • the selection of the distance between the array lenses 13 of the lens array 12 ensures that the defocused illumination points DBP do not overlap in the x dimension, so that no crosstalk occurs between the individual channels of the beam path of the lens array 12. With the spatially resolved measurement with the detection device 24, it is thus possible to assign the respective measured light signal to exactly one object point in accordance with the spatial resolution of the lens array 12.
  • An evaluation of color-dependent intensity relationships of the measurement results se of the two detection arrays 23 and 26 can be carried out to determine the structure of the surface 2, as is known, for example, from the specialist article by Kim et al. "Chromatic confocal microscopy with a novel wavelength detection method using transmittance", Optics Express, Vol.
  • the measuring light 5 is coupled into a measuring and detection light beam path in the measuring device 31 via a polarizing beam splitter 32 which is arranged in the beam path between the collimation lens 11 and the lens array 12.
  • the measuring light 5 polarized, for example, perpendicular to the drawing plane of FIG. 3, impinges on the polarized beam splitter 32 from below in the arrangement according to FIG. 3 and is initially reflected by the sem to the right towards the lens array 12.
  • a polarizer 33 for the measuring light 5 is arranged in the beam path between the light source 4 and the polarizing beam splitter 32.
  • the polarizer 33 is designed as a linear polarization filter.
  • a 90 ° deflecting mirror 34 is arranged in the beam path between the polarizer 33 and the polarized beam splitter.
  • a spectral bandpass filter 35 is arranged in the beam path, which limits a spectral range of the measuring light 5 to a spectral range for which the hyperchromatic objective 14 of the measuring device 31 is designed.
  • a diaphragm 36 in the beam path between the polarizing beam splitter 32 and the lens array 12 is implemented as a field diaphragm for the measuring light 5 and delimits an illuminated area on the entrance area of the Lens arrays 12 a.
  • a 1/4 plate 37 is net angeord in the beam path of the measuring light 5. After a double pass through the 1/4 plate 37, the measurement light 5 originally polarized perpendicular to the plane of the drawing in FIG. 3 is polarized parallel to the plane of the drawing in FIG. 3 and thus passes through the polarizing beam splitter 32 in FIG. 3 from right to left.
  • the following beam path through the collimation lens 11, which is then used as a focusing lens, the perforated diaphragm 10, and the focusing lens 8, which then serves as a collimation lens, corresponds to the beam path explained above in connection with the measuring device 1.
  • the latter first passes through a further diaphragm 38 which defines a plane 39 to be imaged, which is optically conjugate to an arrangement plane 40 of the lens array 12.
  • the lenses 8 and 11 therefore map the plane 39 onto the plane 40, this mapping being telecentric.
  • the imaging between the planes 39 and 12 through the lenses 8 and 11 is telecentric.
  • the detection beam path of the measuring light 5 first passes through a further focusing lens 41 and then a non-polarizing beam splitter 42.
  • a measuring light component 5B reflected by the non-polarizing beam splitter first passes through the linear color filter 25 and then a collimation lens 43 before the measuring light partial beam 5B strikes the detector array 26.
  • the measuring light partial beam 5B which is let through by the non-polarizing beam splitter 42 first passes through a collimation lens 44 and then hits the detector array 23.
  • the lens pairs 41, 43 on the one hand and 41, 44 on the other hand represent telescopes which are suitable for a, in particular telecentric, Provide mapping of the entry plane 39 onto the planes of arrangement of the detection arrays 26, 23.
  • An illumination plane which is spaced apart from the arrangement plane 15 or 40 by the focal length of the array lenses 13 is denoted by 45 in FIG. 3.
  • This plane 45 is the illumination plane of the lens array 12.
  • This plane 45 is imaged onto the object plane 16 via the chromatic objective 14.
  • a spatial extent of the light source 4 can be variably set by specifying it by means of a fiber or diaphragm (not shown in FIG. 3).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microscoopes, Condenser (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Eine konfokale Messvorrichtung (1) dient zur 3D-Vermessung einer Objektoberfläche (2). Die Messvorrichtung (1) hat eine Lichtquelle (4) für Messlicht (5, 5A, 5B), ein Linsenarray (12) mit einer Vielzahl von Arraylinsen (13), ein chromatisches Teleskop (14), eine Multiplexer-Optik (11), eine Kollimationsoptik (8) und eine ortsaufgelöste Detektionseinrichtung (24). Das chromatische Teleskop (14) bildet eine Objektebene (16) in eine Anordnungsebene (15) des Linsenarrays (12) ab. Die Multiplexer-Optik (11) ist im Abstand einer Summe einer Brennweite (fAL) der Arraylinsen (13) einerseits und einer Brennweite (fMO) der Multiplexer-Optik (11) im Strahlengang des Messlichts (5), das von der Objektebene (16) ausgeht, nach dem Linsenarray (12) angeordnet. Eine einzelne Lochblende (10) ist im Abstand der Brennweite (fMO) der Multiplexer-Optik (11) im Strahlengang des Messlichts (5) nach der Multiplexer-Optik (11) angeordnet. Die Kollimationsoptik (8) ist der Lochblende (10) im Strahlengang des von der Objektebene (16) ausgehenden Messlichts (5) nachgeordnet. Die Detektionseinrichtung (24) ist der Kollimationsoptik (8) im Strahlengang des von der Objektebene (16) ausgehenden Messlichts (5, 5A, 5B) nachgeordnet. Es resultiert eine konfokale Messvorrichtung, deren Aufbau bei gleichzeitig hohem Messdurchsatz vereinfacht ist.

Description

Konfokale Messvorrichtung zur 3D-Vermessung einer Objektoberflä che
Die vorliegende Patentanmeldung nimmt die Priorität der deutschen Pa tentanmeldung DE 102020200214.2 in Anspruch, deren Inhalt durch Be zugnahme hierin aufgenommen wird.
Die Erfindung betrifft eine konfokale Messvorrichtung zur 3D-Vermessung einer Objektoberfläche.
Konfokale Messvorrichtungen zur Objektvermessung sind bekannt aus der WO 2014/180 642 Al, der DE 102005 043 627 Al, der DE 102006007 170 Al, der DE 102007 019267 Al, der WO 2016/193 037 Al, dem Fachartikel von Zint et al., Journal of Medical Imaging 6(3), 033502, 2019, dem Fachartikel von Kim et al., Optics Express, Vol. 21, Nr. 5, 6286 bis 6294, 2013 und der KR 10 1 368 486 A. Die DE 102013 016368 Al of fenbart ein Lichtmikroskop sowie ein Mikroskopieverfahren zum Untersu chen einer mikroskopischen Probe. Die DE 69729 659 T2 offenbart eine Mikrolinsen-Rastereinrichtung für die Mikrolithografie und für die konfo kale Mikroskopie mit großem Aufnahmefeld. Die WO 2010/084478 A2 offenbart Einrichtungen zur hochauflösenden Mikroskopie und Fotolitho grafie unter Einsatz von Mikrospiegeln. Die US 9,188,874 Bl offenbart ein Abbildungssystem mit einem Spot-Array zur maskenlosen Lithografie und zur parallelen konfokalen Mikroskopie.
Es ist eine Aufgabe der vorliegenden Erfindung, eine konfokale Messvor richtung der eingangs genannten Art derart weiterzubilden, dass deren Aufbau bei gleichzeitig hohem Messdurchsatz vereinfacht ist. Diese Aufgabe ist erfindungsgemäß gelöst durch eine konfokale Messvor richtung mit den im Anspruch 1 angegebenen Merkm len.
Die erfindungsgemäße Multiplexer-Optik vermeidet die Notwendigkeit eines aufwendig zu justierenden Blenden- Arrays. Gleichzeitig ist die Mög lichkeit einer hohen Ortsauflösung und einer parallelen Multikanal-Mes- sung über das Linsenarray und die ortsaufgelöste Detektionseinrichtung gegeben. Die einzelne Lochblende dient als Multiplexer zur Raumfilterung der Strahlengänge aller den jeweiligen Arraylinsen zugeordneten Einzelka näle des Messlicht-Strahlengangs, der von der Objektoberfläche ausgeht. Eine Array-Filterung über ein Blenden- Array, die aufwendig justiert wer den müsste, entfällt. Die Multiplexer-Optik kann als einzelne Multiplexer- Linse ausgeführt sein. Die Kollimationsoptik kann als einzelne Kollimati- onslinse ausgeführt sein. Das Messlicht der Lichtquelle kann, insbesondere über einen polarisierenden Strahlteiler, in einen Strahlengang des Mess- lichts zwischen dem chromatischen Teleskop und der ortsaufgelösten De tektionseinrichtung eingekoppelt werden. Teil einer Einkoppeloptik kann eine l/4-Platte sein. Diese kann zwischen dem einkoppelnden, polarisie renden Strahlteiler und dem Linsenarray angeordnet sein.
Ein telezentrischer Strahlverlauf im chromatischen Teleskop nach An spruch 2 verringert die Anforderungen an eine Positionierung einer Blende des chromatischen Teleskops. Maß stabsfehler bei der 3D-Vermessung der Objektoberfläche können vermieden werden.
Ein Detektionsarray nach Anspruch 3 ermöglicht eine Multikanalmessung. Das Detektionsarray kann als CCD- oder als CMOS-Array ausgeführt sein. Die Ausführung der Detektionseinrichtung nach Anspruch 4 vergrößert die Freiheitsgrade der Datenerfassung sowie der Datenauswertung. Die Teil- Strahlengänge des Messlichts können jeweils über ein Teleskop zur Abbil dung einer Detektions-Eintrittsebene auf das jeweilige Detektionsarray ge führt sein. Diese Abbildung kann telezentrisch sein.
Ein Farbverlaufsfilter nach Anspruch 5 ermöglicht eine Datenauswertung, die für eine Einkanalmessung beschrieben ist im Fachartikel von Kim et al. „Chromatic confocal microskopy with a novel wavelength detection me- thod using transmittance“, Optics Express, Vol. 21, Nr. 5, Seiten 6286 bis 6294, 2013 oder in der KR 10-1368486 A. Diese Auswertetechnik kann auf die pixelweisen Kanäle der Detektionseinrichtung mit den Detektionsarrays übertragen werden, so dass die einzelnen Kanäle parallel ausgewertet wer den können.
Eine Anpassung des Rasterab Standes nach Anspruch 6 optimiert eine Orts auflösung der konfokalen Mess Vorrichtung. Die Anpassung des Rasterab standes kann so gewählt werden, dass jeder Arraylinse genau ein Detektor pixel zugeordnet ist. Alternativ kann die Rasterabstands-Anpassung auch so erfolgen, dass genau einer Arraylinse eine Mehrzahl von Detektorpixein zugeordnet ist.
Ein Bandpassfilter nach Anspruch 7 kann zur Begrenzung des Spektralbe reichs des Messlichts auf einen Spektralbereich genutzt werden, auf den das chromatische Teleskop ausgelegt ist. Ein entsprechend ausgewählter Spektralbereich kann beispielsweise im Bereich zwischen 400 und 600 nm, insbesondere zwischen 400 und 500 nm liegen. Anstelle eines Bandpassfil ters kann auch eine Kombination aus einem spektralen Hochpass- und ei nem spektralen Tiefpassfilter zum Einsatz kommen. Ein Ausführungsbeispiel der Erfindung wird nachfolgend anhand der Zeichnung näher erläutert. In dieser zeigen:
Fig. 1 schematisch eine konfokale Messvorrichtung zur 3D-Vermes- sung einer Objektoberfläche;
Fig. 2 ein Lichtfeld-Diagramm, bei dem zur Verdeutlichung der Wir kung einer rasterförmigen Beleuchtung des zu vermessenden Objekts ein Beleuchtung swinkel (NA) von Messlicht, das von einem Messpunkt auf der Objektoberfläche ausgeht, in Abhän gigkeit von einem Abstand x eines Messpunktes zu einer opti schen Achse der Messvorrichtung dargestellt ist; und Fig. 3 in einer zu Fig. 1 ähnlichen Darstellung eine weitere Ausfüh rung einer konfokalen Messvorrichtung zur 3D-Vermessung ei ner Objektoberfläche.
Eine konfokale Messvorrichtung 1 dient zur 3D-Vermessung einer Ober fläche 2 eines Objekts 3.
Eine Lichtquelle 4 der Mess Vorrichtung 1 erzeugt Messlicht 5. Dargestellt sind in der Fig. 1 beispielhafte Einzelstrahlen des Messlichts 5 zur Ver deutlichung eines Strahlengangs durch die Messvorrichtung 1. Die Licht- quelle 4 ist als Punkt-Lichtquelle ausgeführt und kann durch ein Austritts ende einer Lichtleitfaser gebildet sein. Das Messlicht 5 ist breitbandig und kann beispielsweise Weißlicht mit Wellenlängen im Bereich zwischen 400 nm und 750 nm sein. Auch andere Wellenlängen-Bandbereiche im UV-, VIS-, NIR- und/oder im IR-Bereich sind je nach Lichtquelle bzw. je nach nachfolgender Aufbereitung des Messlichts 5 möglich.
Zur Erleichterung von Lagebeziehungen wird nachfolgend ein kartesisches xyz-Koordinatensy stem verwendet. Die x-Achse verläuft in der Fig. 1 nach oben und senkrecht zum Strahlengang eines Hauptstrahls des Messlichts zwischen der Lichtquelle 4 und dem Objekt 3. Die y- Achse verläuft senk recht zur Zeichenebene der Fig. 1 auf den Betrachter zu. Die z-Achse ver läuft in der Fig. 1 nach rechts parallel zur Richtung des Hauptstrahls zwi schen der Lichtquelle 4 und dem Objekt 3.
Das Messlicht 5 wird zunächst über eine Kollimationslinse 6, die wie wei tere Linsen im Strahlengang der Messvorrichtung 1 in der Fig. 1 durch ei nen Doppelpfeil angedeutet ist, kollimiert und durchtritt einen nicht polari sierenden Strahlteiler 7. Anschließend wird das Messlicht 5 über eine Fo kussierlinse 8 fokussiert, so dass ein Fokus in einer Fokalebene 9 resultiert. Am Ort des Fokus ist in der Fokalebene 9 eine Lochblende 10 angeordnet, die die Funktion eines Raumfilters haben kann.
Nach Durchtritt durch die Lochblende 10 wird das Messlicht 5 von einer weiteren Kollimationslinse 11 kollimiert. Das hierdurch kollimierte Mess licht 5 durchtritt ein Linsenarray 12 mit einer Vielzahl von Arraylinsen 13, die zeilen- und spaltenweise in der xy-Ebene angeordnet sind und von de nen in der Fig. 1 schematisch fünf Arraylinsen 13 dargestellt sind.
Die Arraylinsen 13 sind als Kissenlinsen mit einer Einzellinsengröße (xy- Erstreckung) von 350 mth x 350 mth ausgeführt. Die Arraylinsen 13 sind dicht gepackt in der xy-Ebene angeordnet. Ein Abstand benachbarter Ar raylinsen 13 beträgt daher ebenfalls 350 mth. Die Arraylinsen 13 haben jeweils eine Brennweite von 1,59 mm. Ein „Pixel“ des Linsenarrays hat also eine typische Erstreckung von 350 mth. Alternativ kann ein derartiges Pixel auch eine andere Erstreckung im Bereich zwischen 10 mth und 1.000 mhi, beispielsweise im Bereich zwischen 50 mth und 500 mth haben. Das gesamte Linsenarray 12 hat in der xy-Ebene eine Erstreckung von 10 mm x 10 mm. Insgesamt liegen also etwa 900 Arraylinsen 13 vor. Die Anzahl der Arraylinsenden 13 kann bei alternativen Gestaltungen des Linsenarrays 12 auch deutlich größer sein und kann beispielsweise bis zu 1.000, bis zu 5.000, bis zu 10.000, bis zu 100.000 oder auch bis zu 1.000.000 Arraylin sen 13 aufweisen.
Das Linsenarray 12 kann unter Nutzung von Techniken hergestellt sein, die offenbart sind in den Fachartikeln von Gissibl et al., Nature Photonics, Vol. 10, Seiten 554 bis 561, 2016, sowie Nature Communications, 7:11763,
DOI: 10.1038/necommsll763.
Ein im Strahlengang des Messlichts 5 im Linsenarray 12 nachgeordnetes hyperchromatisches Objektiv 14 als Beispiel für ein chromatisches Tele skop bildet eine Anordnungsebene 15 der Arraylinsen 13 des Linsenarrays 12 in eine Objektebene 16 ab, in der die Oberfläche 2 des Objekts 3 ange ordnet ist.
Bestandteile des chromatischen Teleskops 14 sind zwei Teleskoplinsen 17, 18 mit einer zwischenliegenden telezentrischen Blende 19. Letztere ist in einer Pupillenebene 19a des chromatischen Teleskops 14 angeordnet.
Eine Brennweite des hyperchromatischen Objektivs 14 ist stark von der Wellenlänge des Messlichts 5 abhängig. Zum Stand der Technik entspre chender hyperchromatischer Objektive und Hyperchromaten wird verwie- sen auf einen Fachartikel aus der Zeitschrift Optolines, Nr. 23, Seiten 14 bis 17, 2010.
Das von der Oberfläche 2 reflektierte Messlicht durchtritt wiederum das hyperchromatische Objektiv 14 und das Linsenarray 12 und anschließend die dann als Fokussierlinse wirkende Kollimationslinse 11. Über die Loch blende 10 findet dann abhängig von der Strukturhöhe des Objekts 3 auf der Oberfläche 2 und der jeweiligen Wellenlänge des Messlichts 5 eine Aus wahl durchgelassener Anteile des Messlichts 5 statt.
Das Linsenarray 12, die Lochblende 10 und die zwischenliegende Linse 11 sind Bestandteile eines Lochblenden-Multiplexers 20. Die Linse 11 dieses Lochblenden-Multiplexers 20 ist eine Multiplexer-Optik. Diese Multiple xer-Optik 11 ist im Abstand einer Summe einer Brennweite £ L der Array- linsen 13 und einer Brennweite fMO der Multiplexer-Optik 11 selbst ange ordnet. Diese Summen- Abstandsbeziehung muss nicht exakt eingehalten werden, sondern es ist eine Abweichung beispielsweise im Bereich von 20 % zwischen dem Abstand der Multiplexer- Optik 11 und dem Linsen array 12 einerseits und der Summe der Brennweiten £ L und fMO anderer seits zulässig. Im Strahlengang des Messlichts 5, das von der Oberfläche 2 des Objekts 3, das also von der Objektebene 16 ausgeht, ist die Multiplex- Optik 11 nach dem Linsenarray 12 angeordnet.
Ein Strahlverlauf innerhalb des chromatischen Teleskops 14 ist telezent- risch. Hauptstrahlen, die von Objektpunkten der Oberfläche 2 des Objekts 3 ausgehen, verlaufen also zwischen der Objektebene 16 und der Linse 18 parallel zueinander. Entsprechendes gilt für den Verlauf der Hauptstrahlen zwischen der Teleskoplinse 17 und dem Linsenarray 12. Die Lochblende 10 ist wiederum im Abstand der Brennweite fivio der Multiplexer-Optik 11 nach dieser angeordnet.
Die Linse 8 zwischen dem Strahlteiler 7 und der Lochblende 10 stellt eine Kollimationsoptik dar, die der Lochblende 10 im Strahlengang des von der Objektebene 16 ausgehenden Messlichts 5 nachgeordnet ist.
Die Lochblende 10 dient als Multiplexer zur Raumfilterung der Strahlengänge aller den jeweiligen Arraylinsen 13 zugeordneten Einzelkanäle des Messlicht-Strahlengangs. Eine Raumfilterung in Form eines Lochblenden- Arrays, die aufwendig justiert werden müsste, entfällt.
Vom Strahlteiler 7 reflektiertes Messlicht 5, welches wiederum von der Lochblende 10 durchgelassen wurde, wird über einen Faltspiegel 21 und einen weiteren nicht polarisierenden Strahlteiler 22 geführt und von diesem Strahlteiler 22 in zwei Messlicht-Teilstrahlen 5A und 5B aufgeteilt. Je nach Auslegung des Strahlengangs in der Messvorrichtung 1 kann auf den Faltspiegel 21 auch verzichtet werden. Der vom Strahlteiler 22 reflektierte Messlicht-Teilstrahl 5A trifft auf ein erstes Detektorarray 23 einer ortsaufgelösten Detektionseinrichtung 24. Der vom Strahlteiler 22 durchgelassene Messlicht-Teilstrahl 5B durchtritt zunächst einen linearen Farbfilter 25 und trifft anschließend auf ein weiteres Detektorarray 26 der Detektionseinrichtung 24.
Die Detektionseinrichtung 24 ist der Kollimationsoptik, also der Linse 8, im Strahlengang des von der Objektebene 16 ausgehenden Messlichts 5 nachgeordnet. Die Lichtquelle 4, die Linsen 6 und 8 und der zwischenliegende Strahlteiler 7 sind Komponenten einer Beleuchtungseinrichtung 27 der Messvorrich tung 1.
Die Pixelauflösung der Detektorpixel der Detektionsarrays 23 und 26 ist angepasst an die Array- Anordnung der Arraylinsen 13 des Linsenarrays derart, dass jeweils eine Arraylinse 13 einem Detektorpixel zugeordnet ist. Ein Rasterabstand der Arraylinsen 13 des Linsenarrays 12 ist also an einen Rasterabstand der Detektorpixel der Detektorarrays 23 und 26 angepasst.
Teil der Messvorrichtung 1 ist zudem eine zentrale Steuereinrichtung 28, die mit den Detektorarrays 23, 26 und mit der Lichtquelle 4 in nicht darge stellter Weise in Signal Verbindung steht.
Fig. 2 zeigt abstrakt die orstauflösende Wirkung des Lochblenden-Multi- plexers 20 mit dem Linsenarray 12 und der Lochblende 10. Dargestellt ist ein Mess-Lichtfeld als zweidimensionale Funktion. In der Dimension x, also auf der x-Achse, wird ein Abstand des jeweiligen Mess- bzw. Objekt punkts des Objekts 3, von dem das Messlicht 5 ausgeht, zu einer zentralen optischen Achse oA (vgl. Fig. 1) des Messlicht-Strahlengangs dargestellt. Auf der hierzu senkrechten Diagramm- Achse „NA“ der Fig. 2 wird ein Beleuchtungs- bzw. Strahlwinkel eines jeweiligen Messlicht-Strahls darge stellt, der von dem Objektpunkt ausgeht.
Senkrecht zur x-Achse, also räumlich lokalisiert, sind die Fichtfelder fo kussierter Beleuchtungspunkte FBP am Ort von Objektpunkten dargestellt, die den jeweiligen Positionen der Arraylinsen 13 des Finsenarrays 12 ent sprechen. Aufgrund der Fokussierung der fokussierten Beleuchtungspunkte FBP haben diese jeweils nur eine x-Koordinate, aber eine Strahlwinkel- Bandbreite, so dass die fokussierten Beleuchtungspunkte FBP in der Win keldimension NA eine Bandbreite zwischen den Werten -NAo und +NAo überstreichen.
Zudem sind in der Fig. 2 defokussierte Beleuchtungspunkte DBP darge stellt, die in der x/NA-Lichtfelddarstellung nach Fig. 2 als Scherung, also als schräg verlaufende Linien, erscheinen. In der x-Dimension hat jeder defokussierte Beleuchtungspunkt DBP einen Verlauf über eine Gesamt strecke von xo, beispielsweise von -xo/2 bis +X0/2.
Durch die Abstandswahl zwischen den Arraylinsen 13 des Linsenarrays 12 ist gewährleistet, dass die defokussierten Beleuchtungspunkte DBP nicht in der x-Dimension überlappen, so dass kein Übersprechen zwischen den Einzelkanälen des Strahlengangs des Linsenarrays 12 stattfindet. Es ist so mit bei der ortsaufgelösten Vermessung mit der Detektionseinrichtung 24 möglich, das jeweilige gemessene Lichtsignal genau einem Objektpunkt entsprechend der Ortsauflösung des Linsenarrays 12 zuzuordnen.
Eine Auswertung farbabhängiger Intensitätsverhältnisse der Messergebnis se der beiden Detektionsarrays 23 und 26 kann zur Strukturbestimmung der Oberfläche 2 so erfolgen, wie dies beispielsweise bekannt ist aus dem Fachartikel von Kim et al. „Chromatic confocal microskopy with a novel wavelength detection method using transmittance“, Optics Express, Vol.
21, Nr. 5, Seiten 6286 bis 6294, 2013 oder aus der KR 10-1368486 A. Die dort beschriebene Einzelkanal- Auswertung kann getrennt für jeden Pixel der Detektionsarrays 23, 26 der Detektionseinrichtung 24 erfolgen, so dass das ortsaufgelöste Messergebnis der Strukturmessung der Oberfläche 2 parallel bestimmt werden kann. Anhand der Fig. 3 wird nachfolgend eine weitere Ausführung einer konfo- kalen Messvorrichtung 31 beschrieben, die anstelle der Messvorrichtung 1 zur 3D-Vermessung einer Objektoberfläche zum Einsatz kommen kann.
Komponenten und Funktionen sowie Messverfahren, die vorstehend im Zusammenhang mit der konfokalen Messvorrichtung 1 und insbesondere mit den Fig. 1 und 2 bereits erläutert wurden, tragen die gleichen Bezugs- ziffem und werden nicht nochmals im Einzelnen diskutiert.
Eine Einkopplung des Messlichts 5 in einen Mess- und Detektionslicht strahlengang erfolgt bei der Messvorrichtung 31 über einen polarisierenden Strahlteiler 32, der im Strahlengang zwischen der Kollimationslinse 11 und dem Linsenarray 12 angeordnet ist. Das beispielsweise senkrecht zur Zei chenebene der Fig. 3 polarisierte Messlicht 5 beaufschlagt den polarisierten Strahlteiler 32 bei der Anordnung nach Fig. 3 von unten und wird von die sem zunächst nach rechts hin zum Linsenarray 12 reflektiert. Zur Polarisa tion des Messlichts 5 ist im Strahlengang zwischen der Lichtquelle 4 und dem polarisierenden Strahlteiler 32 ein Polarisator 33 für das Messlicht 5 angeordnet. Der Polarisator 33 ist als linearer Polarisationsfilter ausgeführt. Zwischen dem Polarisator 33 und dem polarisierten Strahlteiler ist im Strahlengang ein 90°-Umlenkspiegel 34 angeordnet. Im Strahlengang vor dem Polarisator 33 ist im Strahlengang ein spektraler Bandpassfilter 35 angeordnet, der einen Spektralbereich des Messlichts 5 auf einen Spektral bereich begrenzt, für den das hyperchromatische Objektiv 14 der Messvor richtung 31 ausgelegt ist.
Eine Blende 36 im Strahlengang zwischen dem polarisierenden Strahlteiler 32 und dem Linsenarray 12 ist als Feldblende für das Messlicht 5 ausge führt und grenzt einen beleuchteten Bereich auf dem Eingangsbereich des Linsenarrays 12 ein. Zwischen dem polarisierenden Strahlteiler 32 und der Blende 36 ist eine l/4-Platte 37 im Strahlengang des Messlichts 5 angeord net. Nach einem Doppeldurchlauf der l/4-Platte 37 ist das ursprünglich senkrecht zur Zeichenebene der Fig. 3 polarisierte Messlicht 5 parallel zur Zeichenebene der Fig. 3 polarisiert und durchtritt somit den polarisierenden Strahlteiler 32 in der Fig. 3 von rechts nach links. Der folgende Strahlen gang durch die dann als Fokussierlinse dienende Kollimationslinse 11, die Lochblende 10, die dann als Kollimationslinse dienende Fokussierlinse 8 entspricht dem vorstehend im Zusammenhang mit der Messvorrichtung 1 erläuterten Strahlengang. Im der Linse 8 nachfolgenden Detektionsstrah lengang des Messlichts 5 durchtritt dieses zunächst eine weitere Blende 38, die eine abzubildende Ebene 39 definiert, die einer Anordnungsebene 40 des Linsenarrays 12 optisch konjugiert ist. Die Linsen 8 und 11 bilden die Ebene 39 also auf die Ebene 40 ab, wobei diese Abbildung telezentrisch ist. Die Abbildung zwischen den Ebenen 39 und 12 durch die Linsen 8 und 11 ist telezentrisch.
Der Detektionsstrahlengang des Messlichts 5 durchtritt nach der Blende 38 zunächst eine weitere Fokussierlinse 41 und im Anschluss hieran einen nicht polarisierenden Strahlteiler 42. Ein vom nicht polarisierenden Strahl teiler reflektierter Messlichtanteil 5B durchtritt zunächst den linearen Farb filter 25 und im Anschluss hieran eine Kollimationslinse 43, bevor der Messlicht-Teilstrahl 5B auf das Detektorarray 26 trifft. Der vom nicht pola risierenden Strahlteiler 42 durchgelassene Messlicht-Teilstrahl 5B durch tritt zunächst eine Kollimationslinse 44 und trifft dann auf das Detek torarray 23. Die Linsenpaare 41, 43 einerseits und 41, 44 andererseits stel len Teleskope dar, die für eine, insbesondere telezentrische, Abbildung der Eintritts-Ebene 39 auf die Anordnungsebenen der Detektionsarrays 26, 23 sorgen. Eine Beleuchtungsebene, die um die Brennweite der Arraylinsen 13 von der Anordnungsebene 15 beziehungsweise 40 beabstandet ist, ist in der Fig. 3 mit 45 bezeichnet. Diese Ebene 45 ist die Beleuchtungsebene des Linsenarrays 12. Diese Ebene 45 wird über das chromatische Objektiv 14 auf die Objektebene 16 abgebildet.
Durch Vorgabe mittels einer in der Fig. 3 nicht dargestellten Faser oder Blende kann eine räumliche Ausdehnung der Lichtquelle 4 variabel ein- stellbar sein.

Claims

Patentansprüche
1. Konfokale Messvorrichtung (1; 31) zur 3D-Vermessung einer Objekt oberfläche (2), - mit einer Lichtquelle (4) für Messlicht (5, 5A, 5B), mit einem Linsenarray (12) mit einer Vielzahl von Arraylinsen
(13), mit einem chromatischen Teleskop (14), welches eine Objektebene (16) in eine Anordnungsebene (15) des Linsenarrays (12) abbildet, - mit einer Multiplexer-Optik (11), die im Abstand einer Summe ei ner Brennweite (fAL) der Arraylinsen (13) einerseits und einer Brennweite (fMo) der Multiplexer-Optik (11) im Strahlengang des Messlichts (5), welches von der Objektebene (16) ausgeht, nach dem Linsenarray (12) angeordnet ist, - mit einer einzelnen Lochblende (10), die im Abstand der Brenn weite (fMo) der Multiplexer-Optik (11) im Strahlengang des Mess lichts (5), welches von der Objektebene (16) ausgeht, nach der Multiplexer-Optik (11) angeordnet ist; mit einer Kollimationsoptik (8), die der Lochblende (10) im Strah- lengang des von der Objektebene (16) ausgehenden Messlichts (5) nachgeordnet ist, mit einer ortsaufgelösten Detektionseinrichtung (24), die der Kol limationsoptik (8) im Strahlengang des von der Objektebene (16) ausgehenden Messlichts (5, 5A, 5B) nachgeordnet ist.
2. Konfokale Messvorrichtung nach Anspruch 1, dadurch gekennzeich net, dass ein Strahlverlauf des Messlichts (5) im chromatischen Tele skop (14) telezentrisch ist.
3. Konfokale Messvorrichtung nach Anspruch 1 oder 2, dadurch ge kennzeichnet, dass die Detektionseinrichtung (24) mindestens ein De- tektionsarray (23, 26) mit Detektorpixein aufweist. 4. Konfokale Messvorrichtung nach Anspruch 3, dadurch gekennzeich net, dass die Detektionseinrichtung (24) einen Strahlteiler (22) und zwei voneinander unabhängige Detektionsarrays (23, 26) aufweist, die jeweils in einem Teil- Strahlengang des Messlichts (5A, 5B) nach dem Strahlteiler (22) angeordnet sind.
5. Konfokale Messvorrichtung nach Anspruch 4, gekennzeichnet durch mindestens einen Farbverlaufsfilter (25) in einem der beiden Teil- Strahlgänge (5A, 5B) der Detektionseinrichtung (24). 6. Konfokale Messvorrichtung nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass ein Rasterabstand der Arraylinsen (13) des Linsenarrays (12) an einen Rasterabstand der Detektorpixel des mindestens einen Detektionsarrays (23, 26) angepasst ist. 7. Konfokale Messvorrichtung nach einem der Ansprüche 1 bis 6, ge kennzeichnet durch einen spektralen Bandpassfilter (35) zur Begren zung eines Spektralbereichs des Messlichts.
EP20839124.3A 2020-01-09 2020-12-30 Konfokale messvorrichtung zur 3d-vermessung einer objektoberfläche Pending EP4088086A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020200214.2A DE102020200214A1 (de) 2020-01-09 2020-01-09 Konfokale Messvorrichtung zur 3D-Vermessung einer Objektoberfläche
PCT/EP2020/088020 WO2021140052A1 (de) 2020-01-09 2020-12-30 Konfokale messvorrichtung zur 3d-vermessung einer objektoberfläche

Publications (1)

Publication Number Publication Date
EP4088086A1 true EP4088086A1 (de) 2022-11-16

Family

ID=74175872

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20839124.3A Pending EP4088086A1 (de) 2020-01-09 2020-12-30 Konfokale messvorrichtung zur 3d-vermessung einer objektoberfläche

Country Status (5)

Country Link
US (1) US20230003514A1 (de)
EP (1) EP4088086A1 (de)
CN (1) CN114945800A (de)
DE (1) DE102020200214A1 (de)
WO (1) WO2021140052A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022207032A1 (de) 2022-07-11 2024-01-11 Micro-Epsilon Optronic Gmbh Einrichtung, Vorrichtung und Verfahren zur konfokal-chromatischen Abstands- und/ oder Dickenmessung

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997034171A2 (en) * 1996-02-28 1997-09-18 Johnson Kenneth C Microlens scanner for microlithography and wide-field confocal microscopy
US9188874B1 (en) * 2011-05-09 2015-11-17 Kenneth C. Johnson Spot-array imaging system for maskless lithography and parallel confocal microscopy
DE20010830U1 (de) * 1999-07-09 2000-12-21 Breitmeier Ulrich Konfokale Meßvorrichtung
EP1371939A1 (de) * 2002-05-15 2003-12-17 Icos Vision Systems N.V. Vorrichtung zur Messung in drei Dimensionen der topographischen Oberflächenform eines Gegenstandes
DE102005043627B4 (de) 2005-09-13 2012-06-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Optischer Sensor und Verfahren zur optischen Abstands- und/oder Farbmessung
DE102006007170B4 (de) 2006-02-08 2009-06-10 Sirona Dental Systems Gmbh Verfahren und Anordnung zur schnellen und robusten chromatisch konfokalen 3D-Messtechnik
DE102007019267A1 (de) 2007-04-24 2008-10-30 Degudent Gmbh Messanordnung sowie Verfahren zum dreidimensionalen Messen eines Objekts
WO2010084478A2 (en) * 2009-01-24 2010-07-29 Ecole Polytechnique Federale De Lausanne (Epfl) High-resolution microscopy and photolithography devices using focusing micromirrors
US8134691B2 (en) * 2010-03-18 2012-03-13 Mitutoyo Corporation Lens configuration for a thermally compensated chromatic confocal point sensor
KR101839641B1 (ko) * 2011-02-15 2018-03-16 바스프 에스이 적어도 하나의 물체를 광학적으로 검출하기 위한 검출기
DE102011109653B4 (de) * 2011-08-06 2021-11-25 Carl Zeiss Microscopy Gmbh Laser-Scanning-Mikroskop mit einem Beleuchtungsarray
KR101368486B1 (ko) 2012-11-05 2014-03-12 나노스코프시스템즈 (주) 색 필터를 이용한 파장 검출기 및 상기 파장 검출기를 구비한 고속 크로마틱 공초점 현미경
DE102013008582B4 (de) 2013-05-08 2015-04-30 Technische Universität Ilmenau Verfahren und Vorrichtung zur chromatisch-konfokalen Mehrpunktmessung sowie deren Verwendung
DE102013016368B4 (de) * 2013-09-30 2024-05-16 Carl Zeiss Microscopy Gmbh Lichtmikroskop und Mikroskopieverfahren zum Untersuchen einer mikroskopischen Probe
DE102015210016A1 (de) 2015-06-01 2016-12-01 Carl Zeiss Microscopy Gmbh Verfahren zum Ermitteln einer ortsaufgelösten Höheninformation einer Probe mit einem Weitfeldmikroskop und Weitfeldmikroskop
DE102015115615A1 (de) * 2015-09-16 2017-03-16 Technische Universität München Vorrichtung und Verfahren zur chromatisch-konfokalen Untersuchung einer Probe
DE102018114860A1 (de) * 2018-06-20 2019-12-24 Precitec Optronik Gmbh Vorrichtung und Verfahren zur optischen Vermessung eines Messobjekts

Also Published As

Publication number Publication date
US20230003514A1 (en) 2023-01-05
WO2021140052A1 (de) 2021-07-15
DE102020200214A1 (de) 2021-07-15
CN114945800A (zh) 2022-08-26

Similar Documents

Publication Publication Date Title
DE102011055294B4 (de) Mikroskopische Einrichtung und Verfahren zur dreidimensionalen Lokalisierung von punktförmigen Objekten in einer Probe
DE10063276C2 (de) Scanmikroskop
DE102013001238B4 (de) Lichtmikroskop und Mikroskopieverfahren
EP3084399B1 (de) Vorrichtung und verfahren zum untersuchen einer probe mittels optischer projektionstomografie
DE10021378A1 (de) Optische Messanordnung mit einem Ellipsometer
EP3056934B1 (de) Messkopf einer endoskopischen vorrichtung und verfahren zur inspektion und messung eines objektes
DE102012204128A1 (de) Hochauflösende Scanning-Mikroskopie
EP3333611B1 (de) Optisches gerät mit mindestens einem spektral selektiven bauelement
DE10118463A1 (de) Verfahren und Anordnung zur tiefenaufgelösten optischen Erfassung einer Probe
EP4088086A1 (de) Konfokale messvorrichtung zur 3d-vermessung einer objektoberfläche
LU93022B1 (de) Verfahren und Mikroskop zum Untersuchen einer Probe
DE10024135B4 (de) Mikroskop
DE3244484A1 (de) Vorrichtung zur optimierung der kopplung zweier optischer systeme zur beobachtung und analyse von objekten
WO2020207795A1 (de) Lichtblattmikroskop und verfahren zuur bestimmung der brechungsindices von objekten im probenraum
WO2024012878A1 (de) Vorrichtung zur chromatisch konfokalen messung von abständen
DE102014010667B4 (de) Verfahren und Vorrichtung zur Messung der Form einer Wellenfront eines optischen Strahlungsfeldes
DE102022210354A1 (de) Messverfahren der EUV-Reflektometrie und EUV-Reflektometer
DE102013107220A1 (de) Vorrichtung und ein Verfahren zum Untersuchen einer Probe mittels mehrerer Untersuchungsmethoden
DE102015014387B3 (de) Vorrichtung und Verfahren zur Strahlanalyse mit einem variablen optischen Element
DE102016008884B4 (de) Spektroskopievorrichtung und -verfahren
DE102015112769A1 (de) Vorrichtung und Verfahren zur optischen Probenuntersuchung
DE102018126009A1 (de) Verfahren und Mikroskop zur Bestimmung der Dicke eines Deck- oder Tragglases
DE102018125995A1 (de) Verfahren und Mikroskop zur Bestimmung einer Verkippung eines Deckglases
DE102012014768B4 (de) Mikroskop mit einer Übersichtsoptik
WO2023151736A1 (de) System und verfahren zur konfokal-chromatischen linienabstandsmessung

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220615

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS