EP4066315A1 - Radiating element and associated antenna and manufacturing method - Google Patents

Radiating element and associated antenna and manufacturing method

Info

Publication number
EP4066315A1
EP4066315A1 EP20811337.3A EP20811337A EP4066315A1 EP 4066315 A1 EP4066315 A1 EP 4066315A1 EP 20811337 A EP20811337 A EP 20811337A EP 4066315 A1 EP4066315 A1 EP 4066315A1
Authority
EP
European Patent Office
Prior art keywords
inductor
radiating element
conductive material
antenna
nanostructure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP20811337.3A
Other languages
German (de)
French (fr)
Other versions
EP4066315B1 (en
Inventor
Jean Chazelas
Charlotte Tripon-Canseliet
Afshin Ziaei
Stéphane Xavier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Thales SA
Ecole Superieure de Physique et Chimie Industrielles de Ville Paris
Sorbonne Universite
Original Assignee
Centre National de la Recherche Scientifique CNRS
Thales SA
Ecole Superieure de Physique et Chimie Industrielles de Ville Paris
Sorbonne Universite
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Thales SA, Ecole Superieure de Physique et Chimie Industrielles de Ville Paris , Sorbonne Universite filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP4066315A1 publication Critical patent/EP4066315A1/en
Application granted granted Critical
Publication of EP4066315B1 publication Critical patent/EP4066315B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/32Vertical arrangement of element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F21/00Variable inductances or transformers of the signal type
    • H01F21/005Inductances without magnetic core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F21/00Variable inductances or transformers of the signal type
    • H01F21/02Variable inductances or transformers of the signal type continuously variable, e.g. variometers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • H01F5/003Printed circuit coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/364Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith using a particular conducting material, e.g. superconductor
    • H01Q1/368Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith using a particular conducting material, e.g. superconductor using carbon or carbon composite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems

Definitions

  • the field of the invention is that of microwave devices, such as array antennas.
  • Such devices can be used in various applications such as radar applications in avionics and aerospace, high speed communication, space technologies.
  • An array antenna is formed by a two-dimensional array of radiating elements.
  • the present invention relates to a radiating element, an antenna comprising such a radiating element and a method of manufacturing such a radiating element.
  • antennas exist, varying according to the intended applications, for example according to the wavelength and the power, or else the spectral characteristics of the desired emission.
  • many types of antennas include a set of radiating elements, also called elementary antennas.
  • the radiating elements make it possible, by controlling their arrangement, their conformation or the electrical signal which feeds each of them, to improve the gain of the antenna or to control its directivity or the shape of the emitted beam.
  • the existing antennas have relatively large dimensions, of the order of several centimeters to several tens of centimeters depending on the frequency and power required by the intended application, and therefore a large volume and weight .
  • the large dimensions are inconvenient for certain applications, for example for mobile devices, since an increase in the volume and / or weight of the devices results.
  • devices containing large antennas are more difficult to transport.
  • the integration of antennas in devices whose geometry is fixed for functions other than communication is, moreover, made difficult.
  • a radiating element having a smaller size than the radiating elements of the state of the art.
  • a radiating element is proposed for an antenna comprising a set of at least one wire nanostructure, each wire nanostructure extending in the same direction, called the common direction, between a first end and a second end .
  • the radiating element also comprises an inductance connected to each first end of a nanostructure, the inductance being made from a first conductive material, the inductance extending in a plane normal to the common direction.
  • the first conductive material has an electrical conductivity varying under the effect of a variation in an electric field applied within the first conductive material.
  • the inductance is configured so as to have a tunable inductance value with a capacitance of the set of at least one wire nanostructure.
  • the first conductive material comprises a semimetal.
  • the first material is, for example, graphene, or a transition metal dichalide.
  • At least one wire nanostructure is a carbon nanotube.
  • the set of at least one wire nanostructure comprises several wire nanostructures.
  • each wire nanostructure has an aspect ratio of greater than 20.
  • the inductance has a spiral shape.
  • the set of at least one wire nanostructure comprises several wire nanostructures.
  • the inductance is configured so as to have an inductance value tunable with a capacitance of the set of wire nanostructures.
  • the invention also relates to an elementary antenna comprising a first radiating element according to the invention.
  • the antenna also comprises a transmission line comprising an area made of a second conductive material and two ground planes, the transmission line extending into the same plane as the inductance and the area being connected to the inductance, each ground plane being made of a third conductive material, the area being arranged between the two ground planes.
  • the antenna comprises a variable DC voltage generator capable of applying the electric field within the first conductive material.
  • the DC voltage generator is a variable DC voltage generator
  • the DC voltage generator is able to apply a variable electric field within the first conductive material.
  • the elementary antenna comprises an electrode in physical contact with the inductance, the voltage generator applying the electric field within the first conductive material through the electrode.
  • the invention also relates to an array antenna. It comprises a network of several radiating elements according to the invention. In other words, it comprises several elementary antennas according to the invention arranged so that the radiating elements of the different elementary antennas form an array of radiating elements.
  • the inductances of the radiating elements are coplanar or capable of being coplanar.
  • the array antenna comprises, for example, several radiating elements including a first radiating element according to the invention and a second radiating element according to the invention, the first radiating element and the second radiating element having sets of at least a wire nanostructure with different capacities.
  • Figure 1 is a diagram of an antenna comprising a set of radiating elements and a set of transmission lines
  • Figure 2 is a sectional view of a radiating element of the invention and a transmission line of Figure 1, the radiating element comprising a bundle of nanostructures
  • Figure 3 is a top view of a bundle of nanostructures
  • Figure 4 is a top view of the radiating element and the transmission line of Figure 2,
  • FIG. 5 schematically represents a curve of values of the kinetic inductance of an inductor formed of a plurality of monoatomic layers of graphene as a function of a voltage applied to the terminals of the inductance
  • FIG.6 is a schematic representation of a radiating element according to the invention associated with an adjustable DC voltage generator, the radiating element comprising a beam of nanostructures,
  • FIG. 7 is a schematic representation of curves of real (solid lines) and imaginary (dotted lines) values of an input impedance of an antenna as a function of frequency
  • Figure 8 shows a curve representing the reactance of a beam of nanowire nanostructures as a function of frequency
  • Figure 9 shows a first embodiment of an array antenna comprising a one-dimensional array of radiating elements according to the second embodiment.
  • Figure 10 shows a first embodiment of an array antenna comprising a one-dimensional array of radiating elements according to the second embodiment.
  • FIG. 11 is a flowchart of the steps of a method for manufacturing a radiating element.
  • An antenna 10 is shown in Figure 1.
  • the antenna 10 is configured to emit and / or receive a set of electromagnetic waves.
  • antenna 10 is configured to transmit and receive a set of electromagnetic waves.
  • the electromagnetic wave has a frequency between 3 kilohertz (KHz) and 300 gigahertz (GHz). It should be noted that the frequency of the electromagnetic wave is liable to vary according to the applications envisaged for the antenna 10.
  • the antenna 10 comprises a substrate 15, radiating elements 20 and transmission lines 25.
  • the antenna 10 has a transmission line 25 for each radiating element 20.
  • the antenna 10 comprises a single radiating element 20 and a single transmission line 25.
  • the antenna 10 further comprises an electrical ground such as a metal frame.
  • the electrical ground is an electrical circuit connected to the earth.
  • the substrate 15 is provided to support the radiating elements 20 and the transmission lines 25.
  • the substrate 15 has a support face 30.
  • the support face 30 is flat.
  • a normal direction Z is defined as being the direction perpendicular to the support face 30.
  • the Z axis defined by the Z direction and oriented in the direction of the substrate towards the radiating elements is also defined.
  • the substrate 15 comprises a support plate 35 and a buffer layer 40.
  • the support plate 35 is configured to serve as a support for the buffer layer 40, the radiating elements 20 and the transmission lines 25.
  • the support plate 35 is, for example, made of silicon. According to one variant, the support plate 35 is made of alumina.
  • the support plate 35 has, for example, a thickness between 200 micrometers (pm) and 500 pm.
  • the support plate 35 is made of a material having electrical resistivity.
  • the electrical resistivity is, for example, greater than or equal to 10,000 Ohm. centimeter. Such an electrical resistivity makes it possible to limit the radiofrequency losses in the support plate 35. It should be noted that a material other than silicon is likely to be used to make the support plate 35.
  • the buffer layer 40 is interposed between, on one side, the support plate 35 and, on the other hand, on the other hand, the radiating elements 20 and the transmission lines 25.
  • the buffer layer 40 is delimited in the normal direction Z by the support plate 35 and by the support face 30.
  • the buffer layer 40 is made of an electrically insulating material.
  • the buffer layer 40 is, for example, made of silicon oxide.
  • the buffer layer 40 has a thickness, in the normal direction Z, of between 500 nanometers and 5 micrometers.
  • the thickness of the buffer layer 40 is equal to 2 micrometers.
  • FIG. 1 A sectional view of a radiating element 20 in a plane parallel to the normal direction Z is shown in Figure 2.
  • Each radiating element 20 is configured to emit and / or receive an electromagnetic wave.
  • Each radiating element 20 comprises a beam F of nanostructures 45 and an inductor 50.
  • the bundle or bundle F comprises at least ten nanostructures 45.
  • the bundle comprises for example thousands or millions of nanostructures 45.
  • the radiating element 20 comprises a single nanostructure 45.
  • nanostructure is understood to mean a structure having at least one nanometric dimension.
  • a dimension of an object, measured in one direction, is the distance between the two points of the object furthest from each other in said direction.
  • a nanometric dimension is a dimension strictly less than 1 micrometer, preferably strictly less than 100 nanometers.
  • a direction D is defined for each nanostructure 45. This means that each nanostructure 45 extends in the direction D defined for the nanostructure 45 considered.
  • the direction D of each nanostructure 45 is parallel to the normal direction Z.
  • Each nanostructure 45 has a first end 55 and a second end 60. Each nanostructure 45 extends between the first end 55 and the second end 60.
  • the direction D is, for example, parallel to the normal direction Z.
  • the direction D is common to all the nanostructures 45 of the same radiating element 20.
  • a diameter measured in a plane perpendicular to the direction D is defined for each nanostructure 45,
  • each nanostructure 45 is between 2 nanometers (nm) and 10 nm.
  • each nanostructure 45 is between 300 ⁇ m and 1 millimeter (mm). In particular, the length of each nanostructure 45 is greater than or equal to 500 ⁇ m.
  • each nanostructure 45 is measured along the common direction D.
  • Each nanostructure 45 is a wire nanostructure.
  • a wire structure is a structure having a length strictly greater than 10 times the diameter.
  • the ratio of the length to the numerator and the diameter to the denominator is called the “aspect ratio” also called the aspect ratio.
  • each nanostructure 45 is such that the aspect ratio is strictly greater than 20.
  • Nanotubes are examples of wire nanostructures 45. Nanotubes are hollow wire structures having a diameter of less than 100 nanometers.
  • a nanotube is a hollow wire nanostructure.
  • beam is understood to mean a set of nanostructures 45 in which the nanostructures 45 are spaced from each other by a distance less than or equal to the length of the nanostructures 45.
  • the distance between the nanostructures 45 is measured in a plane perpendicular to the common direction D.
  • the distance is less than or equal to half the length, for example less than or equal to one fifth of the length, in particular less than or equal to one tenth of the length.
  • a median value is defined for the length of the nanostructures 45 of the same beam F.
  • the median value is a value such that half of the nanostructures 45 of the beam F considered have a length greater than or equal at the median value, the other half having a length less than or equal to the median value.
  • the lengths of the nanostructures 45 of the beam considered vary between 50 percent (%) and 150% of the median value.
  • the median value is, for example, greater than or equal to five hundred micrometers.
  • a total length is defined for the beam F.
  • the total length is, for example, defined as being the length of the longest nanostructure 45 among all of the nanostructures 45 belonging to the beam F.
  • the total length is, for example, identical for each beam F.
  • the total lengths of at least two F beams are different from each other.
  • the beam has an envelope common to all the nanostructures.
  • envelope is understood to mean a surface enveloping the nanostructures 45 and tangent to the nanostructures 45 which delimit the beam F in a plane perpendicular to the common direction D.
  • a maximum lateral dimension is defined for the envelope.
  • the maximum lateral dimension is the largest dimension of the envelope in a plane perpendicular to the common direction D.
  • the maximum lateral dimension is between 10pm (or 20pm) and 1mm.
  • An aspect ratio equal to the ratio between, in the numerator, the total length of the beam F and, in the denominator, the maximum lateral dimension, is defined for the beam F.
  • the aspect ratio of the beam F is, for example, between 5 and 15. According to one embodiment, the aspect ratio of the beam F is less than or equal to 10. It is, for example, included between 9 and 10.
  • the bundle F typically has a total length of between 100 micrometers and 1mm and a diameter of between 10 micrometers and 100 micrometers.
  • the aspect ratio depends on the target transmission or reception frequency, that is to say depending on the target resonant frequency.
  • the beam or bundle F is advantageously configured to resonate at a frequency between 1 GHz and 100 GHz.
  • the beam F is shown seen in the common direction D in Figure 3.
  • the envelope has a cross section to the common direction D of circular shape.
  • the section of the beam F has a circular shape, or even a polygonal shape such as a rectangular or rectangular shape. crossed.
  • the nanostructures 45 are all made of the same material.
  • each nanostructure 45 is a carbon nanotube.
  • each nanostructure 45 is a double-layered carbon nanotube.
  • the carbon nanotubes are likely to be single-sheet carbon nanotubes, multi-wall carbon nanotubes or MWCNT with reference to the English expression “multi-wall carbon nanotubes” or even a mixture of Single-layered carbon nanotubes and multi-layered carbon nanotubes.
  • other types of wire nanostructures 45 are likely to be used in place of carbon nanotubes.
  • the carbon nanotubes are advantageously aligned vertically. In other words, the carbon nanotubes extend longitudinally in the same direction D. It should be noted that other types of wire nanostructures 45 are likely to be used instead of carbon nanotubes.
  • the nanostructures 45 are nanowires, for example nanowires of silicon or of another semiconductor material.
  • the nanostructures 45 are made of an electrically conductive material such as a metallic material.
  • each radiating element 20 extends in a plane normal to the common direction D.
  • Each inductor 50 is, for example, produced in the form of a conductive layer carried by the substrate 15.
  • each inductor 50 is perpendicular to the normal direction Z and to the common direction D.
  • the inductance 50 is carried by the buffer layer 40.
  • the inductor 50 is made from a first conductive material.
  • each inductor 50 has a first portion 65 and a second portion 70.
  • the first portion 65 extends in a plane perpendicular to the normal direction Z.
  • the first portion 65 is interposed between the beam F of nanostructures 45 and the substrate 15.
  • the first portion 65 is connected to the first end 55 of each nanostructure 45.
  • the first portion 65 has a triangular shape in a plane normal to the common direction D.
  • first portion 65 has a circular or square shape.
  • second portion 70 extends in a plane perpendicular to the normal direction Z.
  • a maximum dimension is defined for the second portion 70.
  • the maximum dimension is measured in a plane perpendicular to the normal direction Z between the two points of the second portion 70 which are the most distant from each other.
  • the maximum dimension 70 is between 100 ⁇ m and 1 mm.
  • the maximum dimension 70 is between 200 ⁇ m and 500 ⁇ m. It should be noted that the maximum dimension 70 is liable to vary.
  • the second portion 70 has a spiral shape in a plane perpendicular to the normal direction Z.
  • the second portion 70 surrounds the first portion 65 in a plane perpendicular to the normal direction Z.
  • the second portion 70 is formed by a succession of straight segments.
  • each line segment is perpendicular to the line segments to which it adjoins.
  • a curved part of the second portion 70 is interposed between two contiguous straight line segments.
  • the second portion 70 is formed by a single curve wound on itself.
  • the second portion 70 has a third end 75 and a fourth end 80.
  • the second portion 70 extends spirally from the third end 75 to the fourth end 80.
  • the third end 75 is the end of the second portion 70 which is located on the periphery of the second portion 70 in a plane perpendicular to the normal direction Z.
  • the fourth end 80 is the end of the second portion 70 which is located at the periphery of the first portion 65 in a plane perpendicular to the normal direction Z.
  • the fourth end 80 is therefore surrounded by the rest of the second portion 70 in a plane perpendicular to the normal direction Z.
  • the fourth end 80 is connected to the first portion 65.
  • the transmission line 25 extends in the same plane as the inductor 50.
  • the transmission line 25 is produced in the form of a layer carried by the substrate 15.
  • the transmission line 25 comprises a conductive zone 85 and at least one ground plane 90.
  • the transmission line 25 shown in FIG. 4 comprises two ground planes 90.
  • the conductive zone 85 is connected to the inductor 50.
  • the conductive zone 85 is connected to the third end 75 of the inductor 50.
  • the conductive zone 85 is configured to receive an electric current from the inductor 50. Such a current is generated in particular by the inductor 50 following the reception of an electromagnetic wave.
  • the conductive zone 85 is further configured to receive an electric current from an external electric source to the antenna 10 and to supply the inductor 50 with said electric current.
  • the conductive zone 85 has, for example, a rectangular shape.
  • the conductive zone 85 has a thickness measured in the normal direction Z.
  • the thickness of the conductive zone 85 is between 100 nanometers and 1 micrometer.
  • the thickness of the conductive zone 85 is equal to 600 nanometers.
  • the conductive zone 85 is made of a second conductive material.
  • the second conductive material is, for example, a metallic material.
  • the second conductive material is, for example, molybdenum.
  • the second conductive material is the same material as the first conductive material.
  • Each ground plane 90 is connected to the ground of the antenna 10.
  • Each ground plane 90 has a thickness measured in the normal direction Z.
  • the thickness of each ground plane 90 is between 100 nanometers and 1 micrometer.
  • each ground plane 90 is equal to 600 nanometers.
  • Each ground plane 90 is made of a third conductive material.
  • the third conductive material is, for example, a metallic material.
  • the third conductive material is, for example, molydbdenum.
  • the third conductive material is the same material as the first conductive material.
  • each ground plane 90 It should be noted that other conductive materials can be envisaged for each ground plane 90.
  • the conductive zone 85 is arranged between the two ground planes 90.
  • a distance, in a plane perpendicular to the normal direction Z, between the conductive zone 85 and the ground plane 90 closest to the conductive zone 85 is between 50 ⁇ m and 250 ⁇ m.
  • the conductive zone 85 is equidistant from the two ground planes 90.
  • the inductance 50 is at least partially interposed between the two ground planes 90.
  • a distance between the inductance 50 and the ground plane (s) 90 is between 20 pm and 300 pm.
  • each ground plane 90 has an “L” shape. Each ground plane 90 then has a first branch and a second branch, the two branches being perpendicular to each other.
  • the first branch of each ground plane 90 extends in the direction of the other ground plane 90 belonging to the same transmission line 25.
  • the first two branches of the same transmission line 25 are aligned with each other.
  • each transmission line 25 is, for example, interposed between the two first branches of the transmission line 25 considered.
  • the two first branches of the same transmission line 25 are, for example, interposed between the two corresponding second branches.
  • Each inductor 50 is, for example, interposed between the two second branches of the ground planes 90 between which the inductor 50 is interposed.
  • the inductor 50 is housed in a rectangular area delimited on a first side of the rectangular area by the first two branches, on a second side of the rectangular area by one of the second branches and on a third side of the rectangular area by the other second branch, the first side being perpendicular to the second side and 5 to the third side.
  • At least one transmission line 25 receives a first electric current.
  • the first electric current is transmitted, from a device external to the antenna 10, to the conductive zone 85.
  • the conductive zone 85 transmits the first electric current to the inductor 50 of the radiating element 20 connected to the transmission line 25 in question.
  • a second electromagnetic wave is received by at least one radiating element 20.
  • the second electric current is then transmitted, via the transmission line 25 in question, to a device external to the antenna 10.
  • the radiating element 20 has very small dimensions. In particular, the dimensions of the radiating element 20 are smaller than the dimensions of the radiating elements of the state of the art.
  • the antenna 10 therefore has a volume and a lower weight than the antennas of the state of the art.
  • the combination of the nanostructure (s) 45 and the inductance 50 makes it possible to minimize the length of the nanostructures 45 with respect to a radiating element 20 which does not include an inductance 50.
  • An aspect ratio, for the beam F, of between 5 and 15 typically exhibits good mechanical strength while allowing good efficiency of converting electric current into electromagnetic wave and vice versa.
  • An aspect ratio of between 9 and 10 is an example of a particularly advantageous aspect ratio for obtaining good mechanical strength and good conversion efficiency.
  • the length of the nanostructures 45 and the inductance value of the inductor 50 which varies as a function of the dimensions of the inductor 50, allow the radiating element 20 to be easily adapted to different frequency values.
  • antennas 10 having a wide transmission and / or reception band are obtained when total lengths or different inductance values are used for certain radiating elements 20.
  • Nanostructures 45 having a median length value greater than or equal to 500 nanometers make it possible to obtain good conversion efficiency.
  • the spiral shape is a shape making it possible to obtain a particularly compact inductor 50, and therefore a radiating element 20 of particularly small dimensions.
  • An antenna 10 in which each inductor 50 is interposed at least partially between the two corresponding ground planes 90 is also particularly compact.
  • the inductance 50 is made from a first conductive material.
  • the first conductive material is chosen so as to have an electrical conductivity varying under the effect of a variation of an electric field applied within the first conductive material, that is to say within of inductance 50.
  • the first material has an electrically controllable electrical conductivity.
  • the inductance has an inductance value L which varies under the effect of the electrical conductivity of the first material and therefore under the effect of the variation of the electric field applied to the first conductive material.
  • the inductance value varies under the effect of a variation in a voltage U1 applied between two terminals of the first material. It is the voltage U1 that generates an electric field within the inductor 50.
  • the first conductive material is distinct from a metal. Metals exhibit a fixed electrical conductivity.
  • the first conductive material is advantageously a semimetal.
  • the first conductive material is graphene.
  • Inductor 50 comprises, for example, a plurality of layers of a first conductive material or a single layer of graphene.
  • each graphene layer is an atomic monolayer. In other words, it has a monoatomic thickness.
  • Inductor 50 may include only the first conductive material or may include the first material and at least one other material.
  • Inductance 50 comprises, for example, an alternation of layers of graphene and layers of another material.
  • the other material advantageously has a lower electrical conductivity than that of graphene.
  • the other material is, for example, graphene oxide.
  • the inductance of an element made of a predefined material comprises a magnetic inductance essentially defined by the geometric characteristics of the element and a kinetic inductance due to the displacement of electrons within the material under tension.
  • the inductance of graphene exhibits a remarkable property. The kinetic inductance of graphene is very much greater than its magnetic inductance, which distinguishes it from metals whose kinetic inductance is negligible.
  • FIG. 5 there is shown the kinetic inductance L k defined in Hm 1 of an inductor 50 made of graphene. This kinetic inductance decreases as a function of the voltage U1 applied between two faces of the inductor 50.
  • the first material may be a transition metal dichalide or TMD, which stands for "transition metal dichalcogenide”.
  • the first conductive material is based on one semimetal or on several semimetals.
  • a first topological semi-metal comprising the Dirac semi-metal (Cd3As2, Na3Bi) and the Weyl semi-metal (TaAs, NbAs).
  • Each inductor 50 has a thickness measured in the normal direction Z.
  • the thickness of the inductor 50 is between 100 nanometers and 1 micrometer.
  • the thickness of inductor 50 is equal to 600 nanometers.
  • Each inductor 50 has an adjustable inductance value by adjusting an electric field applied within the inductor, that is to say by adjusting a voltage applied between two terminals of the inductor 50.
  • the antenna according to the invention advantageously comprises, as shown in FIG. 6, a generator G of variable direct voltage making it possible to apply a direct voltage U1 between two terminals F1, FS of the inductor so as to apply a electric field E within the first conductive material 50.
  • the direct voltage U1 is applied so that a substantially uniform electric field E of variable value is applied within the first conductive material.
  • the electrical conductivity of the first electrically conductive material varying as a function of the electric field to which it is subjected, the electric conductivity is adjustable by adjusting the electric field.
  • the inductance value L of the inductor 50 varying as a function of the electrical conductivity of the first conductive electrical material, the inductance value L varies under the effect of a variation in the voltage U1, c 'that is to say the electric field E.
  • the antenna advantageously comprises, as shown in Figure 6, an electrically conductive EL electrode in direct physical contact with the inductor 50.
  • variable DC voltage generator G is able to apply a potential difference between the conductive electrode EL and a mass M so that the first conductive material is subjected to a substantially uniform electric field.
  • This electric field E extends for example along the Z axis as in the embodiment of Figure 2.
  • the inductance 50 extends, along the Z axis, from a lower face F1 in direct physical contact with the substrate 15 and more particularly with the support face 30, to an upper face FS.
  • the substrate 15 is attached to a lower conductive plate PC connected to the electrical ground.
  • the substrate 15 is interposed, along the Z axis, between the conductive plate PC and the inductor 50.
  • the EL electrode is electrically conductive, for example it is metallic.
  • the EL electrode is deposited on the upper face FS of the inductor 50.
  • the inductor 50 is interposed, along the Z axis, between the substrate 15 and the face. lower Fl of inductor 50.
  • the variable direct voltage generator is able to apply a variable direct voltage U between the electrode EL and the lower conductive plate PC so that a voltage U1 is applied between the upper face FS and the lower face DI of the 'inductor 50.
  • a voltage U1 is applied between the upper face FS and the lower face DI, the first conductive material is subjected to an electric field E extending along the Z axis.
  • variable direct voltage generator is intended to apply a voltage between two coplanar terminals of the inductor 50 so that the first conductive material is subjected to an electric field extending in a plane perpendicular to the Z axis. There is then provided a coplanar electrode and a mass extending in the same transverse plane perpendicular to the Z axis as the inductor 50. The inductor is interposed between the electrode and the mass in this transverse plane according to a direction of the transverse plane. The generator is intended to apply a DC voltage between the electrode and the coplanar ground.
  • the resonant mode of the radiating element 20 is mainly capacitive for the bundle F of wire nanostructures and inductive for the inductance.
  • a wire nanostructure has a high resistance when it is alone while a bundle F of wire nanostructures has a very low resistance of up to 50 Ohms. It therefore becomes essentially capacitive.
  • the wire nanostructures arranged in bundles form an element equivalent to a capacitor C. This distributed capacitance C depends on the number of wire nanostructures, on their diameter and on the form factor.
  • inductance L of inductance 50 By matching the value of inductance L of inductance 50 to the capacitance C of the bundle of wire nanostructures 45 at the frequency fo, it is meant to choose the value of inductance L so that the radiating element 20 is resonant. at the frequency f 0 .
  • the resonance inductance L value is linked to the frequency f 0 and to the capacitance C of the wire nanostructure F by the following formula:
  • a transmitting antenna is a resonant electronic circuit of the RLC type: resistive (R) - inductive (L) - capacitive (C) series or parallel, at a resonant frequency fo.
  • This circuit delivers a ZRLC impedance matched at the output to the air impedance (ie 377 Ohms and at the input a reference impedance Z 0 (generally 50 Ohms).
  • Z 0 generally 50 Ohms
  • the input impedance Z in of the antenna is connected to the ZRLC impedance of the RLC circuit and to the air impedance Z air by the following formula
  • the real part of the input impedance is equal to 50 Ohms at the resonance frequency fo
  • this real part is suitable for a radiofrequency emission from an input signal usually having a real part of this value.
  • Its zero imaginary part is for its part suitable for transmission from the input signal usually exhibiting a zero imaginary part.
  • the possibility of varying the inductance value of the inductor 50 makes it possible to obtain the resonance of the radiating element 20 even when the bundle F has, after its growth, a capacitance C which differs slightly from the capacitance. wanted.
  • This solution therefore makes it possible to optimize the gain of the antenna by applying a voltage to the inductor 50, the value of which makes it possible to match the inductance value L of the inductance with the capacitance C of the bundle F.
  • the electric field ensuring the tuning is advantageously applied during operation of the antenna, that is to say during the transmission or reception of a radiofrequency wave by the antenna in order to ensure tuning at the determined frequency.
  • the invention also relates to a method of controlling the antenna in which the first conductive material is subjected to an electric field such that the inductance value of the inductor 50 is matched with the capacitance of the bundle. F at a predetermined frequency, when the antenna transmits or receives an electromagnetic wave at the predetermined frequency.
  • the inductance value is matched with the capacitance of the bundle F at a predetermined frequency, it is possible to measure a reflection coefficient of a wave emitted or received by the antenna from which it is possible to deduce and, eg display, real part and imaginary part of antenna input impedance.
  • a reflection coefficient of a wave emitted or received by the antenna from which it is possible to deduce and, eg display, real part and imaginary part of antenna input impedance.
  • the antenna comprises means for measuring a reflection coefficient of a wave transmitted or received by the antenna and processing means making it possible to adjust the inductance value of an inductor in order to match the value of inductance at the capacitance of the bundle at a predetermined frequency, from measurements of the reflection coefficient measured by the measuring means for different values of a direct voltage applied by the variable direct voltage generator between two terminals of the inductor 50.
  • the inductance adjustment can be done collectively for an array antenna.
  • the antenna comprises means for measuring a reflection coefficient of a wave transmitted or received by the antenna and processing means making it possible to adjust the inductance values of the inductors 50 of the antenna to substantially match the inductance values to the capacitance of the bundle at a predetermined frequency, from measurements of the reflection coefficient measured by the measuring means for different values of a DC voltage or of applied DC voltages (s ) by one or more generators of variable direct voltage between two terminals of the inductors 50.
  • the inductance has an inductance value capable of varying within an interval between 1 nanoHenry and 10 nanoHenrys.
  • the inductance value is, for example capable of being equal to 5 nanoHenrys.
  • the invention relates to an array antenna comprising two radiating elements each comprising a bundle or set of wire nanostructures).
  • the bundles of the two radiating elements have distinct respective capacities.
  • the inductance of each radiating element is tunable with the capacitance of the corresponding bundle, that is, with the capacitance of the set of at least one wire nanostructure of the same radiating element.
  • FIG. 8 schematically represents the variation in the reactance of a bundle of carbon nanotubes as a function of the frequency of a first electrical signal which is applied to it, for example between 7 and 13 GHz.
  • the reactance varies according to the frequency which means that the capacitance of this bundle also varies according to the frequency. Consequently, by varying the voltage U1 to vary the inductance value of the inductor 50, it is possible to tune the whole of the resonant cell formed of the inductor 50 and of a bundle F for several resonance frequencies. . This makes it possible to obtain an antenna emitting or receiving waves with a high gain at different frequencies and therefore exhibiting the behavior of a broadband antenna or a frequency tunable antenna.
  • FIG. 9 represents an array antenna 100 comprising a one-dimensional array of radiating elements 20b, only one of which is referenced in FIG. 9 for greater clarity.
  • the radiating element 20b differs from that of Figure 6 in that the EL electrode is coplanar with the inductor 50. Alternatively, the EL electrode is deposited on the inductor 50 as in Figure 6.
  • the electrode may, as a variant, be partly deposited on the inductor 50 and be partly coplanar with the inductor 50.
  • the network could be two-dimensional.
  • the antenna 100 comprises a transmission line 25, as described above, for each radiating element 20b.
  • the transmission lines 25, and more particularly the conductive zones 85 are electrically connected to a main transmission line LP making it possible to apply the first electric current to each of the conductive zones 85.
  • the first electric current is advantageously a radiofrequency signal.
  • the ground planes 90 are connected to a PC ground plane located on the rear face, that is to say contiguous to the face of the substrate 15 opposite to the support face 30.
  • ground planes are, for example, connected to the ground plane PC by metallized holes VI.
  • the EL electrodes of each of the radiating elements 20b are deposited in part on the support face 30.
  • the electrodes can be controlled collectively by the same variable DC voltage generator or independently by different generators.
  • the antenna may have radiating elements having F beams having different capacities and / or all identical capacities.
  • the capacity of each beam is defined by its aspect ratio.
  • the antenna 1000 of the embodiment of Figure 10 differs from that of Figure 9 in that the EL electrodes are connected to the ground planes 90 of the radiating elements 20c.
  • the radiating elements 20c differ from the radiating elements 20b of Figure 9 in that they are devoid of metallized holes.
  • the LP line makes it possible to apply a signal simultaneously comprising a radiofrequency signal and the direct voltage generating the electric field within the inductors 50 thus making it possible to adjust the inductance value of the inductor 50.
  • This solution makes it possible to adjust the inductors 50 collectively.
  • the capacity of a wire nanostructure depends on its aspect ratio. Therefore, the provision of radiating elements having wire nanostructures having different aspect ratios allows to obtain radiating elements resonating at different frequencies and thus to transmit and / or receive at several frequencies. It is thus possible to produce an antenna formed of radiating elements which radiate at different frequencies. The antenna therefore exhibits broadband antenna behavior.
  • the antenna has, for example, a first radiating element having a wire nanostructure having a first aspect ratio and a second radiating element having a nanostructure having a second aspect ratio.
  • the antenna has first means making it possible to vary the inductance value of the inductance of the first radiating element and of the second means making it possible to vary the value of the inductance of the second radiating element.
  • the antenna has first means making it possible to vary the inductance value of the inductance of the first radiating element independently of the inductance value of the second radiating element and of the second means making it possible to vary the value. of the inductance of the second radiating element independently of the inductance of the first radiating element.
  • the first and second means advantageously each comprise a variable direct voltage generator.
  • Such an antenna is also easy to manufacture, as illustrated with reference to FIG. 11 which is a flowchart of a method for manufacturing a radiating element 20.
  • the manufacturing process comprises a supply step 100, a deposition step 110, an etching step 120, a placement step 130 and a growth step 140.
  • the substrate 15 is supplied.
  • a layer of the first conductive material is deposited on the substrate 15.
  • a transfer deposition comprises a step of exfoliation of a layer of graphene from a block of graphite, in which a carbon monolayer is extracted using an adhesive tape and a step of thermal transfer of the atomic monolayer of carbon onto the substrate 15.
  • the layer of the first conductive material is etched to form the inductor 50.
  • the etching step 120 comprises, for example, a photolithography step and / or an ion beam etching step.
  • Ion beam etching involves projecting a high energy beam of ions, in particular Argon ions, onto the layer to be etched to machine the layer to be etched.
  • a catalyst C for the growth of nanostructures 45 is deposited on the inductor 50.
  • Catalyst C is a metallic material.
  • the most widely used C catalysts for growing nanotubes or nanowires are nickel, cobalt, iron and gold.
  • catalyst C is iron.
  • Catalyst C is made from an alloy of two or more metals.
  • Catalyst C is, for example, in the form of a set of nanoparticles.
  • the particles of catalyst C are nanoparticles.
  • each particle has three nanometric dimensions.
  • each dimension of each particle is strictly between 1 nanometer and 100 nanometers.
  • the particles of catalyst C are, for example, obtained by lithography.
  • Lithography makes it possible to obtain a perfectly periodic network of particles of catalyst C.
  • the particles are obtained by fragmentation and controlled dewetting of a layer of catalyst C deposited on the inductor 50.
  • the particles of catalyst C are obtained by spraying, on the inductor 50, a solution comprising these particles.
  • the particles are deposited by electrostatic grafting on the inductor 50.
  • the particles are, for example, liquid when the catalyst C is at the set temperature Te. This is the case, for example, with silicon nanowires, the growth of which is catalyzed with the help of gold particles.
  • the particles are solid when the catalyst C is at the set temperature Te. This is the case, for example, with the growth of carbon nanotubes.
  • catalyst C forms a homogeneous layer.
  • the catalyst C is deposited so as to form a layer having, in a plane perpendicular to the normal direction Z, a shape identical to the shape of the section of the beam F.
  • step 130 of placing a catalyst C by a step of depositing a layer preventing the growth of nanostructures other than on the inductor 50.
  • this step of depositing a layer preventing growth comprises an etching step during which an opening is made at the level of the inductor 50 in the layer preventing the growth in order to allow the growth of. a beam F of nanostructures 45.
  • At least one nanostructure 45 is obtained.
  • the nanostructures 45 grow on the inductor 50 to form a beam F.
  • a nanostructure 45 is obtained for each particle of catalyst C.
  • the nanostructures 45 are, for example, obtained by chemical vapor deposition.
  • Chemical vapor deposition (commonly referred to by the acronym CVD from “Chemical Vapor Deposition”) is a technique frequently used to deposit a material on a substrate. Chemical vapor deposition is carried out in a closed chamber, delimiting a chamber isolated from the outside atmosphere and containing at least one substrate, generally maintained at a high temperature. A so-called “precursor” gas is injected into the chamber and decomposes on contact with the heated substrate, releasing atoms of one or more predetermined elements onto the substrate.
  • liberated atoms form between themselves chemical bonds leading to the formation, on the substrate, of the desired material.
  • the thermal chemical vapor deposition process also known under the English name "Thermal Chemical Vapor Deposition" is a technique in which the substrate 15 is heated to a high temperature of the order of 600 degrees Celsius or more. is a type of CVD particularly suitable for the growth of carbon nanotubes.
  • a plasma is generated in the growth chamber.
  • Several radiating elements 20 are manufactured simultaneously. For example, during the etching step 120, the inductors 50 of several radiating elements are formed. During the placement step 130, a catalyst C is deposited on each inductor 50. During the growth step 140, at least one nanostructure 45 is formed on each inductor 50.
  • each transmission line 25 is formed, in the layer of first conductive material, during the process. etching step 120.
  • the manufacturing process comprises a step of depositing a layer of second conductive material and a step of etching of the layer of second conductive material to form the transmission lines 25.
  • Molybdenum is a material which is resistant to the conditions which prevail in a growth frame of nanostructures 45, in particular a CVD frame.
  • the inductance 50 and the transmission lines 25 are therefore not degraded during the growth of the nanostructures 45, in particular when the nanostructures 45 are carbon nanotubes.
  • Cathodic sputtering is a deposition method for obtaining good quality molybdenum layers.
  • the method can include a step of depositing one or more electrodes.
  • the electrodes are made from a conductive material, for example molybdenum.
  • the step of depositing an electrode comprises depositing the layer of molybdenum by sputtering.
  • Cathodic sputtering (also designated under the English term “sputtering”) is a thin film deposition technique in which a target made of material to be deposited is supplied, generally in the form of a solid material, in a deposition chamber and a plasma is formed in a low pressure gas occupying the deposition chamber.
  • the application of a potential difference between the target and the walls of the deposition chamber causes bombardment of the target with positively charged species of the plasma.
  • the bombardment causes the target to sputter and thus the release into the atom deposition chamber of the material to be deposited.
  • the condensation of the atoms thus released on a substrate then forms a layer of the material to be deposited.

Abstract

The invention relates to a radiating element of an antenna (10) comprising: - at least one wire-like nanostructure (45), each wire-like nanostructure (45) extending along the same direction (D), called common direction, between a first end (55) and a second end (60), and - an inductor (50) connected to each first end (55) of a nanostructure (45), the inductor (50) being made of a first conductive material, the inductor (50) extending in a plane normal to the common direction (D), the first conductive material having an electrical conductivity that varies under the effect of a variation in an electrical field applied within the first conductive material.

Description

DESCRIPTION DESCRIPTION
Titre de l’invention : Elément rayonnant, antenne et procédé de fabrication associésTitle of the invention: Radiating element, antenna and associated manufacturing process
[0001] Le domaine de l’invention est celui des dispositifs hyperfréquences, tels que les antennes réseau. [0001] The field of the invention is that of microwave devices, such as array antennas.
[0002] De tels dispositifs peuvent être utilisés dans différentes applications telles que les applications radar dans l’avionique et l’aérospatiale, la communication haut débit, les technologies spatiales. [0002] Such devices can be used in various applications such as radar applications in avionics and aerospace, high speed communication, space technologies.
[0003] Une antenne réseau est formée d’un réseau bidimensionnel d’éléments rayonnants. [0003] An array antenna is formed by a two-dimensional array of radiating elements.
[0004] La présente invention concerne un élément rayonnant, une antenne comprenant un tel élément rayonnant et un procédé de fabrication d’un tel élément rayonnant. The present invention relates to a radiating element, an antenna comprising such a radiating element and a method of manufacturing such a radiating element.
[0005] De nombreux types d’antennes existent, variant en fonction des applications visées, par exemple en fonction de la longueur d’ondes et de la puissance, ou encore des caractéristiques spectrales de l’émission recherchée. En particulier, de nombreux types d’antennes comprennent un ensemble d’éléments rayonnants, également appelés antennes élémentaires. Les éléments rayonnants permettent, par le contrôle de leur disposition, de leur conformation ou du signal électrique qui alimente chacun d’entre eux, d’améliorer le gain de l’antenne ou de contrôler sa directivité ou la forme du faisceau émis. [0005] Many types of antennas exist, varying according to the intended applications, for example according to the wavelength and the power, or else the spectral characteristics of the desired emission. In particular, many types of antennas include a set of radiating elements, also called elementary antennas. The radiating elements make it possible, by controlling their arrangement, their conformation or the electrical signal which feeds each of them, to improve the gain of the antenna or to control its directivity or the shape of the emitted beam.
[0006] Cependant, les antennes existantes présentent des dimensions relativement importantes, de l’ordre de plusieurs centimètres à plusieurs dizaines de centimètres en fonction de la fréquence et de la puissance requises par l’application visée, et donc un volume et un poids important. Les dimensions importantes sont gênantes pour certaines applications, par exemple pour des appareils mobiles, puisqu’une augmentation du volume et/ou du poids des dispositifs en résulte. En outre, les dispositifs contenant des antennes de grandes dimensions sont plus difficiles à transporter. L’intégration des antennes dans des dispositifs dont la géométrie est fixée en vue d’autres fonctions que la communication est, en outre, rendue difficile. However, the existing antennas have relatively large dimensions, of the order of several centimeters to several tens of centimeters depending on the frequency and power required by the intended application, and therefore a large volume and weight . The large dimensions are inconvenient for certain applications, for example for mobile devices, since an increase in the volume and / or weight of the devices results. In addition, devices containing large antennas are more difficult to transport. The integration of antennas in devices whose geometry is fixed for functions other than communication is, moreover, made difficult.
[0007] Il existe donc un besoin pour un élément rayonnant présentant un encombrement plus faible que les éléments rayonnants de l’état de la technique. [0008] A cet effet, il est proposé un élément rayonnant pour une antenne comportant un ensemble d’au moins une nanostructure filaire, chaque nanostructure filaire s’étendant selon la même direction, dite direction commune, entre une première extrémité et une deuxième extrémité. L’élément rayonnant comprend également une inductance reliée à chaque première extrémité d’une nanostructure, l’inductance étant réalisée à base d’un premier matériau conducteur, l’inductance s’étendant dans un plan normal à la direction commune. Selon l’invention, le premier matériau conducteur présente une conductivité électrique variant sous l’effet d’une variation d’un champ électrique appliqué au sein du premier matériau conducteur. [0007] There is therefore a need for a radiating element having a smaller size than the radiating elements of the state of the art. For this purpose, a radiating element is proposed for an antenna comprising a set of at least one wire nanostructure, each wire nanostructure extending in the same direction, called the common direction, between a first end and a second end . The radiating element also comprises an inductance connected to each first end of a nanostructure, the inductance being made from a first conductive material, the inductance extending in a plane normal to the common direction. According to the invention, the first conductive material has an electrical conductivity varying under the effect of a variation in an electric field applied within the first conductive material.
[0009] Avantageusement, l’inductance est configurée de sorte à présenter une valeur d’inductance accordable avec une capacité de l’ensemble d’au moins une nanostructure filaire. [0009] Advantageously, the inductance is configured so as to have a tunable inductance value with a capacitance of the set of at least one wire nanostructure.
[0010] Avantageusement, le premier matériau conducteur comprend un semimétal. Advantageously, the first conductive material comprises a semimetal.
[0011] Le premier matériau est, par exemple, du graphène, ou un dichalogénure de métal de transition. The first material is, for example, graphene, or a transition metal dichalide.
[0012] Avantageusement, au moins une nanostructure filaire est un nanotube de carbone. Advantageously, at least one wire nanostructure is a carbon nanotube.
[0013] Avantageusement, l’ensemble d’au moins une nanostructure filaire comprend plusieurs nanostructures filaires. Advantageously, the set of at least one wire nanostructure comprises several wire nanostructures.
[0014] Avantageusement chaque nanostructure filaire présente un rapport d’aspect supérieur à 20. Advantageously, each wire nanostructure has an aspect ratio of greater than 20.
[0015] Avantageusement, l’inductance présente une forme en spirale. Advantageously, the inductance has a spiral shape.
[0016] Avantageusement, l’ensemble d’au moins une nanostructure filaire comprend plusieurs nanostructures filaires. Advantageously, the set of at least one wire nanostructure comprises several wire nanostructures.
[0017] Avantageusement, dans ce dernier cas, l’inductance est configurée de sorte à présenter une valeur d’inductance accordable avec une capacité de l’ensemble de nanostructures filaires. Advantageously, in the latter case, the inductance is configured so as to have an inductance value tunable with a capacitance of the set of wire nanostructures.
[0018] L’invention se rapporte également à une antenne élémentaire comprenant un premier élément rayonnant selon l’invention. L’antenne comprend également une ligne de transmission comportant une zone réalisée en un deuxième matériau conducteur et deux plans de masse, la ligne de transmission s’étendant dans le même plan que l’inductance et la zone étant reliée à l’inductance, chaque plan de masse étant réalisé en un troisième matériau conducteur, la zone étant agencée entre les deux plans de masse. Selon l’invention, l’antenne comprend générateur de tension continue variable apte à appliquer le champ électrique au sein du premier matériau conducteur. The invention also relates to an elementary antenna comprising a first radiating element according to the invention. The antenna also comprises a transmission line comprising an area made of a second conductive material and two ground planes, the transmission line extending into the same plane as the inductance and the area being connected to the inductance, each ground plane being made of a third conductive material, the area being arranged between the two ground planes. According to the invention, the antenna comprises a variable DC voltage generator capable of applying the electric field within the first conductive material.
[0019] Comme le générateur de tension continue est un générateur de tension continue variable, le générateur de tension continu est apte à appliquer un champ électrique variable au sein du premier matériau conducteur. As the DC voltage generator is a variable DC voltage generator, the DC voltage generator is able to apply a variable electric field within the first conductive material.
[0020] Avantageusement, l’antenne élémentaire comprend une électrode en contact physique avec l’inductance, le générateur de tension appliquant le champ électrique au sein sur le premier matériau conducteur par l’intermédiaire de l’électrode. Advantageously, the elementary antenna comprises an electrode in physical contact with the inductance, the voltage generator applying the electric field within the first conductive material through the electrode.
[0021] L’invention se rapporte également à une antenne réseau. Elle comprend un réseau de plusieurs éléments rayonnant selon l’invention. Autrement dit, elle comprend plusieurs antennes élémentaires selon l’invention agencées de façon que les éléments rayonnants des différentes antennes élémentaires forment un réseau d’éléments rayonnants. [0021] The invention also relates to an array antenna. It comprises a network of several radiating elements according to the invention. In other words, it comprises several elementary antennas according to the invention arranged so that the radiating elements of the different elementary antennas form an array of radiating elements.
[0022] Avantageusement, les inductances des éléments rayonnants sont coplanaires ou aptes à être coplanaires. Advantageously, the inductances of the radiating elements are coplanar or capable of being coplanar.
[0023] L’antenne réseau comprend, par exemple, plusieurs éléments rayonnants dont un premier élément rayonnant selon l’invention et un deuxième élément rayonnant selon l’invention, le premier élément rayonnant et le deuxième élément rayonnant présentant des ensembles d’au moins une nanostructure filaire présentant des capacités différentes. The array antenna comprises, for example, several radiating elements including a first radiating element according to the invention and a second radiating element according to the invention, the first radiating element and the second radiating element having sets of at least a wire nanostructure with different capacities.
[0024] Des caractéristiques et avantages de l’invention apparaîtront à la lecture de la description qui va suivre, donnée uniquement à titre d’exemple non limitatif, et faite en référence aux dessins annexés, sur lesquels : [0024] The characteristics and advantages of the invention will become apparent on reading the description which follows, given solely by way of non-limiting example, and made with reference to the accompanying drawings, in which:
[0025] [fig.1 ] la figure 1 est un schéma d’une antenne comprenant un ensemble d’éléments rayonnants et un ensemble de lignes de transmission, [0025] [Fig.1] Figure 1 is a diagram of an antenna comprising a set of radiating elements and a set of transmission lines,
[0026] [fig.2] la figure 2 est une vue en coupe d’un élément rayonnant de l’invention et d’une ligne de transmission de la figure 1 , l’élément rayonnant comprenant un faisceau de nanostructures, [0027] [fig.3] la figure 3 est une vue de dessus d’un faisceau de nanostructures,[0026] [Fig.2] Figure 2 is a sectional view of a radiating element of the invention and a transmission line of Figure 1, the radiating element comprising a bundle of nanostructures, [0027] [fig.3] Figure 3 is a top view of a bundle of nanostructures,
[0028] [fig.4] la figure 4 est une vue de dessus de l’élément rayonnant et de la ligne de transmission de la figure 2, [0028] [Fig.4] Figure 4 is a top view of the radiating element and the transmission line of Figure 2,
[0029] [fig.5] la figure 5 représente schématiquement d’une courbe de valeurs de l’inductance cinétique d’une inductance formée d’une pluralité de couches monoatomiques de graphène en fonction d’une tension appliquée aux bornes de l’inductance, [0029] FIG. 5 schematically represents a curve of values of the kinetic inductance of an inductor formed of a plurality of monoatomic layers of graphene as a function of a voltage applied to the terminals of the inductance,
[0030] [fig.6] la figure 6 est une représentation schématique d’un élément rayonnant selon l’invention associé à un générateur de tension continue réglable, l’élément rayonnant comprenant un faisceau de nanostructures, [0030] [Fig.6] Figure 6 is a schematic representation of a radiating element according to the invention associated with an adjustable DC voltage generator, the radiating element comprising a beam of nanostructures,
[0031] [fig.7] la figure 7 est une représentation schématique de courbes de valeurs réelle (en trait plein) et imaginaire (en traits pointillés) d’une impédance d’entrée d’une antenne en fonction de la fréquence, [0031] [Fig.7] FIG. 7 is a schematic representation of curves of real (solid lines) and imaginary (dotted lines) values of an input impedance of an antenna as a function of frequency,
[0032] [fig.8] la figure 8 représente une courbe représentant la réactance d’un faisceau de nanostructures nanofilaires en fonction de la fréquence, [0032] [Fig.8] Figure 8 shows a curve representing the reactance of a beam of nanowire nanostructures as a function of frequency,
[0033] [fig.9] la figure 9 représente un premier mode de réalisation d’une antenne réseau comprenant un réseau monodimensionnel d’éléments rayonnants selon le deuxième mode de réalisation. [0033] [Fig.9] Figure 9 shows a first embodiment of an array antenna comprising a one-dimensional array of radiating elements according to the second embodiment.
[0034] [fig.10] la figure 10 représente un premier mode de réalisation d’une antenne réseau comprenant un réseau monodimensionnel d’éléments rayonnants selon le deuxième mode de réalisation. [0034] [Fig.10] Figure 10 shows a first embodiment of an array antenna comprising a one-dimensional array of radiating elements according to the second embodiment.
[0035] [fig.11 ] la figure 11 est un ordinogramme des étapes d’un procédé de fabrication d’un élément rayonnant. [0035] [Fig.11] FIG. 11 is a flowchart of the steps of a method for manufacturing a radiating element.
[0036] D’une figure à l’autre, les mêmes éléments sont repérés par les mêmes références. From one figure to another, the same elements are identified by the same references.
[0037] Une antenne 10 est représentée sur la figure 1. An antenna 10 is shown in Figure 1.
[0038] L’antenne 10 est configurée pour émettre et/ou recevoir un ensemble d’ondes électromagnétiques. Par exemple, l’antenne 10 est configurée pour émettre et pour recevoir un ensemble d’ondes électromagnétiques. [0038] The antenna 10 is configured to emit and / or receive a set of electromagnetic waves. For example, antenna 10 is configured to transmit and receive a set of electromagnetic waves.
[0039] L’onde électromagnétique présente une fréquence comprise entre 3 kilohertz (KHz) et 300 gigahertz (GHz). Il est à noter que la fréquence de l’onde électromagnétique est susceptible de varier selon les applications envisagées pour l’antenne 10. [0039] The electromagnetic wave has a frequency between 3 kilohertz (KHz) and 300 gigahertz (GHz). It should be noted that the frequency of the electromagnetic wave is liable to vary according to the applications envisaged for the antenna 10.
[0040] L’antenne 10 comporte un substrat 15, des éléments rayonnants 20 et des lignes de transmission 25. The antenna 10 comprises a substrate 15, radiating elements 20 and transmission lines 25.
[0041] Selon l’exemple de la figure 1 , l’antenne 10 comporte une ligne de transmission 25 pour chaque élément rayonnant 20. [0041] According to the example of Figure 1, the antenna 10 has a transmission line 25 for each radiating element 20.
[0042] En variante, l’antenne 10 comprend un unique élément rayonnant 20 et une unique ligne de transmission 25. [0042] As a variant, the antenna 10 comprises a single radiating element 20 and a single transmission line 25.
[0043] L’antenne 10 comprend, en outre, une masse électrique telle qu’un châssis métallique. En variante, la masse électrique est un circuit électrique relié à la terre. [0043] The antenna 10 further comprises an electrical ground such as a metal frame. As a variant, the electrical ground is an electrical circuit connected to the earth.
[0044] Le substrat 15 est prévu pour supporter les éléments rayonnants 20 et les lignes de transmission 25. The substrate 15 is provided to support the radiating elements 20 and the transmission lines 25.
[0045] Le substrat 15 présente une face de support 30. The substrate 15 has a support face 30.
[0046] La face de support 30 est plane. The support face 30 is flat.
[0047] Une direction normale Z est définie comme étant la direction perpendiculaire à la face de support 30. On définit également l’axe Z défini par la direction Z et orienté dans le sens du substrat vers les éléments rayonnants. A normal direction Z is defined as being the direction perpendicular to the support face 30. The Z axis defined by the Z direction and oriented in the direction of the substrate towards the radiating elements is also defined.
[0048] Le substrat 15 comporte une plaque support 35 et une couche tampon 40. The substrate 15 comprises a support plate 35 and a buffer layer 40.
[0049] La plaque support 35 est configurée pour servir de support à la couche tampon 40, aux éléments rayonnants 20 et aux lignes de transmission 25. The support plate 35 is configured to serve as a support for the buffer layer 40, the radiating elements 20 and the transmission lines 25.
[0050] La plaque support 35 est, par exemple, réalisée en silicium. Selon une variante, la plaque support 35 est réalisée en alumine. The support plate 35 is, for example, made of silicon. According to one variant, the support plate 35 is made of alumina.
[0051] La plaque support 35 présente, par exemple, une épaisseur comprise entre 200 micromètres (pm) et 500 pm. The support plate 35 has, for example, a thickness between 200 micrometers (pm) and 500 pm.
[0052] La plaque support 35 est réalisée en un matériau présentant une résistivité électrique. La résistivité électrique est, par exemple, supérieure ou égale à 10000 Ohm. centimètre. Une telle résistivité électrique permet de limiter les pertes radiofréquence dans la plaque support 35. [0053] Il est à noter qu’un autre matériau que le silicium est susceptible d’être utilisé pour réaliser la plaque support 35. La couche tampon 40 est interposée entre, d’un côté, la plaque support 35 et, d’un autre côté, les éléments rayonnants 20 et les lignes de transmission 25. The support plate 35 is made of a material having electrical resistivity. The electrical resistivity is, for example, greater than or equal to 10,000 Ohm. centimeter. Such an electrical resistivity makes it possible to limit the radiofrequency losses in the support plate 35. It should be noted that a material other than silicon is likely to be used to make the support plate 35. The buffer layer 40 is interposed between, on one side, the support plate 35 and, on the other hand, on the other hand, the radiating elements 20 and the transmission lines 25.
[0054] La couche tampon 40 est délimitée selon la direction normale Z par la plaque support 35 et par la face de support 30. The buffer layer 40 is delimited in the normal direction Z by the support plate 35 and by the support face 30.
[0055] La couche tampon 40 est réalisée en un matériau électriquement isolant. La couche tampon 40 est, par exemple, réalisée en oxyde de silicium. The buffer layer 40 is made of an electrically insulating material. The buffer layer 40 is, for example, made of silicon oxide.
[0056] La couche tampon 40 présente une épaisseur, selon la direction normale Z, comprise entre 500 nanomètres et 5 micromètres. Par exemple, l’épaisseur de la couche tampon 40 est égale à 2 micromètres. The buffer layer 40 has a thickness, in the normal direction Z, of between 500 nanometers and 5 micrometers. For example, the thickness of the buffer layer 40 is equal to 2 micrometers.
[0057] Une vue en coupe d’un élément rayonnant 20 dans un plan parallèle à la direction normale Z est représentée sur la figure 2. A sectional view of a radiating element 20 in a plane parallel to the normal direction Z is shown in Figure 2.
[0058] Chaque élément rayonnant 20 est configuré pour émettre et/ou recevoir une onde électromagnétique. Each radiating element 20 is configured to emit and / or receive an electromagnetic wave.
[0059] Chaque élément rayonnant 20 comporte un faisceau F de nanostructures 45 et une inductance 50. Each radiating element 20 comprises a beam F of nanostructures 45 and an inductor 50.
[0060] Le faisceau ou fagot F comporte au moins dix nanostructures 45. The bundle or bundle F comprises at least ten nanostructures 45.
[0061] Le fagot comprend par exemple des milliers ou millions de nanostructures 45. The bundle comprises for example thousands or millions of nanostructures 45.
[0062] En variante, l’élément rayonnant 20 comprend une seule nanostructure 45. Alternatively, the radiating element 20 comprises a single nanostructure 45.
[0063] Il est entendu par le terme « nanostructure » une structure présentant au moins une dimension nanométrique. The term "nanostructure" is understood to mean a structure having at least one nanometric dimension.
[0064] Une dimension d’un objet, mesurée selon une direction, est la distance entre les deux points de l’objet les plus éloignés l’un de l’autre selon ladite direction. Une dimension nanométrique est une dimension strictement inférieure à 1 micromètre, de préférence strictement inférieure à 100 nanomètres. [0064] A dimension of an object, measured in one direction, is the distance between the two points of the object furthest from each other in said direction. A nanometric dimension is a dimension strictly less than 1 micrometer, preferably strictly less than 100 nanometers.
[0065] Une direction D est définie pour chaque nanostructure 45. Cela signifie que chaque nanostructure 45 s’étend selon la direction D définie pour la nanostructure 45 considérée. [0066] La direction D de chaque nanostructure 45 est parallèle à la direction normale Z. A direction D is defined for each nanostructure 45. This means that each nanostructure 45 extends in the direction D defined for the nanostructure 45 considered. The direction D of each nanostructure 45 is parallel to the normal direction Z.
[0067] Chaque nanostructure 45 présente une première extrémité 55 et une deuxième extrémité 60. Chaque nanostructure 45 s’étend entre la première extrémité 55 et la deuxième extrémité 60. Each nanostructure 45 has a first end 55 and a second end 60. Each nanostructure 45 extends between the first end 55 and the second end 60.
[0068] La direction D est, par exemple, parallèle à la direction normale Z. The direction D is, for example, parallel to the normal direction Z.
[0069] La direction D est commune à toutes les nanostructures 45 d’un même élément rayonnant 20. The direction D is common to all the nanostructures 45 of the same radiating element 20.
[0070] Un diamètre mesuré dans un plan perpendiculaire à la direction D est défini pour chaque nanostructure 45, A diameter measured in a plane perpendicular to the direction D is defined for each nanostructure 45,
[0071] Le diamètre de chaque nanostructure 45 est compris entre 2 nanomètres (nm) et 10 nm. The diameter of each nanostructure 45 is between 2 nanometers (nm) and 10 nm.
[0072] La longueur de chaque nanostructure 45 est comprise entre 300 pm et 1 millimètre (mm). En particulier, la longueur de chaque nanostructure 45 est supérieure ou égale à 500 pm. The length of each nanostructure 45 is between 300 μm and 1 millimeter (mm). In particular, the length of each nanostructure 45 is greater than or equal to 500 μm.
[0073] La longueur de chaque nanostructure 45 est mesurée selon la direction commune D. The length of each nanostructure 45 is measured along the common direction D.
[0074] Chaque nanostructure 45 est une nanostructure filaire. Une structure filaire est une structure présentant une longueur strictement supérieure à 10 fois le diamètre.Each nanostructure 45 is a wire nanostructure. A wire structure is a structure having a length strictly greater than 10 times the diameter.
Le rapport entre, au numérateur, la longueur et, au dénominateur, le diamètre, est appelé « rapport d’aspect » aussi appelé rapport de forme. The ratio of the length to the numerator and the diameter to the denominator is called the "aspect ratio" also called the aspect ratio.
[0075] Avantageusement, chaque nanostructure 45 est telle que le rapport d’aspect est strictement supérieur à 20. Advantageously, each nanostructure 45 is such that the aspect ratio is strictly greater than 20.
[0076] Des nanotubes sont des exemples de nanostructures filaires 45. Les nanotubes sont des structures filaires creuses présentant un diamètre inférieur à 100 nanomètres. Nanotubes are examples of wire nanostructures 45. Nanotubes are hollow wire structures having a diameter of less than 100 nanometers.
[0077] En d’autres termes, un nanotube est une nanostructure filaire creuse. In other words, a nanotube is a hollow wire nanostructure.
[0078] Il est entendu par « faisceau » un ensemble de nanostructures 45 dans lequel les nanostructures 45 sont distantes l’une de l’autre d’une distance inférieure ou égale à la longueur des nanostructures 45. La distance entre les nanostructures 45 est mesurée dans un plan perpendiculaire à la direction commune D. The term "beam" is understood to mean a set of nanostructures 45 in which the nanostructures 45 are spaced from each other by a distance less than or equal to the length of the nanostructures 45. The distance between the nanostructures 45 is measured in a plane perpendicular to the common direction D.
[0079] Selon des cas particuliers, la distance est inférieure ou égale à la moitié de la longueur, par exemple inférieure ou égale à un cinquième de la longueur, en particulier inférieure ou égale à un dixième de la longueur. According to particular cases, the distance is less than or equal to half the length, for example less than or equal to one fifth of the length, in particular less than or equal to one tenth of the length.
[0080] Selon un mode de réalisation, une valeur médiane est définie pour la longueur des nanostructures 45 d’un même faisceau F. La valeur médiane est une valeur telle que la moitié des nanostructures 45 du faisceau F considéré présentent une longueur supérieure ou égale à la valeur médiane, l’autre moitié présentant une longueur inférieure ou égale à la valeur médiane. According to one embodiment, a median value is defined for the length of the nanostructures 45 of the same beam F. The median value is a value such that half of the nanostructures 45 of the beam F considered have a length greater than or equal at the median value, the other half having a length less than or equal to the median value.
[0081] Les longueurs des nanostructures 45 du faisceau considéré varient entre 50 pourcents (%) et 150 % de la valeur médiane. The lengths of the nanostructures 45 of the beam considered vary between 50 percent (%) and 150% of the median value.
[0082] La valeur médiane est, par exemple, supérieure ou égale à cinq cent micromètres. The median value is, for example, greater than or equal to five hundred micrometers.
[0083] Une longueur totale est définie pour le faisceau F. La longueur totale est, par exemple, définie comme étant la longueur de la nanostructure 45 la plus longue parmi l’ensemble des nanostructures 45 appartenant au faisceau F. A total length is defined for the beam F. The total length is, for example, defined as being the length of the longest nanostructure 45 among all of the nanostructures 45 belonging to the beam F.
[0084] La longueur totale est, par exemple, identique pour chaque faisceau F. The total length is, for example, identical for each beam F.
[0085] Selon un mode de réalisation, les longueurs totales d’au moins deux faisceaux F sont différentes l’une de l’autre. [0085] According to one embodiment, the total lengths of at least two F beams are different from each other.
[0086] Le faisceau présente une enveloppe commune à toutes les nanostructures. Il est entendu par « enveloppe » une surface enveloppant les nanostructures 45 et tangente aux nanostructures 45 qui délimitent le faisceau F dans un plan perpendiculaire à la direction commune D. The beam has an envelope common to all the nanostructures. The term “envelope” is understood to mean a surface enveloping the nanostructures 45 and tangent to the nanostructures 45 which delimit the beam F in a plane perpendicular to the common direction D.
[0087] Une dimension latérale maximale est définie pour l’enveloppe. La dimension latérale maximale est la plus grande dimension de l’enveloppe dans un plan perpendiculaire à la direction commune D. La dimension latérale maximale est comprise entre 10pm (ou 20 pm) et 1mm. A maximum lateral dimension is defined for the envelope. The maximum lateral dimension is the largest dimension of the envelope in a plane perpendicular to the common direction D. The maximum lateral dimension is between 10pm (or 20pm) and 1mm.
[0088] Un rapport d’aspect égal au rapport entre, au numérateur, la longueur totale du faisceau F et, au dénominateur, la dimension latérale maximale, est défini pour le faisceau F. [0089] Le rapport d’aspect du faisceau F est, par exemple, compris entre 5 et 15. Selon un mode de réalisation, le rapport d’aspect du faisceau F est inférieur ou égal à 10. Il est, par exemple, compris entre 9 et 10. An aspect ratio equal to the ratio between, in the numerator, the total length of the beam F and, in the denominator, the maximum lateral dimension, is defined for the beam F. The aspect ratio of the beam F is, for example, between 5 and 15. According to one embodiment, the aspect ratio of the beam F is less than or equal to 10. It is, for example, included between 9 and 10.
[0090] Le fagot F présente typiquement une longueur totale comprise entre 100 micromètres et 1mm et un diamètre compris entre 10 micromètres et 100 micromètres. The bundle F typically has a total length of between 100 micrometers and 1mm and a diameter of between 10 micrometers and 100 micrometers.
[0091] Le rapport de forme dépend de la fréquence d’émission ou de réception visée, c’est-à-dire en fonction de la fréquence de résonance visée. The aspect ratio depends on the target transmission or reception frequency, that is to say depending on the target resonant frequency.
[0092] Dans les applications radiofréquence, le faisceau ou fagot F est avantageusement configuré pour résonner à une fréquence comprise entre 1GHz et 100GHz. In radiofrequency applications, the beam or bundle F is advantageously configured to resonate at a frequency between 1 GHz and 100 GHz.
[0093] Le faisceau F est représenté vu selon la direction commune D sur la figure 3. The beam F is shown seen in the common direction D in Figure 3.
[0094] L’enveloppe présente une section transversale à la direction commune D de forme circulaire. The envelope has a cross section to the common direction D of circular shape.
[0095] Il est à noter que d’autres formes que la forme circulaire sont envisageables pour la section du faisceau F. Par exemple, la section du faisceau F présente une forme circulaire, ou encore une forme polygonale telle qu’une forme rectangulaire ou en croix. It should be noted that shapes other than the circular shape can be envisaged for the section of the beam F. For example, the section of the beam F has a circular shape, or even a polygonal shape such as a rectangular or rectangular shape. crossed.
[0096] Les nanostructures 45 sont toutes réalisées en un même matériau. En particulier, chaque nanostructure 45 est un nanotube de carbone. The nanostructures 45 are all made of the same material. In particular, each nanostructure 45 is a carbon nanotube.
[0097] Sur la figure 3, chaque nanostructure 45 est un nanotube de carbone double feuillet. Il est à noter que les nanotubes de carbone sont susceptibles d’être des nanotubes de carbone mono-feuillet, des nanotubes de carbone multifeuillets ou MWCNT en référence à l’expression anglo-saxonne « multi-wall carbon nanotubes » ou encore un mélange de nanotubes de carbone mono-feuillet et de nanotubes de carbone multifeuillets. Il est à noter que d’autres types de nanostructures filaires 45 sont susceptibles d’être utilisés à la place des nanotubes de carbone. In Figure 3, each nanostructure 45 is a double-layered carbon nanotube. It should be noted that the carbon nanotubes are likely to be single-sheet carbon nanotubes, multi-wall carbon nanotubes or MWCNT with reference to the English expression “multi-wall carbon nanotubes” or even a mixture of Single-layered carbon nanotubes and multi-layered carbon nanotubes. It should be noted that other types of wire nanostructures 45 are likely to be used in place of carbon nanotubes.
[0098] Les nanotubes de carbone sont avantageusement alignés verticalement. Autrement dit, les nanotubes de carbone s’étendent longitudinalement selon la même direction D. [0099] Il est à noter que d’autres types de nanostructures filaires 45 sont susceptibles d’être utilisés à la place des nanotubes de carbone. The carbon nanotubes are advantageously aligned vertically. In other words, the carbon nanotubes extend longitudinally in the same direction D. It should be noted that other types of wire nanostructures 45 are likely to be used instead of carbon nanotubes.
[0100] Par exemple, les nanostructures 45 sont des nanofils, par exemple des nanofils de silicium ou d’un autre matériau semi-conducteur. [0100] For example, the nanostructures 45 are nanowires, for example nanowires of silicon or of another semiconductor material.
[0101] Selon une autre variante, les nanostructures 45 sont réalisées en un matériau électriquement conducteur tel qu’un matériau métallique. [0101] According to another variant, the nanostructures 45 are made of an electrically conductive material such as a metallic material.
[0102] L’inductance 50 de chaque élément rayonnant 20 s’étend dans un plan normal à la direction commune D. Chaque inductance 50 est, par exemple, réalisée sous la forme d’une couche conductrice portée par le substrat 15. Par exemple, chaque inductance 50 est perpendiculaire à la direction normale Z et à la direction commune D. En particulier, l’inductance 50 est portée par la couche tampon 40. [0102] The inductance 50 of each radiating element 20 extends in a plane normal to the common direction D. Each inductor 50 is, for example, produced in the form of a conductive layer carried by the substrate 15. For example , each inductor 50 is perpendicular to the normal direction Z and to the common direction D. In particular, the inductance 50 is carried by the buffer layer 40.
[0103] L’inductance 50 est réalisée à base d’un premier matériau conducteur. [0103] The inductor 50 is made from a first conductive material.
[0104] Selon l’exemple de la figure 4, chaque inductance 50 comporte une première portion 65 et une deuxième portion 70. [0104] According to the example of Figure 4, each inductor 50 has a first portion 65 and a second portion 70.
[0105] La première portion 65 s’étend dans un plan perpendiculaire à la direction normale Z. [0105] The first portion 65 extends in a plane perpendicular to the normal direction Z.
[0106] La première portion 65 est interposée entre le faisceau F de nanostructures 45 et le substrat 15. La première portion 65 est reliée à la première extrémité 55 de chaque nanostructure 45. The first portion 65 is interposed between the beam F of nanostructures 45 and the substrate 15. The first portion 65 is connected to the first end 55 of each nanostructure 45.
[0107] La première portion 65 présente une forme triangulaire dans un plan normal à la direction commune D. The first portion 65 has a triangular shape in a plane normal to the common direction D.
[0108] Il est à noter que d’autres formes que les formes triangulaires sont envisageables pour la première portion 65. Par exemple, la première portion 65 présente une forme circulaire ou carrée. La deuxième portion 70 s’étend dans un plan perpendiculaire à la direction normale Z. [0108] It should be noted that shapes other than triangular shapes are possible for the first portion 65. For example, the first portion 65 has a circular or square shape. The second portion 70 extends in a plane perpendicular to the normal direction Z.
[0109] Une dimension maximale est définie pour la deuxième portion 70. La dimension maximale est mesurée dans un plan perpendiculaire à la direction normale Z entre les deux points de la deuxième portion 70 les plus éloignés entre eux. [0110] La dimension maximale 70 est comprise entre 100 pm et 1 mm. Par exemple, la dimension maximale 70 est comprise entre 200 pm et 500 pm. Il est à noter que la dimension maximale 70 est susceptible de varier. A maximum dimension is defined for the second portion 70. The maximum dimension is measured in a plane perpendicular to the normal direction Z between the two points of the second portion 70 which are the most distant from each other. [0110] The maximum dimension 70 is between 100 μm and 1 mm. For example, the maximum dimension 70 is between 200 µm and 500 µm. It should be noted that the maximum dimension 70 is liable to vary.
[0111] La deuxième portion 70 présente une forme en spirale dans un plan perpendiculaire à la direction normale Z. The second portion 70 has a spiral shape in a plane perpendicular to the normal direction Z.
[0112] La deuxième portion 70 entoure la première portion 65 dans un plan perpendiculaire à la direction normale Z. The second portion 70 surrounds the first portion 65 in a plane perpendicular to the normal direction Z.
[0113] Selon un mode de réalisation, la deuxième portion 70 est formée par une succession de segments de droites. Par exemple, chaque segment de droite est perpendiculaire aux segments de droites auxquels il est contigu. [0113] According to one embodiment, the second portion 70 is formed by a succession of straight segments. For example, each line segment is perpendicular to the line segments to which it adjoins.
[0114] En variante, une partie courbe de la deuxième portion 70 est interposée entre deux segments de droite contigus. As a variant, a curved part of the second portion 70 is interposed between two contiguous straight line segments.
[0115] Selon une autre variante, la deuxième portion 70 est formée par une seule courbe enroulée sur elle-même. [0115] According to another variant, the second portion 70 is formed by a single curve wound on itself.
[0116] Il est à noter qu’une deuxième portion 70 présentant une forme différente d’une spirale est également envisageable. [0116] It should be noted that a second portion 70 having a shape other than a spiral is also possible.
[0117] La deuxième portion 70 présente une troisième extrémité 75 et une quatrième extrémité 80. La deuxième portion 70 s’étend en spirale depuis la troisième extrémité 75 jusqu’à la quatrième extrémité 80. [0117] The second portion 70 has a third end 75 and a fourth end 80. The second portion 70 extends spirally from the third end 75 to the fourth end 80.
[0118] La troisième extrémité 75 est l’extrémité de la deuxième portion 70 qui est située en périphérie de la deuxième portion 70 dans un plan perpendiculaire à la direction normale Z. [0118] The third end 75 is the end of the second portion 70 which is located on the periphery of the second portion 70 in a plane perpendicular to the normal direction Z.
[0119] La quatrième extrémité 80 est l’extrémité de la deuxième portion 70 qui est située en périphérie de la première portion 65 dans un plan perpendiculaire 5 à la direction normale Z. La quatrième extrémité 80 est donc entourée par le reste de la deuxième portion 70 dans un plan perpendiculaire à la direction normale Z. The fourth end 80 is the end of the second portion 70 which is located at the periphery of the first portion 65 in a plane perpendicular to the normal direction Z. The fourth end 80 is therefore surrounded by the rest of the second portion 70 in a plane perpendicular to the normal direction Z.
[0120] La quatrième extrémité 80 est reliée à la première portion 65. [0120] The fourth end 80 is connected to the first portion 65.
[0121] La ligne de transmission 25 s’étend dans le même plan que l’inductance 50.[0121] The transmission line 25 extends in the same plane as the inductor 50.
En particulier, la ligne de transmission 25 est réalisée sous forme d’une couche portée par le substrat 15. [0122] La ligne de transmission 25 comprend une zone conductrice 85 et au moins un plan de masse 90. En particulier, la ligne de transmission 25 représentée sur la figure 4 comporte deux plans de masse 90. In particular, the transmission line 25 is produced in the form of a layer carried by the substrate 15. [0122] The transmission line 25 comprises a conductive zone 85 and at least one ground plane 90. In particular, the transmission line 25 shown in FIG. 4 comprises two ground planes 90.
[0123] La zone conductrice 85 est reliée à l’inductance 50. Par exemple, la zone conductrice 85 est reliée à la troisième extrémité 75 de l’inductance 50. [0123] The conductive zone 85 is connected to the inductor 50. For example, the conductive zone 85 is connected to the third end 75 of the inductor 50.
[0124] La zone conductrice 85 est configurée pour recevoir de l’inductance 50 un courant électrique. Un tel courant est notamment généré par l’inductance 50 suite à la réception d’une onde électromagnétique. [0124] The conductive zone 85 is configured to receive an electric current from the inductor 50. Such a current is generated in particular by the inductor 50 following the reception of an electromagnetic wave.
[0125] La zone conductrice 85 est, en outre, configurée pour recevoir un courant électrique d’une source électrique externe à l’antenne 10 et pour alimenter l’inductance 50 avec ledit courant électrique. La zone conductrice 85 présente, par exemple, une forme rectangulaire. [0125] The conductive zone 85 is further configured to receive an electric current from an external electric source to the antenna 10 and to supply the inductor 50 with said electric current. The conductive zone 85 has, for example, a rectangular shape.
[0126] La zone conductrice 85 présente une épaisseur mesurée selon la direction normale Z. L’épaisseur de la zone conductrice 85 est comprise entre 100 nanomètres et 1 micromètre. Par exemple, l’épaisseur de la zone conductrice 85 est égale à 600 nanomètres. [0126] The conductive zone 85 has a thickness measured in the normal direction Z. The thickness of the conductive zone 85 is between 100 nanometers and 1 micrometer. For example, the thickness of the conductive zone 85 is equal to 600 nanometers.
[0127] La zone conductrice 85 est réalisée en un deuxième matériau conducteur. The conductive zone 85 is made of a second conductive material.
[0128] Le deuxième matériau conducteur est, par exemple, un matériau métallique. Le deuxième matériau conducteur est par exemple le molybdène. [0128] The second conductive material is, for example, a metallic material. The second conductive material is, for example, molybdenum.
[0129] Selon un mode de réalisation, le deuxième matériau conducteur est le même matériau que le premier matériau conducteur. [0129] According to one embodiment, the second conductive material is the same material as the first conductive material.
[0130] Il est à noter que d’autres matériaux conducteurs sont envisageables pour la zone conductrice 85. [0130] It should be noted that other conductive materials can be envisaged for the conductive zone 85.
[0131] Chaque plan de masse 90 est relié à la masse de l’antenne 10. [0131] Each ground plane 90 is connected to the ground of the antenna 10.
[0132] Chaque plan de masse 90 présente une épaisseur mesurée selon la direction normale Z. L’épaisseur de chaque plan de masse 90 est comprise entre 100 nanomètres et 1 micromètre. [0132] Each ground plane 90 has a thickness measured in the normal direction Z. The thickness of each ground plane 90 is between 100 nanometers and 1 micrometer.
[0133] Par exemple, l’épaisseur de chaque plan de masse 90 est égale à 600 nanomètres. [0133] For example, the thickness of each ground plane 90 is equal to 600 nanometers.
[0134] Chaque plan de masse 90 est réalisé en un troisième matériau conducteur. [0135] Le troisième matériau conducteur est, par exemple, un matériau métallique.Each ground plane 90 is made of a third conductive material. The third conductive material is, for example, a metallic material.
Le troisième matériau conducteur est, par exemple, le molydbdène. The third conductive material is, for example, molydbdenum.
[0136] Selon un mode de réalisation, le troisième matériau conducteur est le même matériau que le premier matériau conducteur. [0136] According to one embodiment, the third conductive material is the same material as the first conductive material.
[0137] Il est à noter que d’autres matériaux conducteurs sont envisageables pour chaque plan de masse 90. [0137] It should be noted that other conductive materials can be envisaged for each ground plane 90.
[0138] Selon un mode de réalisation, la zone conductrice 85 est agencée entre les deux plans de masse 90. [0138] According to one embodiment, the conductive zone 85 is arranged between the two ground planes 90.
[0139] Une distance, dans un plan perpendiculaire à la direction normale Z, entre la zone conductrice 85 et le plan de masse 90 le plus proche de la zone conductrice 85 est comprise entre 50 pm et 250 pm. A distance, in a plane perpendicular to the normal direction Z, between the conductive zone 85 and the ground plane 90 closest to the conductive zone 85 is between 50 μm and 250 μm.
[0140] Selon l’exemple proposé, la zone conductrice 85 est équidistante des deux plans de masse 90. [0140] According to the example proposed, the conductive zone 85 is equidistant from the two ground planes 90.
[0141] Dans l’exemple représenté sur la figure 4, l’inductance 50 est au moins partiellement interposée entre les deux plans de masse 90. [0141] In the example shown in Figure 4, the inductance 50 is at least partially interposed between the two ground planes 90.
[0142] Une distance entre l’inductance 50 et le ou les plans de masse 90 est comprise entre 20 pm et 300 pm. [0142] A distance between the inductance 50 and the ground plane (s) 90 is between 20 pm and 300 pm.
[0143] Selon un mode de réalisation, chaque plan de masse 90 présente une forme de « L ». Chaque plan de masse 90 présente alors une première branche et une deuxième branche, les deux branches étant perpendiculaires l’une à l’autre. [0143] According to one embodiment, each ground plane 90 has an “L” shape. Each ground plane 90 then has a first branch and a second branch, the two branches being perpendicular to each other.
[0144] La première branche de chaque plan de masse 90 s’étend en direction de l’autre plan de masse 90 appartenant à la même ligne de transmission 25. Par exemple, les deux premières branches d’une même ligne de transmission 25 sont alignées l’une avec l’autre. The first branch of each ground plane 90 extends in the direction of the other ground plane 90 belonging to the same transmission line 25. For example, the first two branches of the same transmission line 25 are aligned with each other.
[0145] La zone conductrice 85 de chaque ligne de transmission 25 est, par exemple, interposée entre les deux premières branches à la ligne de transmission 25 considérée. The conductive zone 85 of each transmission line 25 is, for example, interposed between the two first branches of the transmission line 25 considered.
[0146] Les deux premières branches d’une même ligne de transmission 25 sont, par exemple, interposées entre les deux deuxièmes branches correspondantes. Chaque inductance 50 est, par exemple, interposée entre les deux deuxièmes branches des plans de masse 90 entre lesquels l’inductance 50 est interposée. Par exemple, l’inductance 50 est logée dans une zone rectangulaire délimitée sur un premier côté de la zone rectangulaire par les deux premières branches, sur un deuxième côté de la zone rectangulaire par l’une des deuxièmes branches et sur un troisième côté de la zone rectangulaire par l’autre deuxième branche, le premier côté étant perpendiculaire au deuxième côté et 5 au troisième côté. The two first branches of the same transmission line 25 are, for example, interposed between the two corresponding second branches. Each inductor 50 is, for example, interposed between the two second branches of the ground planes 90 between which the inductor 50 is interposed. For example, the inductor 50 is housed in a rectangular area delimited on a first side of the rectangular area by the first two branches, on a second side of the rectangular area by one of the second branches and on a third side of the rectangular area by the other second branch, the first side being perpendicular to the second side and 5 to the third side.
[0147] Le fonctionnement de l’antenne 10 va maintenant être décrit. [0147] The operation of the antenna 10 will now be described.
[0148] En émission, au moins une ligne de transmission 25 reçoit un premier courant électrique. En particulier, le premier courant électrique est transmis, depuis un dispositif extérieur à l’antenne 10, à la zone conductrice 85. In transmission, at least one transmission line 25 receives a first electric current. In particular, the first electric current is transmitted, from a device external to the antenna 10, to the conductive zone 85.
[0149] La zone conductrice 85 transmet le premier courant électrique à l’inductance 50 de l’élément rayonnant 20 relié à la ligne de transmission 25 considérée. [0149] The conductive zone 85 transmits the first electric current to the inductor 50 of the radiating element 20 connected to the transmission line 25 in question.
[0150] En réponse à la réception du premier courant électrique par l’inductance 50, une première onde électromagnétique est émise par l’élément rayonnant 20. [0150] In response to the reception of the first electric current by the inductor 50, a first electromagnetic wave is emitted from the radiating element 20.
[0151] En réception, une deuxième onde électromagnétique est reçue par au moins un élément rayonnant 20. On reception, a second electromagnetic wave is received by at least one radiating element 20.
[0152] A la suite de la réception de la deuxième onde électromagnétique, un deuxième courant électrique apparaît dans l’inductance 50 de l’élément rayonnant 20 considéré. Le deuxième courant électrique est transmis par l’inductance 50 à la zone conductrice 85 reliée à l’inductance 50. [0152] Following the reception of the second electromagnetic wave, a second electric current appears in the inductance 50 of the radiating element 20 considered. The second electric current is transmitted through the inductor 50 to the conductive zone 85 connected to the inductor 50.
[0153] Le deuxième courant électrique est ensuite transmis, par la ligne de transmission 25 considérée, à un dispositif extérieur à l’antenne 10. [0153] The second electric current is then transmitted, via the transmission line 25 in question, to a device external to the antenna 10.
[0154] L’élément rayonnant 20 présente des dimensions très réduites. En particulier, les dimensions de l’élément rayonnant 20 sont plus réduites que les dimensions des éléments rayonnants de l’état de la technique. L’antenne 10 présente donc un volume et un poids plus faible que les antennes de l’état de la technique. [0154] The radiating element 20 has very small dimensions. In particular, the dimensions of the radiating element 20 are smaller than the dimensions of the radiating elements of the state of the art. The antenna 10 therefore has a volume and a lower weight than the antennas of the state of the art.
[0155] En particulier, l’association de la ou des nanostructures 45 et de l’inductance 50 permet de minimiser la longueur des nanostructures 45 par rapport à un élément rayonnant 20 ne comportant pas d’inductance 50. [0155] In particular, the combination of the nanostructure (s) 45 and the inductance 50 makes it possible to minimize the length of the nanostructures 45 with respect to a radiating element 20 which does not include an inductance 50.
[0156] Un rapport d’aspect, pour le faisceau F, compris entre 5 et 15 présente typiquement une bonne résistance mécanique tout en permettant une bonne efficacité de conversion du courant électrique en onde électromagnétique et vice/versa. Un rapport d’aspect compris entre 9 et 10 est un exemple de rapport d’aspect particulièrement intéressant pour obtenir une bonne résistance mécanique et une bonne efficacité de conversion. [0156] An aspect ratio, for the beam F, of between 5 and 15 typically exhibits good mechanical strength while allowing good efficiency of converting electric current into electromagnetic wave and vice versa. An aspect ratio of between 9 and 10 is an example of a particularly advantageous aspect ratio for obtaining good mechanical strength and good conversion efficiency.
[0157] En outre, la longueur des nanostructures 45 et la valeur d’inductance de l’inductance 50, qui varie en fonction des dimensions de l’inductance 50, permettent d’adapter aisément l’élément rayonnant 20 à différentes valeurs de fréquences. En particulier, des antennes 10 présentant une large bande d’émission et/ou de réception sont obtenues lorsque des longueurs totales ou des valeurs d’inductance différentes sont utilisées pour certains éléments rayonnants 20. [0157] In addition, the length of the nanostructures 45 and the inductance value of the inductor 50, which varies as a function of the dimensions of the inductor 50, allow the radiating element 20 to be easily adapted to different frequency values. . In particular, antennas 10 having a wide transmission and / or reception band are obtained when total lengths or different inductance values are used for certain radiating elements 20.
[0158] Des nanostructures 45 présentant une valeur médiane de longueur supérieure ou égale à 500 nanomètres permettent d’obtenir une bonne efficacité de conversion. [0158] Nanostructures 45 having a median length value greater than or equal to 500 nanometers make it possible to obtain good conversion efficiency.
[0159] La forme de spirale est une forme permettant d’obtenir une inductance 50 particulièrement compacte, et donc un élément rayonnant 20 de dimensions particulièrement réduites. [0159] The spiral shape is a shape making it possible to obtain a particularly compact inductor 50, and therefore a radiating element 20 of particularly small dimensions.
[0160] L’utilisation d’une couche tampon 40 réalisée en un matériau électriquement isolant permet de limiter les pertes radiofréquence lors de l’utilisation de l’élément rayonnant 20. [0160] The use of a buffer layer 40 made of an electrically insulating material makes it possible to limit the radiofrequency losses when using the radiating element 20.
[0161] Une antenne 10 dans laquelle chaque inductance 50 est interposée au moins partiellement entre les deux plans de masse 90 correspondants est, elle aussi, particulièrement compacte. An antenna 10 in which each inductor 50 is interposed at least partially between the two corresponding ground planes 90 is also particularly compact.
[0162] Pour rappel, l’inductance 50 est réalisée à base d’un premier matériau conducteur. [0162] As a reminder, the inductance 50 is made from a first conductive material.
[0163] Selon l’invention, le premier matériau conducteur est choisi de façon à présenter une conductivité électrique variant sous l’effet d’une variation d’un champ électrique appliqué au sein du premier matériau conducteur, c’est à dire au sein de l’inductance 50. According to the invention, the first conductive material is chosen so as to have an electrical conductivity varying under the effect of a variation of an electric field applied within the first conductive material, that is to say within of inductance 50.
[0164] Autrement dit, le premier matériau présente une conductivité électrique commandable électriquement. [0165] L’inductance présente une valeur d’inductance L qui varie sous l’effet de la conductivité électrique du premier matériau et donc sous l’effet de la variation du champ électrique appliqué au premier matériau conducteur. In other words, the first material has an electrically controllable electrical conductivity. The inductance has an inductance value L which varies under the effect of the electrical conductivity of the first material and therefore under the effect of the variation of the electric field applied to the first conductive material.
[0166] Ainsi, la valeur d’inductance varie sous l’effet d’une variation d’une tension U1 appliquée entre deux bornes du premier matériau. C’est la tension U1 qui génère un champ électrique au sein de l’inductance 50. [0166] Thus, the inductance value varies under the effect of a variation in a voltage U1 applied between two terminals of the first material. It is the voltage U1 that generates an electric field within the inductor 50.
[0167] Le premier matériau conducteur est distinct d’un métal. Les métaux présentent une conductivité électrique fixe. [0167] The first conductive material is distinct from a metal. Metals exhibit a fixed electrical conductivity.
[0168] Le premier matériau conducteur est avantageusement un semimétal. [0168] The first conductive material is advantageously a semimetal.
[0169] Selon un mode de réalisation particulier, le premier matériau conducteur est le graphène. [0169] According to a particular embodiment, the first conductive material is graphene.
[0170] L’inductance 50 comprend, par exemple, une pluralité de couches d’un premier matériau conducteur ou une unique couche de graphène. [0170] Inductor 50 comprises, for example, a plurality of layers of a first conductive material or a single layer of graphene.
[0171] Avantageusement, chaque couche de graphène est une monocouche atomique. Autrement dit, elle présente une épaisseur monoatomique. Advantageously, each graphene layer is an atomic monolayer. In other words, it has a monoatomic thickness.
[0172] L’inductance 50 peut comprendre uniquement le premier matériau conducteur ou comprendre le premier matériau et au moins un autre matériau. [0172] Inductor 50 may include only the first conductive material or may include the first material and at least one other material.
[0173] L’inductance 50 comprend, par exemple, une alternance de couches de graphène et de couches d’un autre matériau. [0173] Inductance 50 comprises, for example, an alternation of layers of graphene and layers of another material.
[0174] L’autre matériau présente avantageusement une conductivité électrique plus faible que celle du graphène. [0174] The other material advantageously has a lower electrical conductivity than that of graphene.
[0175] L’autre matériau est, par exemple, de l’oxyde de graphène. [0175] The other material is, for example, graphene oxide.
[0176] Il est à noter que l’inductance d’un élément réalisé en un matériau prédéfini comprend une inductance magnétique essentiellement définie par les caractéristiques géométriques de l’élément et une inductance cinétique due au déplacement des électrons au sein du matériau sous tension. En faisant varier la tension appliquée entre deux bornes de l’élément, on fait varier la vitesse de déplacement des électrons au sein du matériau et donc son inductance cinétique alors que son inductance magnétique ne varie pas. [0177] Il est à noter que l’inductance du graphène présente une propriété remarquable. L’inductance cinétique du graphène est très largement supérieure à son inductance magnétique ce qui le distingue des métaux dont l’inductance cinétique est négligeable. It should be noted that the inductance of an element made of a predefined material comprises a magnetic inductance essentially defined by the geometric characteristics of the element and a kinetic inductance due to the displacement of electrons within the material under tension. By varying the voltage applied between two terminals of the element, the speed of movement of the electrons within the material and therefore its kinetic inductance is varied while its magnetic inductance does not vary. It should be noted that the inductance of graphene exhibits a remarkable property. The kinetic inductance of graphene is very much greater than its magnetic inductance, which distinguishes it from metals whose kinetic inductance is negligible.
[0178] En figure 5, on a représenté l’inductance cinétique Lk définie en H.m 1 d’une inductance 50 en graphène. Cette inductance cinétique diminue en fonction de la tension U1 appliquée entre deux faces de l’inductance 50. In FIG. 5, there is shown the kinetic inductance L k defined in Hm 1 of an inductor 50 made of graphene. This kinetic inductance decreases as a function of the voltage U1 applied between two faces of the inductor 50.
[0179] D’autres matériaux présentant une conductivité électrique variable en fonction de la tension électrique aux bornes du premier matériau sont bien entendu envisageables. [0179] Other materials having variable electrical conductivity as a function of the electrical voltage across the first material are of course possible.
[0180] Des matériaux bidimensionnels peuvent être utilisés. Le premier matériau peut être un dichalogénure de métal de transition ou TMD acronyme de l’expression anglo-saxonne « transition métal dichalcogenide”. [0180] Two-dimensional materials can be used. The first material may be a transition metal dichalide or TMD, which stands for "transition metal dichalcogenide".
[0181] En variante, le premier matériau conducteur est à base d’un semimétal ou de plusieurs semimétaux. [0181] As a variant, the first conductive material is based on one semimetal or on several semimetals.
[0182] On peut, par exemple, proposer un premier semi-métal topologique comprenant le semi-métal de Dirac (Cd3As2, Na3Bi) et le semi-métal de Weyl (TaAs, NbAs). It is possible, for example, to provide a first topological semi-metal comprising the Dirac semi-metal (Cd3As2, Na3Bi) and the Weyl semi-metal (TaAs, NbAs).
[0183] Chaque inductance 50 présente une épaisseur mesurée selon la direction normale Z. L’épaisseur de l’inductance 50 est comprise entre 100 nanomètres et 1 micromètre. Par exemple, l’épaisseur de l’inductance 50 est égale à 600 nanomètres. [0183] Each inductor 50 has a thickness measured in the normal direction Z. The thickness of the inductor 50 is between 100 nanometers and 1 micrometer. For example, the thickness of inductor 50 is equal to 600 nanometers.
[0184] Chaque inductance 50 présente une valeur d’inductance réglable en réglant un champ électrique appliqué au sein de l’inductance, c’est-à-dire en réglant une tension appliquée entre deux bornes de l’inductance 50. [0184] Each inductor 50 has an adjustable inductance value by adjusting an electric field applied within the inductor, that is to say by adjusting a voltage applied between two terminals of the inductor 50.
[0185] L’antenne selon l’invention comprend, avantageusement, comme représenté en figure 6, un générateur G de tension continue variable permettant d’appliquer une tension continue U1 entre deux bornes Fl, FS de l’inductance de sorte à appliquer un champ électrique E au sein du premier matériau conducteur 50. The antenna according to the invention advantageously comprises, as shown in FIG. 6, a generator G of variable direct voltage making it possible to apply a direct voltage U1 between two terminals F1, FS of the inductor so as to apply a electric field E within the first conductive material 50.
[0186] La tension continue U1 est appliquée de sorte qu’un champ électrique E sensiblement uniforme de valeur variable soit appliqué au sein du premier matériau conducteur. [0187] La conductivité électrique du premier matériau électrique conducteur variant en fonction du champ électrique auquel il est soumis, la conductivité électrique est réglable par réglage du champ électrique. The direct voltage U1 is applied so that a substantially uniform electric field E of variable value is applied within the first conductive material. The electrical conductivity of the first electrically conductive material varying as a function of the electric field to which it is subjected, the electric conductivity is adjustable by adjusting the electric field.
[0188] Or, la valeur d’inductance L de l’inductance 50 variant en fonction de la conductivité électrique du premier matériau électrique conducteur, la valeur d’inductance L varie sous l’effet d’une variation de la tension U1 , c’est-à-dire du champ électrique E. Now, the inductance value L of the inductor 50 varying as a function of the electrical conductivity of the first conductive electrical material, the inductance value L varies under the effect of a variation in the voltage U1, c 'that is to say the electric field E.
[0189] L’antenne comprend avantageusement, comme visible en figure 6, une électrode EL conductrice électriquement en contact physique direct avec l’inductance 50. [0189] The antenna advantageously comprises, as shown in Figure 6, an electrically conductive EL electrode in direct physical contact with the inductor 50.
[0190] Le générateur de tension continue variable G est apte à appliquer une différence de potentiel entre l’électrode conductrice EL et une masse M de façon que le premier matériau conducteur soit soumis à un champ électrique sensiblement uniforme. [0190] The variable DC voltage generator G is able to apply a potential difference between the conductive electrode EL and a mass M so that the first conductive material is subjected to a substantially uniform electric field.
[0191 ] Ce champ électrique E s’étend par exemple selon l’axe Z comme dans la réalisation de la figure 2. This electric field E extends for example along the Z axis as in the embodiment of Figure 2.
[0192] L’inductance 50 s’étend, selon l’axe Z, depuis une face inférieure Fl en contact physique direct avec le substrat 15 et plus particulièrement avec la face de support 30, jusqu’à une face supérieur FS. [0192] The inductance 50 extends, along the Z axis, from a lower face F1 in direct physical contact with the substrate 15 and more particularly with the support face 30, to an upper face FS.
[0193] Le substrat 15 est accolé à une plaque conductrice inférieure PC reliée à la masse électrique. Le substrat 15 est interposé, selon l’axe Z, entre la plaque conductrice PC et l’inductance 50. The substrate 15 is attached to a lower conductive plate PC connected to the electrical ground. The substrate 15 is interposed, along the Z axis, between the conductive plate PC and the inductor 50.
[0194] L’électrode EL est conductrice électriquement, elle est par exemple métallique. [0194] The EL electrode is electrically conductive, for example it is metallic.
[0195] Dans le mode de réalisation représenté en figure 6, l’électrode EL est déposée sur la face supérieure FS de l’inductance 50. L’inductance 50 est interposée, selon l’axe Z, entre le substrat 15 et la face inférieure Fl de l’inductance 50. In the embodiment shown in FIG. 6, the EL electrode is deposited on the upper face FS of the inductor 50. The inductor 50 is interposed, along the Z axis, between the substrate 15 and the face. lower Fl of inductor 50.
[0196] Le générateur de tension continue variable est apte à appliquer une tension continue variable U entre l’électrode EL et la plaque conductrice inférieure PC de sorte qu’une tension U1 est appliquée entre la face supérieure FS et la face inférieure DI de l’inductance 50. [0197] Lorsqu’une tension U1 est appliquée entre la face supérieure FS et la face inférieure DI, le premier matériau conducteur est soumis à un champ électrique E s’étendant selon l’axe Z. The variable direct voltage generator is able to apply a variable direct voltage U between the electrode EL and the lower conductive plate PC so that a voltage U1 is applied between the upper face FS and the lower face DI of the 'inductor 50. When a voltage U1 is applied between the upper face FS and the lower face DI, the first conductive material is subjected to an electric field E extending along the Z axis.
[0198] En variante, le générateur de tension continue variable est destiné à appliquer une tension entre deux bornes coplanaires de l’inductance 50 de sorte que le premier matériau conducteur est soumis à un champ électrique s’étendant dans un plan perpendiculaire à l’axe Z. On prévoit alors une électrode et une masse coplanaires s’étendant dans un même plan transverse perpendiculaire à l’axe Z que l’inductance 50. L’inductance est interposée entre l’électrode et la masse dans ce plan transverse selon une direction du plan transverse. Le générateur est destiné à appliquer une tension continue entre l’électrode et la masse coplanaires. [0198] As a variant, the variable direct voltage generator is intended to apply a voltage between two coplanar terminals of the inductor 50 so that the first conductive material is subjected to an electric field extending in a plane perpendicular to the Z axis. There is then provided a coplanar electrode and a mass extending in the same transverse plane perpendicular to the Z axis as the inductor 50. The inductor is interposed between the electrode and the mass in this transverse plane according to a direction of the transverse plane. The generator is intended to apply a DC voltage between the electrode and the coplanar ground.
[0199] Il est à noter que le mode résonnant de l’élément rayonnant 20 est principalement capacitif pour le fagot F de nanostructures filaires et inductif pour l’inductance. Une nanostructure filaire présente une résistance élevée lorsqu’elle est seule alors qu’un fagot F de nanostructures filaires présente une résistance très faible pouvant atteindre 50 Ohms. Il devient donc essentiellement capacitif. Les nanostructures filaires agencées en fagot forment un élément équivalent à une capacité C. Cette capacité C distribuée dépend du nombre de nanostructure filaires, de leur diamètre, du facteur de forme. [0199] It should be noted that the resonant mode of the radiating element 20 is mainly capacitive for the bundle F of wire nanostructures and inductive for the inductance. A wire nanostructure has a high resistance when it is alone while a bundle F of wire nanostructures has a very low resistance of up to 50 Ohms. It therefore becomes essentially capacitive. The wire nanostructures arranged in bundles form an element equivalent to a capacitor C. This distributed capacitance C depends on the number of wire nanostructures, on their diameter and on the form factor.
[0200] L’ajout d’une inductance en série avec le fagot F, (par exemple de type spirale comme visible en figure 4) permet d’obtenir un élément rayonnant résonant une fréquence souhaitée. [0200] The addition of an inductor in series with the bundle F (for example of the spiral type as shown in Figure 4) makes it possible to obtain a radiating element resonating a desired frequency.
[0201] Le fait de prévoir une inductance 50 présentant une valeur d’inductance variant en fonction du champ électrique auquel elle est soumise, permet d’accorder la valeur d’inductance L de l’inductance 50 avec la capacité C du fagot F de nanostructures filaires 45, à une fréquence prédéterminée, et ainsi de garantir le bon fonctionnement de l’antenne à cette fréquence. The fact of providing an inductor 50 having an inductance value varying as a function of the electric field to which it is subjected, makes it possible to match the inductance value L of the inductor 50 with the capacitance C of the bundle F of wire nanostructures 45, at a predetermined frequency, and thus guarantee the correct operation of the antenna at this frequency.
[0202] Par accorder la valeur d’inductance L de l’inductance 50 sur la capacité C du fagot de nanostructures filaires 45 à la fréquence fo, on entend choisir la valeur d’inductance L de façon que l’élément rayonnant 20 soit résonnant à la fréquence f0. [0203] Lorsque l’élément rayonnant est en mode résonnant, la valeur d’inductance L de résonance est reliée à la fréquence f0 et à la capacité C de la nanostructure filaire F par la formule suivante : By matching the value of inductance L of inductance 50 to the capacitance C of the bundle of wire nanostructures 45 at the frequency fo, it is meant to choose the value of inductance L so that the radiating element 20 is resonant. at the frequency f 0 . When the radiating element is in resonant mode, the resonance inductance L value is linked to the frequency f 0 and to the capacitance C of the wire nanostructure F by the following formula:
[0204] Il est à noter qu’une antenne émettrice est un circuit électronique résonant de type RLC : résistif (R) - inductif (L)- capacitif (C) série ou parallèle, à une fréquence de résonnance fo. Ce circuit délivre une impédance ZRLC adaptée en sortie à l’impédance de l’air (i.e. 377 Ohms et en entrée une impédance de référence Z0 (généralement 50 Ohms). Lorsque ces conditions sont respectées, il est alors possible de transmettre l’énergie du signal d’entrée par ce circuit qui se décrit alors par une impédance ramenée à son entrée démontrant cette résonance visible sur sa partie réelle (proche de Z0) et partie imaginaire (valeur nulle à fo). It should be noted that a transmitting antenna is a resonant electronic circuit of the RLC type: resistive (R) - inductive (L) - capacitive (C) series or parallel, at a resonant frequency fo. This circuit delivers a ZRLC impedance matched at the output to the air impedance (ie 377 Ohms and at the input a reference impedance Z 0 (generally 50 Ohms). When these conditions are met, it is then possible to transmit the energy of the input signal by this circuit which is then described by an impedance brought back to its input demonstrating this visible resonance on its real part (close to Z 0 ) and imaginary part (zero value at fo).
[0205] L’impédance d’entrée Zin de l’antenne est reliée à l’impédance ZRLC du circuit RLC et à l’impédance de l’air Zairpar la formule suivante The input impedance Z in of the antenna is connected to the ZRLC impedance of the RLC circuit and to the air impedance Z air by the following formula
[0206] Zin = (ZRLC + Zair) [0206] Z in = (Z RLC + Z air )
[0207] avec ZRLC = R + j(Lœ — — ) [0207] with Z RLC = R + j (Lœ - -)
[0208] où w = 2*p*ί et R est la résistance ou partie réelle de l’impédance du circuit RLC et f est la fréquence, L est l’inductance du circuit RLC et C est la capacité du circuit RLC. [0208] where w = 2 * p * ί and R is the resistance or real part of the impedance of the RLC circuit and f is the frequency, L is the inductance of the RLC circuit and C is the capacitance of the RLC circuit.
[0209] Comme visible en figure 7, représentant la partie réelle de l’impédance d’entrée d’une antenne et la partie imaginaire de la partie imaginaire de l’impédance d’entrée de l’antenne en traits pointillés, à la fréquence de résonance la partie imaginaire de l’impédance d’entrée est nulle et sa partie réelle est maximale. As visible in FIG. 7, representing the real part of the input impedance of an antenna and the imaginary part of the imaginary part of the input impedance of the antenna in dotted lines, at the frequency of resonance the imaginary part of the input impedance is zero and its real part is maximum.
[0210] Lorsque la partie réelle de l’impédance d’entrée est égale à 50 Ohms à la fréquence de résonnance fo, cette partie réelle est adaptée à une émission radiofréquence à partir d’un signal d’entrée présentant habituellement une partie réelle de cette valeur. Sa partie imaginaire nulle est quant à elle adaptée à une émission à partir du signal d’entrée présentant habituellement une partie imaginaire nulle. [0211] La possibilité de faire varier la valeur d’inductance de l’inductance 50 permet d’obtenir la résonance de l’élément rayonnant 20 même lorsque le fagot F présente, après sa croissance, une capacité C qui diffère légèrement de la capacité recherchée. Cette solution permet donc d’optimiser le gain de l’antenne en appliquant une tension sur l’inductance 50 dont la valeur permet d’accorder la valeur d’inductance L de l’inductance avec la capacité C du fagot F. [0210] When the real part of the input impedance is equal to 50 Ohms at the resonance frequency fo, this real part is suitable for a radiofrequency emission from an input signal usually having a real part of this value. Its zero imaginary part is for its part suitable for transmission from the input signal usually exhibiting a zero imaginary part. The possibility of varying the inductance value of the inductor 50 makes it possible to obtain the resonance of the radiating element 20 even when the bundle F has, after its growth, a capacitance C which differs slightly from the capacitance. wanted. This solution therefore makes it possible to optimize the gain of the antenna by applying a voltage to the inductor 50, the value of which makes it possible to match the inductance value L of the inductance with the capacitance C of the bundle F.
[0212] Le champ électrique assurant l’accord est avantageusement appliqué lors du fonctionnement de l’antenne, c’est-à-dire lors de l’émission ou de la réception d’une onde radiofréquence par l’antenne afin d’assurer l’accord à la fréquence déterminée. [0212] The electric field ensuring the tuning is advantageously applied during operation of the antenna, that is to say during the transmission or reception of a radiofrequency wave by the antenna in order to ensure tuning at the determined frequency.
[0213] L’invention se rapporte également à un procédé de commande de l’antenne dans lequel on soumet le premier matériau conducteur à un champ électrique tel, que la valeur d’inductance de l’inductance 50 est accordée avec la capacité du fagot F à une fréquence prédéterminée, lorsque l’antenne émet ou reçoit une onde électromagnétique à la fréquence prédéterminée. The invention also relates to a method of controlling the antenna in which the first conductive material is subjected to an electric field such that the inductance value of the inductor 50 is matched with the capacitance of the bundle. F at a predetermined frequency, when the antenna transmits or receives an electromagnetic wave at the predetermined frequency.
[0214] Pour vérifier que la valeur d’inductance est accordée avec la capacité du fagot F à une fréquence prédéterminée, il est possible de mesurer un coefficient de réflexion d’une onde émise ou reçue par l’antenne duquel on peut déduire et, par exemple afficher, la partie réelle et la partie imaginaire d’impédance d’entrée de l’antenne. En suivant ces impédances lors de la variation de la tension, pour une fréquence donnée, il est possible de déduire la valeur d’impédance pour laquelle il y a résonance. To check that the inductance value is matched with the capacitance of the bundle F at a predetermined frequency, it is possible to measure a reflection coefficient of a wave emitted or received by the antenna from which it is possible to deduce and, eg display, real part and imaginary part of antenna input impedance. By following these impedances during the variation of the voltage, for a given frequency, it is possible to deduce the value of the impedance for which there is resonance.
[0215] Avantageusement, l’antenne comprend des moyens de mesure d’un coefficient de réflexion d’une onde émise ou reçue par l’antenne et des moyens de traitement permettant de régler la valeur d’inductance d’une inductance pour accorder la valeur d’inductance à la capacité du fagot à une fréquence prédéterminée, à partir de mesures du coefficient de réflexion mesurées par les moyens de mesure pour différentes valeurs d’une tension continue appliquée par le générateur de tension continue variable entre deux bornes de l’inductance 50. [0215] Advantageously, the antenna comprises means for measuring a reflection coefficient of a wave transmitted or received by the antenna and processing means making it possible to adjust the inductance value of an inductor in order to match the value of inductance at the capacitance of the bundle at a predetermined frequency, from measurements of the reflection coefficient measured by the measuring means for different values of a direct voltage applied by the variable direct voltage generator between two terminals of the inductor 50.
[0216] Le réglage d’inductance peut être fait collectivement pour une antenne réseau. [0216] The inductance adjustment can be done collectively for an array antenna.
[0217] Avantageusement, l’antenne comprend des moyens de mesure d’un coefficient de réflexion d’une onde émise ou reçue par l’antenne et des moyens de traitement permettant de régler les valeurs d’inductance des inductances 50 de l’antenne pour accorder sensiblement les valeurs d’inductances à la capacité du fagot à une fréquence prédéterminée, à partir de mesures du coefficient de réflexion mesurées par les moyens de mesure pour différentes valeurs d’une tension continue ou de tensions continues appliquée(s) par un ou plusieurs générateurs de tension continue variable entre deux bornes des inductances 50. [0217] Advantageously, the antenna comprises means for measuring a reflection coefficient of a wave transmitted or received by the antenna and processing means making it possible to adjust the inductance values of the inductors 50 of the antenna to substantially match the inductance values to the capacitance of the bundle at a predetermined frequency, from measurements of the reflection coefficient measured by the measuring means for different values of a DC voltage or of applied DC voltages (s ) by one or more generators of variable direct voltage between two terminals of the inductors 50.
[0218] Avantageusement, l’inductance présente une valeur d’inductance apte à varier dans un intervalle compris entre 1 nanoHenry et 10 nanoHenrys. Selon un mode de réalisation, la valeur d’inductance est, par exemple apte à être égale à 5 nanoHenrys. [0218] Advantageously, the inductance has an inductance value capable of varying within an interval between 1 nanoHenry and 10 nanoHenrys. According to one embodiment, the inductance value is, for example capable of being equal to 5 nanoHenrys.
[0219] L’invention se rapporte à une antenne réseau comprenant deux éléments rayonnants comprenant chacune un fagot ou ensemble de nanostructures filaires).[0219] The invention relates to an array antenna comprising two radiating elements each comprising a bundle or set of wire nanostructures).
Les fagots des deux éléments rayonnants présentent des capacités respectives distinctes. L’inductance de chaque élément rayonnant est accordable avec la capacité du fagot correspondant, c’est-à-dire, avec la capacité de l’ensemble d’au moins une nanostructure filaire du même élément rayonnant. The bundles of the two radiating elements have distinct respective capacities. The inductance of each radiating element is tunable with the capacitance of the corresponding bundle, that is, with the capacitance of the set of at least one wire nanostructure of the same radiating element.
[0220] La figure 8 représente schématiquement la variation de la réactance d’un fagot de nanotubes de carbone en fonction de la fréquence d’un premier signal électrique qui lui est appliqué, par exemple entre 7 et 13 GHz. La réactance varie en fonction de la fréquence ce qui signifie que la capacité de ce fagot varie également en fonction de la fréquence. Par conséquent, en faisant varier la tension U1 pour faire varier la valeur d’inductance de l’inductance 50, on peut accorder l’ensemble de la cellule résonante formée de l’inductance 50 et d’un fagot F pour plusieurs fréquences de résonnance. Cela permet d’obtenir une antenne émettant ou recevant des ondes avec un gain élevé à des fréquences différentes donc présentant un comportement d’antenne large bande ou d’antenne accordable en fréquence. [0220] FIG. 8 schematically represents the variation in the reactance of a bundle of carbon nanotubes as a function of the frequency of a first electrical signal which is applied to it, for example between 7 and 13 GHz. The reactance varies according to the frequency which means that the capacitance of this bundle also varies according to the frequency. Consequently, by varying the voltage U1 to vary the inductance value of the inductor 50, it is possible to tune the whole of the resonant cell formed of the inductor 50 and of a bundle F for several resonance frequencies. . This makes it possible to obtain an antenna emitting or receiving waves with a high gain at different frequencies and therefore exhibiting the behavior of a broadband antenna or a frequency tunable antenna.
[0221] La figure 9 représente une antenne réseau 100 comprenant un réseau monodimensionnel d’éléments rayonnants 20b dont un seul est référencé en figure 9 pour plus de clarté. [0221] FIG. 9 represents an array antenna 100 comprising a one-dimensional array of radiating elements 20b, only one of which is referenced in FIG. 9 for greater clarity.
[0222] L’élément rayonnant 20b diffère de celui de la figure 6 en ce que l’électrode EL est coplanaire avec l’inductance 50. En variante, l’électrode EL est déposée sur l’inductance 50 comme sur la figure 6. [0222] The radiating element 20b differs from that of Figure 6 in that the EL electrode is coplanar with the inductor 50. Alternatively, the EL electrode is deposited on the inductor 50 as in Figure 6.
[0223] L’électrode peut, en variante, être en partie déposée sur l’inductance 50 et être en partie coplanaire avec l’inductance 50. [0224] En variante, tout comme dans l’exemple de la figure 10, le réseau pourrait être bidimensionnel. L’antenne 100 comprend une ligne de transmission 25, telle que décrite précédemment, pour chaque élément rayonnant 20b. Les lignes de transmission 25, et plus particulièrement les zones conductrices 85, sont reliées électriquement à une ligne de transmission principale LP permettant d’appliquer le premier courant électrique à chacune des zones conductrices 85. The electrode may, as a variant, be partly deposited on the inductor 50 and be partly coplanar with the inductor 50. [0224] As a variant, just as in the example of FIG. 10, the network could be two-dimensional. The antenna 100 comprises a transmission line 25, as described above, for each radiating element 20b. The transmission lines 25, and more particularly the conductive zones 85, are electrically connected to a main transmission line LP making it possible to apply the first electric current to each of the conductive zones 85.
[0225] Le premier courant électrique est avantageusement un signal radiofréquence. [0225] The first electric current is advantageously a radiofrequency signal.
[0226] Les plans de masse 90 sont reliés à un plan de masse PC situé en face arrière, c’est-à-dire accolée à face du substrat 15 opposée à la face de support 30. [0226] The ground planes 90 are connected to a PC ground plane located on the rear face, that is to say contiguous to the face of the substrate 15 opposite to the support face 30.
[0227] Les plan de masse sont, par exemple, reliés au plan de masse PC par des trous métallisés VI. The ground planes are, for example, connected to the ground plane PC by metallized holes VI.
[0228] Les électrodes EL de chacun des éléments rayonnants 20b sont déposées en partie sur la face de support 30. Les électrodes peuvent être commandées de façon collective par un même générateur de tension continue variable ou de façon indépendante par des générateurs différents. [0228] The EL electrodes of each of the radiating elements 20b are deposited in part on the support face 30. The electrodes can be controlled collectively by the same variable DC voltage generator or independently by different generators.
[0229] Lors d’une commande collective, un même champ électrique est appliqué au sein de chaque inductance. [0229] During a collective control, the same electric field is applied within each inductor.
[0230] Lors d’une commande individuelle, il est possible d’appliquer des champs électriques différents réglables de façon indépendante et d’obtenir un accord en fréquence et/ou en impédance. [0230] When ordering individually, it is possible to apply different electric fields which can be adjusted independently and to obtain an agreement in frequency and / or in impedance.
[0231] Dans un autre mode de réalisation, l’antenne peut présenter des éléments rayonnants présentant des faisceaux F présentant capacités différentes et/ou des capacités toutes identiques. La capacité de chaque faisceau est définie par son rapport d’aspect. [0231] In another embodiment, the antenna may have radiating elements having F beams having different capacities and / or all identical capacities. The capacity of each beam is defined by its aspect ratio.
[0232] L’antenne 1000 du mode de réalisation de la figure 10, diffère de celui de la figure 9 en ce que les électrodes EL sont reliées aux plans de masse 90 des éléments rayonnants 20c. Les éléments rayonnants 20c diffèrent des éléments rayonnants 20b de la figure 9 en ce qu’ils sont dépourvus de trous métallisés. [0232] The antenna 1000 of the embodiment of Figure 10 differs from that of Figure 9 in that the EL electrodes are connected to the ground planes 90 of the radiating elements 20c. The radiating elements 20c differ from the radiating elements 20b of Figure 9 in that they are devoid of metallized holes.
[0233] La ligne LP permet d’appliquer un signal comprenant simultanément un signal radiofréquence et la tension continue générant le champ électrique au sein des inductances 50 permettant ainsi de régler la valeur d’inductance de l’inductance 50. [0234] Cette solution permet de régler les inductances 50 de façon collective. The LP line makes it possible to apply a signal simultaneously comprising a radiofrequency signal and the direct voltage generating the electric field within the inductors 50 thus making it possible to adjust the inductance value of the inductor 50. This solution makes it possible to adjust the inductors 50 collectively.
[0235] La capacité d’une nanostructure filaire dépend de son rapport d’aspect. Par conséquent, le fait de prévoir des éléments rayonnant présentant des nanostructures filaires présentant des rapports d’aspect différents permet d’obtenir des éléments rayonnants résonant à des fréquences différentes et ainsi d’émettre et/ou recevoir à plusieurs fréquences. On peut ainsi réaliser une antenne formée d’éléments rayonnants qui rayonnent à des fréquences différentes. L’antenne présente donc un comportement d’antenne large bande. [0235] The capacity of a wire nanostructure depends on its aspect ratio. Therefore, the provision of radiating elements having wire nanostructures having different aspect ratios allows to obtain radiating elements resonating at different frequencies and thus to transmit and / or receive at several frequencies. It is thus possible to produce an antenna formed of radiating elements which radiate at different frequencies. The antenna therefore exhibits broadband antenna behavior.
[0236] L’antenne présente, par exemple, un premier élément rayonnant présentant une nanostructure filaire présentant un premier rapport d’aspect et un deuxième élément rayonnant présentant une nanostructure présentant un deuxième rapport d’aspect. [0236] The antenna has, for example, a first radiating element having a wire nanostructure having a first aspect ratio and a second radiating element having a nanostructure having a second aspect ratio.
[0237] Avantageusement, l’antenne présente des premiers moyens permettant de faire varier la valeur d’inductance de l’inductance du premier élément rayonnant et des deuxièmes moyens permettant de faire varier la valeur de l’inductance du deuxième élément rayonnant. [0237] Advantageously, the antenna has first means making it possible to vary the inductance value of the inductance of the first radiating element and of the second means making it possible to vary the value of the inductance of the second radiating element.
[0238] Avantageusement, l’antenne présente des premiers moyens permettant de faire varier la valeur d’inductance de l’inductance du premier élément rayonnant indépendamment de la valeur d’inductance du deuxième élément rayonnant et des deuxièmes moyens permettant de faire varier la valeur de l’inductance du deuxième élément rayonnant indépendamment de l’inductance du premier élément rayonnant. [0238] Advantageously, the antenna has first means making it possible to vary the inductance value of the inductance of the first radiating element independently of the inductance value of the second radiating element and of the second means making it possible to vary the value. of the inductance of the second radiating element independently of the inductance of the first radiating element.
[0239] Les premiers et deuxièmes moyens comprennent avantageusement chacun un générateur de tension continue variable. The first and second means advantageously each comprise a variable direct voltage generator.
[0240] Une telle antenne est en outre aisée à fabriquer, comme cela est illustré en référence à la figure 11 qui est un ordinogramme d’un procédé de fabrication d’un élément rayonnant 20. [0240] Such an antenna is also easy to manufacture, as illustrated with reference to FIG. 11 which is a flowchart of a method for manufacturing a radiating element 20.
[0241] Le procédé de fabrication comprend une étape 100 de fourniture, une étape 110 de dépôt, une étape 120 de gravure, une étape 130 de placement et une étape 140 de croissance. The manufacturing process comprises a supply step 100, a deposition step 110, an etching step 120, a placement step 130 and a growth step 140.
[0242] Au cours de l’étape de fourniture 100, le substrat 15 est fourni. [0243] Lors de l’étape de dépôt 110, une couche du premier matériau conducteur est déposée sur le substrat 15. [0242] During the supply step 100, the substrate 15 is supplied. During the deposition step 110, a layer of the first conductive material is deposited on the substrate 15.
[0244] Lorsque le matériau est en graphène, le dépôt est par exemple réalisé en phase vapeur par transfert. Un dépôt par transfert comprend une étape d’exfoliation d’une couche de graphène d’un bloc de graphite, lors de laquelle on extrait une monocouche de carbone en utilisant un ruban adhésif et une étape de transfert thermique de la monocouche atomique de carbone sur le substrat 15. When the material is graphene, the deposition is for example carried out in the vapor phase by transfer. A transfer deposition comprises a step of exfoliation of a layer of graphene from a block of graphite, in which a carbon monolayer is extracted using an adhesive tape and a step of thermal transfer of the atomic monolayer of carbon onto the substrate 15.
[0245] Il est à noter que d’autres techniques de dépôt sont envisageables. [0245] It should be noted that other deposition techniques are possible.
[0246] Lors de l’étape de gravure 120, la couche du premier matériau conducteur est gravée pour former l’inductance 50. [0246] During the etching step 120, the layer of the first conductive material is etched to form the inductor 50.
[0247] L’étape de gravure 120 comprend, par exemple, une étape de photolithographie et/ou une étape de gravure par faisceau d’ions. La gravure par faisceau d’ions consiste à projeter sur la couche à graver un faisceau d’ions, notamment d’ions Argon, à forte énergie pour usiner la couche à graver. [0247] The etching step 120 comprises, for example, a photolithography step and / or an ion beam etching step. Ion beam etching involves projecting a high energy beam of ions, in particular Argon ions, onto the layer to be etched to machine the layer to be etched.
[0248] Il est à noter que d’autres techniques de gravure de la couche de premier matériau conducteur sont envisageables. [0248] It should be noted that other techniques for etching the layer of first conductive material can be envisaged.
[0249] Lors de l’étape de placement 130, un catalyseur C de la croissance de nanostructures 45 est déposé sur l’inductance 50. [0249] During the placement step 130, a catalyst C for the growth of nanostructures 45 is deposited on the inductor 50.
[0250] Le catalyseur C est un matériau métallique. Les catalyseurs C les plus utilisés pour faire croître des nanotubes ou des nanofils sont le nickel, le cobalt, le fer et l’or. Par exemple, le catalyseur C est le fer. En variante, le catalyseur C est constitué d’un alliage d’au moins deux métaux. [0250] Catalyst C is a metallic material. The most widely used C catalysts for growing nanotubes or nanowires are nickel, cobalt, iron and gold. For example, catalyst C is iron. Alternatively, Catalyst C is made from an alloy of two or more metals.
[0251] Le catalyseur C est, par exemple, sous forme d’un ensemble de nanoparticules. [0251] Catalyst C is, for example, in the form of a set of nanoparticles.
[0252] Les particules du catalyseur C sont des nanoparticules. De préférence, chaque particule présente trois dimensions nanométriques. Par exemple, chaque dimension de chaque particule est comprise strictement entre 1 nanomètre et 100 nanomètres. The particles of catalyst C are nanoparticles. Preferably, each particle has three nanometric dimensions. For example, each dimension of each particle is strictly between 1 nanometer and 100 nanometers.
[0253] Les particules du catalyseur C sont, par exemple, obtenues par lithographie.The particles of catalyst C are, for example, obtained by lithography.
La lithographie permet d’obtenir un réseau parfaitement périodique de particules du catalyseur C. [0254] En variante, les particules sont obtenues par fragmentation et démouillage contrôlé d’une couche de catalyseur C déposée sur l’inductance 50. Lithography makes it possible to obtain a perfectly periodic network of particles of catalyst C. As a variant, the particles are obtained by fragmentation and controlled dewetting of a layer of catalyst C deposited on the inductor 50.
[0255] Selon une autre variante, les particules du catalyseur C sont obtenues par pulvérisation, sur l’inductance 50, d’une solution comprenant ces particules. En variante, les particules sont déposées par greffage électrostatique sur l’inductance 50. [0255] According to another variant, the particles of catalyst C are obtained by spraying, on the inductor 50, a solution comprising these particles. Alternatively, the particles are deposited by electrostatic grafting on the inductor 50.
[0256] Les méthodes précédentes différentes de la lithographie permettent d’obtenir un réseau aléatoire pour lequel la distance moyenne entre particules est contrôlée. [0256] The previous methods other than lithography make it possible to obtain a random network for which the average distance between particles is controlled.
[0257] Les particules sont, par exemple, liquides lorsque le catalyseur C est à la température de consigne Te. C’est par exemple le cas des nanofils de silicium dont la croissance est catalysée à l’aide de particules d’or. En variante, les particules sont solides lorsque le catalyseur C est à la température de consigne Te. C’est par exemple le cas de la croissance des nanotubes de carbone. The particles are, for example, liquid when the catalyst C is at the set temperature Te. This is the case, for example, with silicon nanowires, the growth of which is catalyzed with the help of gold particles. As a variant, the particles are solid when the catalyst C is at the set temperature Te. This is the case, for example, with the growth of carbon nanotubes.
[0258] En variante, le catalyseur C forme une couche homogène. As a variant, catalyst C forms a homogeneous layer.
[0259] Lors de l’étape de placement 130, le catalyseur C est déposé de manière à former une couche présentant, dans un plan perpendiculaire à la direction normale Z, une forme identique à la forme de la section du faisceau F. [0259] During the placement step 130, the catalyst C is deposited so as to form a layer having, in a plane perpendicular to the normal direction Z, a shape identical to the shape of the section of the beam F.
[0260] Il est à noter que, dans certains cas, il est envisageable de n’utiliser aucun catalyseur. [0260] It should be noted that, in certain cases, it is conceivable not to use any catalyst.
[0261] Cela est par exemple le cas pour certains types de nanostructures. Il est alors envisageable de remplacer l’étape 130 de placement d’un catalyseur C par une étape de dépôt d’une couche empêchant la croissance de nanostructures ailleurs que sur l’inductance 50. [0261] This is for example the case for certain types of nanostructures. It is then conceivable to replace step 130 of placing a catalyst C by a step of depositing a layer preventing the growth of nanostructures other than on the inductor 50.
[0262] Par exemple, cette étape de dépôt d’une couche empêchant la croissance comprend une étape de gravure au cours de laquelle une ouverture est ménagée au niveau de l’inductance 50 dans la couche empêchant la croissance afin de permettre la croissance d’un faisceau F de nanostructures 45. [0262] For example, this step of depositing a layer preventing growth comprises an etching step during which an opening is made at the level of the inductor 50 in the layer preventing the growth in order to allow the growth of. a beam F of nanostructures 45.
[0263] Au cours de l’étape de croissance 140, au moins une nanostructure 45 est obtenue. En particulier, les nanostructures 45 croissent sur l’inductance 50 pour former un faisceau F. [0264] Selon un mode de réalisation, une nanostructure 45 est obtenue pour chaque particule de catalyseur C. [0263] During the growth step 140, at least one nanostructure 45 is obtained. In particular, the nanostructures 45 grow on the inductor 50 to form a beam F. According to one embodiment, a nanostructure 45 is obtained for each particle of catalyst C.
[0265] Les nanostructures 45 sont, par exemple, obtenues par dépôt chimique en phase vapeur. Le dépôt chimique en phase vapeur (couramment dénommé par l’acronyme CVD, de l’Anglais « Chemical Vapor Déposition ») est une technique fréquemment utilisée pour déposer un matériau sur un substrat. Le dépôt chimique en phase vapeur se pratique dans une enceinte fermée, délimitant une chambre isolée de l’atmosphère extérieure et contenant au moins un substrat, en général maintenu à une température élevée. Un gaz dit « précurseur » est injecté dans l’enceinte et se décompose au contact du substrat chauffé, libérant sur le substrat des atomes d’un ou plusieurs éléments prédéterminés. [0265] The nanostructures 45 are, for example, obtained by chemical vapor deposition. Chemical vapor deposition (commonly referred to by the acronym CVD from "Chemical Vapor Deposition") is a technique frequently used to deposit a material on a substrate. Chemical vapor deposition is carried out in a closed chamber, delimiting a chamber isolated from the outside atmosphere and containing at least one substrate, generally maintained at a high temperature. A so-called "precursor" gas is injected into the chamber and decomposes on contact with the heated substrate, releasing atoms of one or more predetermined elements onto the substrate.
[0266] Les atomes libérés forment entre eux des liaisons chimiques menant à la formation, sur le substrat, du matériau recherché. [0266] The liberated atoms form between themselves chemical bonds leading to the formation, on the substrate, of the desired material.
[0267] Le procédé thermique de dépôt chimique en phase vapeur, également connu sous le nom anglais « Thermal Chemical Vapor Déposition », est une technique dans laquelle le substrat 15 est chauffé à une température élevée de l’ordre de 600 degrés Celsius ou plus est un type de CVD particulièrement adapté à la croissance de nanotubes de carbone. [0267] The thermal chemical vapor deposition process, also known under the English name "Thermal Chemical Vapor Deposition", is a technique in which the substrate 15 is heated to a high temperature of the order of 600 degrees Celsius or more. is a type of CVD particularly suitable for the growth of carbon nanotubes.
[0268] Selon un mode de réalisation, lors de la croissance par dépôt chimique en phase vapeur, un plasma est généré dans la chambre de croissance. [0268] According to one embodiment, during growth by chemical vapor deposition, a plasma is generated in the growth chamber.
[0269] Plusieurs éléments rayonnants 20 sont fabriqués simultanément. Par exemple, au cours de l’étape de gravure 120, les inductances 50 de plusieurs éléments rayonnants sont formées. Au cours de l’étape de placement 130, un catalyseur C est déposé sur chaque inductance 50. Lors de l’étape de croissance 140, au moins une nanostructure 45 est formée sur chaque 5 inductance 50. [0269] Several radiating elements 20 are manufactured simultaneously. For example, during the etching step 120, the inductors 50 of several radiating elements are formed. During the placement step 130, a catalyst C is deposited on each inductor 50. During the growth step 140, at least one nanostructure 45 is formed on each inductor 50.
[0270] Il est à noter que le procédé de fabrication est également susceptible de comprendre la fabrication de chaque ligne de transmission 25. Par exemple, chaque ligne de transmission 25 est ménagée, dans la couche de premier matériau conducteur, au cours de l’étape de gravure 120. [0270] It should be noted that the manufacturing method is also likely to include the manufacture of each transmission line 25. For example, each transmission line 25 is formed, in the layer of first conductive material, during the process. etching step 120.
[0271] Selon une variante, lorsque le deuxième matériau conducteur n’est pas identique au premier matériau conducteur, le procédé de fabrication comprend une étape de dépôt d’une couche de deuxième matériau conducteur et une étape de gravure de la couche de deuxième matériau conducteur pour former les lignes de transmission 25. [0271] According to a variant, when the second conductive material is not identical to the first conductive material, the manufacturing process comprises a step of depositing a layer of second conductive material and a step of etching of the layer of second conductive material to form the transmission lines 25.
[0272] Le procédé de fabrication des éléments rayonnants 10 est simple. [0272] The method of manufacturing the radiating elements 10 is simple.
[0273] Le molybdène est un matériau qui résiste bien aux conditions qui régnent dans un bâti de croissance de nanostructures 45, en particulier un bâti de CVD. L’inductance 50 et les lignes de transmission 25 ne sont donc pas dégradées lors de la croissance des nanostructures 45, en particulier lorsque les nanostructures 45 sont des nanotubes de carbone. Molybdenum is a material which is resistant to the conditions which prevail in a growth frame of nanostructures 45, in particular a CVD frame. The inductance 50 and the transmission lines 25 are therefore not degraded during the growth of the nanostructures 45, in particular when the nanostructures 45 are carbon nanotubes.
[0274] La pulvérisation cathodique est une méthode de dépôt permettant d’obtenir des couches de molybdène de bonne qualité. [0274] Cathodic sputtering is a deposition method for obtaining good quality molybdenum layers.
[0275] Le procédé peut comprendre une étape de dépôt d’une ou de plusieurs électrodes. [0275] The method can include a step of depositing one or more electrodes.
[0276] Les électrodes sont réalisées dans un matériau conducteur, par exemple le molybdène. [0276] The electrodes are made from a conductive material, for example molybdenum.
[0277] L’étape de dépôt d’une électrode comprend le dépôt de la couche de molybdène par pulvérisation cathodique. [0277] The step of depositing an electrode comprises depositing the layer of molybdenum by sputtering.
[0278] La pulvérisation cathodique (également désignée sous le terme anglais « sputtering ») est une technique de dépôt de couches minces dans laquelle une cible en matériau à déposer est fournie, en général sous forme de matériau solide, dans une chambre de dépôt et un plasma est formé dans un gaz à basse pression occupant la chambre de dépôt. L’application d’une différence de potentiel entre la cible et les parois de la chambre de dépôt provoque un bombardement de la cible par des espèces électriquement chargées positivement du plasma. Le bombardement entraîne la pulvérisation de la cible et ainsi la libération dans la chambre de dépôt d’atomes du matériau à déposer. La condensation des atomes ainsi libérés sur un substrat forme alors une couche du matériau à déposer. [0278] Cathodic sputtering (also designated under the English term "sputtering") is a thin film deposition technique in which a target made of material to be deposited is supplied, generally in the form of a solid material, in a deposition chamber and a plasma is formed in a low pressure gas occupying the deposition chamber. The application of a potential difference between the target and the walls of the deposition chamber causes bombardment of the target with positively charged species of the plasma. The bombardment causes the target to sputter and thus the release into the atom deposition chamber of the material to be deposited. The condensation of the atoms thus released on a substrate then forms a layer of the material to be deposited.

Claims

REVENDICATIONS
1. Elément rayonnant (20) pour une antenne (10) comportant : 1. Radiating element (20) for an antenna (10) comprising:
- un ensemble d’au moins une nanostructure filaire (45), chaque nanostructure filaire (45) s’étendant selon la même direction (D), dite direction commune, entre une première extrémité (55) et une deuxième extrémité (60), et - a set of at least one wire nanostructure (45), each wire nanostructure (45) extending in the same direction (D), called the common direction, between a first end (55) and a second end (60), and
- une inductance (50) reliée à chaque première extrémité (55) d’une nanostructure (45), l’inductance (50) étant réalisée à base d’un premier matériau conducteur, l’inductance (50) s’étendant dans un plan normal à la direction commune (D), le premier matériau conducteur présentant une conductivité électrique variant sous l’effet d’une variation d’un champ électrique appliqué au sein du premier matériau conducteur. - an inductor (50) connected to each first end (55) of a nanostructure (45), the inductor (50) being made from a first conductive material, the inductor (50) extending in a plane normal to the common direction (D), the first conductive material exhibiting an electrical conductivity varying under the effect of a variation of an electric field applied within the first conductive material.
2. Elément rayonnant selon la revendication précédente, dans lequel l’inductance (50) est configurée de sorte à présenter une valeur d’inductance accordable avec une capacité de l’ensemble d’au moins une nanostructure filaire. 2. A radiating element according to the preceding claim, wherein the inductance (50) is configured so as to have an inductance value tunable with a capacitance of the set of at least one wire nanostructure.
3. Elément rayonnant selon l’une quelconque des revendications précédentes, dans lequel le premier matériau conducteur comprend un semimétal. 3. A radiating element according to any preceding claim, wherein the first conductive material comprises a semimetal.
4. Elément rayonnant selon l’une quelconque des revendications 1 à 2, dans lequel le premier matériau est du graphène. 4. A radiating element according to any one of claims 1 to 2, wherein the first material is graphene.
5. Elément rayonnant selon l’une quelconque des revendications précédentes, dans lequel le premier matériau conducteur est un dichalogénure de métal de transition. 5. A radiating element according to any preceding claim, wherein the first conductive material is a transition metal dichalide.
6. Elément rayonnant selon l’une quelconque des revendications précédentes, dans lequel au moins une nanostructure filaire (45) est un nanotube de carbone.6. A radiating element according to any preceding claim, wherein at least one wire nanostructure (45) is a carbon nanotube.
7. Elément rayonnant selon l’une quelconque des revendications précédentes, dans lequel l’inductance (50) présente une forme en spirale. 7. A radiating element according to any preceding claim, wherein the inductor (50) has a spiral shape.
8. Elément rayonnant selon l’une quelconque des revendications précédentes, dans lequel l’ensemble d’au moins une nanostructure filaire comprend plusieurs nanostructures filaires. 8. A radiating element according to any preceding claim, wherein the assembly of at least one wire nanostructure comprises several wire nanostructures.
9. Elément rayonnant selon la revendication précédente, dans lequel l’inductance (50) est configurée de sorte à présenter une valeur d’inductance accordable avec une capacité de l’ensemble de nanostructures filaires. 9. A radiating element according to the preceding claim, in which the inductor (50) is configured so as to have an inductance value tunable with a capacitance of the set of wire nanostructures.
10. Antenne élémentaire (10) comprenant : 10. Elementary antenna (10) comprising:
- un élément rayonnant (20) selon l’une quelconque des revendications 1 à 9, et- a radiating element (20) according to any one of claims 1 to 9, and
- une ligne de transmission (25) comportant une zone (85) réalisée en un deuxième matériau conducteur et deux plans de masse (90), la ligne de transmission (25) s’étendant dans le même plan que l’inductance (50) et la zone (85) étant reliée à l’inductance (50), chaque plan de masse (90) étant réalisé en un troisième matériau conducteur, la zone (85) étant agencée entre les deux plans de masse (90) et,- a transmission line (25) comprising an area (85) made of a second conductive material and two ground planes (90), the transmission line (25) extending in the same plane as the inductor (50) and the zone (85) being connected to the inductor (50), each ground plane (90) being made of a third conductive material, the zone (85) being arranged between the two ground planes (90) and,
- un générateur de tension continue variable apte à appliquer le champ électrique au sein du premier matériau conducteur. a variable direct voltage generator capable of applying the electric field within the first conductive material.
11. Antenne élémentaire selon la revendication précédente, comprenant une électrode en contact physique avec l’inductance, le générateur de tension appliquant le champ électrique au sein du premier matériau conducteur par l’intermédiaire de l’électrode. 11. Elementary antenna according to the preceding claim, comprising an electrode in physical contact with the inductor, the voltage generator applying the electric field within the first conductive material through the electrode.
12. Antenne réseau comprenant une pluralité d’antennes élémentaires selon l’une quelconque des revendications 10 à 11. 12. Network antenna comprising a plurality of elementary antennas according to any one of claims 10 to 11.
13. Antenne réseau selon la revendication précédente, comprenant une première antenne élémentaire et une deuxième élémentaire présentant des éléments rayonnants présentant des ensembles d’au moins une nanostructure filaire présentant des capacités différentes. 13. Network antenna according to the preceding claim, comprising a first elementary antenna and a second elementary antenna having radiating elements having assemblies of at least one wire nanostructure having different capacities.
EP20811337.3A 2019-11-29 2020-11-26 Radiating element and associated antenna and manufacturing method Active EP4066315B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1913566A FR3103971B1 (en) 2019-11-29 2019-11-29 RADIATING ELEMENT, ANTENNA AND ASSOCIATED MANUFACTURING METHOD
PCT/EP2020/083448 WO2021105260A1 (en) 2019-11-29 2020-11-26 Radiating element and associated antenna and manufacturing method

Publications (2)

Publication Number Publication Date
EP4066315A1 true EP4066315A1 (en) 2022-10-05
EP4066315B1 EP4066315B1 (en) 2023-08-30

Family

ID=70295240

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20811337.3A Active EP4066315B1 (en) 2019-11-29 2020-11-26 Radiating element and associated antenna and manufacturing method

Country Status (6)

Country Link
US (1) US20220407234A1 (en)
EP (1) EP4066315B1 (en)
ES (1) ES2965002T3 (en)
FR (1) FR3103971B1 (en)
IL (1) IL293246A (en)
WO (1) WO2021105260A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3453618A (en) * 1966-09-15 1969-07-01 Allen Elect Equip Mobile antenna with flat spiral loading and matching coil
EP0927331B1 (en) * 1996-08-08 2004-03-31 William Marsh Rice University Macroscopically manipulable nanoscale devices made from nanotube assemblies
JP2003298338A (en) * 2002-04-02 2003-10-17 Fuji Xerox Co Ltd Antenna and communication device
CN101208826A (en) * 2004-08-12 2008-06-25 加州大学评议会 Interconnected nanosystems
KR101443223B1 (en) * 2008-04-04 2014-09-24 삼성전자주식회사 Inductor and method of operating the same
CN105914201B (en) * 2016-05-03 2017-04-12 武汉大学 Graphene sheet crossing adjustable inductance and method for performing the same

Also Published As

Publication number Publication date
US20220407234A1 (en) 2022-12-22
IL293246A (en) 2022-07-01
FR3103971B1 (en) 2022-08-05
WO2021105260A1 (en) 2021-06-03
FR3103971A1 (en) 2021-06-04
ES2965002T3 (en) 2024-04-10
EP4066315B1 (en) 2023-08-30

Similar Documents

Publication Publication Date Title
US6724064B2 (en) Photoelectric conversion element and photoelectric conversion device
EP2617051A1 (en) Electron multiplier device having a nanodiamond layer
EP1901317B1 (en) Integrated magnetic device with piezoelectric control
EP2097919B1 (en) Cold cathode electronic tube with optical control
FR3070224A1 (en) PLATED ANTENNA HAVING TWO DIFFERENT RADIATION MODES WITH TWO SEGREGATED WORK FREQUENCIES, DEVICE USING SUCH ANTENNA
EP0667984B1 (en) Monopolar wire-plate antenna
US20200358376A1 (en) Quantum vacuum fluctuation devices
US11463026B2 (en) Quantum plasmon fluctuation devices
WO2006070158A1 (en) Nanostructured electrode for a micro-battery
EP2583298A1 (en) Electron multiplier detector formed from a highly doped nanodiamond layer
WO2005091316A1 (en) Tunable-inductance thin-layered superconductor components, method for the production thereof and devices including said components
EP2194544A1 (en) Spin-valve or tunnel junction radiofrequency oscillator
EP4066315B1 (en) Radiating element and associated antenna and manufacturing method
EP1540768B1 (en) Broadband helical antenna
FR3081619A1 (en) RADIANT ELEMENT, ANTENNA AND METHOD OF MANUFACTURING THE SAME
EP2107623A1 (en) Magnetic device including a magnetoresistive stack and at least one nanocontact
FR2948236A1 (en) LEFT HAND BODY, WAVE GUIDING DEVICE AND ANTENNA USING THE SAME, METHOD OF MANUFACTURING THE BODY
WO2020169503A1 (en) Progressive wave, low characteristic impedance parametric amplifier and manufacturing method thereof
EP3948407A1 (en) Electromagnetic cavity able to support tamm modes
EP1768212B1 (en) Variable frequency conductive structure
EP4203189A1 (en) Monopole plated wire antenna with expanded bandwidth
EP2036116A1 (en) Adjustable capacity device and process thereof
FR3009431A1 (en) RECTANGULAR WAVE GUIDE WITH SLOW WAVES
EP3895249A1 (en) Method for manufacturing a superconducting lc-type resonator and superconducting resonator thus obtained
FR2942680A1 (en) OSCILLATOR BASED ON FOUR NANOWIL SERIES

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220513

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230412

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602020016900

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230830

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1606640

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231208

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231130

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231230

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231201

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231130

Year of fee payment: 4

Ref country code: FR

Payment date: 20231024

Year of fee payment: 4

Ref country code: DE

Payment date: 20231017

Year of fee payment: 4

Ref country code: SE

Payment date: 20231026

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2965002

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20240410