EP4053374A1 - Perforateur hydraulique roto-percutant pourvu d'un piston de butée et d'une chambre de freinage - Google Patents

Perforateur hydraulique roto-percutant pourvu d'un piston de butée et d'une chambre de freinage Download PDF

Info

Publication number
EP4053374A1
EP4053374A1 EP22158566.4A EP22158566A EP4053374A1 EP 4053374 A1 EP4053374 A1 EP 4053374A1 EP 22158566 A EP22158566 A EP 22158566A EP 4053374 A1 EP4053374 A1 EP 4053374A1
Authority
EP
European Patent Office
Prior art keywords
piston
striking
fitting
drill
hydraulic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP22158566.4A
Other languages
German (de)
English (en)
Other versions
EP4053374B1 (fr
Inventor
François-Xavier CHEYLUS
Michel ESCOLLE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Montabert SAS
Original Assignee
Montabert SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Montabert SAS filed Critical Montabert SAS
Publication of EP4053374A1 publication Critical patent/EP4053374A1/fr
Application granted granted Critical
Publication of EP4053374B1 publication Critical patent/EP4053374B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D17/00Details of, or accessories for, portable power-driven percussive tools
    • B25D17/06Hammer pistons; Anvils ; Guide-sleeves for pistons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D1/00Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor
    • B28D1/14Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by boring or drilling
    • B28D1/146Tools therefor
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B1/00Percussion drilling
    • E21B1/12Percussion drilling with a reciprocating impulse member
    • E21B1/24Percussion drilling with a reciprocating impulse member the impulse member being a piston driven directly by fluid pressure
    • E21B1/26Percussion drilling with a reciprocating impulse member the impulse member being a piston driven directly by fluid pressure by liquid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D17/00Details of, or accessories for, portable power-driven percussive tools
    • B25D17/02Percussive tool bits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D9/00Portable percussive tools with fluid-pressure drive, i.e. driven directly by fluids, e.g. having several percussive tool bits operated simultaneously
    • B25D9/04Portable percussive tools with fluid-pressure drive, i.e. driven directly by fluids, e.g. having several percussive tool bits operated simultaneously of the hammer piston type, i.e. in which the tool bit or anvil is hit by an impulse member
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D9/00Portable percussive tools with fluid-pressure drive, i.e. driven directly by fluids, e.g. having several percussive tool bits operated simultaneously
    • B25D9/06Means for driving the impulse member
    • B25D9/12Means for driving the impulse member comprising a built-in liquid motor, i.e. the tool being driven by hydraulic pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D9/00Portable percussive tools with fluid-pressure drive, i.e. driven directly by fluids, e.g. having several percussive tool bits operated simultaneously
    • B25D9/14Control devices for the reciprocating piston
    • B25D9/145Control devices for the reciprocating piston for hydraulically actuated hammers having an accumulator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D9/00Portable percussive tools with fluid-pressure drive, i.e. driven directly by fluids, e.g. having several percussive tool bits operated simultaneously
    • B25D9/14Control devices for the reciprocating piston
    • B25D9/26Control devices for adjusting the stroke of the piston or the force or frequency of impact thereof
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B1/00Percussion drilling
    • E21B1/38Hammer piston type, i.e. in which the tool bit or anvil is hit by an impulse member
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B6/00Drives for drilling with combined rotary and percussive action
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B6/00Drives for drilling with combined rotary and percussive action
    • E21B6/02Drives for drilling with combined rotary and percussive action the rotation being continuous
    • E21B6/04Separate drives for percussion and rotation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2209/00Details of portable percussive tools with fluid-pressure drive, i.e. driven directly by fluids, e.g. having several percussive tool bits operated simultaneously
    • B25D2209/002Pressure accumulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2217/00Details of, or accessories for, portable power-driven percussive tools
    • B25D2217/0011Details of anvils, guide-sleeves or pistons
    • B25D2217/0019Guide-sleeves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2217/00Details of, or accessories for, portable power-driven percussive tools
    • B25D2217/0011Details of anvils, guide-sleeves or pistons
    • B25D2217/0023Pistons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2250/00General details of portable percussive tools; Components used in portable percussive tools
    • B25D2250/131Idling mode of tools

Definitions

  • the present invention relates to a roto-percussive hydraulic drill more especially used on a drilling installation.
  • a drilling rig comprises, in a known manner, a roto-percussive hydraulic drill mounted sliding on a slide and driving one or more drill bars, the last of these drill bars carrying a tool called a cutter which is in contact with the rock.
  • a perforator generally aims to drill more or less deep holes in order to be able to place explosive charges there.
  • the perforator is therefore the main element of a drilling installation which, on the one hand, gives the cutting edge rotation and percussion via the drill bars so as to penetrate the rock, and on the other hand, provides an injection fluid so as to extract the debris from the drilled hole.
  • a roto-percussive hydraulic drill more particularly comprises on the one hand a striking system which is driven by one or more flow rates of hydraulic fluid coming from a main hydraulic supply circuit and which comprises a striking piston configured to strike, each operating cycle of the drill, a fitting coupled to the drill bars, and on the other hand a rotation system provided with a hydraulic rotary motor and configured to rotate the fitting and the drill bars.
  • a thrust force is generally applied by the slide on the roto-percussive hydraulic perforator.
  • the thrust force is generated by the slide mainly thanks to a cable or a drive chain, driven mainly by a hydraulic cylinder or a hydraulic motor.
  • the aforementioned thrust force is transmitted from the roto-percussive hydraulic perforator to the bit by the fitting and the drill bars. More precisely, the thrust force is transmitted from the body of the perforator to the fitting via an abutment element incorporated in the body of the perforator.
  • This stop element can consist, for powerful perforators, of a stop piston, at least one surface of which is hydraulically supplied so as to ensure transmission of the thrust force by means of a fluid.
  • the pushing force must also partly compensate for the recoil force of the drill which is mainly generated by the striking pressure and the striking frequency of the striking piston and which increases with these parameters.
  • the bit is pressed against the rock only by approximately the difference between the thrust force and the recoil force, which will be called the residual support force, as well as by the force exerted by the element of abutment on the fitting.
  • WO2010/082871 discloses a rotary-percussive hydraulic drill in which, under operating conditions of the striking system, the stop piston is positioned in an equilibrium position, in accordance with a desired striking stroke of the striking piston, by means of a hydraulic control chamber delimited by the striking piston and the body of the perforator and permanently connected to a high-pressure fluid supply conduit, the hydraulic control chamber being configured on the one hand to urge the stop piston forwards and on the other hand to be connected to a low pressure fluid return duct when the rear face of the stopper piston is located at a predetermined distance from the rear wall of the cavity receiving the stopper piston.
  • the configuration of the thrust piston and the body described in the document WO2010/082871 makes it possible to ensure an approximately stable positioning of the stop piston during operation of the striking system, around a predetermined optimum working position.
  • each stroke of the impact piston is transmitted to the fitting, to the drill bars and to the bit without the slightest support of the latter on the rock, which generates destructive effects on these parts as well as on the line. strike of the perforator.
  • This striking phase can for example be called the “poorly supported striking” phase or the “empty striking” phase, resulting from a thrust force that is too weak with respect to a given striking pressure.
  • This limiting function aimed at limiting the striking pressure of the striking piston, is not always adjusted to the best on the perforators and it is sometimes disconnected by the users. Moreover, for the sake of economy, this limitation function is sometimes not implemented on the perforators.
  • annular braking chamber which is provided for example in the extension of a control chamber (permanently connected to a high-pressure fluid supply conduit and participating in the control of the striking and return strokes of the striking piston) and which is configured to be fluidically isolated from the control chamber (via a braking surface provided on the impact piston) when the impact piston exceeds a desired maximum stroke in order to rapidly slow down the speed of impact of the impact piston on the fitting, and therefore to limit the energy transmitted to the fitting, and also in order to limit the speed of impact of the striking piston on a piston stop surface provided on the body of the roto-percussive hydraulic perforator and c onfigured to limit the striking stroke of the striking piston.
  • the body of the perforator is also provided with a front abutment surface whose function is to limit, axially and towards the front of the perforator, the stroke of the fitting.
  • a front abutment surface whose function is to limit, axially and towards the front of the perforator, the stroke of the fitting.
  • the position of the fitting on the front abutment surface can either allow a reduced impact speed of the striking piston on the fitting, for example when a withdrawal force is exerted on the perforator by the slide, the purpose of which is to loosen the bit when it is trapped in the rock, or to prevent any contact between the fitting and the impact piston.
  • the position occupied by the stop piston usually corresponds to positioning the fitting axially relative to the impact piston such that, when the impact piston comes into contact with the socket, the braking surface of the impact piston begins to penetrate the annular braking chamber and, consequently, to begin its phase braking.
  • Such a position of the impact piston (at the precise moment when the impact piston fluidically isolates the braking chamber) corresponds to a maximum impact speed of the impact piston.
  • the precise position of the fitting is however not determined since it depends in particular on the recoil force of the perforator and the thrust force applied by the slide on the perforator (the fitting being located between a support position in which it bears against the abutment surface before a support position in which it bears against the abutment piston).
  • the bearing surface provided on the abutment piston and the abutment surface provided on the body are in contact with each other, the speed of impact of the striking piston on the fitting will be included, depending on the residual tracking force, between the determined maximum impact speed and the determined minimum impact speed, but cannot be precisely defined.
  • the impact velocity between the impact piston and the socket may be greater than the maximum impact velocity if the socket, thrown by the previous blow given by the impact piston, bounces off the surface of the impact. front stop and encounters the impact piston again before its braking phase with a high recoil speed. If this speed of impact of the impact piston on the fitting is too high when the cutting edge is not in contact with the rock, premature ruptures will be deplored in particular by the user of the perforator on a possible interposed stop ring between thrust piston and shank, front bearing surface, thrust piston, striking piston, piston thrust surface, shank, drill rods and/or drill bit (mainly at level of the threads connecting the drill bars to each other).
  • the present invention aims to remedy these drawbacks.
  • the technical problem underlying the invention therefore consists in providing a roto-percussive hydraulic drill which is of simple and economical structure, while having increased reliability and this without requiring the presence of additional external components associated or not with parts. and additional hydraulic circuits.
  • the expression “supported on” means “supported directly or indirectly on”. Therefore, according to the present invention, the fitting can be supported directly on the stop piston or be supported indirectly on the stop piston, that is to say by means of an intermediate piece, such as a stop ring, interposed between the fitting and the stop piston.
  • the specific configuration of the roto-percussive hydraulic perforator according to the present invention allows, when the thrust force exerted by the slide on the perforator is too weak compared to the impact pressure or even zero, the stop piston to be able to position the fitting in an axial position such that the striking piston will have penetrated into the braking chamber by a distance corresponding to the predetermined spacing distance before being able to strike the fitting.
  • the rotary-percussive hydraulic perforator guarantees that the impact between the fitting and the striking piston is carried out at a reduced speed (included between the minimum impact speed and the maximum impact speed) when the residual support force is low, and therefore without generating damage to the constituent elements of the strike line of the perforator, and in particular to the fitting, to the drill bar(s) and to the bit.
  • the roto-percussive hydraulic drill according to the present invention makes it possible to define an intermediate impact speed between the maximum impact speed and the minimum impact speed at which the striking piston will strike the fitting, and thus certain limitation of the energy transmitted to the fitting, the drill bars and the bit when the latter is not resting on the rock to be drilled, and therefore to protect the fitting, the drill bars, the cutting edge and the entire strike line of the perforator.
  • This protection function is integrated into the drill, in its existing parts, without the addition of external control blocks or additional hydraulic circuits, internal or external. Such a protection function makes it possible to no longer have to guarantee the safety of the perforator by external functionalities subject to hazards.
  • the intermediate impact speed can be calibrated taking into account the maximum impact speed of the impact piston, the braking force of the braking chamber and the configuration of the stop piston so that impact piston impacts at intermediate impact velocity only generate low-speed rebounds of the fitting after its impact on the front bearing surface.
  • the roto-percussive hydraulic drill may also have one or more of the following characteristics, taken alone or in combination.
  • the predetermined spacing distance measured substantially parallel to the strike axis of the strike piston, is greater than or equal to 2 mm.
  • the braking surface extends in a plane substantially perpendicular to the strike axis.
  • the braking surface is annular.
  • the striking piston comprises a braking shoulder which defines the braking surface.
  • the striking piston comprises a first piston part having a first diameter, and a second piston part having a second diameter which is greater than the first diameter, the braking surface connecting the first and second piston parts.
  • the second piston part is an annular piston collar.
  • the body comprises a guide surface configured to axially guide the first part of the piston when the strike piston moves along the strike axis.
  • an internal wall of the braking chamber and an external surface of the second piston part are configured to define a functional radial clearance when the second piston part is disposed in the braking chamber.
  • the functional radial clearance is between 10 and 120 ⁇ m.
  • the roto-percussive hydraulic drill further comprises a main hydraulic supply circuit configured to control an alternating sliding of the striking piston along the striking axis, the main hydraulic supply circuit comprising a high pressure fluid supply conduit and a low pressure fluid return conduit.
  • the body and the striking piston delimit at least in part a first control chamber connected so permanent to the high-pressure fluid supply conduit and a second control chamber which is antagonistic to the first control chamber, the roto-percussive hydraulic drill further comprising a control distributor configured to fluidically connect the second control chamber alternately to the high pressure fluid supply conduit and to the low pressure fluid return conduit so as to control striking and return strokes of the striking piston.
  • the braking chamber extends in the extension of the first control chamber and in the direction of the fitting.
  • the braking chamber is configured to be supplied with high pressure fluid by the first control chamber when the braking surface of the impact piston is remote from the braking chamber.
  • the braking chamber is configured to be at least partially fluidically isolated from the first control chamber when the braking surface of the impact piston is located in the braking chamber.
  • the braking chamber comprises a bottom surface which is located opposite the entry edge.
  • the braking surface is configured to come into abutment against the bottom surface of the braking chamber so as to limit the striking stroke of the striking piston.
  • the main hydraulic supply circuit is also configured to control sliding of the stop piston along the axis of movement.
  • the body and the stop piston delimit a primary control chamber which is permanently connected to the high-pressure fluid supply conduit and which is configured to urge the stop piston towards the fitting.
  • the body and the stop piston delimit a secondary control chamber which is permanently connected to the low-pressure fluid return conduit or to a dedicated drain line, the secondary control chamber being antagonistic to the primary control chamber.
  • the secondary control chamber is configured to urge the stop piston opposite the fitting.
  • the main hydraulic supply circuit further comprises a low pressure accumulator connected to the low pressure fluid return conduit.
  • the main hydraulic supply circuit further comprises a high pressure accumulator connected to the high pressure fluid supply conduit.
  • At least one or each of the low pressure and high pressure accumulators is a membrane accumulator, such as a hydropneumatic accumulator, a piston accumulator, a bladder accumulator or any other type of accumulator.
  • the roto-percussive hydraulic perforator comprises a secondary hydraulic supply circuit configured to control sliding of the stop piston along the axis of displacement.
  • the roto-percussive hydraulic perforator comprises a control device configured to adjust the position of the stop piston according to different operating parameters of the roto-percussive hydraulic perforator.
  • the stop piston is slidably mounted around the striking piston.
  • the stop piston is configured to position the fitting in a predetermined position of equilibrium with respect to the striking piston.
  • the support surface is inclined with respect to the axis of movement.
  • the support surface is inclined with respect to the axis of movement according to an angle of inclination comprised between 5 and 175°, and advantageously between 30 and 60°, and for example d 'about 45°.
  • the abutment surface is inclined with respect to the axis of displacement according to an angle of inclination comprised between 5 and 175°, and advantageously between 30 and 60°, and for example of about 45°.
  • the bearing surface is inclined towards the rear of the stop piston.
  • the abutment surface and the support surface extend substantially perpendicular to the axis of movement, and therefore substantially perpendicular to the striking axis.
  • the abutment surface is annular.
  • the bearing surface is annular.
  • the bearing surface and the abutment surface are configured to be in contact with one another over only a portion of the bearing surface and of the abutment surface.
  • the body comprises a main body and an internal sleeve which is fixed in the main body and which extends around the stop piston, the internal sleeve comprising the stop surface.
  • the abutment surface is provided on the main body.
  • the roto-percussive hydraulic drill further comprises a stop ring which is arranged axially between the fitting and the stop piston and which is configured to apply the thrust force on the fitting .
  • the stop ring and the stop piston extend coaxially.
  • the fitting extends longitudinally along the strike axis
  • the stop piston comprises an annular flange comprising the bearing surface.
  • the roto-percussive hydraulic drill comprises a front abutment surface which is fixed relative to the body, the front abutment surface being annular and extending around the fitting, the fitting being configured to abut against the front abutment surface so as to limit the displacement stroke of the sleeve forward.
  • the fitting includes an annular bearing flange which is provided on an outer surface of the fitting and which includes a front bearing surface configured to come into abutment against the front abutment surface.
  • Figure 1 is a view in longitudinal section of a roto-percussive hydraulic drill according to a first embodiment of the invention, showing a striking piston, a stop piston and a fitting in a first operating configuration.
  • Figure 2 is a longitudinal sectional view of the roto-percussive hydraulic drill of the figure 1 , showing the striking piston, the stop piston and the fitting respectively in a second operating configuration and a third operating configuration.
  • Figure 3 is a view in longitudinal section of a roto-percussive hydraulic drill according to a second embodiment of the invention.
  • Figure 4 is an enlarged scale view of a detail of the figure 1 .
  • the figures 1 to 2 represent a rotary-percussive hydraulic drill 2 which is intended for drilling blast holes.
  • the roto-percussive hydraulic perforator 2 more particularly comprises a body 3 which is configured to be slidably mounted on a slide (not shown in the figures) provided on a carrier machine.
  • the body 3 comprises a main body 3.1, and also an internal liner 3.2 and an additional internal liner 3.3 mounted slidingly or by force in the main body 3.1.
  • the roto-percussive hydraulic drill 2 comprises a striking system 4 comprising a striking piston 5 mounted to slide alternately in a piston cylinder 6, which is defined by the body 3, along a striking axis A.
  • the striking piston 5 and the piston cylinder 6 delimit a first control chamber 7 which is annular, and a second control chamber 8 which has a larger cross-section than that of the first control chamber 7 and which is antagonistic to the first control chamber. command 7.
  • the striking system 4 further comprises a control valve 9 arranged to control a reciprocating movement of the striking piston 5 inside the piston cylinder 6 alternately following a striking stroke and a return stroke.
  • the control distributor 9 is configured to put the second control chamber 8, alternately in relation with a high pressure fluid supply conduit 11, such as a high pressure incompressible fluid supply conduit, during the stroke of the striking piston 5, and with a low pressure fluid return conduit 12, such as a low pressure incompressible fluid return conduit, during the return stroke of the striking piston 5.
  • the first bedroom control 7 is advantageously continuously supplied with high pressure fluid through a supply channel 13 connected to the high pressure fluid supply conduit 11.
  • the high-pressure fluid supply conduit 11 and the low-pressure fluid return conduit 12 belong to a main hydraulic supply circuit with which the striking system 4 is provided.
  • the main hydraulic supply circuit may advantageously comprise a high pressure accumulator 14 connected to the high pressure fluid supply conduit 11.
  • the striking system 4 also comprises a braking chamber 15 configured to hydraulically brake the striking piston 5 when the striking piston 5 exceeds a predetermined striking position.
  • the braking chamber 15 is annular and extends in the extension of the first control chamber 7 and forward of the roto-percussive hydraulic drill 2.
  • the braking chamber 15 comprises an entry edge 15.1 which is annular and a bottom surface 15.2 which is also annular and which is located opposite the entry edge 15.1.
  • the braking surface 16 is annular and extends transversely to the strike axis A and preferably in a plane substantially perpendicular to the strike axis A.
  • the braking surface 16 could have an angle of between 30 and 90° with respect to the striking axis A.
  • the braking surface 16 is configured to come into abutment against the bottom surface 15.2 of the braking chamber 15 of so as to limit the striking stroke of the striking piston 5.
  • the striking piston 5 comprises a first piston part 5.1 having a first diameter, a second piston part 5.2 having a second diameter which is greater than the first diameter, and a braking shoulder which defines the braking surface 16 and which connects the first and second piston parts 5.1, 5.2.
  • an internal wall of the braking chamber 15 and an external surface of the second piston part 5.2 are configured to define a functional radial play when the second piston part 5.2 is placed in the braking chamber 15.
  • the functional radial clearance is between 10 and 120 ⁇ m.
  • the roto-percussive hydraulic perforator 2 also comprises a stop piston 17 which is tubular and which is mounted to slide inside the body 3 along an axis of movement parallel to the strike axis A and preferably coinciding with the axis striker A.
  • the stop piston 17 is slidably mounted around the striking piston 5, and extends coaxially with the striking piston 5.
  • the stop piston 17 comprises a bearing surface 18 which is annular and which is configured to come into abutment against a stop surface 19, also annular, provided on the body 3 and for example on the internal sleeve 3.2, so as to limit the stroke of movement of the stop piston 17 towards the front of the roto-percussive hydraulic perforator 2.
  • the support surface 18 is inclined with respect to the axis of movement according to an angle of inclination comprised between 30 and 60°, and for example approximately 45°
  • the abutment surface 19 is also inclined with respect to the axis of movement according to an angle of inclination comprised between 30 and 60°, and for example of around 45°.
  • each of the bearing and abutment surfaces 18, 19 diverges in the direction of a rear end of the abutment piston 17.
  • the abutment surface 19 and the support surface 18 could each extend substantially perpendicular to the axis of movement.
  • the roto-percussive hydraulic perforator 2 further comprises a fitting 21 intended to be coupled, in a known manner, to at least one drill bar (not shown in the figures) equipped with a tool, also called a bit.
  • the fitting 21 extends longitudinally along an extension axis which advantageously coincides with the striking axis A, and comprises a first end portion 22 facing the striking piston 5 and provided with a face of end 22.1 against which the striking piston 5 is intended to strike during each operating cycle of the roto-percussive hydraulic drill 2, and a second end portion (not shown in the figures), opposite the first portion of end 22, intended to be coupled to the at least one drill bar.
  • the fitting 21 also comprises a front bearing surface 24 configured to come into abutment against a front abutment surface 25, which is annular and which extends around the fitting 21, so as to limit the displacement travel of the fitting 21 forwards.
  • the front bearing surface 24 can for example be annular, or be discontinuous if the female and male coupling splines provided on the fitting 21 extend as far as the front bearing surface 24.
  • the front abutment surface 25 can be directly provided on the body 3 and in particular the main body 3.1, or can be provided on an annular stop ring which is arranged in the main body 3.1.
  • the front bearing surface 24 is inclined with respect to the striking axis A and diverges in the direction of the striking piston 5.
  • the stop piston 17 more particularly comprises a front face 26 which is turned towards the fitting 21 and which is configured to apply a thrust force directly on the fitting 21 or indirectly on the fitting 21 via a stop ring 27 interposed axially between the fitting 21 and the stop piston 17.
  • stop piston The operation of a stop piston is well known to those skilled in the art and is therefore not described in detail in the present description.
  • hydraulic supply of a stop piston can be carried out in various ways well known to those skilled in the art. Different examples of hydraulic supply of the stop piston 17 are however described below.
  • the body 3 and the stop piston 17 delimit, with the impact piston 5, a primary control chamber 28 which can for example be permanently connected to the high-pressure fluid supply conduit 11 and which is configured to urge the stop piston 17 forwards, that is to say towards the fitting 21.
  • a secondary control chamber 29 which is antagonistic to the primary control chamber 28 and which can for example be connected to the low pressure fluid return conduit. pressure 12 or to a dedicated drain line.
  • the bearing surface 18 and the abutment surface 19 partly delimit the secondary control chamber 29.
  • the body 3 and the stop piston 17 define an additional control chamber 31 which is antagonistic to the secondary control chamber 29 and which is for example connected to a low pressure accumulator 32 connected to the low pressure fluid return conduit 12 and belonging to the main hydraulic supply circuit of the striking system 4.
  • a low pressure accumulator 32 connected to the low pressure fluid return conduit 12 and belonging to the main hydraulic supply circuit of the striking system 4.
  • Each of the aforementioned low pressure and high pressure accumulators can be a membrane accumulator, such as a hydropneumatic accumulator, a piston accumulator, a bladder accumulator or any another type of battery.
  • the additional control chamber 31 could be connected to an external drain 30.
  • the additional control chamber 31 could be connected directly to the low-pressure fluid return conduit 12, it that is to say without the presence of a low pressure accumulator.
  • the main hydraulic supply circuit is configured to also control the sliding of the stop piston 17 along the axis of movement.
  • the roto-percussive hydraulic drill 2 could include a secondary hydraulic supply circuit separate from the main hydraulic supply circuit and configured to control the sliding of the stop piston 17 according to the displacement axis.
  • the roto-percussive hydraulic drill 2 also comprises a rotation drive system 33 which is configured to drive the fitting 21 in rotation about an axis of rotation which is substantially coincident with the striking axis A.
  • the system of rotary drive 33 comprises a coupling member 34, such as a coupling pinion, which is tubular and which is disposed around the fitting 21.
  • the coupling member 34 comprises male coupling splines and female coupling splines which are coupled in rotation respectively with female and male coupling splines provided on the fitting 21.
  • the coupling member 34 comprises an external peripheral toothing coupled in rotation with an output shaft of a drive motor 35, such as a hydraulic motor supplied hydraulically by an external hydraulic supply circuit, belonging to the rotation drive system 33.
  • the rotation drive system 33 may for example comprise an intermediate pinion 36 which is coupled on the one hand to the output shaft of the drive motor 35 and on the other hand to the outer peripheral toothing of the coupling member 34.
  • the fitting 21 When the roto-percussive hydraulic drill 2 is in operation, the fitting 21 is set in rotation thanks to the drive motor 35, and the fitting 21 receives on its end face 17 the shocks cyclic of the striking piston 5, ensured by the striking system 4 supplied by the main hydraulic supply circuit. At the same time, the carrier machine on which the roto-percussive hydraulic perforator 2 is mounted applies a thrust force on the drill bar, via the body 3 and the fitting 21. Inside the roto-percussive hydraulic perforator striker 2, between the body 3 and the fitting 21, this thrust force is transmitted via the stop piston 17 and the stop ring 27.
  • the predetermined spacing distance D measured substantially parallel to the striking axis A of the striking piston 5, is greater than or equal to 2 mm.
  • Such a configuration of the roto-percussive hydraulic perforator 2 allows, when the thrust force exerted by the slide on the roto-percussive hydraulic perforator 2 is too low compared to the striking pressure (or even zero), the stop piston 17 of to be able to position the fitting 21 in an axial position (corresponding to a position of the abutment piston in which the bearing surface 18 bears against the abutment surface 19) such that the striking piston 5 will have penetrated into the braking 15 by a distance corresponding to the predetermined spacing distance D before being able to strike the fitting 21.
  • the roto-percussive hydraulic drill 2 guarantees that the impact between the fitting 21 and the piston striking 5 is carried out at a reduced speed when the thrust force exerted by the slide on the roto-percussive hydraulic perforator 2 is too low or zero, and therefore without generating damage to the constituent elements of the strike line of the perforator, and in particular to the fitting 21, to the drill bar(s) and to the bit.
  • the roto-percussive hydraulic perforator 2 makes it possible to define an intermediate impact speed of the striking piston comprised between a maximum impact speed of the striking piston 5 (which corresponds to a position of the striking piston 5 in which the braking surface 16 is located at the level of the entry edge 15) and a minimum impact speed of the striking piston 5 (which corresponds to a position of the piston of strike 5 in which the braking surface 16 is located in contact with the bottom surface 15.2), and thus to limit in a certain way the energy transmitted to the fitting 21, to the drill bars and to the cutting edge when the latter does not is not resting on the rock to be drilled, and therefore to protect the fitting 21, the drill bars, the cutting edge and the entire strike line of the roto-percussive hydraulic drill 2.
  • Such a protection function is integrated in the roto-percussive hydraulic drill 2, without the addition of external control blocks or additional hydraulic circuits, internal or external, and is therefore obtained without having to guarantee the safety of the drill by functionalities external subject to hazards.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Fluid Mechanics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Automation & Control Theory (AREA)
  • Earth Drilling (AREA)
  • Percussive Tools And Related Accessories (AREA)
  • Braking Arrangements (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Le perforateur hydraulique roto-percutant (2) comprend un corps (3) ; un emmanchement (21) ; un piston de frappe (5) configuré pour frapper l'emmanchement (21) et pourvu d'une une surface de freinage ; une chambre de freinage (15) configurée pour freiner hydrauliquement le piston de frappe (5) ; un piston de butée (17) configuré pour appliquer une force de poussée sur l'emmanchement (21) et pourvu d'une surface d'appui configurée pour venir en butée contre une surface de butée prévue sur le corps (3), de manière à limiter la course de déplacement du piston de butée (17) vers l'emmanchement (21). Le perforateur hydraulique roto-percutant (2) est configuré de telle sorte que la surface d'appui et la surface de butée sont espacées axialement d'une distance d'espacement prédéterminée lorsque simultanément (i) l'emmanchement (21) est en appui sur le piston de butée (17) et est en contact avec le piston de frappe (5), et (ii) la surface de freinage est située au niveau d'une arête d'entrée de la chambre de freinage (15).

Description

  • La présente invention se rapporte à un perforateur hydraulique roto-percutant plus spécialement utilisé sur une installation de forage.
  • Une installation de forage comprend de façon connue un perforateur hydraulique roto-percutant monté coulissant sur une glissière et entraînant une ou plusieurs barres de forage, la dernière de ces barres de forage portant un outil appelé taillant qui se trouve au contact de la roche. Un tel perforateur a généralement pour objectif de forer des trous plus ou moins profonds afin de pouvoir y placer des charges explosives. Le perforateur est donc l'élément principal d'une installation de forage qui, d'une part, confère au taillant la mise en rotation et la mise en percussion par l'intermédiaire des barres de forage de façon à pénétrer la roche, et d'autre part, fournit un fluide d'injection de manière à extraire les débris du trou foré.
  • Un perforateur hydraulique roto-percutant comprend plus particulièrement d'une part un système de frappe qui est animé par un ou plusieurs débits de fluide hydraulique provenant d'un circuit d'alimentation hydraulique principal et qui comprend un piston de frappe configuré pour frapper, à chaque cycle de fonctionnement du perforateur, un emmanchement couplé aux barres de forage, et d'autre part un système de rotation pourvu d'un moteur rotatif hydraulique et configuré pour mettre en rotation l'emmanchement et les barres de forage.
  • Afin de maintenir le taillant en appui contre la roche, une force de poussée est généralement appliquée par la glissière sur le perforateur hydraulique roto-percutant. De façon avantageuse, la force de poussée est générée par la glissière grâce principalement à un câble ou une chaîne d'entraînement, mu(e) principalement par un vérin hydraulique ou un moteur hydraulique.
  • La force de poussée précitée est transmise du perforateur hydraulique roto-percutant au taillant par l'emmanchement et les barres de forage. Plus précisément, la force de poussée est transmise du corps du perforateur à l'emmanchement par l'intermédiaire d'un élément de butée incorporé dans le corps du perforateur. Cet élément de butée peut être constitué, pour des perforateurs puissants, d'un piston de butée dont au moins une surface est alimentée hydrauliquement de façon à assurer une transmission de la force de poussée au moyen d'un fluide. La force de poussée doit également compenser en partie la force de recul du perforateur qui est principalement engendrée par la pression de frappe et la fréquence de frappe du piston de frappe et qui croit avec ces paramètres. Au final, le taillant n'est plaqué contre la roche que par approximativement la différence entre la force de poussée et la force de recul, que l'on appellera force d'appui résiduelle, ainsi que par la force exercée par l'élément de butée sur l'emmanchement.
  • La stabilité et la performance en vitesse de pénétration d'un perforateur hydraulique roto-percutant, lorsqu'il fonctionne, dépendent notamment de cette force d'appui résiduelle au moment du choc, garante de la bonne transmission de l'onde de choc du piston de frappe jusqu'à la roche.
  • Le document WO2010/082871 divulgue un perforateur hydraulique roto-percutant dans lequel, en conditions de fonctionnement du système de frappe, le piston de butée est positionné dans une position d'équilibre, conforme à une course de frappe souhaitée du piston de frappe, par l'intermédiaire d'une chambre de commande hydraulique délimitée par le piston de frappe et le corps du perforateur et reliée de façon permanente à un conduit d'alimentation en fluide à haute pression, la chambre de commande hydraulique étant configurée d'une part pour solliciter le piston de butée vers l'avant et d'autre part pour être reliée à un conduit de retour de fluide à basse pression lorsque la face arrière du piston de butée est située à une distance prédéterminée de la paroi arrière de la cavité recevant le piston de butée.
  • La configuration du piston de butée et du corps décrite dans le document WO2010/082871 permet d'assurer un positionnement approximativement stable du piston de butée pendant le fonctionnement du système de frappe, autour d'une position de travail optimum prédéterminée.
  • Cependant, lorsque le piston de butée se trouve dans une position d'équilibre, déterminée de manière hydraulique ou mécanique, il est susceptible, dans certaines conditions de fonctionnement du perforateur hydraulique roto-percutant, de ne pas maintenir le taillant en contact avec la roche. Dans ce cas précis, chaque coup du piston de frappe est transmis à l'emmanchement, aux barres de forage et au taillant sans le moindre appui de ce dernier sur la roche, ce qui génère des effets destructeurs sur ces pièces ainsi que sur la ligne de frappe du perforateur. Cette phase de frappe peut par exemple être nommée phase de « frappe mal appuyée » ou phase de « frappe à vide », résultant d'une force de poussée trop faible par rapport à une pression de frappe donnée.
  • Pour pallier ces désagréments, il est connu de limiter la pression de frappe actionnant le piston de frappe, et donc la vitesse d'impact du piston de frappe, lorsque le perforateur travaille dans une phase de frappe mal appuyée. La détection, entre autres, d'une diminution de la force de poussée ou d'une augmentation du débit d'avance alimentant le vérin ou le moteur d'avance de la glissière permet de transmettre un signal de commande à des organes de commande externes au perforateur de telle sorte qu'ils limitent la pression de frappe du piston de frappe.
  • Cette fonction de limitation, visant à limiter la pression de frappe du piston de frappe, n'est pas toujours ajustée au mieux sur les perforateurs et elle est parfois déconnectée par les utilisateurs. Par ailleurs, dans un souci d'économie, cette fonction de limitation n'est parfois pas implémentée sur les perforateurs.
  • Pour limiter les risques de détérioration de la ligne de frappe d'un perforateur hydraulique roto-percutant en cas de frappe à vide, il est également connu d'équiper le corps de ce dernier d'une chambre de freinage annulaire qui est prévue par exemple dans le prolongement d'une chambre de commande (reliée en permanence à un conduit d'alimentation en fluide à haute pression et participant à la commande des courses de frappe et de retour du piston de frappe) et qui est configurée pour être isolée fluidiquement de la chambre de commande (par l'intermédiaire d'une surface de freinage prévue sur le piston de frappe) lorsque le piston de frappe dépasse une course maximale souhaitée afin de ralentir rapidement la vitesse d'impact du piston de frappe sur l'emmanchement, et donc de limiter l'énergie transmise à l'emmanchement, et également afin de limiter la vitesse d'impact du piston de frappe sur une surface de butée de piston prévue sur le corps du perforateur hydraulique roto-percutant et configurée pour limiter la course de frappe du piston de frappe.
  • Le corps du perforateur est également pourvu d'une surface de butée avant ayant pour fonction de limiter, axialement et vers l'avant du perforateur, la course de l'emmanchement. Suivant les choix technologiques adoptés, la position de l'emmanchement sur la surface de butée avant peut soit permettre une vitesse d'impact réduite du piston de frappe sur l'emmanchement, par exemple lorsqu'une force de retrait est exercée sur le perforateur par la glissière, ce qui a pour but de décoincer le taillant lorsque celui-ci est prisonnier de la roche, soit interdire tout contact entre l'emmanchement et le piston de frappe.
  • Selon un tel mode de réalisation du perforateur hydraulique roto-percutant, le piston de butée comprend une surface d'appui qui est apte pour venir en butée contre une surface de butée prévue sur le corps, de manière à limiter la course de déplacement du piston de butée vers l'emmanchement, et le perforateur hydraulique roto-percutant est configurée de telle sorte que la surface d'appui et la surface de butée sont au contact l'une de l'autre lorsque simultanément :
    • l'emmanchement est en appui sur le piston de butée, via généralement une bague de butée, et est en contact avec le piston de frappe, et
    • la surface de freinage du piston de frappe est située au niveau d'une arête d'entrée de la chambre de freinage.
  • Ainsi, lorsque la surface d'appui prévue sur le piston de butée et la surface de butée prévue sur le corps sont au contact l'une de l'autre, la position occupée par le piston de butée correspond habituellement à positionner axialement l'emmanchement par rapport au piston de frappe de telle sorte que, lorsque le piston de frappe entre en contact avec l'emmanchement, la surface de freinage du piston de frappe commence à pénétrer dans la chambre de freinage annulaire et, par conséquent, à entamer sa phase de freinage. Une telle position du piston de frappe (à l'instant précis où le piston de frappe isole fluidiquement la chambre de freinage) correspond à une vitesse d'impact maximale du piston de frappe.
  • Dans cette configuration du piston de butée, la position précise de l'emmanchement n'est toutefois pas déterminée puisqu'elle dépend notamment de la force de recul du perforateur et de la force de poussée appliquée par la glissière sur le perforateur (l'emmanchement étant situé entre une position d'appui dans laquelle il est en appui contre la surface de butée avant une position d'appui dans laquelle il est en appui contre le piston de butée). Ainsi, lorsque la surface d'appui prévue sur le piston de butée et la surface de butée prévue sur le corps sont au contact l'une de l'autre, la vitesse d'impact du piston de frappe sur l'emmanchement sera comprise, en fonction de la force d'appui résiduelle, entre la vitesse d'impact maximale déterminée et la vitesse d'impact minimale déterminée, mais ne peut être définie précisément.
  • De plus, la vitesse d'impact entre le piston de frappe et l'emmanchement peut être plus importante que la vitesse d'impact maximale si l'emmanchement, projeté par le coup précédent donné par le piston de frappe, rebondit sur la surface de butée avant et rencontre à nouveau le piston de frappe avant sa phase de freinage avec une vitesse de recul importante. Si cette vitesse d'impact du piston de frappe sur l'emmanchement est trop importante alors que le taillant n'est pas en contact avec la roche, des ruptures prématurées seront notamment déplorées par l'utilisateur du perforateur sur une éventuelle bague de butée interposée entre le piston de butée et l'emmanchement, la surface d'appui avant, le piston de butée, le piston de frappe, la surface de butée de piston, l'emmanchement, les barres de forage et/ou le taillant (principalement au niveau des filetages reliant les barres de forage entre elles).
  • La présente invention vise à remédier à ces inconvénients.
  • Le problème technique à la base de l'invention consiste donc à fournir un perforateur hydraulique roto-percutant qui soit de structure simple et économique, tout en ayant une fiabilité accrue et ce sans nécessiter la présence de composants externes additionnels associés ou non à des pièces et circuits hydrauliques additionnels.
  • A cet effet, la présente invention concerne un perforateur hydraulique roto-percutant comprenant :
    • un corps,
    • un emmanchement monté dans le corps et destiné à être couplé à au moins une barre de forage équipée d'un outil,
    • un piston de frappe monté coulissant à l'intérieur du corps suivant un axe de frappe et configuré pour frapper l'emmanchement, le piston de frappe comportant une surface de freinage qui s'étend transversalement à l'axe de frappe,
    • une chambre de freinage configurée pour freiner hydrauliquement le piston de frappe lorsque le piston de frappe dépasse une position de frappe prédéterminée, la chambre de freinage étant configurée pour être fermée partiellement par la surface de freinage du piston de frappe lorsque le piston de frappe dépasse la position de frappe prédéterminée,
    • un piston de butée qui est tubulaire et qui est monté coulissant à l'intérieur du corps selon un axe de déplacement sensiblement parallèle à l'axe de frappe, le piston de butée étant configuré pour appliquer une force de poussée sur l'emmanchement, le piston de butée comprenant une surface d'appui configurée pour venir en butée contre une surface de butée prévue sur le corps, de manière à limiter la course de déplacement du piston de butée vers l'emmanchement,
    caractérisé en ce que le perforateur hydraulique roto-percutant est configuré de telle sorte que la surface d'appui et la surface de butée sont espacées axialement l'une de l'autre d'une distance d'espacement prédéterminée lorsque simultanément :
    • l'emmanchement est en appui sur le piston de butée et est en contact avec le piston de frappe, et
    • la surface de freinage du piston de frappe est située au niveau d'une arête d'entrée de la chambre de freinage.
  • En d'autre termes, le perforateur hydraulique roto-percutant est configuré de telle sorte que la surface de freinage est située dans la chambre de freinage et est espacée axialement de l'arête d'entrée de la chambre de freinage d'une distance d'espacement prédéterminée lorsque simultanément :
    • l'emmanchement est en appui sur le piston de butée et est en contact avec le piston de frappe, et
    • la surface d'appui est en appui contre la surface de butée.
  • Dans la présente description, l'expression « en appui sur » signifie « en appui directement ou indirectement sur ». De ce fait, selon la présente invention, l'emmanchement peut être en appui directement sur le piston de butée ou être en appui indirectement sur le piston de butée, c'est-à-dire par l'intermédiaire d'une pièce intermédiaire, telle qu'une bague de butée, interposée entre l'emmanchement et le piston de butée.
  • La configuration spécifique du perforateur hydraulique roto-percutant selon la présente invention permet, lorsque la force de poussée exercée par la glissière sur le perforateur est trop faible par rapport à la pression de frappe voire nulle, au piston de butée de pouvoir positionner l'emmanchement dans une position axiale telle que le piston de frappe aura pénétré dans la chambre de freinage d'une distance correspondant à la distance d'espacement prédéterminée avant de pouvoir frapper l'emmanchement. Ainsi, le perforateur hydraulique roto-percutant selon la présente invention garantit que l'impact entre l'emmanchement et le piston de frappe est réalisé à une vitesse réduite (comprise entre la vitesse d'impact minimale et la vitesse d'impact maximale) lorsque la force d'appui résiduelle est faible, et donc sans générer de dommages aux éléments constitutifs de la ligne de frappe du perforateur, et en particulier à l'emmanchement, à la ou aux barres de forage et au taillant.
  • Par conséquent, le perforateur hydraulique roto-percutant selon la présente invention permet de définir une vitesse d'impact intermédiaire entre la vitesse d'impact maximale et la vitesse d'impact minimale à laquelle le piston de frappe viendra frapper l'emmanchement, et ainsi de limiter de manière certaine l'énergie transmise à l'emmanchement, aux barres de forage et au taillant lorsque ce dernier n'est pas en appui sur la roche à forer, et donc de protéger l'emmanchement, les barres de forage, le taillant et toute la ligne de frappe du perforateur. Cette fonction de protection est intégrée dans le perforateur, dans ses pièces existantes, sans l'ajout de blocs de commande externes ou de circuits hydrauliques additionnels, internes ou externes. Une telle fonction de protection permet de ne plus avoir à garantir la sécurité du perforateur par des fonctionnalités externes soumises à aléas.
  • De façon avantageuse, la vitesse d'impact intermédiaire pourra être calibrée en tenant compte de la vitesse d'impact maximale du piston de frappe, de la force de freinage de la chambre de freinage et de la configuration du piston de butée de telle sorte que les impacts du piston de frappe à la vitesse d'impact intermédiaire n'engendrent que des rebonds à faible vitesse de l'emmanchement après son impact sur la surface d'appui avant.
  • Le perforateur hydraulique roto-percutant peut en outre présenter une ou plusieurs des caractéristiques suivantes, prises seules ou en combinaison.
  • Selon un mode de réalisation de l'invention, la distance d'espacement prédéterminée, mesurée sensiblement parallèlement à l'axe de frappe du piston de frappe, est supérieure ou égale à 2mm.
  • Selon un mode de réalisation de l'invention, la surface de freinage s'étend dans un plan sensiblement perpendiculaire à l'axe de frappe.
  • Selon un mode de réalisation de l'invention, la surface de freinage est annulaire.
  • Selon un mode de réalisation de l'invention, le piston de frappe comporte un épaulement de freinage qui définit la surface de freinage.
  • Selon un mode de réalisation de l'invention, le piston de frappe comporte une première partie de piston présentant un premier diamètre, et une deuxième partie de piston présentant un deuxième diamètre qui est supérieur au premier diamètre, la surface de freinage reliant les première et deuxième parties de piston.
  • Selon un mode de réalisation de l'invention, la deuxième partie de piston est une collerette de piston annulaire.
  • Selon un mode de réalisation de l'invention, le corps comporte une surface de guidage configurée pour guider axialement la première partie de piston lors des déplacements du piston de frappe selon l'axe de frappe.
  • Selon un mode de réalisation de l'invention, une paroi interne de la chambre de freinage et une surface externe de la deuxième partie de piston sont configurées pour définir un jeu radial fonctionnel lorsque la deuxième partie de piston est disposée dans la chambre de freinage.
  • Selon un mode de réalisation de l'invention, le jeu radial fonctionnel est compris entre 10 et 120 µm.
  • Selon un mode de réalisation de l'invention, le perforateur hydraulique roto-percutant comprend en outre un circuit d'alimentation hydraulique principal configuré pour commander un coulissement alternatif du piston de frappe selon l'axe de frappe, le circuit d'alimentation hydraulique principal comportant un conduit d'alimentation en fluide à haute pression et un conduit de retour de fluide à basse pression.
  • Selon un mode de réalisation de l'invention, le corps et le piston de frappe délimitent au moins en partie une première chambre de commande reliée de façon permanente au conduit d'alimentation en fluide à haute pression et une deuxième chambre de commande qui est antagoniste à la première chambre de commande, le perforateur hydraulique roto-percutant comportant en outre un distributeur de commande configuré pour relier fluidiquement la deuxième chambre de commande alternativement au conduit d'alimentation en fluide à haute pression et au conduit de retour de fluide à basse pression de manière à commander des courses de frappe et de retour du piston de frappe.
  • Selon un mode de réalisation de l'invention, la chambre de freinage s'étend dans le prolongement de la première chambre de commande et en direction de l'emmanchement.
  • Selon un mode de réalisation de l'invention, la chambre de freinage est configurée pour être alimentée en fluide haute pression par la première chambre de commande lorsque la surface de freinage du piston de frappe est éloignée de la chambre de freinage.
  • Selon un mode de réalisation de l'invention, la chambre de freinage est configurée pour être au moins partiellement isolée fluidiquement de la première chambre de commande lorsque la surface de freinage du piston de frappe est située dans la chambre de freinage.
  • Selon un mode de réalisation de l'invention, la chambre de freinage comporte une surface de fond qui est située à l'opposé de l'arête d'entrée. De façon avantageuse, la surface de freinage est configurée pour venir en butée contre la surface de fond de la chambre de freinage de manière à limiter la course de frappe du piston de frappe.
  • Selon un mode de réalisation de l'invention, le circuit d'alimentation hydraulique principal est également configuré pour commander un coulissement du piston de butée selon l'axe de déplacement.
  • Selon un mode de réalisation de l'invention, le corps et le piston de butée délimitent une chambre de commande primaire qui est reliée en permanence au conduit d'alimentation en fluide à haute pression et qui est configurée pour solliciter le piston de butée vers l'emmanchement.
  • Selon un mode de réalisation de l'invention, le corps et le piston de butée délimitent une chambre de commande secondaire qui est reliée en permanence au conduit de retour de fluide à basse pression ou à une ligne de drain dédiée, la chambre de commande secondaire étant antagoniste à la chambre de commande primaire.
  • Selon un mode de réalisation de l'invention, la chambre de commande secondaire est configurée pour solliciter le piston de butée à l'opposé de l'emmanchement.
  • Selon un mode de réalisation de l'invention, le circuit d'alimentation hydraulique principal comporte en outre un accumulateur basse pression relié au conduit de retour de fluide à basse pression.
  • Selon un mode de réalisation de l'invention, le circuit d'alimentation hydraulique principal comporte en outre un accumulateur haute pression relié au conduit d'alimentation en fluide à haute pression.
  • Selon un mode de réalisation de l'invention, au moins l'un ou chacun des accumulateurs basse pression et haute pression est un accumulateur à membrane, tel qu'un accumulateur hydropneumatique, un accumulateur à piston, un accumulateur à vessie ou tout autre type d'accumulateur.
  • Selon un autre mode de réalisation de l'invention, le perforateur hydraulique roto-percutant comporte un circuit d'alimentation hydraulique secondaire configuré pour commander un coulissement du piston de butée selon l'axe de déplacement.
  • Selon encore un autre mode de réalisation de l'invention, le perforateur hydraulique roto-percutant comporte un dispositif de pilotage configuré pour ajuster la position du piston de butée en fonction de différents paramètres de fonctionnement du perforateur hydraulique roto-percutant.
  • Selon un mode de réalisation de l'invention, le piston de butée est monté coulissant autour du piston de frappe.
  • Selon un mode de réalisation de l'invention, le piston de butée est configuré pour positionner l'emmanchement dans une position d'équilibre prédéterminée par rapport au piston de frappe.
  • Selon un mode de réalisation de l'invention, la surface d'appui est inclinée par rapport à l'axe de déplacement.
  • Selon un mode de réalisation de l'invention, la surface d'appui est inclinée par rapport à l'axe de déplacement selon un angle d'inclinaison compris entre 5 et 175°, et avantageusement entre 30 et 60°, et par exemple d'environ 45°.
  • Selon un mode de réalisation de l'invention, la surface de butée est inclinée par rapport à l'axe de déplacement selon un angle d'inclinaison compris entre 5 et 175°, et avantageusement entre 30 et 60°, et par exemple d'environ 45°.
  • Selon un mode de réalisation de l'invention, la surface d'appui est inclinée vers l'arrière du piston de butée.
  • Selon un autre mode de réalisation de l'invention, la surface de butée et la surface d'appui s'étendent sensiblement perpendiculairement à l'axe de déplacement, et donc sensiblement perpendiculairement à l'axe de frappe.
  • Selon un mode de réalisation de l'invention, la surface de butée est annulaire.
  • Selon un mode de réalisation de l'invention, la surface d'appui est annulaire.
  • Selon un mode de réalisation de l'invention, la surface d'appui et la surface de butée sont configurées pour être en contact l'une contre l'autre sur uniquement une portion de la surface d'appui et de la surface de butée.
  • Selon un mode de réalisation de l'invention, le corps comporte un corps principal et une chemise interne qui est fixée dans le corps principal et qui s'étend autour du piston de butée, la chemise interne comportant la surface de butée.
  • Selon un autre mode de réalisation de l'invention, la surface de butée est prévue sur le corps principal.
  • Selon un mode de réalisation de l'invention, le perforateur hydraulique roto-percutant comporte en outre une bague de butée qui est disposée axialement entre l'emmanchement et le piston de butée et qui est configuré pour appliquer la force de poussée sur l'emmanchement.
  • Selon un mode de réalisation de l'invention, la bague de butée et le piston de butée s'étendent coaxialement.
  • Selon un mode de réalisation de l'invention, l'emmanchement s'étend longitudinalement selon l'axe de frappe
  • Selon un mode de réalisation de l'invention, le piston de butée comporte une collerette annulaire comportant la surface d'appui.
  • Selon un mode de réalisation de l'invention, le perforateur hydraulique roto-percutant comporte une surface de butée avant qui est fixe par rapport au corps, la surface de butée avant étant annulaire et s'étendant autour de l'emmanchement, l'emmanchement étant configuré pour venir en butée contre la surface de butée avant de manière à limiter la course de déplacement de l'emmanchement vers l'avant. De façon avantageuse, l'emmanchement comporte une collerette d'appui annulaire qui est prévue sur une surface extérieure de l'emmanchement et qui comporte une surface d'appui avant configurée pour venir en butée contre la surface de butée avant.
  • La présente invention sera bien comprise à l'aide de la description qui suit en référence aux figures annexées, dans lesquelles des signes de références identiques correspondent à des éléments structurellement et/ou fonctionnellement identiques ou similaires.
  • Figure 1 est une vue en coupe longitudinale d'un perforateur hydraulique roto-percutant selon un premier mode de réalisation de l'invention, montrant un piston de frappe, un piston de butée et un emmanchement dans une première configuration de fonctionnement.
  • Figure 2 est une vue en coupe longitudinale du perforateur hydraulique roto-percutant de la figure 1, montrant le piston de frappe, le piston de butée et l'emmanchement respectivement dans une deuxième configuration de fonctionnement et une troisième configuration de fonctionnement.
  • Figure 3 est une vue en coupe longitudinale d'un perforateur hydraulique roto-percutant selon un deuxième mode de réalisation de l'invention.
  • Figure 4 est une vue à l'échelle agrandie d'un détail de la figure 1.
  • Les figures 1 à 2 représentent un perforateur hydraulique roto-percutant 2 qui est destiné à la perforation de trous de mine. Le perforateur hydraulique roto-percutant 2 comporte plus particulièrement un corps 3 qui est configuré pour être monté coulissant sur une glissière (non représentée sur les figures) prévue sur un engin porteur. Selon le mode de réalisation représenté sur les figures 1 et 2, le corps 3 comporte un corps principal 3.1, et également une chemise interne 3.2 et une chemise interne additionnelle 3.3 montées glissantes ou en force dans le corps principal 3.1.
  • Le perforateur hydraulique roto-percutant 2 comprend un système de frappe 4 comportant un piston de frappe 5 monté coulissant de façon alternative dans un cylindre de piston 6, qui est défini par le corps 3, suivant un axe de frappe A. Le piston de frappe 5 et le cylindre de piston 6 délimitent une première chambre de commande 7 qui est annulaire, et une deuxième chambre de commande 8 qui a une section transversale plus importante que celle de la première chambre de commande 7 et qui est antagoniste à la première chambre de commande 7.
  • Le système de frappe 4 comprend en outre un distributeur de commande 9 agencé pour commander un mouvement alternatif du piston de frappe 5 à l'intérieur du cylindre de piston 6 alternativement suivant une course de frappe et une course de retour. Le distributeur de commande 9 est configuré pour mettre la deuxième chambre de commande 8, alternativement en relation avec un conduit d'alimentation en fluide à haute pression 11, tel qu'un conduit d'alimentation en fluide incompressible à haute pression, lors de la course de frappe du piston de frappe 5, et avec un conduit de retour de fluide à basse pression 12, tel qu'un conduit de retour de fluide incompressible à basse pression, lors de la course de retour du piston de frappe 5. La première chambre de commande 7 est avantageusement alimentée en permanence en fluide à haute pression par un canal d'alimentation 13 relié au conduit d'alimentation en fluide à haute pression 11.
  • Le conduit d'alimentation en fluide à haute pression 11 et le conduit de retour de fluide à basse pression 12 appartiennent à un circuit d'alimentation hydraulique principal dont est pourvu le système de frappe 4. Le circuit d'alimentation hydraulique principal peut avantageusement comporter un accumulateur haute pression 14 relié au conduit d'alimentation en fluide à haute pression 11.
  • Le système de frappe 4 comporte également une chambre de freinage 15 configurée pour freiner hydrauliquement le piston de frappe 5 lorsque le piston de frappe 5 dépasse une position de frappe prédéterminée. De façon avantageuse, la chambre de freinage 15 est annulaire et s'étend dans le prolongement de la première chambre de commande 7 et vers l'avant du perforateur hydraulique roto-percutant 2. La chambre de freinage 15 comporte une arête d'entrée 15.1 qui est annulaire et une surface de fond 15.2 qui est également annulaire et qui est située à l'opposé de l'arête d'entrée 15.1.
  • La chambre de freinage 15 est plus particulièrement configurée pour :
    • être partiellement fermée par une surface de freinage 16 prévue sur le piston de frappe 5, et donc pour être partiellement isolée fluidiquement de la première chambre de commande 7, lorsque le piston de frappe 5 dépasse la position de frappe prédéterminée, et
    • être alimentée en fluide haute pression par la première chambre de commande 7 lorsque la surface de freinage 16 du piston de frappe 5 est éloignée de la chambre de freinage 15.
  • De façon avantageuse, la surface de freinage 16 est annulaire et s'étend transversalement à l'axe de frappe A et de préférence dans un plan sensiblement perpendiculaire à l'axe de frappe A. Toutefois, selon une variante de réalisation de l'invention, la surface de freinage 16 pourrait présenter un angle compris entre 30 et 90° par rapport à l'axe de frappe A. La surface de freinage 16 est configurée pour venir en butée contre la surface de fond 15.2 de la chambre de freinage 15 de manière à limiter la course de frappe du piston de frappe 5.
  • Selon le mode de réalisation représenté sur les figures 1 et 2, le piston de frappe 5 comporte une première partie de piston 5.1 présentant un premier diamètre, une deuxième partie de piston 5.2 présentant un deuxième diamètre qui est supérieur au premier diamètre, et un épaulement de freinage qui définit la surface de freinage 16 et qui relie les première et deuxième parties de piston 5.1, 5.2. De façon avantageuse, une paroi interne de la chambre de freinage 15 et une surface externe de la deuxième partie de piston 5.2 sont configurées pour définir un jeu radial fonctionnel lorsque la deuxième partie de piston 5.2 est disposée dans la chambre de freinage 15. Selon un mode de réalisation de l'invention, le jeu radial fonctionnel est compris entre 10 et 120 µm.
  • Le perforateur hydraulique roto-percutant 2 comprend également un piston de butée 17 qui est tubulaire et qui est monté coulissant à l'intérieur du corps 3 selon un axe de déplacement parallèle à l'axe de frappe A et de préférence confondu avec l'axe de frappe A. Selon le mode de réalisation représenté sur les figures 1 et 2, le piston de butée 17 est monté coulissant autour du piston de frappe 5, et s'étend coaxialement au piston de frappe 5.
  • Le piston de butée 17 comporte une surface d'appui 18 qui est annulaire et qui est configurée pour venir en butée contre une surface de butée 19, également annulaire, prévue sur le corps 3 et par exemple sur la chemise interne 3.2, de manière à limiter la course de déplacement du piston de butée 17 vers l'avant du perforateur hydraulique roto-percutant 2.
  • Selon le mode de réalisation représenté sur les figures 1 et 2, la surface d'appui 18 est inclinée par rapport à l'axe de déplacement selon un angle d'inclinaison compris entre 30 et 60°, et par exemple d'environ 45°, et la surface de butée 19 est également inclinée par rapport à l'axe de déplacement selon un angle d'inclinaison compris entre 30 et 60°, et par exemple d'environ 45°. De façon avantageuse, chacune des surface d'appui et de butée 18, 19 diverge en direction d'une extrémité arrière du piston de butée 17. Toutefois, selon un autre mode de réalisation de l'invention représenté sur la figure 3, la surface de butée 19 et la surface d'appui 18 pourraient chacune s'étendre sensiblement perpendiculairement à l'axe de déplacement.
  • Le perforateur hydraulique roto-percutant 2 comporte en outre un emmanchement 21 destiné à être couplé, de manière connue, à au moins une barre de forage (non représentée sur les figures) équipée d'un outil, également nommé taillant. L'emmanchement 21 s'étend longitudinalement selon un axe d'extension qui est avantageusement confondu avec l'axe de frappe A, et comporte une première portion d'extrémité 22 tournée vers le piston de frappe 5 et pourvue d'une face d'extrémité 22.1 contre laquelle est destiné à frapper le piston de frappe 5 au cours de chaque cycle de fonctionnement du perforateur hydraulique roto-percutant 2, et une deuxième portion d'extrémité (non représentée sur les figures), opposée à la première portion d'extrémité 22, destinée à être couplée à l'au moins une barre de forage.
  • L'emmanchement 21 comporte également une surface d'appui avant 24 configurée pour venir en butée contre une surface de butée avant 25, qui est annulaire et qui s'étend autour de l'emmanchement 21, de manière à limiter la course de déplacement de l'emmanchement 21 vers l'avant. La surface d'appui avant 24 peut par exemple être annulaire, ou être discontinue si des cannelures d'accouplement femelle et mâle prévues sur l'emmanchement 21 s'étendent jusqu'à la surface d'appui avant 24. La surface de butée avant 25 peut être directement prévue sur le corps 3 et notamment le corps principal 3.1, ou peut être prévue sur une bague de butée annulaire qui est disposée dans le corps principal 3.1. De façon avantageuse, la surface d'appui avant 24 est inclinée par rapport à l'axe de frappe A et diverge en direction du piston de frappe 5.
  • Le piston de butée 17 comporte plus particulièrement une face avant 26 qui est tournée vers l'emmanchement 21 et qui est configurée pour appliquer une force de poussée directement sur l'emmanchement 21 ou indirectement sur l'emmanchement 21 par l'intermédiaire d'une bague de butée 27 interposée axialement entre l'emmanchement 21 et le piston de butée 17.
  • Le fonctionnement d'un piston de butée est bien connu de l'homme du métier et n'est donc pas décrit de manière détaillée dans la présente description. De plus, l'alimentation hydraulique d'un piston de butée peut être réalisée de diverses manières bien connues de l'homme du métier. Différents exemples d'alimentation hydraulique du piston de butée 17 sont cependant décrits ci-après.
  • Selon le mode de réalisation représenté sur les figures 1 et 2, le corps 3 et le piston de butée 17 délimitent, avec le piston de frappe 5, une chambre de commande primaire 28 qui peut par exemple être reliée de façon permanente au conduit d'alimentation en fluide à haute pression 11 et qui est configurée pour solliciter le piston de butée 17 vers l'avant, c'est-à-dire vers l'emmanchement 21.
  • Le corps 3 et le piston de butée 17 délimitent, avec le piston de frappe 5, également une chambre de commande secondaire 29 qui est antagoniste à la chambre de commande primaire 28 et qui peut par exemple être reliée au conduit de retour de fluide à basse pression 12 ou à une ligne de drain dédiée. Avantageusement, la surface d'appui 18 et la surface de butée 19 délimitent en partie la chambre de commande secondaire 29.
  • Selon le mode de réalisation représenté sur les figures 1 et 2, le corps 3 et le piston de butée 17 délimitent une chambre de commande additionnelle 31 qui est antagoniste à la chambre de commande secondaire 29 et qui est par exemple reliée à un accumulateur basse pression 32 relié au conduit de retour de fluide à basse pression 12 et appartenant au circuit d'alimentation hydraulique principal du système de frappe 4. Chacun des accumulateurs basse pression et haute pression précités peut être un accumulateur à membrane, tel qu'un accumulateur hydropneumatique, un accumulateur à piston, un accumulateur à vessie ou tout autre type d'accumulateur. Toutefois, selon le mode de réalisation représenté sur la figure 3, la chambre de commande additionnelle 31 pourrait être reliée à un drain externe 30. Selon une autre variante de réalisation de l'invention, la chambre de commande additionnelle 31 pourrait être reliée directement au conduit de retour de fluide à basse pression 12, c'est-à-dire sans présence d'un accumulateur basse pression.
  • Selon le mode de réalisation de l'invention représenté sur les figures 1 et 2, le circuit d'alimentation hydraulique principal est configuré pour commander également les coulissements du piston de butée 17 selon l'axe de déplacement. Cependant, selon une variante de réalisation de l'invention, le perforateur hydraulique roto-percutant 2 pourrait comporter un circuit d'alimentation hydraulique secondaire distinct du circuit d'alimentation hydraulique principal et configuré pour commander les coulissements du piston de butée 17 selon l'axe de déplacement.
  • Le perforateur hydraulique roto-percutant 2 comprend également un système d'entraînement en rotation 33 qui est configuré pour entraîner en rotation l'emmanchement 21 autour d'un axe de rotation qui est sensiblement confondu avec l'axe de frappe A. Le système d'entraînement en rotation 33 comporte un organe d'accouplement 34, tel qu'un pignon d'accouplement, qui est tubulaire et qui est disposé autour de l'emmanchement 21. L'organe d'accouplement 34 comprend des cannelures d'accouplement mâle et des cannelures d'accouplement femelle qui sont couplées en rotation respectivement avec des cannelures d'accouplement femelle et mâle prévues sur l'emmanchement 21.
  • De façon avantageuse, l'organe d'accouplement 34 comporte une denture périphérique externe couplée en rotation avec un arbre de sortie d'un moteur d'entraînement 35, tel qu'un moteur hydraulique alimenté hydrauliquement par un circuit externe d'alimentation hydraulique, appartenant au système d'entraînement en rotation 33. Le système d'entraînement en rotation 33 peut par exemple comporter un pignon intermédiaire 36 qui est couplé d'un part à l'arbre de sortie du moteur d'entraînement 35 et d'autre part à la denture périphérique externe de l'organe d'accouplement 34.
  • Lorsque le perforateur hydraulique roto-percutant 2 est en fonctionnement, l'emmanchement 21 est mis en rotation grâce au moteur d'entraînement 35, et l'emmanchement 21 reçoit sur sa face d'extrémité 17 les chocs cycliques du piston de frappe 5, assurés par le système de frappe 4 alimenté par le circuit d'alimentation hydraulique principal. Dans le même temps, l'engin porteur sur lequel est monté le perforateur hydraulique roto-percutant 2 applique une force de poussée sur la barre de forage, via le corps 3 et l'emmanchement 21. A l'intérieur du perforateur hydraulique roto-percutant 2, entre le corps 3 et l'emmanchement 21, cette force de poussée est transmise par l'intermédiaire du piston de butée 17 et de la bague de butée 27.
  • Le perforateur hydraulique roto-percutant 2 est plus particulièrement configuré de telle sorte que la surface d'appui 18 et la surface de butée 19 sont espacées axialement l'une de l'autre d'une distance d'espacement prédéterminée D lorsque simultanément :
    • l'emmanchement 21 est en appui sur le piston de butée 17, via la bague de buté 27, et est en contact avec le piston de frappe 5, et
    • la surface de freinage 16 du piston de frappe 5 est située au niveau de l'arête d'entrée 15.1 de la chambre de freinage 15, c'est-à-dire est située radialement en regard de l'arête d'entrée 15.1.
  • De façon avantageuse, la distance d'espacement prédéterminée D, mesurée sensiblement parallèlement à l'axe de frappe A du piston de frappe 5, est supérieure ou égale à 2 mm.
  • Une telle configuration du perforateur hydraulique roto-percutant 2 permet, lorsque la force de poussée exercée par la glissière sur le perforateur hydraulique roto-percutant 2 est trop faible par rapport à la pression de frappe (voire nulle), au piston de butée 17 de pouvoir positionner l'emmanchement 21 dans une position axiale (correspondant à une position du piston de butée dans laquelle la surface d'appui 18 est en appui contre la surface de butée 19) telle que le piston de frappe 5 aura pénétré dans la chambre de freinage 15 d'une distance correspondant à la distance d'espacement prédéterminée D avant de pouvoir frapper l'emmanchement 21. Ainsi, le perforateur hydraulique roto-percutant 2 selon la présente invention garantit que l'impact entre l'emmanchement 21 et le piston de frappe 5 est réalisé à une vitesse réduite lorsque la force de poussée exercée par la glissière sur le perforateur hydraulique roto-percutant 2 est trop faible ou nulle, et donc sans générer de dommages aux éléments constitutifs de la ligne de frappe du perforateur, et en particulier à l'emmanchement 21, à la ou aux barres de forage et au taillant.
  • Par conséquent, le perforateur hydraulique roto-percutant 2 selon la présente invention permet de définir une vitesse d'impact intermédiaire du piston de frappe comprise entre une vitesse d'impact maximale du piston de frappe 5 (qui correspond à une position du piston de frappe 5 dans laquelle la surface de freinage 16 est située au niveau de l'arête d'entrée 15) et une vitesse d'impact minimale du piston de frappe 5 (qui correspond à une position du piston de frappe 5 dans laquelle la surface de freinage 16 est située au contact de la surface de fond 15.2), et ainsi de limiter de manière certaine l'énergie transmise à l'emmanchement 21, aux barres de forage et au taillant lorsque ce dernier n'est pas en appui sur la roche à forer, et donc de protéger l'emmanchement 21, les barres de forage, le taillant et toute la ligne de frappe du perforateur hydraulique roto-percutant 2.
  • Une telle fonction de protection est intégrée dans le perforateur hydraulique roto-percutant 2, sans l'ajout de blocs de commande externes ou de circuits hydrauliques additionnels, internes ou externes, et est donc obtenue sans avoir à garantir la sécurité du perforateur par des fonctionnalités externes soumises à aléas.
  • Comme il va de soi, l'invention ne se limite pas aux seules formes d'exécution de ce perforateur hydraulique roto-percutant, décrites ci-dessus à titre d'exemples, elle en embrasse au contraire toutes les variantes de réalisation.

Claims (12)

  1. Perforateur hydraulique roto-percutant (2) comprenant :
    - un corps (3),
    - un emmanchement (21) monté dans le corps (3) et destiné à être couplé à au moins une barre de forage équipée d'un outil,
    - un piston de frappe (5) monté coulissant à l'intérieur du corps (3) suivant un axe de frappe (A) et configuré pour frapper l'emmanchement (21), le piston de frappe (5) comportant une surface de freinage (16) qui s'étend transversalement à l'axe de frappe (A),
    - une chambre de freinage (15) configurée pour freiner hydrauliquement le piston de frappe (5) lorsque le piston de frappe (5) dépasse une position de frappe prédéterminée, la chambre de freinage (15) étant configurée pour être fermée partiellement par la surface de freinage (16) du piston de frappe (5) lorsque le piston de frappe (5) dépasse la position de frappe prédéterminée,
    - un piston de butée (17) qui est tubulaire et qui est monté coulissant à l'intérieur du corps (3) selon un axe de déplacement sensiblement parallèle à l'axe de frappe (A), le piston de butée (17) étant configuré pour appliquer une force de poussée sur l'emmanchement (21), le piston de butée (17) comprenant une surface d'appui (18) configurée pour venir en butée contre une surface de butée (19) prévue sur le corps (3), de manière à limiter la course de déplacement du piston de butée (17) vers l'emmanchement (21),
    caractérisé en ce que le perforateur hydraulique roto-percutant (2) est configuré de telle sorte que la surface d'appui (18) et la surface de butée (19) sont espacées axialement l'une de l'autre d'une distance d'espacement prédéterminée (D) lorsque simultanément :
    - l'emmanchement (21) est en appui sur le piston de butée (17) et est en contact avec le piston de frappe (5), et
    - la surface de freinage (16) du piston de frappe (5) est située au niveau d'une arête d'entrée (15.1) de la chambre de freinage (15).
  2. Perforateur hydraulique roto-percutant (2) selon la revendication 1, dans lequel la distance d'espacement prédéterminée (D), mesurée sensiblement parallèlement à l'axe de frappe (A) du piston de frappe (5), est supérieure ou égale à 2 mm.
  3. Perforateur hydraulique roto-percutant (2) selon la revendication 1 ou 2, dans lequel la surface de freinage (16) s'étend dans un plan sensiblement perpendiculaire à l'axe de frappe (A).
  4. Perforateur hydraulique roto-percutant (2) selon l'une quelconque des revendications 1 à 3, dans lequel le piston de frappe (5) comporte une première partie de piston (5.1) présentant un premier diamètre, et une deuxième partie de piston (5.2) présentant un deuxième diamètre qui est supérieur au premier diamètre, la surface de freinage (16) reliant les première et deuxième parties de piston (5.1, 5.2).
  5. Perforateur hydraulique roto-percutant (2) selon la revendication 4, dans lequel une paroi interne de la chambre de freinage (15) et une surface externe de la deuxième partie de piston (5.2) sont configurées pour définir un jeu radial fonctionnel lorsque la deuxième partie de piston (5.2) est disposée dans la chambre de freinage (15).
  6. Perforateur hydraulique roto-percutant (2) selon l'une quelconque des revendications précédentes, lequel comprend en outre un circuit d'alimentation hydraulique principal configuré pour commander un coulissement alternatif du piston de frappe (5) selon l'axe de frappe (A), le circuit d'alimentation hydraulique principal comportant un conduit d'alimentation en fluide à haute pression (11) et un conduit de retour de fluide à basse pression (12).
  7. Perforateur hydraulique roto-percutant (2) selon la revendication 6, dans lequel le corps (3) et le piston de frappe (5) délimitent au moins en partie une première chambre de commande (7) reliée de façon permanente au conduit d'alimentation en fluide à haute pression (11) et une deuxième chambre de commande (8) qui est antagoniste à la première chambre de commande (7), le perforateur hydraulique roto-percutant (2) comportant en outre un distributeur de commande (9) configuré pour relier fluidiquement la deuxième chambre de commande (8) alternativement au conduit d'alimentation en fluide à haute pression (11) et au conduit de retour de fluide à basse pression (12) de manière à commander des courses de frappe et de retour du piston de frappe (5).
  8. Perforateur hydraulique roto-percutant (2) selon la revendication 7, dans lequel la chambre de freinage (15) s'étend dans le prolongement de la première chambre de commande (7) et en direction de l'emmanchement (21).
  9. Perforateur hydraulique roto-percutant (2) selon l'une quelconque des revendications 6 à 8, dans lequel le circuit d'alimentation hydraulique principal est également configuré pour commander un coulissement du piston de butée (17) selon l'axe de déplacement.
  10. Perforateur hydraulique roto-percutant (2) selon l'une quelconque des revendications précédentes, dans lequel la surface d'appui (18) est inclinée par rapport à l'axe de déplacement.
  11. Perforateur hydraulique roto-percutant (2) selon l'une quelconque des revendications précédentes, dans lequel le corps (3) comporte un corps principal (3.1) et une chemise interne (3.2) qui est fixée dans le corps principal (3.1) et qui s'étend autour du piston de butée (17), la chemise interne (3.2) comportant la surface de butée (19).
  12. Perforateur hydraulique roto-percutant (2) selon l'une quelconque des revendications précédentes, lequel comporte en outre une bague de butée (27) qui est disposée axialement entre l'emmanchement (21) et le piston de butée (17) et qui est configurée pour appliquer la force de poussée sur l'emmanchement (21).
EP22158566.4A 2021-03-01 2022-02-24 Perforateur hydraulique roto-percutant pourvu d'un piston de butée et d'une chambre de freinage Active EP4053374B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR2101950A FR3120248B1 (fr) 2021-03-01 2021-03-01 Perforateur hydraulique roto-percutant pourvu d’un piston de butée et d’une chambre de freinage

Publications (2)

Publication Number Publication Date
EP4053374A1 true EP4053374A1 (fr) 2022-09-07
EP4053374B1 EP4053374B1 (fr) 2024-06-26

Family

ID=75278273

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22158566.4A Active EP4053374B1 (fr) 2021-03-01 2022-02-24 Perforateur hydraulique roto-percutant pourvu d'un piston de butée et d'une chambre de freinage

Country Status (9)

Country Link
US (1) US11999039B2 (fr)
EP (1) EP4053374B1 (fr)
JP (1) JP2022133251A (fr)
KR (1) KR20220123594A (fr)
CN (1) CN115070959A (fr)
AU (1) AU2022201360A1 (fr)
CA (1) CA3149908A1 (fr)
FR (1) FR3120248B1 (fr)
ZA (1) ZA202202359B (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3108931B1 (fr) * 2020-04-02 2022-04-08 Montabert Roger Perforateur hydraulique roto-percutant pourvu d’un emmanchement équipé de cannelures d’accouplement

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5117921A (en) * 1990-08-27 1992-06-02 Krupp Maschinentechnik Gmbh Hydraulically operated hammer drill
FR2761112A1 (fr) * 1997-03-21 1998-09-25 Tamrock Oy Configuration utilisee dans une foreuse de roche et procede de commande de forage de roche
FR2902684A1 (fr) * 2006-06-27 2007-12-28 Montabert Soc Par Actions Simp Procede de commutation de la course de frappe d'un appareil a percussions mu par un fluide incompressible sous pression, et appareil pour la mise en oeuvre de ce procede
WO2010082871A1 (fr) 2009-01-16 2010-07-22 Atlas Copco Rock Drills Ab Dispositif d'amortissement pour un dispositif à percussion, dispositif à percussion et machine de forage
WO2014070072A1 (fr) * 2012-10-29 2014-05-08 Atlas Copco Rock Drills Ab Dispositif d'amortissement pour dispositif de percussion, dispositif de percussion, perforatrice de roches et procédé d'amortissement utilisé dans une perforatrice de roches

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE440873B (sv) * 1981-02-11 1985-08-26 Atlas Copco Ab Hydrauliskt slagverk med reflexdempare innefattande leckspalter i serie med strypmunstycke
FR2639279B1 (fr) * 1988-11-23 1991-01-04 Eimco Secoma Appareil de percussion hydraulique avec dispositif de frappe en retrait amortie
SE508064C2 (sv) * 1993-10-15 1998-08-17 Atlas Copco Rock Drills Ab Bergborrningsanordning med reflexdämpare
SE534815C2 (sv) * 2010-05-03 2012-01-10 Atlas Copco Rock Drills Ab Bergborrmaskin med dämpkolv
FR3057483B1 (fr) * 2016-10-14 2019-04-19 Montabert Appareil a percussions pourvu d’un palier de guidage equipe d’un dispositif de centrage

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5117921A (en) * 1990-08-27 1992-06-02 Krupp Maschinentechnik Gmbh Hydraulically operated hammer drill
FR2761112A1 (fr) * 1997-03-21 1998-09-25 Tamrock Oy Configuration utilisee dans une foreuse de roche et procede de commande de forage de roche
FR2902684A1 (fr) * 2006-06-27 2007-12-28 Montabert Soc Par Actions Simp Procede de commutation de la course de frappe d'un appareil a percussions mu par un fluide incompressible sous pression, et appareil pour la mise en oeuvre de ce procede
WO2010082871A1 (fr) 2009-01-16 2010-07-22 Atlas Copco Rock Drills Ab Dispositif d'amortissement pour un dispositif à percussion, dispositif à percussion et machine de forage
WO2014070072A1 (fr) * 2012-10-29 2014-05-08 Atlas Copco Rock Drills Ab Dispositif d'amortissement pour dispositif de percussion, dispositif de percussion, perforatrice de roches et procédé d'amortissement utilisé dans une perforatrice de roches

Also Published As

Publication number Publication date
JP2022133251A (ja) 2022-09-13
ZA202202359B (en) 2022-10-26
EP4053374B1 (fr) 2024-06-26
AU2022201360A1 (en) 2022-09-15
CN115070959A (zh) 2022-09-20
KR20220123594A (ko) 2022-09-08
CA3149908A1 (fr) 2022-09-01
FR3120248B1 (fr) 2023-02-10
US20220274242A1 (en) 2022-09-01
FR3120248A1 (fr) 2022-09-02
US11999039B2 (en) 2024-06-04

Similar Documents

Publication Publication Date Title
FR2647870A1 (fr) Appareil de percussion hydraulique avec dispositif d'amortissement des ondes de choc en retour
EP3752325B1 (fr) Perforateur hydraulique roto-percutant pourvu d'une chambre de commande reliée en permanence à un accumulateur basse pression
FR2983760A1 (fr) Procede de commutation de la course de frappe d'un piston de frappe d'un appareil a percussions
EP4053374B1 (fr) Perforateur hydraulique roto-percutant pourvu d'un piston de butée et d'une chambre de freinage
EP1492648B1 (fr) Marteau perforateur hydraulique roto-percutant
FR2639279A1 (fr) Appareil de percussion hydraulique avec dispositif de frappe en retrait amortie
EP4052854A1 (fr) Perforateur hydraulique roto-percutant pourvu d'un piston de butée
EP3212362B1 (fr) Appareil à percussions
EP4080011A1 (fr) Perforateur hydraulique roto-percutant
FR3058664B1 (fr) Appareil a percussions
FR2596681A1 (fr) Appareil de percussion hydraulique avec dispositif d'amortissement des ondes de choc en retour
EP2616623B1 (fr) Appareil rotopercutant hydraulique destiné à la perforation de trous de mine
FR3108931A1 (fr) Perforateur hydraulique roto-percutant pourvu d’un emmanchement équipé de cannelures d’accouplement
WO2019158849A1 (fr) Procédé de réglage de la course de frappe d'un piston de frappe d'un appareil à percussions, et un appareil à percussions pour la mise en œuvre de ce procédé
WO2020201288A1 (fr) Appareil à percussions avec régulation automatique de la pression d'alimentation de l'appareil à percussions
FR3026041A1 (fr) Appareil de perforation hydraulique destine a la perforation de trous de mine
BE833220A (fr) Machine hydraulique a percussion

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230109

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: B25D 9/12 20060101ALI20231221BHEP

Ipc: B25D 9/04 20060101ALI20231221BHEP

Ipc: E21B 1/38 20060101ALI20231221BHEP

Ipc: B25D 17/24 20060101ALI20231221BHEP

Ipc: E21B 1/26 20060101AFI20231221BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240126

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20240219

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH