EP4050258B1 - Procédé de régulation d'un dispositif de brûleur avec détermination de la puissance à l'aide d'un paramètre de combustible - Google Patents

Procédé de régulation d'un dispositif de brûleur avec détermination de la puissance à l'aide d'un paramètre de combustible Download PDF

Info

Publication number
EP4050258B1
EP4050258B1 EP21194083.8A EP21194083A EP4050258B1 EP 4050258 B1 EP4050258 B1 EP 4050258B1 EP 21194083 A EP21194083 A EP 21194083A EP 4050258 B1 EP4050258 B1 EP 4050258B1
Authority
EP
European Patent Office
Prior art keywords
value
air
fuel
loop control
air supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21194083.8A
Other languages
German (de)
English (en)
Other versions
EP4050258A1 (fr
EP4050258C0 (fr
Inventor
Harald Hauter
Rainer Lochschmied
Bernd Schmiederer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to CN202210178562.XA priority Critical patent/CN114963230A/zh
Priority to US17/682,006 priority patent/US20220282866A1/en
Publication of EP4050258A1 publication Critical patent/EP4050258A1/fr
Application granted granted Critical
Publication of EP4050258B1 publication Critical patent/EP4050258B1/fr
Publication of EP4050258C0 publication Critical patent/EP4050258C0/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/025Regulating fuel supply conjointly with air supply using electrical or electromechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/18Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel
    • F23N5/184Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/60Devices for simultaneous control of gas and combustion air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties
    • F23N5/006Systems for controlling combustion using detectors sensitive to combustion gas properties the detector being sensitive to oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
    • F23N5/126Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods using electrical or electromechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2900/00Special features of, or arrangements for fuel supplies
    • F23K2900/05001Control or safety devices in gaseous or liquid fuel supply lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/18Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel
    • F23N2005/181Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel using detectors sensitive to rate of flow of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/18Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel
    • F23N2005/185Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel using detectors sensitive to rate of flow of fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/48Learning / Adaptive control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2227/00Ignition or checking
    • F23N2227/20Calibrating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • F23N2233/06Ventilators at the air intake
    • F23N2233/08Ventilators at the air intake with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/02Air or combustion gas valves or dampers
    • F23N2235/06Air or combustion gas valves or dampers at the air intake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/02Air or combustion gas valves or dampers
    • F23N2235/10Air or combustion gas valves or dampers power assisted, e.g. using electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • F23N2235/16Fuel valves variable flow or proportional valves

Definitions

  • the present disclosure relates to a power determination via a fuel parameter on a burner device.
  • it concerns a direct determination of a power as a function of an air supply for a given air ratio ⁇ .
  • the air actuator characteristic curve and fuel actuator characteristic curve are determined via the power during the adjustment process. For example, the determination can be made from a low power to a maximum power or vice versa.
  • the air ratio ⁇ is set for each power point.
  • Air supply sensors can also be used to support this. Common air supply sensors are based on speed, mass flow, differential pressure, air volume flow, etc.
  • the absolute power is then determined by measuring the fuel supply at at least one point or at several points. Using the calorific value H u of the fuel currently fed in, the burner output is assigned to the respective characteristic curve points.
  • the power values of the other characteristic curve points are determined by interpolation, preferably by linear interpolation.
  • the air actuator characteristic curve and the fuel actuator characteristic curve are specified.
  • the characteristic curves were determined empirically in the laboratory.
  • the burner output is specified by a fixed function of one of the two characteristic curves.
  • Different characteristic curves and/or sets of characteristic curves, which are also specified, are used for different fuels.
  • the air actuator characteristic curve may need to be corrected so that ⁇ remains unchanged.
  • the calorific value is the energy content per quantity of fuel.
  • the change in fuel composition is detected by means of a ⁇ sensor.
  • a ⁇ sensor This can be, for example, an O 2 sensor in the exhaust gas, from which ⁇ is calculated directly.
  • an ionization electrode can also be used, the signal of which is evaluated accordingly.
  • the air supply can be changed or the fuel supply can be corrected until the ⁇ sensor measures the original value of an air ratio ⁇ again. If at least one air supply signal is adjusted in order to keep the air ratio ⁇ constant, the power at this characteristic point almost always changes with the fuel composition. If the fuel supply signal is adjusted in order to keep the air ratio ⁇ constant, the power changes depending on the fuel. In order to adjust the power, a new characteristic curve of the air actuator must be selected or calculated manually or automatically in the event of a power correction.
  • gases in burner systems are those from the E-gas group (according to EN 437:2009-09) and gases from the B/P-gas group (according to EN 437:2009-09).
  • gases from the E-gas group contain methane as their main component.
  • gases from the B/P-gas group are based on propane gas. The mixtures based on methane gas or propane gas ultimately represent mixtures of different gas sources with which the burner system can be supplied.
  • Characteristic curves are usually provided for different types of gas, which are selected on site during commissioning according to the existing gas group.
  • the setting is made, for example, by selecting one or more curves stored in the memory of a control unit.
  • These characteristic curves show the course of the amount of fuel supplied to the burner in relation to the amount of air supplied. Instead of the amount of air supplied, the speed of a fan in the burner's air supply can be plotted. The position and/or the control signal of an air flap can also be used as a measure of the air supply.
  • the characteristic curves can be stored in tabular form with linear interpolation or as a mathematical function using polynomials. This form of characteristic curve assignment is described in the European patent EP3299718B1, which was published on 30 October 2019 An application EP3299718A1 to the European patent EP3299718B1 was published on 21. September 2016 The European patent EP3299718B1 does not claim priority.
  • An air volume is suitable as a performance value if the air temperature, air pressure or air humidity only change insignificantly or are recorded by measurement.
  • the influences of air temperature and air pressure are taken into account.
  • the influence of air humidity plays a minor role, especially at lower temperatures.
  • EP2682679A2 was filed on 1 July 2013 by VAILLANT GMBH, DE The application was published on 8 January 2014.
  • EP2682679A2 deals with a method for controlling and/or monitoring a fuel gas-operated burner.
  • EP2682679A2 takes priority from 4 July 2012 in use.
  • EP2682679A2 deals with the approach to operating points below and above a target air ratio.
  • DE102013106987A1 was filed on July 3, 2013 by Karl Dungs GmbH & Co. KG , 73660, Urbach. The application was published on January 8, 2015.
  • DE102013106987A1 deals with a method and a device for determining a calorific value as well as a gas-operated device with such a device.
  • DE102006051883A1 was filed on October 31, 2006 by Gasumble-Institut eV Essen, 45356 Essen. The application was published on 8 May 2008.
  • DE102006051883A1 deals with a device and a method for setting, controlling or regulating the fuel/combustion air ratio for operating a burner.
  • EP1467149A1 A patent application EP1467149A1 was filed on 1 April 2004 by E ON RUHRGAS AG The application was published on 13 October 2004.
  • EP1467149A1 deals with a method for monitoring combustion in a combustion device.
  • EP0326494A1 was filed on 27 January 1989 by GAZ DE FRANCE, FR . The application was published on 2.
  • DE68909260T2 deals with a device for measuring the heat capacity of a fuel flow.
  • DE68909260T2 takes a priority from 29 January 1988 in use.
  • DE102013106987A1 was filed on July 3, 2013 by Karl Dungs GmbH & Co. KG The application was published on 8 January 2015.
  • DE102013106987A1 deals with a method and device for determining a calorific value as well as gas-operated equipment with such a device.
  • DE102006051883A1 Another patent application was filed on October 31, 2006 by a Gasumble-Institut eV from Essen. The application was published on May 8, 2008.
  • DE102006051883A1 deals with a device and a method for setting, controlling or regulating the fuel/combustion air ratio for operating a burner.
  • EP1467149A1 A European patent application EP1467149A1 was filed on 1 April 2004 by E ON RUHRGAS AG The application was published on 13 October 2004.
  • EP1467149A1 deals with a method for monitoring combustion in a combustion device.
  • EP1467149A1 claims priority from 11 April 2003 in use.
  • the aim of the present disclosure is to achieve the most direct possible power adjustment via an air supply.
  • the aim of the present invention is a method with which the actual value P ist of the output of the burner device can be determined directly via the air supply V ⁇ L by determining and/or providing a fuel parameter h.
  • An air ratio ⁇ is included in the determination.
  • the parameter specific to the fuel can be calculated, for example, from literature values.
  • the actual value P ist of the output of the burner device can be given in kilowatts.
  • the actual value P ist of the output of the burner device can also be given relative to a reference value, so that the relative actual value P ist of the output of the burner device is given as a percentage of the reference value.
  • a typical reference value is the maximum output P max of the burner device.
  • the advantage is that only one air supply characteristic curve needs to be present.
  • the actual value P is the output of the burner device can be assigned to the air supply V ⁇ L. If the fuel and/or the fuel composition change, the fuel supply characteristic curve is corrected. In a system without ⁇ detection, this is done manually. Otherwise, the correction can be made using a ⁇ control.
  • the actual value P is the output of the burner device is calculated from the known air supply V ⁇ L at the characteristic curve point using the known, measured value of the air ratio ⁇ and the individual, scalar fuel parameter.
  • the minimum air requirement L min is a property of the fuel gas.
  • the fuel parameter h is assigned to a fuel.
  • the fuel parameter h can also be assigned to a fuel group that is made up of fuels whose fuel parameters h are close to each other.
  • the air supply V ⁇ L can also be determined for a specific target value P soll of the burner device's output.
  • This also specifies the characteristic curve point, for example as a target value for the air supply V ⁇ L.
  • the two parameters L min and H U must be related to the same quantity value. This means that either H U is specified in megajoules/kilomoles and L min in kilomoles/kilomoles or H U in megajoules/cubic meters and L min in cubic meters/cubic meters. These specifications assume the same ambient conditions such as temperature and pressure.
  • the actual value P ist of the burner device's output can therefore be set directly using a power controller.
  • P soll is calculated.
  • the actual air supply V ⁇ List is then adjusted to the setpoint V ⁇ Lsoll using a measured variable.
  • the fuel supply V ⁇ B follows the air supply V ⁇ L based on the set ⁇ value.
  • a predetermined power value is regulated using the currently determined power via a power control loop.
  • the maximum fuel supply V ⁇ B is adjusted as the fuels change so that the power cap is achieved for each fuel.
  • the power cap is not exceeded for each fuel.
  • the minimum fuel supply V ⁇ B is adjusted as the fuels change, so that the lower power limit is reached for each fuel.
  • the lower power limit is not undercut for each fuel.
  • the individual, scalar fuel parameter h can be estimated and/or determined by means of the adjustment of the fuel actuator by the ⁇ control.
  • the energy conversion and/or the power can be determined with the help of the calculated power value even with changing fuels.
  • FIG 1 shows a burner device 1 such as a wall-mounted gas burner and/or an oil burner.
  • a flame of a heat generator burns during operation.
  • the heat generator exchanges the thermal energy of the hot fuels and/or combustion gases into another fluid such as water.
  • the warm water is used, for example, to operate a hot water heating system and/or to heat drinking water.
  • the thermal energy of the hot combustion gases can be used to heat a product, for example in an industrial process.
  • the heat generator is part of a combined heat and power system, for example an engine of such a system.
  • the heat generator is a gas turbine.
  • the heat generator can be used to heat water in a system for extracting lithium and/or lithium carbonate.
  • the exhaust gases are discharged from the combustion chamber 2, for example via a chimney.
  • the supply air 4 for the combustion process is supplied to the burner device 1 via a (motor-driven) fan 3.
  • the regulating and/or control and/or monitoring device 13 specifies the air supply V ⁇ L that the fan 3 should deliver via the signal line 15. The fan speed thus becomes a measure of the amount of air delivered.
  • the fan speed of the regulating and/or control and/or monitoring device 13 is reported back by the fan 3.
  • the air volume is set via an air flap 4 and/or a valve
  • the flap and/or valve position and/or the measured value derived from the signal of a mass flow sensor 12 and/or volume flow sensor can be used as a measure of the air volume.
  • the sensor is advantageously arranged in the channel 5 for the air supply V ⁇ L.
  • the sensor advantageously provides a signal which is converted into a flow measurement value using a suitable signal processing unit.
  • a signal processing device ideally comprises at least one analog-digital converter.
  • the signal processing device, in particular the analog-digital converter(s) is integrated into the regulating and/or control and/or monitoring device 13.
  • the measured value of a pressure sensor and/or a mass flow sensor 12 in a side channel can also be used as a measure for the air supply V ⁇ L.
  • a combustion device with a supply channel and a side channel is described, for example, in the European patent EP3301364B1 The European patent EP3301364B1 was published on 7 June 2017 and granted on August 7, 2019.
  • a combustion device with a feed channel and a side channel is claimed, with a mass flow sensor protruding into the feed channel.
  • the sensor 12 determines a signal which corresponds to the pressure value dependent on the air supply V ⁇ L and/or the air flow (particle and/or mass flow) in the side channel.
  • the sensor 12 advantageously provides a signal which is converted into a measured value using a suitable signal processing device.
  • the signals from several sensors are converted into a common measured value.
  • a suitable signal processing device ideally comprises at least one analog-digital converter.
  • the signal processing device, in particular the analog-digital converter(s) is integrated into the regulating and/or control and/or monitoring device 13.
  • the air supply V ⁇ L is the value of the current air flow rate.
  • the air flow rate can be measured and/or indicated in cubic meters of air per hour.
  • the air supply V ⁇ L can be measured and/or indicated in cubic meters of air per hour.
  • Mass flow sensors 12 allow measurement at high flow velocities, especially in connection with burner devices in operation. Typical values of such flow velocities are in the range between 0.1 meters per second and 5 meters per second, 10 meters per second, 15 meters per second, 20 meters per second, or even 100 meters per second. Mass flow sensors which are suitable for the present disclosure are, for example, OMRON ® D6F-W or type SENSOR TECHNICS ® WBA sensors. The usable range of these sensors typically begins at velocities between 0.01 meters per second and 0.1 meters per second and ends at a speed such as 5 meters per second, 10 meters per second, 15 meters per second, 20 meters per second, or even 100 meters per second. In other words, lower limits such as 0.1 meters per second can be combined with upper limits such as 5 meters per second, 10 meters per second, 15 meters per second, 20 meters per second, or even 100 meters per second.
  • the fuel supply V ⁇ B is set and/or regulated by the control and/or monitoring device 13 with the aid of a fuel actuator and/or a (motor-controlled) adjustable valve.
  • the fuel is a fuel gas.
  • a burner device 1 can then be connected to various fuel gas sources, for example to sources with a high methane content and/or to sources with high propane content.
  • the amount of fuel gas is set by a (motor-) adjustable fuel valve 9 from the regulating and/or control and/or monitoring device 13.
  • the control value 19, for example in the case of a pulse-width modulated signal, of the gas valve is a measure of the amount of fuel gas. It is also a value 19 for the fuel supply V ⁇ B .
  • the fuel valve 9 is set using a stepper motor.
  • the step position of the stepper motor is a measure of the amount of fuel gas.
  • the fuel valve 9 can also be integrated in a unit with at least one or both of the safety shut-off valves 7 or 8.
  • the fuel valve 9 can be a valve that is internally controlled via a flow sensor, which receives a setpoint 19 and regulates the actual value of the flow sensor to the setpoint 19.
  • the flow sensor can be implemented as a volume flow sensor, for example as a turbine wheel meter, bellows meter and/or as a differential pressure sensor.
  • the flow sensor can also be designed as a mass flow sensor, for example as a thermal mass flow sensor.
  • a gas flap is used as actuator 9, the position of a flap can be used as a measure of the amount of fuel gas.
  • the measured value derived from the signal of a mass flow sensor and/or a volume flow sensor can be used as a measure of the amount of fuel gas.
  • This sensor is advantageously arranged in the fuel supply channel. This sensor generates a signal which is converted into a flow measurement value (measured value of the particle and/or mass flow and/or volume flow) using a suitable signal processing device.
  • a suitable signal processing device ideally comprises at least one analog-digital converter. According to one embodiment, the signal processing device, in particular the analog-digital converter(s), is integrated into the regulating, control and monitoring device 13.
  • FIG 2 shows a burner device 1 with an air ratio sensor 20 for detecting the air ratio ⁇ .
  • the air ratio sensor 20 for detecting the air ratio ⁇ comprises, for example, an O 2 sensor.
  • the Air ratio sensor 20 for detecting the air ratio ⁇ is an Oa sensor.
  • the air ratio sensor 20 for detecting the air ratio ⁇ can be arranged, for example, in the combustion chamber 2 and/or in the exhaust gas path.
  • the air ratio sensor 20 for detecting the air ratio ⁇ generates a signal 21.
  • the signal 21 is read in by the regulating and/or control and/or monitoring device 13 and evaluated appropriately.
  • a predetermined air ratio ⁇ can be regulated for each air supply V ⁇ L.
  • the measured air supply V ⁇ L is regulated to a predetermined setpoint via the actuator 9 in the fuel supply V ⁇ B and/or via the actuator 3, 4 in the air supply VLauf.
  • FIG 3 shows a burner device 1 with an air ratio sensor 20 for detecting the air ratio ⁇ comprising an ionization electrode.
  • KANTHAL ® e.g. APM ® or A-1 ®
  • Electrodes made of Nikrothal ® are also considered by the expert.
  • the ionization electrode can be arranged in the combustion chamber 2, for example.
  • the measured value for the air supply V ⁇ L can be given as a direct characteristic curve from air supply V ⁇ L over fan speed or from air supply V ⁇ L over air flap position.
  • the air flap position can be given as an angle of adjustment, for example. A combination of speed and angle of adjustment is also possible.
  • FIG 4 shows such a direct characteristic curve.
  • the air supply V ⁇ L can be determined using an air mass flow sensor.
  • a corresponding characteristic curve shows FIG 5
  • the air mass flow sensor can, for example, be arranged directly in the air supply duct 11.
  • the air mass flow sensor can also be arranged in a bypass on the air supply duct 11 above a cover.
  • An arrangement with a bypass is known, for example, from the European patent EP3301362B1
  • the air mass flow sensor can also be arranged in a bypass above an air flap that acts as a cover.
  • the air supply V ⁇ L is then determined, for example, from a combination of the air mass flow signal and the air flap position or from the air mass flow signal and the fan speed or from all three.
  • the air supply V ⁇ L can also be determined using a Differential pressure sensor above a panel or an air flap, also possible in any combination with air mass flow sensor, fan speed and/or air flap position.
  • the air supply sensors mentioned provide a different measure for the air supply V ⁇ L .
  • the measurement result from the speed and flap position depends on other ambient conditions, such as air pressure, air temperature and exhaust gas path.
  • measured values of the ambient conditions such as supply air temperature, air humidity or absolute air pressure can also be included in the determination.
  • the air supply V ⁇ L can also be determined without the influence of the ambient conditions.
  • the unconsidered influences of the environment as well as the accuracy of the measurement result are reflected in the accuracy of the actual value P is the output of the burner device 1.
  • the air supply V ⁇ L and/or the actual value P is the output of the burner device 1 can be calculated absolutely or relative to the maximum value of the characteristic curve and/or another value.
  • the same considerations as for measuring the air supply V ⁇ L apply to measuring the fuel supply V ⁇ B .
  • the measured value for the fuel supply V ⁇ B can be a direct characteristic curve from the fuel supply V ⁇ B over the fuel valve position.
  • the fuel valve position can be specified, for example, as an angle of adjustment.
  • FIG 6 shows such a direct characteristic curve.
  • the air supply characteristic curve can be preset on a burner device 1 in the factory using, for example, an air mass flow sensor or a speed sensor. Alternatively, it can also be calculated on an individual burner device 1 using a fuel meter and/or fuel gas meter to determine V ⁇ B with known fuel and an air ratio sensor 20 to record the air ratio ⁇ .
  • V ⁇ L ⁇ ⁇ L min ⁇ V ⁇ B between air supply V ⁇ L , air ratio ⁇ , known minimum air requirement L min and known fuel supply V ⁇ B is used for the calculation.
  • the output P ist can be determined for each fuel after setting the air ratio ⁇ .
  • the known parameters are used for this purpose.
  • the Burner for any fuel with known parameters H H U L min within a range between a maximum power P soll-m ⁇ x and a minimum power P soll-min .
  • V ⁇ B V ⁇ L ⁇ ⁇ L min calculated and set. Often the fuel supply V ⁇ B cannot be entered directly. The fuel supply V ⁇ B can then only be determined via a reference characteristic V ⁇ B 0 depending on the setting angle of a fuel flap or a fuel valve according to FIG 6 for a reference gas with the minimum air requirement L min0 .
  • V ⁇ B L m i n 0 L min ⁇ V ⁇ B 0
  • V ⁇ B ⁇ 0 ⁇ L min 0 ⁇ ⁇ L min ⁇ V ⁇ B 0 .
  • the fuel actuator 9 When changing to the new fuel, the fuel actuator 9 is adjusted so that the fuel supply 6 assigned to each air supply point is increased by the factor ⁇ 0 ⁇ L min 0 ⁇ ⁇ L min and/or with the same value of ⁇ by the factor L min 0 L min is changed.
  • the new control values and/or setting angles 19 for the changed fuel composition can be calculated directly.
  • the characteristic curve can be given, for example, in the form of a table whose intermediate values are linearly interpolated.
  • the characteristic curve can also be given as a mathematical formula and/or as a mathematical relationship.
  • the power P 1 ⁇ P 0 if h 1 ⁇ h 0 .
  • a device can be directly and easily adjusted to a new fuel. New characteristics do not have to be determined empirically.
  • the respective output P is also adjusted to the new fuel.
  • the correct air supply V ⁇ L and/or the correct fuel supply V ⁇ B can be determined for a setpoint P for the output of the burner device 1.
  • the air ratio ⁇ can be kept constant via a control loop when the fuel composition changes.
  • the air ratio ⁇ is calculated directly from the sensor's result value according to the state of the art.
  • the air ratio ⁇ can be calculated from the oxygen content O 2 using the relationship ⁇ ⁇ 20.9 20.9 ⁇ O 2 calculate.
  • the fuel supply V ⁇ B is then regulated so that the setpoint value of ⁇ is reached.
  • the setpoint value of ⁇ can depend on the air supply V ⁇ L.
  • the measured ionization current is regulated to a setpoint value that depends on the air supply V ⁇ L by changing the fuel supply V ⁇ B.
  • V ⁇ B k ⁇ V ⁇ B 0
  • V ⁇ B k ⁇ V ⁇ B 0
  • the actuator is set accordingly so that V ⁇ B 1 is shifted by a factor of k compared to V ⁇ B 0 over the entire modulation range.
  • the changed fuel therefore only needs to be regulated at one power point so that the factor k is known.
  • the changed fuel actuator positions are known over the entire power range and thus the changed modulation characteristic is determined.
  • L min L min 0 ⁇ L min 0 ⁇ ⁇ k
  • the new actual value P actual can be calculated for the output of the burner device 1 even if the fuel composition changes as described above.
  • P H ⁇ ⁇ V ⁇ L for each air supply point.
  • the fuel gases can be grouped together.
  • the groups are determined by the fact that for the current air supply V ⁇ L, when the gas changes and the gas supply is adjusted with an unchanged air ratio ⁇ , the actual value P ist of the output of the burner device 1 also remains within the specified limits.
  • the individual, scalar fuel parameter h is then within the specified limits. The limits are determined from the permissible error for the actual value P ist of the output of the burner device 1.
  • the error compared to the gases marked 24 is less than 8 percent. If this error is taken into account, then between the
  • Gases designated 25, 27, 28 and 29 form further special gas groups (Sardinia gas, process gases). It is known when these gases are present and the respective values of the fuel parameter h can be entered directly so that the performance correction can be made. The errors are then less than 5.1 percent, for example.
  • the different gases or gases from gas groups come from different fuel supply lines and the shut-off valves of the respective fuel supply lines are switched on and off. Then the gas parameter can also be changed by switching the fuel supply V ⁇ B. The power or the burner modulation can therefore be adjusted.
  • the individual scalar fuel parameter h is also known.
  • the new minimum air requirement is calculated using the factor k determined by the control system.
  • L min L min 0 k compared to a reference gas.
  • the gas supply V ⁇ G 0 for a reference gas (with L min0 ) depending on the position of at least one fuel actuator 9 or a linear equivalent to V ⁇ G 0 must be known. This is shown in FIG 6
  • the factor k can be determined by a control with an O 2 sensor, an ionization sensor or another equivalent sensor. To illustrate this procedure, FIG 8 .
  • the gas can be interpreted as methane gas with admixtures. This applies essentially to the gases of the second gas family from the supply network.
  • the value H 3.55 MJ m 3
  • the gas is interpreted as a hydrogen-methane gas mixture.
  • the mixing ratio in FIG 8 changes there according to a characteristic curve along the points marked with 30 with the composition and thus with L min . With the mixing ratio of the gases and/or fuels, the function of the fuel parameter h over L min can be specified.
  • both the air ratio and the output of a burner unit can be determined automatically for a given air ratio ⁇ for hydrogen and, for example, methane and made available to the control units.
  • a power controller can be operated directly in a closed control loop.
  • the actual value P is the output of the burner device 1
  • the output of the burner device 1 can be regulated to a predetermined setpoint P soll .
  • the power setpoint can be generated by a higher-level temperature control unit. It can also be specified directly to the power controller as a setpoint by an operating unit and/or a unit for heating a product and/or when burning residual fuel from a chemical process.
  • V ⁇ Bmax is implicitly adjusted for the maximum output P max of the burner device 1 and the minimum fuel supply V ⁇ Bmin is implicitly adjusted for the minimum output P min of the burner device 1.
  • V ⁇ Bmax and/or V ⁇ Bmin can be calculated and limited (directly) to these calculated values for the respective fuel, upwards and/or downwards. In any case, this ensures that the burner device is not operated outside the intended output range.
  • the energy conversion can easily be calculated from the determined actual value P of the output of the burner device 1 by integrating the actual value P of the output of the burner device 1 over time. In this way, the energy conversion can also be calculated with changing fuels.
  • the energy conversion for the individual fuels can be calculated. If the fuel parameter h is automatically recognized, the switchover can be detected via the change in h.
  • the energy costs can be determined directly, provided the costs per unit of energy are known. If the costs for individual fuels are different, this can be detected as described above. The costs for the consumption of the individual fuels can therefore be calculated.
  • Parts of a control unit and/or a method according to the present disclosure can be implemented as hardware and/or as a software module, which is executed by a computing unit, possibly with the addition of container virtualization, and/or using a cloud computer and/or using a combination of the aforementioned possibilities.
  • the software may be a firmware and/or a Hardware driver that runs within an operating system and/or a container virtualization and/or an application program.
  • the present disclosure thus also relates to a computer program product that includes the features of this disclosure and/or performs the required steps.
  • the described functions can be stored as one or more instructions on a computer-readable medium.
  • RAM random access memory
  • MRAM magnetic random access memory
  • ROM read-only memory
  • EPROM electronically programmable ROM
  • EEPROM electronically programmable and erasable ROM
  • the present invention teaches a method for controlling a burner device according to claim 1. Preferred embodiments are defined in the dependent claims.
  • the present invention also teaches a corresponding computer program product according to claim 6 and a corresponding non-volatile computer-readable storage medium according to claim 7.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)

Claims (7)

  1. Procédé de régulation d'un dispositif de brûleur (1), ledit dispositif de brûleur (1) comprenant une chambre de combustion (2), un canal d'alimentation en air (11) menant à la chambre de combustion (2) et comprenant au moins un actionneur d'air (3, 4) conçu pour ajuster une valeur d'une alimentation en air L à travers le canal d'alimentation en air (11), et un canal d'alimentation en carburant (6) menant à la chambre de combustion (2) et comprenant au moins un actionneur de carburant (9) conçu pour ajuster une valeur d'une alimentation en carburant B à travers le canal d'alimentation en carburant (6), ledit dispositif de brûleur (1) comprenant au moins un capteur d'indice d'air (20) et un dispositif de régulation et/ou de commande et/ou de surveillance (13) comprenant une mémoire au sein de laquelle est stockée au moins une valeur caractéristique (31, 32) incluant un besoin minimal en air, ledit procédé comprenant les étapes :
    enregistrer au moins un signal d'indice d'air (21) grâce au au moins un capteur d'indice d'air (20) et traiter le au moins un signal d'indice d'air (21) afin de générer une valeur d'un indice d'air λ ;
    enregistrer au moins un signal d'alimentation en air (14-16), qui est une mesure d'une valeur, ajustée à l'aide du au moins un actionneur d'air (3, 4), de l'alimentation en air L à travers le canal d'alimentation en air (11) vers la chambre de combustion (2), et traiter le au moins un signal d'alimentation en air (14-16) afin de générer une valeur de l'alimentation en air L ;
    enregistrer au moins un signal d'alimentation en carburant (17-19), qui est une mesure d'une valeur, ajustée à l'aide du au moins un actionneur de carburant (9), de l'alimentation en carburant B à travers le canal d'alimentation en carburant (6) vers la chambre de combustion (2), et traiter le au moins un signal d'alimentation en carburant (17-19) afin de générer une valeur de l'alimentation en carburant B ;
    calculer un besoin minimal en air (22) en fonction de la valeur de l'alimentation en air L , et en fonction de la valeur de l'alimentation en carburant B et en fonction de la valeur de l'indice d'air λ ;
    comparer le besoin minimal en air (22) calculé avec le besoin minimal en air de la au moins une valeur caractéristique (31, 32) stockée dans la mémoire du dispositif de régulation et/ou de commande et/ou de surveillance (13) ;
    associer un groupe de combustibles à partir de la comparaison du besoin minimal en air (22) calculé avec le besoin minimal en air de la au moins une valeur caractéristique (31, 32) stockée dans la mémoire du dispositif de régulation et/ou de commande et/ou de surveillance (13) ;
    fournir un paramètre de combustible scalaire h individuel en fonction du groupe de combustibles associé ;
    mesurer et/ou spécifier une valeur de l'alimentation en air L à travers le canal d'alimentation en air (11) ;
    mesurer et/ou spécifier une valeur d'un indice d'air λ ;
    calculer une valeur réelle Pist d'une puissance du dispositif de brûleur (1) à partir de la valeur mesurée et/ou spécifiée de l'alimentation en air L , à partir de la valeur mesurée et/ou spécifiée de l'indice d'air λ et à partir du paramètre de combustible scalaire h individuel, en vérifiant P ist = h λ V ˙ L
    Figure imgb0042
    ; et
    réguler le dispositif de brûleur (1) à l'aide du au moins un actionneur de combustible (9) et de manière préférée à l'aide du au moins un actionneur d'air (3, 4) en fonction de la valeur réelle Pist de la puissance du dispositif de brûleur (1) et en fonction d'une valeur de consigne Psoll de la puissance du dispositif de brûleur (1), jusqu'à ce que la valeur de consigne Psoll de la puissance du dispositif de brûleur (1) soit atteinte.
  2. Le procédé selon la revendication 1, dans lequel le canal d'alimentation en air (11) mène directement à la chambre de combustion (2) et le canal d'alimentation en carburant (6) mène directement à la chambre de combustion (2).
  3. Le procédé selon la revendication 1, dans lequel le canal d'alimentation en air (11) et le canal d'alimentation en carburant (6) débouchent avant la chambre de combustion (2) dans une alimentation en mélange commune menant à la chambre de combustion (2).
  4. Le procédé selon l'une quelconque des revendications 1 à 3,
    dans lequel au moins une valeur caractéristique (31, 32) stockée dans la mémoire du dispositif de régulation et/ou de commande et/ou de surveillance (13) comprend le besoin minimal d'air sous la forme d'une valeur limite (31, 32) ;
    dans lequel la valeur limite (31, 32) délimite des valeurs du besoin minimal en air d'un premier groupe de combustibles et d'un second groupe de combustibles ; et
    dans lequel le procédé comprend l'étape :
    associer le besoin minimal en air (22) calculé au premier groupe de combustibles ou au second groupe de combustibles à l'aide de la valeur limite (31, 32) de la au moins une valeur caractéristique (31, 32) enregistrée dans le dispositif de régulation et/ou de commande et/ou de surveillance (13).
  5. Le procédé selon l'une quelconque des revendications 1 à 4,
    dans lequel l'étape de calcul du besoin minimal en air en fonction de la valeur de l'alimentation en air L et en fonction de la valeur de l'alimentation en carburant B et en fonction de la valeur de l'indice d'air X comprend l'étape consistant à :
    calculer le besoin minimal en air sous la forme de quotients issus de la valeur de l'alimentation en air L et d'un produit de la valeur de l'alimentation en carburant B et de la valeur de l'indice d'air λ.
  6. Produit-programme informatique comprenant des commandes qui, lors de l'exécution du programme par un dispositif de régulation et/ou de commande et/ou de surveillance (13) destiné à un dispositif de brûleur (1), ledit dispositif de brûleur (1) comprenant une chambre de combustion (2), un canal d'alimentation en air (11) menant à la chambre de combustion (2) et comprenant au moins un actionneur d'air (3, 4) conçu pour ajuster une valeur d'une alimentation en air L à travers le canal d'alimentation en air (11), et un canal d'alimentation en carburant (6) menant à la chambre de combustion (2) et comprenant au moins un actionneur de carburant (9) conçu pour ajuster une valeur d'une alimentation en carburant B à travers le canal d'alimentation en carburant (6), ledit dispositif de brûleur (1) comprenant au moins un capteur d'indice d'air (20), ledit dispositif de régulation et/ou de commande et/ou de surveillance (13) comprenant une mémoire au sein de laquelle est stockée au moins une valeur caractéristique (31, 32) incluant un besoin minimal en air, impose au dispositif de régulation et/ou de commande et/ou de surveillance (13) de :
    enregistrer au moins un signal d'indice d'air (21) grâce au au moins un capteur d'indice d'air (20) et de traiter le au moins un signal d'indice d'air (21) afin de générer une valeur d'un indice d'air λ ;
    enregistrer au moins un signal d'alimentation en air (14-16), qui est une mesure d'une valeur, ajustée à l'aide du au moins un actionneur d'air (3, 4), de l'alimentation en air L à travers le canal d'alimentation en air (11) vers la chambre de combustion (2), et de traiter le au moins un signal d'alimentation en air (14-16) afin de générer une valeur d'une alimentation en air L ;
    enregistrer au moins un signal d'alimentation en carburant (17-19), qui est une mesure d'une valeur, ajustée à l'aide du au moins un actionneur de carburant (9), de l'alimentation en carburant B à travers le canal d'alimentation en carburant (6) vers la chambre de combustion (2), et de traiter le au moins un signal d'alimentation en carburant (17-19) afin de générer une valeur d'une alimentation en carburant B ;
    calculer un besoin minimal en air (22) en fonction de la valeur de l'alimentation en air L et en fonction de la valeur de l'alimentation en carburant B et en fonction de la valeur de l'indice d'air λ ;
    comparer le besoin minimal en air (22) calculé avec le besoin minimal en air de la au moins une valeur caractéristique (31, 32) stockée dans la mémoire du dispositif de régulation et/ou de commande et/ou de surveillance (13) ;
    associer un groupe de combustibles à partir de la comparaison du besoin minimal en air (22) calculé avec le besoin minimal en air de la au moins une valeur caractéristique (31, 32) stockée dans la mémoire du dispositif de régulation et/ou de commande et/ou de surveillance (13) ;
    fournir un paramètre de combustible scalaire h individuel en fonction du groupe de combustibles associé ;
    calculer une valeur réelle Pist d'une puissance du dispositif de brûleur (1) à partir d'une valeur mesurée et/ou spécifiée de l'alimentation en air L, d'une valeur mesurée et/ou spécifiée de l'indice d'air λ et d'un paramètre de combustible scalaire h individuel, en vérifiant P ist = h λ V ˙ L
    Figure imgb0043
    ; et
    réguler le dispositif de brûleur (1) à l'aide du au moins un actionneur de combustible (9) et de manière préférée à l'aide du au moins un actionneur d'air (3, 4) en fonction de la valeur réelle Pist de la puissance du dispositif de brûleur (1) et en fonction d'une valeur de consigne Psoll de la puissance du dispositif de brûleur (1) jusqu'à ce que la valeur de consigne Psoll de la puissance du dispositif de brûleur (1) soit atteinte.
  7. Support de stockage non volatil lisible par ordinateur, qui stocke un ensemble d'instructions à exécuter grâce à au moins un dispositif de régulation et/ou de commande et/ou de surveillance (13) destiné à un dispositif de brûleur (1), ledit dispositif de brûleur (1) comprenant une chambre de combustion (2), un canal d'alimentation en air (11) menant à la chambre de combustion (2) et comprenant au moins un actionneur d'air (3, 4) conçu pour ajuster une valeur de l'alimentation en air L à travers le canal d'alimentation en air (11), et un canal d'alimentation en carburant (6) menant à la chambre de combustion (2) et comprenant au moins un actionneur de carburant (9) conçu pour ajuster une valeur de l'alimentation en carburant B à travers le canal d'alimentation en carburant (6), ledit dispositif de brûleur (1) comprenant au moins un capteur d'indice d'air (20), ledit dispositif de régulation et/ou de commande et/ou de surveillance (13) comprenant une mémoire au sein de laquelle est stockée au moins une valeur caractéristique (31, 32) incluant un besoin minimal en air, dans lequel l'ensemble d'instructions, lorsqu'il est exécuté par le dispositif de régulation et/ou de commande et/ou de surveillance (13) :
    enregistre au moins un signal d'indice d'air (21) grâce au au moins un capteur d'indice d'air (20) et traite le au moins un signal d'indice d'air (21) afin de générer une valeur d'un indice d'air λ ;
    enregistre au moins un signal d'alimentation en air (14 à 16), qui est une mesure d'une valeur, ajustée à l'aide du au moins un actionneur d'air (3, 4), d'une alimentation en air L à travers le canal d'alimentation en air (11) vers la chambre de combustion (2), et traite le au moins un signal d'alimentation en air (14 à 16) afin de générer une valeur de l'alimentation en air L ;
    enregistre au moins un signal d'alimentation en carburant (17-19), qui est une mesure d'une valeur, ajustée à l'aide du au moins un actionneur de carburant (9), d'une alimentation en carburant B à travers le canal d'alimentation en carburant (6) vers la chambre de combustion (2), et traite le au moins un signal d'alimentation en carburant (17-19) afin de générer une valeur de l'alimentation en carburant B ;
    calcule un besoin minimal en air (22) en fonction de la valeur de l'alimentation en air L et en fonction de la valeur de l'alimentation en carburant B et en fonction de la valeur de l'indice d'air λ ;
    compare le besoin minimal en air (22) calculé avec le besoin minimal en air de la au moins une valeur caractéristique (31, 32) stockée dans la mémoire du dispositif de régulation et/ou de commande et/ou de surveillance (13) ;
    associe un groupe de combustibles à partir de la comparaison du besoin minimal en air (22) calculé avec le besoin minimal en air de la au moins une valeur caractéristique (31, 32) stockée dans la mémoire du dispositif de régulation et/ou de commande et/ou de surveillance (13) ;
    fournit un paramètre de combustible scalaire h individuel en fonction du groupe de combustibles associé ;
    calcule une valeur réelle Pist d'une puissance du dispositif de brûleur (1) à partir d'une valeur mesurée et/ou spécifiée de l'alimentation en air L , d'une valeur mesurée et/ou spécifiée de l'indice d'air X et d'un paramètre de combustible scalaire h individuel, en vérifiant P ist = h λ V ˙ L
    Figure imgb0044
    ; et
    régule le dispositif de brûleur (1) à l'aide du au moins un actionneur de combustible (9) et de manière préférée à l'aide du au moins un actionneur d'air (3, 4) en fonction de la valeur réelle Pist de la puissance du dispositif de brûleur (1) et en fonction d'une valeur de consigne Psoll de la puissance du dispositif de brûleur (1), jusqu'à ce que la valeur de consigne Psoll de la puissance du dispositif de brûleur (1) soit atteinte.
EP21194083.8A 2021-02-26 2021-08-31 Procédé de régulation d'un dispositif de brûleur avec détermination de la puissance à l'aide d'un paramètre de combustible Active EP4050258B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210178562.XA CN114963230A (zh) 2021-02-26 2022-02-25 通过燃料参数的功率输出确定
US17/682,006 US20220282866A1 (en) 2021-02-26 2022-02-28 Power Output Determination by Way of a Fuel Parameter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP21159771 2021-02-26

Publications (3)

Publication Number Publication Date
EP4050258A1 EP4050258A1 (fr) 2022-08-31
EP4050258B1 true EP4050258B1 (fr) 2024-06-05
EP4050258C0 EP4050258C0 (fr) 2024-06-05

Family

ID=74844728

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21194083.8A Active EP4050258B1 (fr) 2021-02-26 2021-08-31 Procédé de régulation d'un dispositif de brûleur avec détermination de la puissance à l'aide d'un paramètre de combustible

Country Status (3)

Country Link
US (1) US20220282866A1 (fr)
EP (1) EP4050258B1 (fr)
CN (1) CN114963230A (fr)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2626673B1 (fr) * 1988-01-29 1994-06-10 Gaz De France Procede et dispositif de mesurage de la puissance calorifique vehiculee par un courant de matiere combustible
DE10316994A1 (de) 2003-04-11 2004-10-28 E.On Ruhrgas Ag Verfahren zum Überwachen der Verbrennung in einer Verbrennungseinrichtung
DE102006051883B4 (de) 2006-10-31 2015-02-12 Gas- und Wärme-Institut Essen e.V. Einrichtung und Verfahren zum Einstellen, Steuern oder Regeln des Brennstoff/Verbrennungsluft-Verhältnisses zum Betreiben eines Brenners
ES2646213T3 (es) 2012-07-04 2017-12-12 Vaillant Gmbh Procedimiento para la supervisión de un quemador que funciona con gas de combustión
DE102013106987A1 (de) 2013-07-03 2015-01-08 Karl Dungs Gmbh & Co. Kg Verfahren und Vorrichtung zur Bestimmung einer Brennwertgröße sowie gasbetriebene Einrichtung mit einer derartigen Vorrichtung
EP2899548B1 (fr) 2014-01-27 2023-06-21 Siemens Schweiz AG Circuit de détection polyvalent
HUE047264T2 (hu) 2016-09-21 2020-04-28 Siemens Ag Gázfajta felismerés
ES2792874T3 (es) 2016-09-30 2020-11-12 Siemens Ag Regulación de flujos turbulentos
PL3301363T3 (pl) 2016-09-30 2020-03-31 Siemens Aktiengesellschaft Zespół spalania z palnikiem i urządzenie do pomiaru natężenia przepływu przepływów turbulentowych

Also Published As

Publication number Publication date
US20220282866A1 (en) 2022-09-08
EP4050258A1 (fr) 2022-08-31
EP4050258C0 (fr) 2024-06-05
CN114963230A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
EP0259382B1 (fr) Dispositif de regulation de la proportion d'air de combustion au gaz
EP2005066B1 (fr) Procédé pour mettre en marche un système de chauffage dans des conditions générales inconnues
DE3888327T2 (de) Brennstoffbrennereinrichtung und ein Kontrollverfahren.
EP3301362A1 (fr) Régulation d'écoulements turbulents
DE2157722C2 (de) Regelsystem für eine Brennstoffzelle
DE102011079325A1 (de) Verfahren zur Luftzahlregelung eines Brenners
EP3596391B1 (fr) Procédé de régulation d'un appareil de chauffage fonctionnant avec du gaz combustible
DE102017204021A1 (de) Verfahren zum Aktualisieren einer Kennlinie in einem Heizsystem sowie eine Steuereinheit und ein Heizsystem
DE2509344C3 (de) Verfahren und Anordnung zur automatischen Regelung einer Kessel-Turbinen-Einheit
EP4050258B1 (fr) Procédé de régulation d'un dispositif de brûleur avec détermination de la puissance à l'aide d'un paramètre de combustible
AT413738B (de) Verfahren zum regeln einer brennkraftmaschine
DE102011111453A1 (de) Verfahren zur Luftzahleinstellung bei einem Heizgerät
EP4194749A1 (fr) Commande et/ou régulation d'un dispositif de combustion
DE102019101189A1 (de) Verfahren zur Regelung eines Gasgemisches
EP3299718B1 (fr) Détection de type de gaz
EP3751200B1 (fr) Procédé de régulation d'un appareil chauffant à gaz combustible
EP3896339B1 (fr) Procédé d'ajustement d'une commande d'un appareil de chauffage
EP2848934A1 (fr) Procédé et capteur pour la détermination des caractéristiques d'un mélange de carburants gazeux
EP0281823A2 (fr) Dispositif de régulation de puissance de producteurs de chaleur chauffés au carburant
EP4119847A1 (fr) Dispositif de combustion comprenant un dispositif de régulation
DE102008016047B4 (de) Verfahren zur Füllstandsüberwachung
DE102017126138A1 (de) Verfahren zur Regelung eines brenngasbetriebenen Heizgerätes
EP4060233B1 (fr) Détection de la capacité et régulation du facteur d'air au moyen des capteurs dans le foyer
DE3203675A1 (de) Verfahren zur regelung des luftueberschusses an feuerungen sowie regeleinrichtung zur ausfuehrung des verfahrens
EP4215815A1 (fr) Procédé de fonctionnement d'un appareil de chauffage produisant de la flamme d'une installation de chauffage, programme de com-puter, support de stockage, appareil de commande et utilisation d'un débit d'une installation de chauffage et d'ionisation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220303

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230809

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240318

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502021003908

Country of ref document: DE