EP4023996A1 - Wärmetauscher - Google Patents

Wärmetauscher Download PDF

Info

Publication number
EP4023996A1
EP4023996A1 EP20461610.6A EP20461610A EP4023996A1 EP 4023996 A1 EP4023996 A1 EP 4023996A1 EP 20461610 A EP20461610 A EP 20461610A EP 4023996 A1 EP4023996 A1 EP 4023996A1
Authority
EP
European Patent Office
Prior art keywords
louver
section
fluid
heat exchanger
louvers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP20461610.6A
Other languages
English (en)
French (fr)
Inventor
Andrzej JUGOWICZ
Mateusz LIPOWSKI
Adam Bedek
Lukasz WIDZYK
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Autosystemy Sp zoo
Original Assignee
Valeo Autosystemy Sp zoo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Autosystemy Sp zoo filed Critical Valeo Autosystemy Sp zoo
Priority to EP20461610.6A priority Critical patent/EP4023996A1/de
Publication of EP4023996A1 publication Critical patent/EP4023996A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1684Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • F28F1/128Fins with openings, e.g. louvered fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • F28F3/027Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements with openings, e.g. louvered corrugated fins; Assemblies of corrugated strips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0082Charged air coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0091Radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/04Assemblies of fins having different features, e.g. with different fin densities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/08Fins with openings, e.g. louvers

Definitions

  • the present invention relates to a heat exchanger.
  • the invention relates to the heat exchanger fins having various sizes of louvers provided in a heat exchanger.
  • heat exchangers for automobiles are designed to perform heat exchange between a first fluid allowed to flow through a first fluid circuit, and a second fluid allowed to flow through a second fluid circuit.
  • the first fluid circuit includes a heat exchanger core having a plurality of fluid conduits or tubes connected between a first manifold and a second manifold. The area around the tubes enclosed in a housing defines the second fluid circuit.
  • heat exchanger fins are in contact with the heat exchange tubes. Specifically, in heat exchanger such as radiator, fin is provided between adjacent heat exchange tubes, where the first fluid is usually coolant and the second fluid is usually air.
  • fin In heat exchanger such as water charge air cooler, fin is provided within the tubes, where the first fluid is usually air and the second fluid is usually coolant.
  • air is passed through the circuit including fins and coolant is passed through the other circuit.
  • the fins are provided with number of louvers to increase the heat transfer between the surfaces of the heat exchanger, which include the surfaces of the fins and the outside surfaces of the tubes, and the airflow.
  • the louvers direct air stream over the fin surface and through the fin surface, create a controlled degree of turbulence and are intended to enhance the heat transfer between the airstream or any other flow medium and the fin for higher thermal efficiency.
  • the louvers provided across the fins are of same length, which may result in non-homogenous airflow across the heat exchanger core and may cause significant air pressure drop.
  • a higher air pressure drop can result in a lower heat transfer rate.
  • the non-homogenous airflow pressure drop across the core may cause non-uniform heat exchange between the air and the coolant.
  • the air entering into the airflow fluid circuit may have higher temperature, in case the heat exchanger is charge air cooler, than the air flowing the outlet area of the airflow fluid circuit.
  • the heat exchange between the air and the coolant is higher at the inlet area of the airflow fluid circuit than of the outlet area of the airflow fluid circuit.
  • the heat exchange tubes may undergo high stress due to temperature gradient between the inlet area and outlet area of the airflow fluid circuit, thereby causing cracks on the heat exchange tubes and reduce service life of the heat exchanger.
  • some elements or parameters may be indexed, such as a first element and a second element.
  • this indexation is only meant to differentiate and name elements, which are similar but not identical. No idea of priority should be inferred from such indexation, as these terms may be switched without betraying the invention. Additionally, this indexation does not imply any order in mounting or use of the elements of the invention.
  • the present invention relates to a heat exchanger for heat exchange between a first fluid and a second fluid, particularly, heat exchanger fins.
  • the heat exchanger includes a first manifold, a second manifold, a plurality of heat exchange tubes and a fin section.
  • the plurality of heat exchange tubes is axially extending and providing a fluidal communication between the first manifold and the second manifold for the first fluid.
  • the first fluid flows from the first manifold to the second manifold in a first fluid direction and the second fluid flows between the heat exchange tubes in a second fluid direction.
  • the fin section is in contact with the heat exchange tubes for facilitating heat exchange between the first fluid and the second fluid.
  • the fin section further includes at least one first louver section having a number of louvers of first louver length and at least one second louver section having a number of louvers of second louver length.
  • the first louver section is arranged subsequently to the second louver section with respect to transverse direction of intended first fluid flow direction.
  • the louvers are formed as angled slats on a surface of the fin section. Further, the first louver length is different than the second louver length.
  • the first louver length is greater than the second louver length.
  • the first louver length is smaller than the second louver length.
  • the first louver section and the second louver section comprises equal number of louvers.
  • the first louver section comprises different number of louvers than the second louver section.
  • louvers of the first louver section are aligned at a first louver angle and the louvers of the second louver section are aligned at a second louver angle.
  • the second louver angle is different than the first louver angle.
  • the second louver angle is same as that of the first louver angle.
  • louvers of the first louver section have a first louver width and the louvers of the second louver section have a second louver width.
  • first louver width is same as that of the second louver width.
  • fist louver width is different than the second louver width.
  • the first louver section and the second louver section comprises a number of louver sets sloping alternately away and towards the fin section in the direction of the first fluid intended to flow there-through.
  • each louver have a primary louver and at least one secondary louver extending from a surface of the primary louver.
  • the fin section is formed of at least three louver sections arranged subsequently and repeatedly in an order comprising the first louver section, the second louver section and a repeat of the first louver section.
  • the fin section is formed of at least three louver sections arranged subsequently and repeatedly in an order comprising the second louver section, the first louver section and a repeat of second louver section.
  • the present invention envisages a heat exchanger provided with fin and louvers pattern to achieve uniform heat exchange between two fluid flowing there through.
  • the heat exchanger includes a plurality of heat exchange elements extending between a pair of manifolds, and a fin section in contact with the heat exchange elements. Further, a first fluid flows from the first manifold to the second manifold in a first fluid flow direction and a second fluid flows between the heat exchange tubes in a second fluid flow direction.
  • the heat exchanger can be configured for operation as a water charge air cooler. In such case, the first fluid is air and second fluid is a liquid coolant.
  • the heat exchanger can be configured for operation as a radiator. In such case, the first fluid is a liquid coolant and the second fluid is air.
  • Figs. 1 and 2 illustrate schematic views of a heat exchanger 100, in accordance with an embodiment of the present invention.
  • Fig. 1 is a perspective view of the heat exchanger 100
  • Fig. 2 is a perspective view of the heat exchanger 100 without a housing 102.
  • the heat exchanger 100 includes a first manifold 102A, a second manifold 102B spaced apart from the first manifold 102A and a plurality of heat exchange elements 104. Further, the plurality of heat exchange elements 104 can be heat exchange tubes.
  • the plurality of heat exchange elements 104 is axially extending between the first manifold 102A and the second manifold 102B and is providing a fluidic communication between the first manifold 102A and the second manifold 102B.
  • the heat exchanger 100 further includes a housing 102 in which the heat exchange tubes 104 are disposed.
  • the heat exchange tubes 104 are at least partially enclosed by the housing 102.
  • at least two fluid flows are defined in the housing 102 and they are in heat exchange configuration with each other.
  • a first fluid flow and a second fluid flow fluidically isolated from the first fluid flow, but thermally coupled with the second fluid flow.
  • the first fluid flows from the first manifold 102A to the second manifold 102B through the heat exchange tubes 104 in the first fluid direction 106A.
  • the first fluid circuit is formed through the heat exchange tubes 104 in such a way the first fluid flows from the first manifold 102A to the second manifold 102B in the first fluid direction 106A.
  • the second fluid flows between the heat exchange tubes 104 in the second fluid direction 106B.
  • the second fluid direction 106B is perpendicular to the first fluid direction 106A.
  • the housing 102 defines a path for the second fluid between the heat exchange tubes 104.
  • an inlet and outlet may be connected to housing 102 to introduce and receive the second fluid to/from the heat exchanger 100.
  • the heat exchanger 100 further comprises a fin section 202 as shown in Fig. 3 .
  • the fin section 202 is in contact with the heat exchange tubes 104.
  • the fin section 202 having fins is provided in contact with the heat exchange tubes 104 in such a way that the fin section 202 facilitates heat exchange between the first fluid and the second fluid.
  • the fin section 202 is provided in the heat exchanger 100 to increase pressure drop of the airflow flowing there through, so that the thermal performance of the heat exchanger 100 may be increased.
  • the fin section 202 is disposed within the heat exchange tubes 104. In such case, the first fluid is air and the second fluid is liquid coolant.
  • the fin section 202 can be interlaced between adjacent heat exchange tubes 104.
  • the first fluid is a liquid coolant and the second fluid is air.
  • the fin section 202 can be corrugated fins or flat fins.
  • the fin section 202 defines a thin metallic or conductive sheet of material formed in a plurality of undulations 208, which establishes a straight length of walls that extend within the tubes 104.
  • the peaks 210 of the undulations 208 conductively connected to and contacts the flat side of the tube walls (104A, 104B).
  • the peaks are generally brazed to the flat sides of the heat exchange tube 104.
  • a number of louvers are formed by partially cutting and raising respective flat portion of the fin section 202 to form angled slats.
  • the louvers are provided with louver geometry elements including length, width and inclination angle. Referring to Fig. 4 and Fig.
  • each louver includes a leading edge 212A and a trailing edge 212B with the leading edge facing the incoming airflow side of the heat exchanger 100.
  • the length of each louver is defined as the dimension between the leading 212A and trailing edges 212B. Therefore, the louver length is measured relatively to the direction in which it elongates.
  • the width of each louver is defined as the dimension between the two ends (121C, 121D) where the louver is connected to the fin section 202. Therefore, the width of the louver may be measured transversely with respect to the direction of elongation of the louver.
  • the number of louvers defines a first louver section 204 having first louver length (L1) and a second louver section 206 having a second louver length (L2).
  • Each louver section includes an alternating pattern of a leading and trailing set of louvers.
  • the set of louvers slopes alternately away and towards the fin section 202 in the direction of the fluid intended to flow there-through.
  • the louvers extend at an angle with respect to the planes of the fin.
  • the louvers at the first louver section 204 are aligned at a first louver angle with respect to the plane of the fin and the louvers at the second louver section 206 are aligned at a second louver angle with respect to the plane of the fin.
  • the first louver angle is same as that of the second louver angle.
  • the first louver angle is different than the second louver angle.
  • the first louver length (L1) is different than the second louver length (L2). In one embodiment, the first louver length (L2) is greater than the second louver length (L2). In another embodiment, the first louver length (L1) is smaller than the second louver length (L2). In one embodiment, the first louver section 204 comprises different number of louvers than the second louver section 206. In another embodiment, the first louver section 204 and the second louver section 206 comprises same number of louvers. In yet another embodiment, the first louver section 204 comprises more number of louvers than the second louver section 206. In yet another embodiment, the first louver section 204 comprises less number of louvers than the second louver section 206.
  • the number of louver in the first louver section 204 would be smaller than the number of louvers in the second louver section 206.
  • the number of louver in the first louver section 204 would be greater than the number of louvers in the second louver section 206.
  • the louvers of the first louver section 204 have a first louver width and the louvers of the second louver section 206 have a second louver width.
  • the second louver width is different than the first louver width.
  • the second louver width is same as that of the first louver width.
  • the fin section 202 having two different louver sections are arranged alternatively and repeatedly, such that each heat exchange tube 104 houses at least three-louver section.
  • the three louver sections are arranged in an order comprising the first louver section 204, the second louver section 206 and a repeat of the first louver section 204.
  • the at least three louver sections are arranged in an order comprising the second louver section 206, the first louver section 204 and a repeat of the second louver section 206.
  • the first fluid or charged fluid preferably air
  • the second fluid or a cooling fluid preferably coolant flowing outside of the heat exchange tubes 104.
  • the pressure drop of the first fluid flowing at the different louver sections having different louver length are varied.
  • the first louver length (L1) is greater than the second louver length (L2)
  • the pressure drop of the fluid flowing through the first louver section 204 is higher than the pressure drop of the fluid flowing through the second louver section 206.
  • the first louver length (L1) is smaller than the second louver length (L2)
  • the pressure drop of the fluid at the first louver section 204 is lower than the pressure drop of the fluid flowing at the second louver section 206.
  • the pressure drop of the fluid is varied by varying the number of louvers and length of louvers.
  • the first louver length (L1) of the first louver section 204 is larger than the second louver length (L2) of the second louver section 206 and the number of louvers at the first louver section 204 is smaller than the number of louvers in the second louver section 206, the pressure drop of the first fluid flowing through the first louver section 204 is lower than pressure drop of the first fluid through the second lower section.
  • first louver length (L1) of the first louver section 204 is smaller than the second louver length (L2) of the second louver section 206 and the number of louvers at the first louver section 204 is bigger than the number of louvers in the second louver section 206, the pressure drop of the first fluid flowing through the first louver section 204 is higher than pressure drop of the first fluid through the second louver section.
  • the first fluid or charged fluid preferably air
  • the second fluid or a cooling fluid preferably coolant flowing through the other circuit.
  • the pressure drop of the first fluid flowing at the different louver sections having different louver length are varied.
  • the first louver length (L1) is greater than the second louver length (L2)
  • the pressure drop of the fluid flowing through the first louver section 204 is higher than the pressure drop of the fluid flowing through the second louver section 206.
  • the first louver length (L1) is smaller than the second louver length (L2)
  • the pressure drop of the fluid at the first louver section 204 is lower than the pressure drop of the fluid flowing at the second louver section 206.
  • the pressure drop of the fluid is varied by varying the number of louvers and length of louvers.
  • the first louver length (L1) of the first louver section 204 is larger than the second louver length (L2) of the second louver section 206 and the number of louvers at the first louver section 204 is smaller than the number of louvers in the second louver section 206, the pressure drop of the first fluid flowing through the first louver section 204 is lower than pressure drop of the first fluid through the second lower section.
  • first louver length (L1) of the first louver section 204 is smaller than the second louver length (L2) of the second louver section 206 and the number of louvers at the first louver section 204 is greater than the number of louvers in the second louver section 206, the pressure drop of the first fluid flowing through the first louver section 204 is high than pressure drop of the first fluid through the second louver section 206.
  • the pressure drop could be either increased or decreased locally to vary the heat exchange rate.
  • a uniform heat exchange rate is achieved throughout the core and improves the thermal performance of the heat exchanger 100.
  • the air entering into the heat exchanger 100 may have higher temperature than the air flowing the outlet area of the heat exchanger 100.
  • the heat exchange tubes 104 may undergo high stress due to temperature gradient between the inlet area and outlet area, thereby causing cracks on the heat exchange tubes 104 and reduce service life of the heat exchanger 100.
  • the heat exchange rate at the outlet area is increased by decreasing the pressure drop at the outlet area. The decrease in pressure drop is achieved by varying the geometry and number of the louver at the outlet area.
  • the geometry and number of louvers disposed at the fin section 202 is defined to locally increase or decrease the internal pressure drop and achieve a uniform heat exchange rate, thereby improving the thermal performance without sacrificing the rigidity of the system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
EP20461610.6A 2020-12-29 2020-12-29 Wärmetauscher Withdrawn EP4023996A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20461610.6A EP4023996A1 (de) 2020-12-29 2020-12-29 Wärmetauscher

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20461610.6A EP4023996A1 (de) 2020-12-29 2020-12-29 Wärmetauscher

Publications (1)

Publication Number Publication Date
EP4023996A1 true EP4023996A1 (de) 2022-07-06

Family

ID=74004110

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20461610.6A Withdrawn EP4023996A1 (de) 2020-12-29 2020-12-29 Wärmetauscher

Country Status (1)

Country Link
EP (1) EP4023996A1 (de)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060157233A1 (en) * 2005-01-19 2006-07-20 Denso Corporation Heat exchanger
US20090173478A1 (en) * 2008-01-09 2009-07-09 Delphi Technologies, Inc. Frost tolerant fins
EP2336701A2 (de) * 2009-12-14 2011-06-22 Delphi Technologies, Inc. Rippe mit niedrigem Druckverlust mit selektiver Mikrooberflächenverbesserung
EP2653819A1 (de) * 2011-01-21 2013-10-23 Daikin Industries, Ltd. Wärmetauscher und klimaanlage
DE112018001666T5 (de) * 2017-03-29 2020-01-30 Denso Corporation Wärmetauscher

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060157233A1 (en) * 2005-01-19 2006-07-20 Denso Corporation Heat exchanger
US20090173478A1 (en) * 2008-01-09 2009-07-09 Delphi Technologies, Inc. Frost tolerant fins
EP2336701A2 (de) * 2009-12-14 2011-06-22 Delphi Technologies, Inc. Rippe mit niedrigem Druckverlust mit selektiver Mikrooberflächenverbesserung
EP2653819A1 (de) * 2011-01-21 2013-10-23 Daikin Industries, Ltd. Wärmetauscher und klimaanlage
DE112018001666T5 (de) * 2017-03-29 2020-01-30 Denso Corporation Wärmetauscher

Similar Documents

Publication Publication Date Title
US4332293A (en) Corrugated fin type heat exchanger
US4945981A (en) Oil cooler
US3645330A (en) Fin for a reversible heat exchanger
EP0021651B1 (de) Jalousieartige Rippen für Wärmeaustauscher
EP0184944A2 (de) Wärmetauscher
US8136578B2 (en) Heat exchanger for EGR-gas
US5738168A (en) Fin tube heat exchanger
US8167028B2 (en) Heat exchanger fin with planar crests and troughs having slits
US20070193730A1 (en) Heat exchanger device
EP3002539A1 (de) Heizkörper
KR100687637B1 (ko) 열교환기
US5062474A (en) Oil cooler
US5975200A (en) Plate-fin type heat exchanger
US11603790B2 (en) Heat exchanger
EP4023993A1 (de) Wärmetauscher
EP4023996A1 (de) Wärmetauscher
EP0803695B1 (de) Rippenplatten-Wärmetauscher
EP4023994A1 (de) Wärmetauscher
EP4023988A1 (de) Wärmetauscher
US20210389057A1 (en) Heat exchanger
EP4023995A1 (de) Wärmetauscher
US20130075071A1 (en) Heat Exchanger
US6883598B2 (en) Cooling element for a heat exchanger
JPS6391492A (ja) 熱交換器
JP5772608B2 (ja) 熱交換器

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20230110