EP4013989B1 - Abgedichteter und wärmeisolierender tank - Google Patents

Abgedichteter und wärmeisolierender tank Download PDF

Info

Publication number
EP4013989B1
EP4013989B1 EP20754752.2A EP20754752A EP4013989B1 EP 4013989 B1 EP4013989 B1 EP 4013989B1 EP 20754752 A EP20754752 A EP 20754752A EP 4013989 B1 EP4013989 B1 EP 4013989B1
Authority
EP
European Patent Office
Prior art keywords
tank
wall
singular
walls
interval
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20754752.2A
Other languages
English (en)
French (fr)
Other versions
EP4013989A1 (de
Inventor
Cédric Morel
Matthieu MALOCHET
Sébastien DELANOE
Hilarion GIVOLOUP
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gaztransport et Technigaz SA
Original Assignee
Gaztransport et Technigaz SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaztransport et Technigaz SA filed Critical Gaztransport et Technigaz SA
Publication of EP4013989A1 publication Critical patent/EP4013989A1/de
Application granted granted Critical
Publication of EP4013989B1 publication Critical patent/EP4013989B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/025Bulk storage in barges or on ships
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/24Arrangement of ship-based loading or unloading equipment for cargo or passengers of pipe-lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/30Arrangement of ship-based loading or unloading equipment for transfer at sea between ships or between ships and off-shore structures
    • B63B27/34Arrangement of ship-based loading or unloading equipment for transfer at sea between ships or between ships and off-shore structures using pipe-lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/004Details of vessels or of the filling or discharging of vessels for large storage vessels not under pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B11/00Interior subdivision of hulls
    • B63B11/04Constructional features of bunkers, e.g. structural fuel tanks, or ballast tanks, e.g. with elastic walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B2231/00Material used for some parts or elements, or for particular purposes
    • B63B2231/02Metallic materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0157Polygonal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0358Thermal insulations by solid means in form of panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0626Multiple walls
    • F17C2203/0631Three or more walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/22Assembling processes
    • F17C2209/221Welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/018Adapting dimensions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • F17C2270/0107Wall panels

Definitions

  • the invention relates to the field of waterproof and thermally insulating membrane tanks, for the storage and/or transport of fluid such as a cryogenic fluid and tanks on board a ship or other floating structure and filled with a liquefied combustible gas to power a propulsion system of the ship or other floating structure, in particular in a ship powered by liquefied natural gas.
  • Liquefied natural gas or LNG is mainly composed of methane.
  • a waterproof and thermally insulating tank described in the document WO2019030448 for the storage and transport of liquefied natural gas, integrated into a supporting structure, such as the double hull of a ship intended for the transport of liquefied natural gas, for example an LNG tanker.
  • the tank comprises a multilayer structure presenting successively, in the direction of thickness, from the outside towards the inside of the tank, a thermally insulating barrier carried by the supporting structure and a sealing membrane intended to be in contact with the liquefied natural gas contained in the tank and resting on the insulating barrier.
  • the sealing membrane is made up of a plurality of corrugated sheets of standard dimensions comprising a series of undulations parallel to each other and thus allowing the sealing membrane to deform under the effect of thermal stresses generated by the fluid stored in the tank.
  • the thermally insulating barrier comprises a plurality of juxtaposed insulating panels of standard dimensions. To facilitate the manufacture of the tank, the standard dimensions of the insulating panels are chosen as an integer multiple of a wave pitch of the corrugations. The tank therefore complies with the preamble to claim 1.
  • a vessel for transporting liquefied natural gas such as an LNG carrier is sized to accommodate such a tank, but the dimension of the supporting structure is subject to construction tolerances.
  • LFS LNG Fueled Ship
  • the cargo tanks have a very large capacity, for example of the order of 100,000 to 200,000 m3.
  • the capacity is significantly smaller, for example from 5,000 to 25,000 m3 depending on the size of the ship and the length of the journeys to be made.
  • An idea underlying the invention is to propose a waterproof and thermally sealed tank] insulating material capable of being integrated into a space of any size, for example in a ship or a floating structure.
  • the invention proposes a waterproof and thermally insulating tank integrated into a supporting structure.
  • such a waterproof and thermally insulating tank may include one or more of the following characteristics.
  • the first wall is a bottom wall of the tank.
  • the second wall is a ceiling wall of the tank.
  • the first direction is a longitudinal direction of the tank.
  • the second direction is a vertical direction of the tank.
  • the third direction is a transverse direction of the tank.
  • the first intermediate walls are lower chamfer walls arranged between the bottom wall and the two end walls.
  • the second intermediate walls are upper chamfer walls arranged between the ceiling wall and the two end walls.
  • the total number of transverse edges can be equal to 4, 6 or 8.
  • the at least two adjacent undulations spaced by the singular interval are continued continuously at all the transverse edges so as to form a closed ring all around the tank.
  • Such a tank is advantageous in that the regular interval makes it possible to simplify the production of the tank while the singular interval makes it possible to adapt the dimension of the tank to the dimensions of the supporting structure, for example a space of the shell d 'a ship.
  • the singular interval makes it possible to compensate for the differences in dimensions between the supporting structure and the waterproofing membrane having standard dimensions.
  • the tank thus adapts to supporting structures, in particular ships or floating structures, having any dimensions with a less complex and less expensive construction.
  • the spaces between adjacent undulations may comprise one or more singular intervals. These unique intervals can be arranged in different ways in the tank.
  • the undulations of each of the first wall, the second wall and the end walls, and where appropriate the intermediate walls form two or more singular intervals separated by at least one regular interval.
  • the undulations of each of the first wall, the second wall and the end walls, and where appropriate the intermediate walls form two or more consecutive singular intervals.
  • consecutive singular intervals we mean that the two or more singular intervals are on either side of the same undulation, that is to say that no regular interval is formed between these singular intervals.
  • the singular intervals are arranged symmetrically on either side of a mediating line of said wall.
  • Such an arrangement allows a less complex production of the tank, in particular an essentially symmetrical manufacturing on either side of the mediating line.
  • the tank comprises at least one special zone comprising for example a third intermediate wall of the tank, a loading and unloading tower, a pump support foot, a gas collector, a sump and/or a liquid dome, and said or each singular interval is arranged at a distance from said special zone greater than or equal to the transverse dimension (i.e. the dimension in the third direction) of a regular interval.
  • said or each singular interval is arranged at a distance from said special zone greater than or equal to the transverse dimension (i.e. the dimension in the third direction) of a regular interval.
  • the undulations of the membrane can present local discontinuities on certain tank walls when these undulations cross or pass close to a special zone comprising an obstacle, for example a loading and unloading tower, a pump support leg, a gas manifold, a sump and/or a liquid dome.
  • a special zone comprising an obstacle, for example a loading and unloading tower, a pump support leg, a gas manifold, a sump and/or a liquid dome.
  • the tank walls further include two side walls parallel to the first direction and connected, respectively to the first wall or the second wall by two third intermediate walls, and the special zone comprises said third intermediate walls.
  • Singular intervals can be dimensioned in different ways.
  • the singular intervals may or may not be identical.
  • the singular intervals have different dimensions in the third direction.
  • the transverse dimension (that is to say the dimension in the third direction) of at least one, in particular each, singular interval is the sum of the transverse dimension of a regular interval and a negative or positive predetermined constant whose absolute value is less than the dimension of a regular interval, in particular less than half the dimension in the third direction of a regular interval.
  • the predetermined constant can be determined based on the remainder of the integer division of a dimension of the supporting structure in the transverse direction by a predetermined integer.
  • the predetermined constant is chosen greater than a predetermined minimum threshold relating to a construction requirement.
  • the regular intervals have a standard transverse dimension known per se.
  • At least one, several, some, or each, of the undulations spaced by a regular interval is continued continuously at substantially all the transverse edges so as to form an open or closed ring all around the tank in outside the special zone.
  • the thermally insulating barrier can be made in different ways.
  • the thermally insulating barrier of each of the first wall, the second wall and the end walls and where appropriate the first and second intermediate walls comprises: rows of insulating panels oriented perpendicular to the transverse edges and juxtaposed in a repeated pattern in the third direction, and to the right of said or each singular interval, at least one row of singular insulating panels having a width different from a width of the repeated pattern .
  • the width of the repeated pattern is an integer multiple of the transverse dimension of the regular interval.
  • the width of the singular insulating panel is less than the width of the repeated pattern.
  • the width of the singular insulating panel is a function of the regular interval and the singular interval.
  • the sealing membrane of each of the first wall, the second wall and the end walls and where appropriate the first and second intermediate walls is formed by a plurality of rectangular metal sheets having the series of undulations.
  • At least one metal sheet comprises a corrugation arranged in line with a first edge of a row of insulating panels or a row of singular insulating panels and a corrugation arranged in line with a second opposite edge at the first edge.
  • At least one singular interval is arranged between two corrugations of the same metal sheet.
  • said or each singular interval is formed between a first corrugation arranged on a first of said metal sheets adjacent to an edge of said first metal sheet and a second corrugation arranged on a second of said metal sheets adjacent to the first sheet metal, the second corrugation being adjacent to an edge of the second metal sheet turned towards said first metal sheet.
  • a dimension of the second metal sheet in the third direction is an integer multiple of the regular interval.
  • the dimension of a metal sheet can be equal to the dimension of a row of insulating panels in the third direction.
  • the edge of the first sheet is a jagged edge forming a part uneven in relation to a central portion of said first sheet and configured for overlap welding of the first metal sheet on the second metal sheet.
  • the singular interval is adjusted by adjusting the distance of the jogged edge relative to the first undulation adjacent to said jogged edge.
  • the welding of the first metal sheet and the second metal sheet is carried out at a distance greater than 50 mm, in particular greater than 100 mm, from the corrugation adjacent to the edge of the second sheet.
  • the edge of the first metal sheet and the edge of the second metal sheet are welded to each other to the right of one of said rows of singular insulating panels.
  • At least one singular insulating panel comprises a metal anchor strip arranged opposite the first metal sheet and the second metal sheet, and in which the second metal sheet is welded to said metal anchor strip .
  • the first metal sheet comprises a number of corrugations less than or equal to the number of corrugations of the second metal sheet.
  • the number of corrugations of the first metal sheet is a function of the difference between the singular interval and the regular interval.
  • the number of corrugations of the first metal sheet may be less than the number of corrugations of the second sheet if the transverse dimension of the singular interval is greater than the transverse dimension of the regular interval.
  • the number of corrugations of the first metal sheet may be equal to the number of corrugations of the second metal sheet if the transverse dimension of the singular interval is less than the transverse dimension of the regular interval.
  • the tank walls further include two side walls parallel to the first direction and connected respectively to the first wall or the second wall, possibly via two third intermediate walls, and to the walls of end, possibly via two fourth intermediate walls.
  • the third intermediate walls are walls of longitudinal chamfer of the tank.
  • the fourth intermediate walls are vertical chamfer walls of the tank.
  • the total number of longitudinal edges is equal to 4, 6 or 8.
  • the total number of longitudinal edges is equal to 4, 6 or 8.
  • Such a tank can be part of a land storage installation, for example to store liquefied gas or be installed in a floating, coastal or deep water structure, in particular an LNG ship, an LPG transport ship, a floating storage and regasification unit (FSRU), a floating production and offshore storage unit (FPSO) and others.
  • a floating storage and regasification unit FSRU
  • FPSO floating production and offshore storage unit
  • a ship comprising a double hull and such a tank integrated into said double hull as a supporting structure.
  • the invention also provides a method of loading or unloading such a vessel, in which a fluid is conveyed through insulated pipes from or to a floating or terrestrial storage installation to or from the tank of the ship.
  • the invention also provides a transfer system for a fluid, the system comprising the aforementioned vessel, insulated pipes arranged so as to connect the tank installed in the hull of the vessel to a floating or land storage installation and a pump for driving fluid through the insulated pipelines to or from the floating or land-based storage facility to or from the vessel tank.
  • said tank is configured as a fuel tank for a propulsion system of the ship.
  • THE figures 1 and 2 show a perspective view of a tank 100 for storing a liquefied gas, such as liquefied natural gas (LNG).
  • a liquefied gas such as liquefied natural gas (LNG).
  • the tank 100 is arranged in a supporting structure which can in particular be formed by or in the hull or double hull of a ship or a floating structure.
  • the supporting structure comprises a plurality of supporting walls 102 defining the general shape of the tank 100, usually a polyhedral shape.
  • Each of the bottom wall 106, the ceiling wall 104 and the end walls 108 comprises a sealing membrane intended to be in contact with the product present in the tank 100 and arranged on a thermally insulating barrier not shown on THE figures 1-3 .
  • the waterproofing membrane comprises series of corrugations 118 parallel to each other and perpendicular to transverse edges 107 formed by the bottom wall 106 or the ceiling wall 104 and the end walls 108.
  • the corrugations 118 are spaced apart from each other in a transverse direction 103 perpendicular to the longitudinal direction 101.
  • the spaces between the undulations comprise a plurality of regular intervals 120 and two singular intervals 122 arranged symmetrically on either side of a mediating line 124 of the bottom wall 106 , the ceiling wall 104 and the end walls 108.
  • the dimension of the singular intervals 122 in the transverse direction 103 is different from the dimension of the regular intervals 120 in the transverse direction 103.
  • the undulations 118 spaced by the singular interval 122 on the end walls 108 are each extended continuously by a corresponding undulation of the bottom wall 106 and a corresponding undulation of the ceiling wall 104.
  • the undulations 118 of the walls end 108 spaced by the regular interval 120 are each continuously extended outside the undulations 118 opening onto the longitudinal chamfer walls 112 and 114.
  • a discontinuity of the undulations 118 may exist at one or more of the transverse edges 107.
  • the undulations 118 continuously cross at least three transverse edges 107.
  • a singular interval 122 is formed on each side of the mediating line 124 of the bottom wall 106.
  • two or more singular intervals 122 can be formed on each side of the mediating line 124.
  • two or more intervals singular intervals 122 can be formed on each side of the mediating line 124.
  • consecutive singular intervals 122 we mean that the two or more singular intervals 122 are on either side of the same undulation, that is to say say that no regular interval 120 is formed between these singular intervals 122.
  • the one or two or more singular intervals 122 whether consecutive or not, can be formed on only one side of the mediating line 124 of the bottom wall 106.
  • the tank 100 further comprises a liquid dome 116 passing through the ceiling wall 104 of the tank 100 in a direction of height 105.
  • the liquid dome 116 can contain a loading and unloading tower 69 of the tank 100.
  • the dome liquid 116 is arranged at a distance from the end wall 108 and at mid-width of the ceiling wall 104 in the transverse direction 103.
  • each singular interval 122 is arranged at a distance equal to a regular interval 120 or more of the liquid dome 116.
  • each singular interval 122 is arranged at a distance greater than a regular interval 120 from each of the longitudinal chamfer walls 114 and 112.
  • the dimensions in the transverse direction 103 are referred to by the width.
  • the integer multiple N is chosen so that X is between -po reg /2 and +po reg /2.
  • the po reg width is chosen according to a construction standard for watertight tanks and can have different values, for example 340 mm or 500 mm.
  • FIG. 4 is a sectional view along line VI-VI of figures 1 and 2 corresponding to an area of the tank 100 comprising only regular intervals 120.
  • FIG. 4 shows the bottom wall 106 comprising the thermally insulating barrier 202 arranged on a supporting wall 102 of the supporting structure and is held against the supporting wall 102 by fixing means 204.
  • the fixing means 204 can be any type of fixing means suitable such as threaded studs projecting towards the inside of the tank 100.
  • the thermally insulating barrier 202 is formed by a plurality of rows of insulating panels 202, and 202 2 juxtaposed in the transverse direction 103.
  • Each row comprises insulating panels 202 1 and 202 2 juxtaposed in the longitudinal direction 101 for the wall bottom 106 and the ceiling wall 108 and in the height direction 105 for the end walls 108.
  • the bottom wall 106 further comprises the sealing membrane 206 carried by one face of the thermally insulating barrier 202 opposite the supporting wall 102 1 .
  • the sealing membrane 206 comprises a plurality of metal sheets 207 1 and 207 2 each having a substantially rectangular shape.
  • the metal sheets 207 are, for example, made of Invar ® : that is to say an alloy of iron and nickel whose expansion coefficient is typically between 1.2.10 -6 and 2.10 -6 K', or in an iron alloy with a high manganese content whose expansion coefficient is typically of the order of 7.10 6 K -1 .
  • the metal sheets 207 can also be made of stainless steel or aluminum.
  • the metal sheets 207 1 and 207 2 are connected to the insulating panels 202 1 and 202 2 by welding the metal sheets 207 1 and 207 2 to anchoring strips 210 provided in the insulating panels 202 1 and 202 2 , for example plates metal extending over a part of said insulating panels 202 1 and 202 2 .
  • the anchoring strips 210 are arranged in recesses provided in the insulating panels 202, and 202 2 and fixed to the insulating panels 202 1 and 202 2 by screws, rivets or staples for example.
  • the welding of the metal sheets 207 1 and 207 2 to the anchoring strips 210 is carried out by a tack weld.
  • the sealing membrane 206 comprises the corrugations 118 spaced by the regular interval 120 and is arranged so that a first corrugation 118 is at the right of a first edge 212 1 of the row of insulating panels 202, and that a second undulation 118 is in line with a second edge 212 2 opposite the first edge 212 1 .
  • the width of the insulating panel 202 1 carrying corrugations separated by the regular interval 120 only is an integer multiple of the width po reg . Gaps may exist between the rows of insulating panels 202 1 and 202 2 .
  • the gaps between the rows of insulating panels 202 and 202 2 are negligible.
  • the gaps between the rows of insulating panels 202, and 202 2 can be filled with a heat-insulating pad such as glass wool, rock wool, etc.
  • FIG. 5 corresponds to a zone of the tank 100 comprising a singular interval 122 produced according to a first embodiment.
  • the width of the singular interval 122 calculated by equation (2) is greater than the width of the regular interval 120.
  • the metal sheet 207 3 comprises a number M 3 of corrugations 118 less than the number M 1 of corrugations 118 of the metal sheet 207 1 when the width of the singular interval 122 is greater than the width of the interval regular 120.
  • the width of the singular insulating panels 202 3 is less than the width of the insulating panels 202 1 to limit the impact of structural modifications of the tank 100.
  • the number M 3 of corrugations 118 is equal to 8.
  • FIG. 6 corresponds to a zone of the tank 100 comprising a singular interval 122 produced according to a second embodiment.
  • the width of the singular interval 122 calculated by equation (2) is less than the width of the regular interval 120.
  • the sealing membrane 206 comprises in this case a metal sheet 207 4 comprising the singular interval 122 and arranged on a row of singular insulating panels 202 4 .
  • the number M 3 of corrugations 118 is equal to the number M 1 of corrugations 118 of the metal sheet 207 1 .
  • the width of the singular interval 122 being less than the width of the regular interval 120, the width of the singular insulating panels 202 4 remains less than the width of the insulating panels 202 1 .
  • the rows of single insulating panels 202 3 and 202 4 are arranged adjacent to a row of insulating panels 202 1 .
  • the rows of individual insulating panels 202 3 and 202 4 are separated from each other by at least one row of insulating panels 202 1 .
  • the ceiling wall 104 and the end walls 108 although not shown in the figures, comprise the same elements as the bottom wall 106 shown in the figures. figures 4 to 6 .
  • the singular interval 122 is formed between two adjacent metal sheets 302 and 304 of the sealing membrane 206, as shown in the Figure 7 .
  • the singular interval 122 is formed between a first corrugation 118 1 arranged on the side of a first edge 306 of the first metal sheet 302 and a second corrugation 118 2 arranged on the side of a second edge 308 of the second metal sheet 304.
  • the first edge 306 is a jagged edge presenting a folding of the first metal sheet 302 to form a difference in height of the edge 306 relative to the first metal sheet 302 greater than the thickness of the second metal sheet 304.
  • This arrangement allows a covering of the second metal sheet 304 by the first metal sheet 302 at a distance 310 from the first corrugation 118 1 and at a distance 312 from the second corrugation 118 2 .
  • the singular interval 122 is the sum of the two distances 312 and 310.
  • the metal sheets 302 and 308 are provided with standard dimensions, for example the distance 312 is half of the regular interval 120.
  • the folding of the metal sheet 302 makes it possible to modify its width to adjust the distance 310 and therefore the width of the singular interval 122 to the desired value without modifying the second metal sheet 304.
  • This arrangement makes it possible to simplify the cost and the production of the tank 100 for ships with any dimensions.
  • the first metal sheet 302 and the second metal sheet 304 are assembled by welding the first edge 306 to the second edge 308 to the right of a row of single insulating panels 202 3 or 202 4 .
  • the second edge 308 can be welded to the anchor strip 210 of a row of single insulating panels 202 3 or 202 4 .
  • the welding of the metal sheets 302 and 304 is preferably carried out by a tack weld.
  • the distance 310 and the distance 312 are greater than a predetermined threshold to avoid damaging the corrugations 118 1 or 118 2 by welding the metal sheets 302 and 304, for example this predetermined threshold is equal to 100 mm.
  • the singular intervals 122 have identical dimensions in the transverse direction 103. However, as a variant, the singular intervals 122 may have different dimensions in the transverse direction 103.
  • each of the tank walls may comprise a second thermally insulating barrier arranged between the thermally insulating barrier 202 and the supporting structure and a second sealing membrane included between the thermally insulating barrier 202 and the second thermally insulating barrier.
  • the sealing membrane 206 may further comprise a second series of corrugations perpendicular to the first series of corrugations 118.
  • the longitudinal chamfer walls 112 and 114 and the side walls 110 may comprise a multilayer structure comprising in the direction of thickness starting from the supporting structure towards the interior of the tank 100: a secondary thermally insulating barrier, a secondary sealing membrane, a primary thermally insulating barrier and a primary sealing membrane.
  • the longitudinal direction 101 of the tank can correspond to the longitudinal direction of the ship, in particular an LNG ship, in which the tank 100 is installed, but this is not obligatory.
  • the figure 8 represents an embodiment in which the longitudinal direction of the tank 100 corresponds to the width direction of the vessel 170 in which the tank is installed.
  • the transverse edges 107 of the tank extend parallel to a longitudinal axis AA of the ship 170 and the singular interval(s) 122 are formed between undulations 118 which extend perpendicular to the longitudinal axis AA of the ship 170.
  • the tank geometry may include upper chamfer walls 114 and lower chamfer walls 112 as on the figures 1 to 3 , or only upper chamfer walls 114 or only lower chamfer walls 112 or no chamfer walls as shown in Figure figure 8 .
  • the tank geometry may include longitudinal chamfer walls oriented parallel to the longitudinal direction 101 of the tank as illustrated in the figures 1 to 3 or, conversely, it may include chamfer walls transverse to the undulations 118, oriented obliquely to the longitudinal direction 101 of the tank and arranged between the end walls 108 and the ceiling wall 104 and/or bottom wall 106.
  • chamfer walls transverse to the undulations 118 are not shown on the figure 2 And 3 but can be easily designed from the figure 2 , if we mentally rotate the orientation of the undulations 118 and the arrow 101 by 90° around a vertical axis.
  • tank 100 of the figure 8 could include upper chamfer walls and/or lower chamfer walls parallel to the longitudinal axis AA of the ship 170, therefore chamfer walls transverse to the undulations 118, so that the total number of transverse edges 107 would be greater than four, for example equal to six or eight.
  • the undulations 118 spaced by the or each singular interval 122 continuously cross at least half of the transverse edges 107, preferably all the transverse edges 107, except possibly only one.
  • a discontinuity of the undulations 118 may exist at one or more of the transverse edges 107, but preferably at only one of the transverse edges 107 or none.
  • the tank 100 can be a fuel tank for a propulsion system 65 supplied with combustible gas from the tank 100 by a supply device 66 known elsewhere.
  • the ship 170 can have various applications: transport of passengers, transport of goods, particularly in containers or in bulk, etc.
  • FIG. 9 is a schematic representation analogous to the figure 8 , showing a variant of the tank 100.
  • the sealing membrane 206 may further comprise second undulations perpendicular to the undulations 118.
  • second undulations 138 On the Figure 9 , two of these second undulations 138 have been shown.
  • the number 127 designates the longitudinal edges formed by the bottom wall 106 or the ceiling wall 104 and the side walls 110, which are therefore transverse to the second undulations 138
  • the second undulations 138 extend perpendicular to the undulations 118 and therefore parallel to the transverse direction 103.
  • the second undulations 138 are spaced apart from each other in the longitudinal direction 101.
  • the spaces between the second undulations 138 comprise a plurality of regular intervals (not shown) and one or more singular intervals 142 (only one of which is shown on the Figure 9 ).
  • the dimension of the singular interval(s) 142 in the longitudinal direction 101 is different from the dimension of the regular intervals in the longitudinal direction 101.
  • the second undulations 138 spaced by the singular interval 142 on the side walls 110 are each extended continuously by a second corresponding undulation of the bottom wall 106 and a second corresponding undulation of the ceiling wall 104.
  • the second undulations 138 spaced by the or each singular interval 142 continuously cross at least half of the longitudinal edges 127, preferably all the longitudinal edges 127, except possibly only one.
  • a discontinuity of the second undulations 138 may exist at one or more of the longitudinal edges 127, but preferably at only one of the longitudinal edges 127 or none.
  • the singular interval(s) 142 may or may not be produced in a manner analogous to the singular intervals 122 already described.
  • the singular intervals 142 may or may not have a dimension transverse to the second undulations 138, that is to say parallel to the longitudinal direction 101, equal to the transverse dimension of the singular intervals 122.
  • the singular intervals 142 may present dimensions transverse to the second undulations 138 identical to each other or different.
  • FIG 10 represents another embodiment of the tank 100, taken in the same orientation as on the Figure 9 .
  • the side walls 110 and the end walls 108 have horizontal undulations 158 parallel to each other and spaced in the vertical direction 105. Only two of these horizontal undulations 158 are shown on the Figure 9 .
  • the number 147 designates the vertical edges formed by the side walls 110 and the end walls 108.
  • the horizontal undulations 158 are spaced apart in the vertical direction 105. Analogously to the undulations 118, the spaces between the horizontal undulations 158 comprise a plurality of regular intervals (not shown) and one or more singular intervals 162 (only one of which is shown on the Figure 10 ). The dimension of the singular interval(s) 162 in the vertical direction 105 is different from the dimension of the regular intervals in the vertical direction 105.
  • the horizontal undulations 158 spaced by the singular interval 162 continuously cross at least half of the vertical edges 147, preferably all the vertical edges 147, except possibly only one.
  • a discontinuity of the horizontal undulations 158 may exist at one or more of the vertical edges 147, but preferably at only one of the vertical edges 147 or none.
  • the singular interval(s) 162 may or may not be produced in a manner analogous to the singular intervals 142 and 122 already described.
  • the singular intervals 162 may or may not have a dimension transverse to the horizontal undulations 158, that is to say parallel to the vertical direction 105, equal to the transverse dimension of the singular intervals 142 and/or 122.
  • the singular intervals 162 may have dimensions transverse to the second undulations 158 which are identical to each other or different.
  • the tank geometry may optionally have vertical chamfer walls, oriented parallel to the vertical direction 105 of the tank, and arranged between the side walls 110 and the end walls 108.
  • the vertical edges 147 are then formed by the vertical chamfer walls, the side walls 110 and the end walls 108.
  • the horizontal undulations 158 continuously cross at least half of these vertical edges 147, preferably all the vertical edges 147, except possibly only one.
  • the technique described above for producing a watertight and thermally insulating tank for storing a fluid can also be used in different types of tanks, for example to constitute a tank for liquefied natural gas (LNG) in an on-shore installation or in a floating structure such as an LNG tanker or other vessel, for example any vessel powered by LNG.
  • LNG liquefied natural gas
  • a cutaway view of an LNG ship 70 shows a watertight and insulated tank 71 of generally prismatic shape mounted in the double hull 72 of the ship.
  • loading/unloading pipes 73 arranged on the upper deck of the ship can be connected, by means of appropriate connectors, to a maritime or port terminal to transfer a cargo of LNG from or to the tank 71.
  • FIG. 11 represents an example of a maritime terminal comprising a loading and unloading station 75, an underwater pipeline 76 and an onshore installation 77.
  • the loading and unloading station 75 is a fixed offshore installation comprising a movable arm 74 and a tower 78 which supports the mobile arm 74.
  • the mobile arm 74 carries a bundle of insulated flexible pipes 79 which can connect to the loading/unloading pipes 73.
  • the adjustable mobile arm 74 adapts to all LNG carrier templates.
  • a connection pipe not shown extends inside the tower 78.
  • the loading and unloading station 75 allows the loading and unloading of the LNG tanker 70 from or to the onshore installation 77.
  • the underwater pipe 76 allows the transfer of the liquefied gas between the loading or unloading station 75 and the onshore installation 77 over a long distance, for example 5 km, which makes it possible to keep the LNG ship 70 at a long distance from the coast during loading and unloading operations.
  • pumps on board the ship 70 and/or pumps fitted to the on-shore installation 77 and/or pumps fitted to the loading and unloading station 75 are used.
  • a somewhat similar installation can be used to refuel an LNG-powered vessel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Claims (23)

  1. Wasserdichtes Gefäß (100), das in eine polyedrische Tragstruktur integriert ist, wobei das Gefäß eine Vielzahl von Gefäßwänden mit einer ersten Wand (106) und mit einer zweiten Wand (104), die parallel zu einer ersten Richtung (101) des Gefäßes und in einer zweiten Richtung (105) des Gefäßes beabstandet sind, umfasst, wobei die Gefäßwände ferner zwei Endwände (108) umfassen, die orthogonal zu der ersten Richtung des Gefäßes sind und die erste Wand und die zweite Wand verbinden, gegebenenfalls durch erste Zwischenwände, die zwischen der ersten Wand und den beiden Endwänden (108) angeordnet sind, und/oder durch zweite Zwischenwände, die zwischen der zweiten Wand und den beiden Endwänden (108) angeordnet sind, wobei jede Gefäßwand von einer entsprechenden tragenden Wand (102) der Tragstruktur getragen ist,
    wobei jede Wand des Gefäßes eine mehrschichtige Struktur umfasst, die nacheinander in Dickenrichtung von der Außenseite zur Innenseite des Gefäßes eine wärmeisolierende Barriere (202), die gegen die entsprechende tragende Wand gehalten ist, und eine Dichtungsmembran (206), die von der wärmeisolierenden Barriere getragen ist, umfasst,
    wobei die Dichtungsmembran einer jeden ersten Wand, zweiten Wand und der Endwände eine Reihe von Wellen (118) umfasst, die parallel zueinander und senkrecht zu Querkanten (107) verlaufen, die parallel zu einer dritten Richtung (103) des Gefäßes verlaufen und an der Schnittstelle zwischen der ersten Wand oder der zweiten Wand, den Endwänden und gegebenenfalls den dazwischen angeordneten Zwischenwänden ausgebildet sind, wobei die parallelen Wellen derart voneinander beabstandet sind, dass sie in der dritten Richtung bilden:
    - eine Vielzahl von identischen regulären Intervallen (120), wobei jedes reguläre Intervall zwischen zwei angrenzenden Wellen gebildet ist, und
    - mindestens ein singuläres Intervall (122), das sich von dem regulären Intervall unterscheidet,
    dadurch gekennzeichnet, dass die mindestens zwei angrenzenden Wellen, die durch das singuläre Intervall (122) voneinander beabstandet sind, an mindestens drei der Querkanten (107) kontinuierlich fortgesetzt werden, vorzugsweise an einer Anzahl von Querkanten, die größer als die Hälfte einer Gesamtzahl von Querkanten ist.
  2. Gefäß nach Anspruch 1, wobei die Gesamtzahl der Querkanten (107) gleich 4, 6 oder 8 ist.
  3. Gefäß nach Anspruch 1 oder 2, wobei die mindestens zwei angrenzenden Wellen, die durch das singuläre Intervall beabstandet sind, an allen Querkanten bis auf eine kontinuierlich fortgesetzt sind, so dass ein offener Ring um das Gefäß herum gebildet ist.
  4. Gefäß nach Anspruch 1 oder 2, wobei die mindestens zwei angrenzenden Wellen, die durch das singuläre Intervall beabstandet sind, an allen Querkanten kontinuierlich fortgesetzt sind, so dass ein geschlossener Ring um das Gefäß herum gebildet ist.
  5. Gefäß nach einem der Ansprüche 1 bis 4, wobei die Wellen einer jeden ersten Wand, zweiten Wand und der Endwände und gegebenenfalls der Zwischenwände zwei oder mehr singuläre Intervalle bilden, die durch mindestens ein reguläres Intervall voneinander getrennt sind, oder zwei oder mehr aufeinanderfolgende singuläre Intervalle bilden.
  6. Gefäß nach Anspruch 5, wobei für eine jede erste Wand, zweite Wand und die Endwände und gegebenenfalls die Zwischenwände die singulären Intervalle symmetrisch auf beiden Seiten einer Mittellinie dieser Wand angeordnet sind.
  7. Gefäß nach einem der Ansprüche 1 bis 6, wobei die singulären Intervalle unterschiedliche Querabmessungen aufweisen.
  8. Gefäß nach einem der Ansprüche 1 bis 7, wobei die Querabmessung mindestens eines, insbesondere jedes, singulären Intervalls die Summe aus der Querabmessung eines regulären Intervalls und einer negativen oder positiven vorbestimmten Konstante ist, deren Absolutwert kleiner als die Abmessung eines regulären Intervalls, insbesondere kleiner als die Hälfte der Abmessung eines regulären Intervalls, ist.
  9. Gefäß nach einem der Ansprüche 1 bis 8, umfassend mindestens einen Sonderbereich und das oder jedes singuläre Intervall in einem Abstand von dem Sonderbereich angeordnet ist, der größer als oder gleich der Querabmessung eines regulären Intervalls ist.
  10. Gefäß nach Anspruch 9, wobei die Gefäßwände weiterhin zwei Seitenwände (110) umfassen, die parallel zur ersten Richtung (101) verlaufen und durch zwei dritte Zwischenwände (112, 114) mit der ersten Wand beziehungsweise der zweiten Wand verbunden sind, und wobei die Sonderzone die dritten Zwischenwände umfasst.
  11. Gefäß nach einem der Ansprüche 1 bis 10, wobei die wärmeisolierende Barriere einer jeden ersten Wand, zweiten Wand und der Endwände und gegebenenfalls der ersten und zweiten Zwischenwände umfasst:
    Reihen von Isolierplatten, die senkrecht zu den Querkanten ausgerichtet und in einem sich wiederholenden Muster in der dritten Richtung nebeneinander und direkt unter dem oder jedem einzelnen Intervall mindestens eine Reihe von singulären Isolierplatten mit einer Breite, die sich von einer Breite des sich wiederholenden Musters unterscheidet, angeordnet sind.
  12. Gefäß nach einem der Ansprüche 1 bis 11, wobei die Dichtungsmembran einer jeden ersten Wand, zweiten Wand und der Endwände und gegebenenfalls der ersten und zweiten Zwischenwand durch eine Vielzahl von rechteckigen Metallblechen aufweisend eine Reihe von Wellen gebildet ist,
    und wobei das oder jedes singuläre Intervall zwischen einer ersten Welle, die auf einem ersten der Metallbleche angrenzend an eine Kante des ersten Metallblechs angeordnet ist, und einer zweiten Welle, die auf einem zweiten der Metallbleche angrenzend an das erste Metallblech angeordnet ist, gebildet ist, wobei die zweite Welle angrenzend an eine Kante des zweiten Metallblechs, die dem ersten Metallblech zugewandt ist, angeordnet ist.
  13. Gefäß nach Anspruch 12, wobei die Kante des ersten Blechs eine Wackelbrett ist, die einen in Bezug auf einen Mittelabschnitt des ersten Blechs abgesetzten Teil bildet und zum Überlappungsschweißen des ersten Metallblechs auf das zweite Metallblech konfiguriert ist.
  14. Gefäß nach einem der Ansprüche 12 und 13 in Verbindung mit Anspruch 11, wobei der Rand des ersten Metallblechs und der Rand des zweiten Metallblechs direkt unter einer der genannten Reihen von singulären Isolierplatten miteinander verschweißt sind.
  15. Gefäß nach Anspruch 14, wobei mindestens eine singuläre Isolierplatte einen Metallverankerungsstreifen umfasst, der gegenüber dem ersten Metallblech und dem zweiten Metallblech angeordnet ist, und wobei das zweite Metallblech mit dem Metallverankerungsstreifen verschweißt ist.
  16. Gefäß nach einem der Ansprüche 12 bis 15, wobei das erste Metallblech eine Wellenzahl aufweist, die kleiner oder gleich der Wellenzahl des zweiten Metallblechs ist.
  17. Gefäß nach einem der Ansprüche 1 bis 16, wobei die Gefäßwände ferner zwei Seitenwände (110) umfassen, die parallel zur ersten Richtung (101) verlaufen und jeweils mit der ersten Wand (106) oder der zweiten Wand (104), gegebenenfalls über zwei dritte Zwischenwände, und mit den Endwänden (108), gegebenenfalls über zwei vierte Zwischenwände, verbunden sind.
  18. Gefäß nach Anspruch 17, wobei die Dichtungsmembran einer jeden ersten Wand (106), zweiten Wand (104) und der Seitenwände (110) eine Reihe von zusätzlichen ersten Wellen (138) umfasst, die parallel zueinander und senkrecht zu Längskanten (127) verlaufen, die parallel zur ersten Richtung (101) des Gefäßes verlaufen und an der Schnittstelle zwischen der ersten Wand (106) oder der zweiten Wand (104), den Seitenwänden (110) und gegebenenfalls den dritten Zwischenwänden gebildet sind, und wobei die ersten zusätzlichen Wellen (138) so voneinander beabstandet sind, dass sie in der ersten Richtung (101) bilden:
    - eine Vielzahl von identischen regulären Intervallen, wobei jedes reguläre Intervall zwischen zwei angrenzenden ersten zusätzlichen Wellen (138) gebildet ist, und
    - mindestens ein singuläres Intervall (142), das sich von dem regulären Intervall unterscheidet,
    - wobei die mindestens zwei angrenzenden ersten zusätzlichen Wellen, die durch das singuläre Intervall (142) voneinander beabstandet sind, an mindestens drei der Längskanten (127) kontinuierlich fortgesetzt sind, vorzugsweise an einer Anzahl von Längskanten, die größer als die Hälfte einer Gesamtzahl von Längskanten ist.
  19. Gefäß nach Anspruch 17 oder 18, wobei die Dichtungsmembran einer jeden Endwand (108) und Seitenwand (110) eine Reihe von zusätzlichen zweiten Wellen (158) umfasst, die parallel zueinander und senkrecht zu vertikalen Kanten (147) verlaufen, die parallel zur zweiten Richtung (105) des Gefäßes verlaufen und an der Schnittstelle zwischen den Endwänden (108) gebildet sind, wobei die zweiten zusätzlichen Wellen (158) so beabstandet sind, dass sie in der zweiten Richtung (105) bilden:
    - eine Vielzahl von identischen regulären Intervallen, wobei jedes reguläre Intervall zwischen zwei angrenzenden zweiten zusätzlichen Wellen gebildet ist, und
    - ein singuläres Intervall (162), das sich vom regulären Intervall unterscheidet,
    - wobei die mindestens zwei angrenzenden zweiten zusätzlichen Wellen (158), die durch das singuläre Intervall (162) beabstandet sind, an mindestens drei der vertikalen Kanten (147) kontinuierlich fortgesetzt sind, vorzugsweise an einer Anzahl von vertikalen Kanten, die größer als die Hälfte einer Gesamtzahl von vertikalen Kanten ist.
  20. Schiff (70, 170) umfassend einen Doppelrumpf und ein Gefäß (100) nach einem der Ansprüche 1 bis 19, das als tragende Struktur in den Doppelrumpf integriert ist.
  21. Schiff (170) nach Anspruch 20, wobei das Gefäß (100) als Kraftstofftank für ein Antriebssystem (65) des Schiffes konfiguriert ist.
  22. Transfersystem für ein Fluid, wobei das System das Schiff (70, 170) nach Anspruch 20 oder 21, isolierte Leitungen, die so angeordnet sind, dass sie das im Rumpf des Schiffes (70, 170) installierte Gefäß (100) mit einer schwimmenden oder landgestützten Lagereinrichtung verbinden, und eine Pumpe umfasst, die ein Fluid durch die isolierten Leitungen von oder zu der schwimmenden oder landgestützten Lagereinrichtung zu oder von dem Gefäß (100) des Schiffes (70, 170) bewegt.
  23. Verfahren zum Be- oder Entladen eines Schiffes (70, 170) nach Anspruch 20 oder 21, wobei ein Fluid durch isolierte Leitungen von oder zu einer schwimmenden oder landgestützten Lagereinrichtung zu oder von dem Gefäß (100) des Schiffes (70, 170) geleitet wird.
EP20754752.2A 2019-08-12 2020-08-11 Abgedichteter und wärmeisolierender tank Active EP4013989B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1909166A FR3099946B1 (fr) 2019-08-12 2019-08-12 Cuve étanche et thermiquement isolante
PCT/EP2020/072541 WO2021028445A1 (fr) 2019-08-12 2020-08-11 Cuve étanche et thermiquement isolante

Publications (2)

Publication Number Publication Date
EP4013989A1 EP4013989A1 (de) 2022-06-22
EP4013989B1 true EP4013989B1 (de) 2024-06-19

Family

ID=68581984

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20754752.2A Active EP4013989B1 (de) 2019-08-12 2020-08-11 Abgedichteter und wärmeisolierender tank

Country Status (5)

Country Link
EP (1) EP4013989B1 (de)
KR (1) KR20220044582A (de)
CN (1) CN114375379B (de)
FR (1) FR3099946B1 (de)
WO (1) WO2021028445A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021247928A1 (en) 2020-06-03 2021-12-09 Informed Data Systems Inc. D/B/A One Drop Systems for adaptive healthcare support, behavioral intervention, and associated methods
CN115465476B (zh) * 2022-07-28 2024-06-25 上海空间推进研究所 用于管理推进剂的挤压隔离装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07172381A (ja) * 1993-12-21 1995-07-11 Nkk Corp メンブレン溶接用拘束治具
FR2961580B1 (fr) * 2010-06-17 2012-07-13 Gaztransport Et Technigaz Cuve etanche et isolante comportant un pied de support
KR101625877B1 (ko) * 2014-07-16 2016-06-01 삼성중공업 주식회사 액화가스 화물창 및 그 제작방법
KR101697821B1 (ko) * 2014-10-21 2017-01-19 현대중공업 주식회사 액체화물 저장탱크 및 이를 구비한 해양구조물
FR3042253B1 (fr) * 2015-10-13 2018-05-18 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante
FR3050008B1 (fr) * 2016-04-11 2018-04-27 Gaztransport Et Technigaz Cuve etanche a membranes d'etancheite ondulees
FR3069903B1 (fr) 2017-08-07 2019-08-30 Gaztransport Et Technigaz Cuve etanche et themiquement isolante

Also Published As

Publication number Publication date
EP4013989A1 (de) 2022-06-22
FR3099946B1 (fr) 2021-07-09
KR20220044582A (ko) 2022-04-08
FR3099946A1 (fr) 2021-02-19
CN114375379B (zh) 2023-09-26
CN114375379A (zh) 2022-04-19
WO2021028445A1 (fr) 2021-02-18

Similar Documents

Publication Publication Date Title
EP2956352B1 (de) Fluiddichte und thermisch isolierte wand für einen tank für fluide
EP3232112B1 (de) Dichter tank mit gewellten dichtungsmembranen
EP3940287A1 (de) Dichter und wärmeisolierter behälter mit einer in orthogonalen falten gewellten metallmembran
EP3365592B1 (de) Behälter mit isolierenden eckblöcken, die mit belastungslindernden schlitzen versehen sind
FR3054872A1 (fr) Structure de paroi etanche
WO2019155154A1 (fr) Installation pour le stockage et le transport d'un gaz liquefie
WO2019239048A1 (fr) Cuve etanche et thermiquement isolante
EP4013989B1 (de) Abgedichteter und wärmeisolierender tank
FR3085199A1 (fr) Paroi de cuve etanche et thermiquement isolante
WO2018024982A1 (fr) Structure de paroi etanche
FR3078136A1 (fr) Paroi de cuve etanche comprenant une membrane d'etancheite comportant une zone renforcee
WO2019239071A1 (fr) Cuve étanche et thermiquement isolante à ondulations continues dans le dôme liquide
FR3080905A1 (fr) Paroi de cuve etanche comprenant une membrane d'etancheite
WO2018122498A1 (fr) Cuve etanche et thermiquement isolante de stockage d'un fluide
WO2019145635A1 (fr) Cuve etanche et thermiquement isolante
WO2020012084A1 (fr) Paroi de cuve comportant une membrane d'etancheite presentant une ondulation ayant une portion curviligne renforcee
EP3645933B1 (de) Fluiddichte membran und verfahren zur montage einer fluiddichten membran
WO2019239053A1 (fr) Cuve etanche munie d'un element de jonction ondule
EP3665414A1 (de) Abgedichteter und wärmeisolierender tank
WO2022074226A1 (fr) Cuve étanche et thermiquement isolante
WO2021013856A1 (fr) Membrane d'etancheite pour cuve etanche de stockage de fluide
FR3111176A1 (fr) Paroi de cuve pour cuve étanche et thermiquement isolante
WO2022069751A1 (fr) Procédé d'assemblage et installation de cuve de stockage pour gaz liquéfié
WO2019145633A1 (fr) Cuve etanche et thermiquement isolante
WO2020058600A1 (fr) Installation de stockage pour gaz liquéfié

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220218

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240221

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP