EP4010647A1 - Cooling and/or liquefying system and method - Google Patents

Cooling and/or liquefying system and method

Info

Publication number
EP4010647A1
EP4010647A1 EP20743083.6A EP20743083A EP4010647A1 EP 4010647 A1 EP4010647 A1 EP 4010647A1 EP 20743083 A EP20743083 A EP 20743083A EP 4010647 A1 EP4010647 A1 EP 4010647A1
Authority
EP
European Patent Office
Prior art keywords
cooling
bypass
exchanger
common heat
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20743083.6A
Other languages
German (de)
French (fr)
Inventor
Fabien Durand
Rémi NICOLAS
Cécile GONDRAND
Jean-Marc Bernhardt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP4010647A1 publication Critical patent/EP4010647A1/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • F25B1/053Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C6/00Methods and apparatus for filling vessels not under pressure with liquefied or solidified gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B11/00Compression machines, plants or systems, using turbines, e.g. gas turbines
    • F25B11/02Compression machines, plants or systems, using turbines, e.g. gas turbines as expanders
    • F25B11/04Compression machines, plants or systems, using turbines, e.g. gas turbines as expanders centrifugal type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • F25J1/0025Boil-off gases "BOG" from storages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/005Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0062Light or noble gases, mixtures thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0062Light or noble gases, mixtures thereof
    • F25J1/0065Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0062Light or noble gases, mixtures thereof
    • F25J1/0067Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/007Primary atmospheric gases, mixtures thereof
    • F25J1/0072Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0204Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a single flow SCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0212Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a single flow MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0245Different modes, i.e. 'runs', of operation; Process control
    • F25J1/0248Stopping of the process, e.g. defrosting or deriming, maintenance; Back-up mode or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • F25J1/0277Offshore use, e.g. during shipping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0285Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
    • F25J1/0288Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings using work extraction by mechanical coupling of compression and expansion of the refrigerant, so-called companders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0298Safety aspects and control of the refrigerant compression system, e.g. anti-surge control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/14Power generation using energy from the expansion of the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/04Clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/09Improving heat transfers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • F25J1/0284Electrical motor as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/20Processes or apparatus using other separation and/or other processing means using solidification of components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/66Separating acid gases, e.g. CO2, SO2, H2S or RSH
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/20Integrated compressor and process expander; Gear box arrangement; Multiple compressors on a common shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2280/00Control of the process or apparatus
    • F25J2280/20Control for stopping, deriming or defrosting after an emergency shut-down of the installation or for back up system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2280/00Control of the process or apparatus
    • F25J2280/40Control of freezing of components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/34Details about subcooling of liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank

Definitions

  • the invention relates to a refrigeration device, an installation and a method for cooling and / or liquefaction using such a device.
  • the invention relates more particularly to a device for refrigeration at low temperature, that is to say at a temperature between minus 100 degrees centigrade and minus 273 degrees centigrade, in particular between minus 100 degrees centigrade and minus 253 degrees centigrade, comprising a working circuit forming a loop and containing a working fluid, the device comprising a cooling exchanger intended to extract heat from at least one member by heat exchange with the working fluid circulating in the working circuit, the cooling circuit work forming a cycle comprising in series: a working fluid compression mechanism, a working fluid cooling mechanism, a working fluid expansion mechanism and a working fluid heating mechanism, wherein, the working fluid cooling of the working fluid and the heating mechanism comprise a common heat exchanger in which the working fluid transits against the current in two distinct transit portions of the circuit depending on whether it is cooled or reheated, the device being configured to ensure an equal mass flow rate in said two transit portions in the common heat exchanger.
  • the invention relates in particular to cryogenic refrigerators or liquefiers, for example of the “Turbo Brayton” cycle type or “Turbo Brayton coolers” in which a cycle gas (helium, nitrogen, or other pure gas or mixture) undergoes a thermodynamic cycle. producing cold which can be transferred to an organ or gas to be cooled.
  • a cycle gas helium, nitrogen, or other pure gas or mixture
  • thermodynamic cycle producing cold which can be transferred to an organ or gas to be cooled.
  • These devices are used in a wide variety of applications and in particular for cooling natural gas from a reservoir (for example in boats).
  • the liquefied natural gas is for example sub-cooled to prevent its vaporization or the gaseous part is cooled with a view to its reliquefaction.
  • a natural gas stream can be circulated through a heat exchanger cooled by the refrigerator / liquefier cycle gas.
  • the gas cooled in this exchanger may contain impurities (such as ...) which are liable to solidify at the cold temperatures reached at the exchanger. This can clog the heat exchanger and impair the efficiency of the installation.
  • One solution may be to actively heat the heat exchanger with an electric heater. This is however costly in energy and often ill suited to explosive atmospheres.
  • An aim of the present invention is to overcome all or part of the drawbacks of the prior art noted above.
  • the device according to the invention is essentially characterized in that the device comprises a bypass pipe from one of the two transit portions, said bypass line comprising a bypass valve which, when open, modifies the mass flow rate in one of the two transit portions.
  • embodiments of the invention may include one or more of the following characteristics: when the open bypass valve modifies the mass flow in one of the two transit portions to ensure a different mass flow in said two transit portions so as to ensure specific heating or less cooling at the level of the cooling exchanger compared to during operation of the device in which the mass flow rates are identical in the two portions, the bypass pipe and the bypass valve are configured to reduce by a determined quantity the mass flow rate of working fluid provided for the transit portion concerned, the bypass pipe and the bypass valve are configured to decrease from 2% to 30% of the mass flow and preferably from 5% to 15% of the mass flow expected for the transit portion concerned, the device comprises a bypass line forming a bypass of the transit portion provided for heating the working fluid in the common heat exchanger, said bypass pipe comprising an upstream end connected to the working circuit upstream of the common heat exchanger and a downstream end connected to the circuit downstream of the common heat exchanger, the upstream end of the bypass pipe is connected to the working circuit downstream of the expansion, between the expansion mechanism and the common heat exchanger, or upstream
  • said bypass pipe comprising an upstream end connected to the working circuit upstream of the common heat exchanger and a downstream end connected to the circuit downstream of the common heat exchanger, the upstream end of the bypass pipe is connected to the working circuit between the compression mechanism and the common heat exchanger or within the compression mechanism, the downstream end of the bypass line is connected to the working circuit between the common heat exchanger and the expansion mechanism or between the expansion mechanism and the common heat exchanger, the device comprises an electronic controller connected to the bypass valve, the electronic controller being configured to control the opening of the bypass valve to ensure the temperature rise of the common heat exchanger according to a determined profile and / or to limit the rate of temperature rise of the common heat exchanger below a determined threshold, the device comprises a sensor measuring a temperature representative of the common heat exchanger, the electronic controller being configured to control the opening of the bypass valve according to the measurement of the sensor measuring a temperature representative of the exchanger, the compression mechanism comprises u n or more compressors and at least one motor for driving the rotation of the compressor (s), the refrigeration power of the device being variable and
  • the invention also relates to an installation for cooling and / or liquefying a flow of fluid, in particular natural gas, comprising a refrigeration device according to any one of the characteristics above or below, the installation comprising a conduct of circulation of said flow of fluid to be cooled in thermal exchange with the cooling cooling exchanger of the refrigeration device, in which the refrigeration device is configured to cool the cooling exchanger in order to cool the fluid circulating in the pipe when the valve bypass is closed and to heat the cooling exchanger with a view to removing any impurities solidified in said cooling exchanger.
  • the invention also relates to a method for cooling and / or liquefying a flow of fluid, in particular natural gas, using such an installation, the method comprising a step of cooling the cooling exchanger in order to cool the fluid. circulating in the pipe via the operation of the refrigeration device without opening the bypass valve, the method comprising a defrosting step and removal of impurities solidified in said cooling exchanger during the cooling step, the step defrosting and removal of impurities comprising reheating the cooling exchanger via operation of the refrigeration device with an open position of the bypass valve.
  • the invention may also relate to any alternative device or method comprising any combination of the characteristics above or below within the scope of the claims.
  • FIG. 1 is a schematic and partial view illustrating the structure and operation of an example of an installation capable of implementing the invention
  • FIG. 2 represents a schematic and partial view illustrating the structure and operation of an exemplary embodiment possible refrigeration and / or liquefaction device according to the invention.
  • the cooling and / or liquefaction installation of [Fig. 1] comprises a refrigeration device 1 supplying cold (cooling power) at the level of a cooling exchanger 8.
  • the installation comprises a pipe 25 for circulating a flow of fluid to be cooled placed in heat exchange with this cooling exchanger 8.
  • the fluid is liquid natural gas pumped into a reservoir 16, then is cooled (preferably outside the reservoir 16) and then returned to the reservoir 16 (for example as rain in the gas phase of the reservoir 16).
  • the liquid in the tank 16 is sub-cooled below its saturation temperature (drop in its temperature by several degrees K, in particular 5 to 20K and in particular 14K) before being reinjected into the tank 16.
  • this refrigeration can be supplied to the vaporization gas of the reservoir with a view in particular to its reliquefaction.
  • the low temperature refrigeration device comprises a working circuit 10 (preferably closed) forming a circulation loop.
  • This working circuit 10 contains a working fluid (helium, nitrogen, neon, hydrogen or other other gas or suitable mixture (for example helium and argon or helium and nitrogen or helium and neon or helium and nitrogen and neon).
  • the working circuit 10 forms a cycle comprising in series: a mechanism 2, 3 for compressing the working fluid, a mechanism 6 for cooling the working fluid, a mechanism 7 for expanding the working fluid and a mechanism 6, 8 for heating of the working fluid.
  • the device 1 comprises a cooling heat exchanger 8 intended to extract heat from at least one member 25 by heat exchange with the working fluid circulating in the working circuit 10.
  • the mechanisms for cooling and reheating the working fluid conventionally comprise a common heat exchanger 6 in which the working fluid passes countercurrently in two separate transit portions of the working circuit depending on whether it is cooled or heated.
  • the cooling heat exchanger 8 is located for example between the expansion mechanism 7 and the common heat exchanger 6. As illustrated, the cooling heat exchanger 8 may be a separate heat exchanger from the common heat exchanger 6. However, as a variant this cooling heat heat exchanger 8 could consist of a portion of the common heat exchanger 6 (that is to say that the two exchangers 6, 8 can be in one piece, i.e. that is to say can have distinct fluid circuits which share the same exchange structure).
  • the working fluid which exits relatively hot from the compression mechanism 2, 3 is cooled in the common heat exchanger 6 before entering the expansion mechanism 7.
  • the working fluid which exits relatively cold from the mechanism 7 of compression and the heat exchange 8 with the fluid to be cooled is in turn cooled in the common heat exchanger 6 before returning to the compression mechanism 23 for a new cycle.
  • an equal mass flow circulates the two transit portions in the common heat exchanger 6 (the term equal mass flow rate denotes an equal or substantially equal flow rate, that is to say not differing by more than a few percent).
  • This circulation is represented by arrows in the schematic representations and the terms “upstream” and “downstream” used in the description refer to this direction of circulation of the working fluid in the circuit.
  • the device comprises a pipe 9 bypassing one of the two transit portions provided with a bypass valve 11. When it is open, this bypass valve 11 creates a thermodynamic imbalance in the working circuit which results in the production of heat and therefore a determined reheating at a cooling exchanger 8.
  • the flow of fluid to be cooled can be interrupted (or reduced).
  • the bypass valve 11 is configured to decrease from 2% to 30% of the mass flow rate and preferably from 5% to 15% of the mass flow rate planned for the transit portion concerned.
  • the bypass valve 11 is a progressive opening valve and / or an all-or-nothing type valve sized to allow a determined calibrated flow or a valve associated with a determined flow restriction member.
  • bypass pipe 9 bypass can form a bypass of the transit portion provided for reheating the working fluid in the common heat exchanger 6 (i.e. the portion of the common heat exchanger which heats the fluid leaving the compression mechanism 2, 3 before it enters the trigger mechanism 7).
  • the bypass pipe 9 has an upstream end connected to the working circuit 10 upstream of the common heat exchanger 6 and a downstream end connected to the circuit 10 downstream of the common heat exchanger 6.
  • the upstream end of the bypass pipe 9 is connected to the working circuit 10 downstream of the expansion mechanism 7 and the cooling exchanger 8, between the cooling exchanger 8 and the inlet of the common heat exchanger 6.
  • bypass pipe 9 The downstream end of this bypass pipe 9 is connected to the working circuit 10 between the common heat exchanger 6 and the inlet of the compression mechanism 2, 3.
  • the upstream end of the bypass pipe 9 can be connected upstream of the expansion mechanism 7, between the common heat exchanger 6 and the expansion mechanism 7 between the outlet of the common heat exchanger 6.
  • the downstream end of the bypass pipe 9 can be connected between the common heat exchanger 6 and the compression mechanism 2, 3 (see within the compression mechanism 2, 3, i.e. between two stages compression for example).
  • bypass pipe 9 be configured to form a bypass of the transit portion provided for the cooling of the working fluid in the common heat exchanger 6.
  • the bypass pipe 9 can comprise an upstream end connected to the working circuit 10 upstream of the common heat exchanger 6, for example between the outlet of the compression mechanism 2, 3 and the common heat exchanger 6 or within the compression mechanism 2, 3.
  • bypass pipe 9 can be connected to the working circuit 10 downstream of the common heat exchanger 6, between the common heat exchanger 6 and the expansion mechanism 7 or downstream of this expansion mechanism 7, for example between the outlet of the cooling heat exchanger 8 and the inlet of the common heat exchanger 6.
  • bypass valve 11 is placed in the hot part of the device (at non-cryogenic temperatures), the flow of working fluid admitted into the bypass line 9 is a relatively high pressure (at the outlet of the compression mechanism), this allows a simple and relatively small valve to be used.
  • the device may include an electronic controller 12 connected to the bypass valve 11.
  • the electronic controller 12 can comprise a microprocessor or a computer and can be configured to dynamically control the opening of the bypass valve 11 to ensure a rise in temperature of the common heat exchanger 6 according to a determined profile and / or to limit the rate of temperature rise of the common heat exchanger 6 below a determined threshold. This may make it possible to avoid too rapid heating of the common heat exchanger 6 and / or of the cooling exchanger 8, which is advantageous in the case for example of an aluminum plate exchanger.
  • the device 1 may comprise at least one sensor 13 measuring a temperature representative of the common heat exchanger 6 transmitting its signal to the electronic controller 12.
  • the electronic controller 12 can be configured to control the opening of the bypass valve 11 (duration and / or section) according to the measurement of this sensor 3, for example the opening of the valve 11 can be slaved to this measurement temperature.
  • the compression mechanism 2, 3 comprises one or more compressors and at least one motor 14, 15 for rotating the compressor (s) 2, 3, the refrigeration power of the device being preferably variable and controlled by regulating the speed of rotation. of the drive motor or motors 14, 15 (cycle speed).
  • the cold power produced by the device 1 can be adapted from 0 to 100% of a nominal or maximum power by changing the speed of rotation of the motor or motors.
  • Such an architecture makes it possible to maintain high efficiency over a wide operating range (for example 97% of nominal efficiency at 50% of nominal cold power).
  • the momentary reheating (for defrosting in particular) of the cooling exchanger 8 can be carried out at a cycle speed customary for a cooling cycle
  • the electronic controller 12 can be configured to reduce the speed of the motor (s) of the device when the bypass valve 11 is open.
  • motors are slowed down to about 1 to 60% and in particular 20 to 30% of their maximum or nominal speed.
  • nominal speed or maximum speed of an engine is meant the maximum speed that the engine can produce in the case of maximum cooling power. This maximum or nominal speed is the maximum speed recommended for the operation of the refrigeration device 1 and may be the case sam be lower than the maximum speed that the motor can intrinsically reach.
  • the refrigeration device comprises two compressors forming two compression stages and an expansion turbine. That is to say that the compression mechanism comprises two compressors 2, 3 in series, preferably of the centrifugal type, and the expansion mechanism comprises a single turbine 7, preferably centripetal.
  • the compression mechanism comprises two compressors 2, 3 in series, preferably of the centrifugal type
  • the expansion mechanism comprises a single turbine 7, preferably centripetal.
  • any other number and arrangement of compressor (s) and turbine (s) can be considered, for example three compressors and one turbine or three compressors and two turbines or two compressors and two turbines etc ...
  • a cooling exchanger 4, 5 is provided at the outlet of each compressor (for example cooling with water at ambient temperature or any other fluid or cooling agent). This makes it possible to achieve isentropic or isothermal or substantially isothermal compression. Of course, any other arrangement can be envisaged (for example no cooling exchanger 4, 5 at one or more of the compression stages).
  • a reheating exchanger may or may not be provided at the outlet of all or part of the expansion turbines 7 in order to achieve isentropic or isothermal expansion.
  • the heating and cooling of the working fluid are preferably isobaric without this being limiting.
  • the device 1 comprises two motors 14, 15 at high speed (for example 10,000 revolutions per minute or several tens of thousands of revolutions per minute) for driving the two compression stages 2, 3, respectively.
  • the turbine can be coupled. to the engine 2 of one of the compression stages 2, 3, that is to say that the device may have a turbine 8 constituting the expansion mechanism which is coupled to the motor 2 for driving a stage 2 of compression (the first in particular).
  • the power of the turbine or turbines 7 can be advantageously recovered and used to reduce the consumption of the engine or engines.
  • the refrigeration power produced and therefore the electrical consumption of the liquefier (and vice versa) is increased.
  • the compressors 2, 3 and turbine (s) 7 are preferably coupled directly to an output shaft of the motor concerned (without a geared movement transmission mechanism).
  • the output shafts of the motors are preferably mounted on bearings of the magnetic type or of the dynamic gas type. The bearings are used to support compressors and turbines.
  • all or part of the device in particular its cold members, can be housed in a sealed thermally insulated casing (in particular a vacuum chamber containing the cold parts: cooling exchanger 8, turbine 7, etc. and possibly the heat exchanger. common heat against the current).
  • a sealed thermally insulated casing in particular a vacuum chamber containing the cold parts: cooling exchanger 8, turbine 7, etc. and possibly the heat exchanger. common heat against the current).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Ocean & Marine Engineering (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

Disclosed is a low-temperature refrigeration device comprising a working circuit (10) that forms a loop and contains a working fluid, the device (1) further comprising a cooling exchanger (8) for extracting heat from at least one member (25) by exchanging heat with the working fluid, the working circuit (10) forming a cycle comprising, connected in series: a compression mechanism (2, 3), a cooling mechanism (6), an expansion mechanism (7) and a heating mechanism (6, 8), wherein the mechanism for cooling the working fluid and the heating mechanism comprise a common heat exchanger (6) in which the working fluid flows in opposite directions in two separate transit portions of the circuit according to whether it is cooled or heated, the device (1) being designed to ensure equal mass flow rates in the two transit portions in the common heat exchanger (6), the device (1) also comprising a bypass (9) for bypassing one of the two transit portions, said bypass (9) comprising a bypass valve (11) which, in the open state, changes the mass flow rate in one of the two transit portions.

Description

DESCRIPTION DESCRIPTION
INSTALLATION ET PROCEDE DE REFROIDISSEMENT ET/OU DE LIQUEFACTION COOLING AND / OR LIQUEFACTION INSTALLATION AND PROCESS
L'invention concerne un dispositif de réfrigération, une installation et procédé de refroidissement et/ou de liquéfaction utilisant un tel dispositif. The invention relates to a refrigeration device, an installation and a method for cooling and / or liquefaction using such a device.
L'invention concerne plus particulièrement un dispositif de réfrigération à basse température, c'est-à-dire à une température comprise entre moins 100 degrés centigrade et moins 273 degrés centigrade, notamment entre moins 100 degrés centigrade et moins 253 degrés centigrade, comprenant un circuit de travail formant une boucle et contenant un fluide de travail, le dispositif comprenant un échangeur de refroidissement destiné à extraire de la chaleur à au moins un organe par échange de chaleur avec le fluide de travail circulant dans le circuit de travail, le circuit de travail formant un cycle comprenant en série: un mécanisme de compression du fluide de travail, un mécanisme de refroidissement du fluide de travail, un mécanisme de détente du fluide de travail et un mécanisme de réchauffement du fluide de travail, dans lequel, le mécanisme de refroidissement du fluide de travail et le mécanisme de réchauffement comprennent un échangeur de chaleur commun dans lequel le fluide de travail transite à contre-courant dans deux portions de transit distinctes du circuit selon qu'il est refroidi ou réchauffé, le dispositif étant configuré pour assurer un débit massique égal dans lesdites deux portions de transit dans l'échangeur de chaleur commun. The invention relates more particularly to a device for refrigeration at low temperature, that is to say at a temperature between minus 100 degrees centigrade and minus 273 degrees centigrade, in particular between minus 100 degrees centigrade and minus 253 degrees centigrade, comprising a working circuit forming a loop and containing a working fluid, the device comprising a cooling exchanger intended to extract heat from at least one member by heat exchange with the working fluid circulating in the working circuit, the cooling circuit work forming a cycle comprising in series: a working fluid compression mechanism, a working fluid cooling mechanism, a working fluid expansion mechanism and a working fluid heating mechanism, wherein, the working fluid cooling of the working fluid and the heating mechanism comprise a common heat exchanger in which the working fluid transits against the current in two distinct transit portions of the circuit depending on whether it is cooled or reheated, the device being configured to ensure an equal mass flow rate in said two transit portions in the common heat exchanger.
L'invention concerne en particulier les réfrigérateurs ou liquéfacteurs cryogéniques, par exemple du type à cycle « Turbo Brayton » ou « refroidisseurs Turbo Brayton » dans lequel un gaz de cycle (hélium, azote, ou autre gaz pur ou mélange) subit un cycle thermodynamique produisant du froid qui peut être transféré à une organe ou un gaz devant être refroidi. Ces dispositifs sont utilisés dans une grande variété d'application et notamment pour refroidir du gaz naturel d'un réservoir (par exemple dans des bateaux). Le gaz naturel liquéfié est par exemple sous-refroidi pour éviter sa vaporisation ou la partie gazeuse est refroidie en vue de sa reliquéfaction. The invention relates in particular to cryogenic refrigerators or liquefiers, for example of the “Turbo Brayton” cycle type or “Turbo Brayton coolers” in which a cycle gas (helium, nitrogen, or other pure gas or mixture) undergoes a thermodynamic cycle. producing cold which can be transferred to an organ or gas to be cooled. These devices are used in a wide variety of applications and in particular for cooling natural gas from a reservoir (for example in boats). The liquefied natural gas is for example sub-cooled to prevent its vaporization or the gaseous part is cooled with a view to its reliquefaction.
Par exemple, un flux de gaz naturel peut être mis en circulation dans un échangeur de chaleur refroidi par le gaz de cycle du réfrigérateur/liquéfacteur . For example, a natural gas stream can be circulated through a heat exchanger cooled by the refrigerator / liquefier cycle gas.
Le gaz refroidi dans cet échangeur peut contenir des impuretés (tels que...) qui sont susceptibles de se solidifier aux de températures froides atteintes au niveau de l'échangeur. Ceci peut obstruer l'échangeur de chaleur et nuire à l'efficacité de 1'installation. The gas cooled in this exchanger may contain impurities (such as ...) which are liable to solidify at the cold temperatures reached at the exchanger. This can clog the heat exchanger and impair the efficiency of the installation.
Une solution peut consister à réchauffer activement avec un réchauffeur électrique l'échangeur de chaleur. Ceci est cependant coûteux en énergie et souvent mal adapté aux atmosphères explosives. One solution may be to actively heat the heat exchanger with an electric heater. This is however costly in energy and often ill suited to explosive atmospheres.
Un but de la présente invention est de pallier tout ou partie des inconvénients de l'art antérieur relevés ci-dessus. An aim of the present invention is to overcome all or part of the drawbacks of the prior art noted above.
A cette fin, le dispositif selon l'invention, par ailleurs conforme à la définition générique qu'en donne le préambule ci- dessus, est essentiellement caractérisé en ce que le dispositif comprend une conduite de dérivation d'une des deux portions de transit, ladite conduite de dérivation comprenant une vanne de dérivation qui, lorsqu'elle est ouverte, modifie le débit massique dans l'une des deux portions de transit. To this end, the device according to the invention, moreover in accordance with the generic definition given in the preamble above, is essentially characterized in that the device comprises a bypass pipe from one of the two transit portions, said bypass line comprising a bypass valve which, when open, modifies the mass flow rate in one of the two transit portions.
Par ailleurs, des modes de réalisation de l'invention peuvent comporter l'une ou plusieurs des caractéristiques suivantes : lorsque la vanne de dérivation ouverte modifie le débit massique dans l'une des deux portions de transit pour assurer un débit massique différent dans lesdites deux portions de transit de façon à assurer un réchauffage déterminé ou un refroidissement moindre au niveau de l'échangeur de refroidissement par rapport au fonctionnement du dispositif dans lequel les débits massiques sont identiques dans les deux portions, la conduite de dérivation et la vanne de dérivation sont configurées pour diminuer d'une quantité déterminée le débit massique de fluide de travail prévu pour la portion de transit concernée, la conduite de dérivation et la vanne de dérivation sont configurées pour diminuer de 2% à 30% du débit massique et de préférence de 5% à 15% du débit massique prévu pour la portion de transit concernée, le dispositif comporte une conduite de dérivation formant un bypass de la portion de transit prévue pour le réchauffage du fluide de travail dans l'échangeur de chaleur commun, ladite conduite de dérivation comprenant un extrémité amont raccordée au circuit de travail en amont de l'échangeur de chaleur commun et une extrémité aval raccordée au circuit en aval de l'échangeur de chaleur commun, l'extrémité amont de la conduite de dérivation est reliée au circuit de travail en aval du mécanisme de détente, entre le mécanisme de détente et l'échangeur de chaleur commun, ou en amont du mécanisme de détente, entre l'échangeur de chaleur commun et le mécanisme de détente, l'extrémité aval de la conduite de dérivation est reliée au circuit entre l'échangeur de chaleur commun et le mécanisme de compression ou au sein du mécanisme de compression, le dispositif comporte une conduite de dérivation formant un bypass de la portion de transit prévue pour le refroidissement du fluide de travail dans l'échangeur de chaleur commun., ladite conduite de dérivation comprenant un extrémité amont raccordée au circuit de travail en amont de l'échangeur de chaleur commun et une extrémité aval raccordée au circuit en aval de l'échangeur de chaleur commun, l'extrémité amont de la conduite de dérivation est reliée au circuit de travail entre mécanisme de compression et l'échangeur de chaleur commun ou au sein du mécanisme de compression, l'extrémité aval de la conduite de dérivation est reliée au circuit de travail entre l'échangeur de chaleur commun et le mécanisme de détente ou entre le mécanisme de détente et l'échangeur de chaleur commun, le dispositif comprend un contrôleur électronique relié à la vanne de dérivation, le contrôleur électronique étant configuré pour piloter l'ouverture de la vanne de dérivation pour assurer la montée en température de l'échangeur de chaleur commun selon un profil déterminé et/ou pour limiter vitesse de montée en température de l'échangeur de chaleur commun en dessous un seuil déterminé, le dispositif comprend un capteur mesurant une température représentative de l'échangeur de chaleur commun, le contrôleur électronique étant configuré pour piloter l'ouverture de la vanne de dérivation en fonction de la mesure du capteur mesurant une température représentative de l'échangeur, le mécanisme de compression comprend un ou plusieurs compresseurs et au moins un moteur d'entraînement en rotation du ou des compresseurs la puissance de réfrigération du dispositif étant variable et contrôlée en régulant la vitesse de rotation du ou des moteurs d'entraînement, le contrôleur électronique étant configuré diminuer la puissance de réfrigération du dispositif lorsque la vanne de dérivation est ouverte, la vanne de dérivation est une vanne à ouverture progressive et/ou une vanne de type tout ou rien et autorisant un débit calibré déterminé ou associée à un organe de restriction de débit déterminé. Moreover, embodiments of the invention may include one or more of the following characteristics: when the open bypass valve modifies the mass flow in one of the two transit portions to ensure a different mass flow in said two transit portions so as to ensure specific heating or less cooling at the level of the cooling exchanger compared to during operation of the device in which the mass flow rates are identical in the two portions, the bypass pipe and the bypass valve are configured to reduce by a determined quantity the mass flow rate of working fluid provided for the transit portion concerned, the bypass pipe and the bypass valve are configured to decrease from 2% to 30% of the mass flow and preferably from 5% to 15% of the mass flow expected for the transit portion concerned, the device comprises a bypass line forming a bypass of the transit portion provided for heating the working fluid in the common heat exchanger, said bypass pipe comprising an upstream end connected to the working circuit upstream of the common heat exchanger and a downstream end connected to the circuit downstream of the common heat exchanger, the upstream end of the bypass pipe is connected to the working circuit downstream of the expansion, between the expansion mechanism and the common heat exchanger, or upstream of the expansion mechanism, between the common heat exchanger and the expansion mechanism, the downstream end of the bypass pipe is connected to the circuit between the common heat exchanger and the compression mechanism or within the compression mechanism, the device comprises a bypass pipe forming a bypass of the transit portion provided for cooling the working fluid in the common heat exchanger. , said bypass pipe comprising an upstream end connected to the working circuit upstream of the common heat exchanger and a downstream end connected to the circuit downstream of the common heat exchanger, the upstream end of the bypass pipe is connected to the working circuit between the compression mechanism and the common heat exchanger or within the compression mechanism, the downstream end of the bypass line is connected to the working circuit between the common heat exchanger and the expansion mechanism or between the expansion mechanism and the common heat exchanger, the device comprises an electronic controller connected to the bypass valve, the electronic controller being configured to control the opening of the bypass valve to ensure the temperature rise of the common heat exchanger according to a determined profile and / or to limit the rate of temperature rise of the common heat exchanger below a determined threshold, the device comprises a sensor measuring a temperature representative of the common heat exchanger, the electronic controller being configured to control the opening of the bypass valve according to the measurement of the sensor measuring a temperature representative of the exchanger, the compression mechanism comprises u n or more compressors and at least one motor for driving the rotation of the compressor (s), the refrigeration power of the device being variable and controlled by regulating the speed of rotation of the drive motor (s), the electronic controller being configured to reduce the power refrigeration of the device when the bypass valve is open, the bypass valve is a progressive opening valve and / or an all-or-nothing type valve and allowing a determined calibrated flow rate or associated with a determined flow restriction member.
L'invention concerne également une installation de refroidissement et/ou de liquéfaction d'un flux de fluide, notamment du gaz naturel, comprenant un dispositif de réfrigération selon l'une quelconque des caractéristiques ci- dessus ou ci-dessous, l'installation comprenant une conduite de circulation dudit flux de fluide à refroidir en échange thermique avec l'échangeur de refroidissement de refroidissement du dispositif de réfrigération, dans lequel dispositif de réfrigération est configuré pour refroidir l'échangeur de refroidissement en vue de refroidir le fluide circulant dans la conduite lorsque la vanne de dérivation est fermée et pour réchauffer l'échangeur de refroidissement en vue d'évacuer d'éventuelles impuretés solidifiée dans ledit échangeur de refroidissement . The invention also relates to an installation for cooling and / or liquefying a flow of fluid, in particular natural gas, comprising a refrigeration device according to any one of the characteristics above or below, the installation comprising a conduct of circulation of said flow of fluid to be cooled in thermal exchange with the cooling cooling exchanger of the refrigeration device, in which the refrigeration device is configured to cool the cooling exchanger in order to cool the fluid circulating in the pipe when the valve bypass is closed and to heat the cooling exchanger with a view to removing any impurities solidified in said cooling exchanger.
L'invention concerne également un procédé de refroidissement et/ou de liquéfaction d'un flux de fluide, notamment du gaz naturel, utilisant une telle installation, le procédé comportant une étape de refroidissement de l'échangeur de refroidissement en vue de refroidir du fluide circulant dans la conduite via le fonctionnement du dispositif de réfrigération sans ouverture de la vanne de dérivation, le procédé comprenant une étape dégivrage et d'évacuation d'impuretés solidifiées dans ledit échangeur de refroidissement au cours de l'étape de refroidissement, l'étape de dégivrage et d'évacuation d' impuretés comprenant un réchauffage l'échangeur de refroidissement via un fonctionnement du dispositif de réfrigération avec une position ouverte de la vanne de dérivation. The invention also relates to a method for cooling and / or liquefying a flow of fluid, in particular natural gas, using such an installation, the method comprising a step of cooling the cooling exchanger in order to cool the fluid. circulating in the pipe via the operation of the refrigeration device without opening the bypass valve, the method comprising a defrosting step and removal of impurities solidified in said cooling exchanger during the cooling step, the step defrosting and removal of impurities comprising reheating the cooling exchanger via operation of the refrigeration device with an open position of the bypass valve.
L'invention peut concerner également tout dispositif ou procédé alternatif comprenant toute combinaison des caractéristiques ci- dessus ou ci-dessous dans le cadre des revendications. The invention may also relate to any alternative device or method comprising any combination of the characteristics above or below within the scope of the claims.
D'autres particularités et avantages apparaîtront à la lecture de la description ci-après, faite en référence aux figures dans lesquelles : Other features and advantages will become apparent on reading the description below, given with reference to the figures in which:
[Fig. 1] représente une vue schématique et partielle illustrant la structure et le fonctionnement d'un exemple d'installation pouvant mettre en œuvre l'invention, [Fig. 1] is a schematic and partial view illustrating the structure and operation of an example of an installation capable of implementing the invention,
[Fig. 2] représente une vue schématique et partielle illustrant la structure et le fonctionnement d'un exemple de réalisation possible de dispositif de réfrigération et/ou de liquéfaction selon l'invention. [Fig. 2] represents a schematic and partial view illustrating the structure and operation of an exemplary embodiment possible refrigeration and / or liquefaction device according to the invention.
L'installation de refroidissement et/ou de liquéfaction de la [Fig. 1] comprend un dispositif 1 de réfrigération fournissant du froid (une puissance de refroidissement) au niveau d'un l'échangeur 8 de refroidissement. L'installation comprend une conduite 25 de circulation d'un flux de fluide à refroidir mis en échange thermique avec cet échangeur 8 de refroidissement. Par exemple, le fluide est du gaz naturel liquide pompé dans un réservoir 16, puis est refroidi (de préférence hors du réservoir 16) puis renvoyé dans le réservoir 16 (par exemple en pluie dans la phase gazeuse du réservoir 16). Ceci permet de refroidir ou sous-refroidir le contenu et de limiter les phénomènes de vaporisation. Par exemple, le liquide du réservoir 16 est sous refroidi en-dessous de sa température de saturation (baisse de sa température de plusieurs degrés K notamment 5 à 20K et notamment 14K) avant d'être réinjecté dans le réservoir 16. En variante cette réfrigération peut être apportée au gaz de vaporisation du réservoir en vue notamment de sa reliquéfaction.The cooling and / or liquefaction installation of [Fig. 1] comprises a refrigeration device 1 supplying cold (cooling power) at the level of a cooling exchanger 8. The installation comprises a pipe 25 for circulating a flow of fluid to be cooled placed in heat exchange with this cooling exchanger 8. For example, the fluid is liquid natural gas pumped into a reservoir 16, then is cooled (preferably outside the reservoir 16) and then returned to the reservoir 16 (for example as rain in the gas phase of the reservoir 16). This makes it possible to cool or sub-cool the contents and to limit the phenomena of vaporization. For example, the liquid in the tank 16 is sub-cooled below its saturation temperature (drop in its temperature by several degrees K, in particular 5 to 20K and in particular 14K) before being reinjected into the tank 16. As a variant, this refrigeration can be supplied to the vaporization gas of the reservoir with a view in particular to its reliquefaction.
Le dispositif de réfrigération à basse température comprend un circuit de travail 10 (de préférence fermé) formant une boucle de circulation. Ce circuit 10 de travail contient un fluide de travail (hélium, azote, néon, hydrogène ou autre outre gaz ou mélange approprié (par exemple hélium et argon ou hélium et azote ou hélium et néon ou hélium et azote et néon). The low temperature refrigeration device comprises a working circuit 10 (preferably closed) forming a circulation loop. This working circuit 10 contains a working fluid (helium, nitrogen, neon, hydrogen or other other gas or suitable mixture (for example helium and argon or helium and nitrogen or helium and neon or helium and nitrogen and neon).
Le circuit 10 de travail forme un cycle comprenant en série: un mécanisme 2, 3 de compression du fluide de travail, un mécanisme 6 de refroidissement du fluide de travail, un mécanisme 7 de détente du fluide de travail et un mécanisme 6, 8 de réchauffement du fluide de travail. The working circuit 10 forms a cycle comprising in series: a mechanism 2, 3 for compressing the working fluid, a mechanism 6 for cooling the working fluid, a mechanism 7 for expanding the working fluid and a mechanism 6, 8 for heating of the working fluid.
Le dispositif 1 comprend un échangeur de chaleur 8 de refroidissement destiné à extraire de la chaleur à au moins un organe 25 par échange de chaleur avec le fluide de travail circulant dans le circuit 10 de travail. The device 1 comprises a cooling heat exchanger 8 intended to extract heat from at least one member 25 by heat exchange with the working fluid circulating in the working circuit 10.
Les mécanismes de refroidissement et de réchauffage du fluide de travail comprennent classiquement un échangeur 6 de chaleur commun dans lequel le fluide de travail transite à contre-courant dans deux portions de transit distinctes du circuit de travail selon qu'il est refroidi ou réchauffé. The mechanisms for cooling and reheating the working fluid conventionally comprise a common heat exchanger 6 in which the working fluid passes countercurrently in two separate transit portions of the working circuit depending on whether it is cooled or heated.
L'échangeur 8 de chaleur de refroidissement est situé par exemple entre le mécanisme 7 de détente et l'échangeur 6 de chaleur commun. Comme illustré, l'échangeur 8 de chaleur de refroidissement peut être un échangeur de chaleur distinct de l'échangeur 6 de chaleur commun. Cependant, en variante cet échangeur de chaleur 8 de chaleur de refroidissement pourrait être constitué d'une portion de l'échangeur 6 de chaleur commun (c'est-à-dire que les deux échangeurs 6, 8 peuvent être monoblocs, c'est-à-dire peuvent avoir des circuits de fluides distincts qui partagent une même structure d'échange). The cooling heat exchanger 8 is located for example between the expansion mechanism 7 and the common heat exchanger 6. As illustrated, the cooling heat exchanger 8 may be a separate heat exchanger from the common heat exchanger 6. However, as a variant this cooling heat heat exchanger 8 could consist of a portion of the common heat exchanger 6 (that is to say that the two exchangers 6, 8 can be in one piece, i.e. that is to say can have distinct fluid circuits which share the same exchange structure).
Ainsi, le fluide de travail qui sort relativement chaud du mécanisme 2, 3 de compression est refroidi dans l'échangeur 6 de chaleur commun avant d'entrer dans le mécanisme de détente 7. Le fluide de travail qui sort relativement froid du mécanisme 7 de compression et de l'échange de chaleur 8 avec le fluide à refroidir est quant à lui refroidi dans l'échangeur 6 de chaleur commun avant de retourner dans le mécanisme de compression 23 en vue d'un nouveau cycle. Thus, the working fluid which exits relatively hot from the compression mechanism 2, 3 is cooled in the common heat exchanger 6 before entering the expansion mechanism 7. The working fluid which exits relatively cold from the mechanism 7 of compression and the heat exchange 8 with the fluid to be cooled is in turn cooled in the common heat exchanger 6 before returning to the compression mechanism 23 for a new cycle.
Classiquement, en mode de fonctionnement normal (le gaz de travail subit le cycle de compression, refroidissement, détente et réchauffage et produit du froid au niveau de l'échangeur 8 de refroidissement), un débit massique égal circule les deux portions de transit dans l'échangeur 6 de chaleur commun (par débit massique égal on désigne un débit égal ou sensiblement égal c'est-à-dire ne différant pas de plus de quelque pourcent). Cette circulation est schématisée par des flèches dans les représentations schématiques et les termes « amont » et « aval » utilisés dans la description font référence à ce sens de circulation du fluide de travail dans le circuit. Conventionally, in normal operating mode (the working gas undergoes the cycle of compression, cooling, expansion and reheating and produces cold at the level of the cooling exchanger 8), an equal mass flow circulates the two transit portions in the common heat exchanger 6 (the term equal mass flow rate denotes an equal or substantially equal flow rate, that is to say not differing by more than a few percent). This circulation is represented by arrows in the schematic representations and the terms “upstream” and “downstream” used in the description refer to this direction of circulation of the working fluid in the circuit.
Le dispositif comprend une conduite 9 de dérivation d'une des deux portions de transit munie d'une vanne 11 de dérivation. Lorsqu'elle est ouverte cette vanne 11 de dérivation créé un déséquilibre thermodynamique dans le circuit de travail qui se traduit par une production de chaleur et donc un réchauffage déterminé au niveau un échangeur 8 de refroidissement. The device comprises a pipe 9 bypassing one of the two transit portions provided with a bypass valve 11. When it is open, this bypass valve 11 creates a thermodynamic imbalance in the working circuit which results in the production of heat and therefore a determined reheating at a cooling exchanger 8.
Ainsi, comme illustré à la [Fig. 2], si en mode de fonctionnement normal un flux de fluide (gaz naturel liquéfié) peut être refroidi dans l'échangeur 8 de refroidissement. Dans le cas où ce fluide contient des impuretés (dioxyde de carbone ou autre) susceptibles de se solidifier lors de leur refroidissement, un bouchon 17 ou une obstruction peut survenir dans l'échangeur 8 de refroidissement. Thus, as illustrated in [Fig. 2], if in normal operating mode a flow of fluid (liquefied natural gas) can be cooled in the cooling exchanger 8. In the event that this fluid contains impurities (carbon dioxide or other) liable to solidify during their cooling, a plug 17 or an obstruction may occur in the cooling exchanger 8.
En ouvrant temporairement la vanne 11 de dérivation, l'échangeurBy temporarily opening the bypass valve 11, the heat exchanger
8 peut ainsi être réchauffé suffisamment pour sublimer ou liquéfier ces impuretés qui sont ainsi facilement évacuées. De préférence, pendant ce réchauffage de dégivrage le flux de fluide à refroidir peut être interrompu (ou réduit). 8 can thus be heated sufficiently to sublimate or liquefy these impurities which are thus easily removed. Preferably, during this defrost reheating, the flow of fluid to be cooled can be interrupted (or reduced).
Le mode de fonctionnement normal (refroidissement) peut être repris en fermant la vanne 11 de dérivation. Normal operating mode (cooling) can be resumed by closing the bypass valve 11.
Par exemple, la vanne 11 de dérivation est configurée pour diminuer de 2% à 30% du débit massique et de préférence de 5% à 15% du débit massique prévu pour la portion de transit concernée. Par exemple, la vanne 11 de dérivation est une vanne à ouverture progressive et/ou une vanne de type tout ou rien dimensionnée pour autorisant un débit calibré déterminé ou une vanne associée à un organe de restriction de débit déterminé. For example, the bypass valve 11 is configured to decrease from 2% to 30% of the mass flow rate and preferably from 5% to 15% of the mass flow rate planned for the transit portion concerned. For example, the bypass valve 11 is a progressive opening valve and / or an all-or-nothing type valve sized to allow a determined calibrated flow or a valve associated with a determined flow restriction member.
Comme représenté en traits continus à la [Fig. 2], la conduiteAs shown in solid lines in [Fig. 2], driving
9 de dérivation peut former un bypass de la portion de transit prévue pour le réchauffage du fluide de travail dans l'échangeur 6 de chaleur commun (c'est-à-dire la portion de l'échangeur de chaleur commun qui réchauffe le fluide sortant du mécanisme de compression 2, 3 avant son arrivée dans le mécanisme 7 de détente). Ainsi, la conduite 9 de dérivation possède une extrémité amont raccordée au circuit 10 de travail en amont de l'échangeur 6 de chaleur commun et une extrémité aval raccordée au circuit 10 en aval de l'échangeur 6 de chaleur commun. Dans cet exemple en traits continus, l'extrémité amont de la conduite 9 de dérivation est reliée au circuit 10 de travail en aval du mécanisme de détente 7 et de l'échangeur 8 de refroidissement, entre l'échangeur 8 de refroidissement et l'entrée de l'échangeur 6 de chaleur commun. 9 bypass can form a bypass of the transit portion provided for reheating the working fluid in the common heat exchanger 6 (i.e. the portion of the common heat exchanger which heats the fluid leaving the compression mechanism 2, 3 before it enters the trigger mechanism 7). Thus, the bypass pipe 9 has an upstream end connected to the working circuit 10 upstream of the common heat exchanger 6 and a downstream end connected to the circuit 10 downstream of the common heat exchanger 6. In this example in solid lines, the upstream end of the bypass pipe 9 is connected to the working circuit 10 downstream of the expansion mechanism 7 and the cooling exchanger 8, between the cooling exchanger 8 and the inlet of the common heat exchanger 6.
L'extrémité aval de cette conduite 9 de dérivation est reliée au circuit 10 de travail entre l'échangeur 6 de chaleur commun et l'entrée du mécanisme 2, 3 de compression. The downstream end of this bypass pipe 9 is connected to the working circuit 10 between the common heat exchanger 6 and the inlet of the compression mechanism 2, 3.
Bien entendu, cet exemple n'est nullement limitatif. La [Fig. 2] illustre ainsi en pointillés d'autres variantes de réalisation non limitatives de conduite 9 de dérivation. Of course, this example is in no way limiting. The [Fig. 2] thus illustrates in dotted lines other non-limiting variant embodiments of the bypass pipe 9.
Par exemple, l'extrémité amont de la conduite 9 de dérivation peut être raccordée en amont du mécanisme 7 de détente, entre l'échangeur 6 de chaleur commun et le mécanisme 7 de détente entre la sortie de l'échangeur 6 de chaleur commun. L'extrémité aval de la conduite 9 de dérivation peut être raccordée entre l'échangeur 6 de chaleur commun et le mécanisme 2, 3 de compression (voir au sein du mécanisme 2, 3 de compression c'est- à-dire entre deux étages de compression par exemple). For example, the upstream end of the bypass pipe 9 can be connected upstream of the expansion mechanism 7, between the common heat exchanger 6 and the expansion mechanism 7 between the outlet of the common heat exchanger 6. The downstream end of the bypass pipe 9 can be connected between the common heat exchanger 6 and the compression mechanism 2, 3 (see within the compression mechanism 2, 3, i.e. between two stages compression for example).
Ces arrangements présentent les avantages suivants : la température du fluide de travail à l'entrée du mécanisme 2, 3 de compression est peu ou pas perturbée par rapport à un cycle normal. De même, en variante, la conduite 9 de dérivation être configurée pour former un bypass de la portion de transit prévue pour le refroidissement du fluide de travail dans l'échangeur 6 de chaleur commun.Ainsi la conduite 9 de dérivation peut comprendre une extrémité amont raccordée au circuit 10 de travail en amont de l'échangeur 6 de chaleur commun, par exemple entre la sortie du mécanisme 2, 3 de compression et l'échangeur 6 de chaleur commun ou au sein du mécanisme 2, 3 de compression. De même, l'extrémité aval de la conduite 9 de dérivation peut être raccordée au circuit 10 de travail en aval de l'échangeur 6 de chaleur commun, entre l'échangeur 6 de chaleur commun et le mécanisme 7 de détente ou en aval de ce mécanisme 7 de détente, par exemple entre la sortie de l'échangeur 8 de chaleur de refroidissement et l'entrée de l'échangeur 6 de chaleur commun.These arrangements have the following advantages: the temperature of the working fluid at the inlet of the compression mechanism 2, 3 is little or not disturbed compared to a normal cycle. Likewise, as a variant, the bypass pipe 9 be configured to form a bypass of the transit portion provided for the cooling of the working fluid in the common heat exchanger 6. Thus the bypass pipe 9 can comprise an upstream end connected to the working circuit 10 upstream of the common heat exchanger 6, for example between the outlet of the compression mechanism 2, 3 and the common heat exchanger 6 or within the compression mechanism 2, 3. Likewise, the downstream end of the bypass pipe 9 can be connected to the working circuit 10 downstream of the common heat exchanger 6, between the common heat exchanger 6 and the expansion mechanism 7 or downstream of this expansion mechanism 7, for example between the outlet of the cooling heat exchanger 8 and the inlet of the common heat exchanger 6.
Ces arrangements présentent les avantages suivants : la vanne 11 de dérivation est disposé dans la partie chaude du dispositif (à des températures non cryogénique), le flux de fluide de travail admis dans la conduite 9 de dérivation est une pression relativement élevée (en sortie du mécanisme de compression), ceci permet d'utiliser une vanne simple et relativement petite.These arrangements have the following advantages: the bypass valve 11 is placed in the hot part of the device (at non-cryogenic temperatures), the flow of working fluid admitted into the bypass line 9 is a relatively high pressure (at the outlet of the compression mechanism), this allows a simple and relatively small valve to be used.
Le dispositif peut comprendre un contrôleur 12 électronique raccordé à la vanne 11 de dérivation. Le contrôleur 12 électronique peut comprendre un microprocesseur ou un ordinateur et peut être configuré pour piloter de façon dynamique l'ouverture de la vanne 11 de dérivation pour assurer une montée en température de l'échangeur 6 de chaleur commun selon un profil déterminé et/ou pour limiter vitesse de montée en température de l'échangeur 6 de chaleur commun en dessous un seuil déterminé. Ceci peut permettre d'éviter un réchauffage trop rapide de l'échangeur 6 de chaleur 6 commun et/ou de l'échangeur 8 de refroidissement ce qui est avantageux dans le cas par exemple d'un échangeur à plaque en aluminium. Pour cela le dispositif 1 peut comprendre comprend au moins un capteur 13 mesurant une température représentative de l'échangeur 6 de chaleur commun transmettant son signal au contrôleur 12 électronique. Le contrôleur 12 électronique peut être configuré pour piloter l'ouverture de la vanne 11 de dérivation (durée et/ou section) en fonction de la mesure de ce capteur 3, par exemple l'ouverture de la vanne 11 peut être asservie à cette mesure de température. The device may include an electronic controller 12 connected to the bypass valve 11. The electronic controller 12 can comprise a microprocessor or a computer and can be configured to dynamically control the opening of the bypass valve 11 to ensure a rise in temperature of the common heat exchanger 6 according to a determined profile and / or to limit the rate of temperature rise of the common heat exchanger 6 below a determined threshold. This may make it possible to avoid too rapid heating of the common heat exchanger 6 and / or of the cooling exchanger 8, which is advantageous in the case for example of an aluminum plate exchanger. For this, the device 1 may comprise at least one sensor 13 measuring a temperature representative of the common heat exchanger 6 transmitting its signal to the electronic controller 12. The electronic controller 12 can be configured to control the opening of the bypass valve 11 (duration and / or section) according to the measurement of this sensor 3, for example the opening of the valve 11 can be slaved to this measurement temperature.
Le mécanisme 2, 3 de compression comprend un ou plusieurs compresseurs et au moins un moteur 14, 15 d'entraînement en rotation du ou des compresseurs 2, 3 la puissance de réfrigération du dispositif étant de préférence variable et contrôlée en régulant la vitesse de rotation du ou des moteurs 14, 15 d'entraînement (vitesse de cycle). De préférence la puissance froide produite par le dispositif 1 peut être adaptée de 0 à 100% d'une puissance nominale ou maximale en changeant la vitesse de rotation du ou des moteurs. Une telle architecture permet de maintenir un rendement élevé sur une large plage de fonctionnement (par exemple 97% de rendement nominal à 50% de la puissance froide nominale). The compression mechanism 2, 3 comprises one or more compressors and at least one motor 14, 15 for rotating the compressor (s) 2, 3, the refrigeration power of the device being preferably variable and controlled by regulating the speed of rotation. of the drive motor or motors 14, 15 (cycle speed). Preferably, the cold power produced by the device 1 can be adapted from 0 to 100% of a nominal or maximum power by changing the speed of rotation of the motor or motors. Such an architecture makes it possible to maintain high efficiency over a wide operating range (for example 97% of nominal efficiency at 50% of nominal cold power).
Bien que le réchauffage momentané (pour dégivrage notamment) de l'échangeur 8 de refroidissement puisse être réalisé à une vitesse de cycle usuelle pour un cycle de refroidissement, de préférence le contrôleur 12 électronique (ou un autre contrôleur électronique dédié) peut être configuré pour diminuer la vitesse du ou des moteurs du dispositif lorsque la vanne 11 de dérivation est ouverte. Par exemple, les moteurs sont ralentis à environ 1 à 60% et notamment 20 à 30% de leur vitesse maximale ou nominale.Although the momentary reheating (for defrosting in particular) of the cooling exchanger 8 can be carried out at a cycle speed customary for a cooling cycle, preferably the electronic controller 12 (or another dedicated electronic controller) can be configured to reduce the speed of the motor (s) of the device when the bypass valve 11 is open. For example, motors are slowed down to about 1 to 60% and in particular 20 to 30% of their maximum or nominal speed.
Par vitesse nominale ou vitesse maximale d'un moteur on désigne la vitesse maximale que le moteur peut produire dans le cas d'une puissance de réfrigération maximale. Cette vitesse maximale ou nominale est la vitesse maximale conseillée pour le fonctionnement du dispositif 1 de réfrigération et peut le cas échant être inférieure à la vitesse maximale que peut atteindre le moteur intrinsèquement. By nominal speed or maximum speed of an engine is meant the maximum speed that the engine can produce in the case of maximum cooling power. This maximum or nominal speed is the maximum speed recommended for the operation of the refrigeration device 1 and may be the case sam be lower than the maximum speed that the motor can intrinsically reach.
Dans les exemples représentés le dispositif de réfrigération comprend deux compresseurs formant deux étages de compression et une turbine de détente. C'est-à-dire que le mécanisme de compression comprend deux compresseurs 2, 3 en série, de préférence du type centrifuge et le mécanisme de détente comprend une unique turbine 7, de préférence centripète. Bien entendu, tout autre nombre et arrangement de compresseur(s) et turbine(s) peut être envisagé, par exemple trois compresseurs et une turbine ou trois compresseurs et deux turbines ou deux compresseurs et deux turbines etc... In the examples shown, the refrigeration device comprises two compressors forming two compression stages and an expansion turbine. That is to say that the compression mechanism comprises two compressors 2, 3 in series, preferably of the centrifugal type, and the expansion mechanism comprises a single turbine 7, preferably centripetal. Of course, any other number and arrangement of compressor (s) and turbine (s) can be considered, for example three compressors and one turbine or three compressors and two turbines or two compressors and two turbines etc ...
Dans les exemples illustrés un échangeur 4, 5 de refroidissement est prévu à la sortie de chaque compresseur (par exemple refroidissement avec de l'eau à température ambiante ou tout autre fluide ou agent de refroidissement). Ceci permet de réaliser une compression isentropique ou isotherme ou sensiblement isotherme. Bien entendu tout autre agencement peut être envisagé (par exemple pas d'échangeur 4, 5 de refroidissement à un ou plusieurs des étages de compression). De même un échangeur de réchauffage peut être prévu ou non en sortie de tout ou partie des turbines 7 de détente pour réaliser une détente isentropique ou isotherme. De préférence également les réchauffage et refroidissement du fluide de travail sont de préférence isobare sans que ceci soit limitatif. In the examples illustrated, a cooling exchanger 4, 5 is provided at the outlet of each compressor (for example cooling with water at ambient temperature or any other fluid or cooling agent). This makes it possible to achieve isentropic or isothermal or substantially isothermal compression. Of course, any other arrangement can be envisaged (for example no cooling exchanger 4, 5 at one or more of the compression stages). Likewise, a reheating exchanger may or may not be provided at the outlet of all or part of the expansion turbines 7 in order to achieve isentropic or isothermal expansion. Preferably also the heating and cooling of the working fluid are preferably isobaric without this being limiting.
Par exemple, le dispositif 1 comprend deux moteurs 14, 15 à haute vitesse (par exemple 10000 tours par minute ou plusieurs dizaines de milliers de tours par minute) d'entrainement respectifs des deux étages de compression 2, 3. La turbine peut être accouplée au moteur 2 de l'un des étages de compression 2, 3, c'est-à-dire que le dispositif peut posséder une turbine 8 constituant le mécanisme de détente qui est accouplée au moteur 2 d'entraînement d'un étage 2 de compression (le premier notamment). Ainsi, la puissance de la ou des turbines 7 peut être avantageusement récupérée et utilisée pour réduire la consommation du ou des moteurs. Ainsi, en augmentant la vitesse des moteurs (et donc le débit dans le cycle du gaz de travail), on augmente la puissance de réfrigération produite et donc la consommation électrique du liquéfacteur (et inversement). Les compresseurs 2, 3 et turbine(s) 7 sont de préférence accouplés de façon directe à un arbre de sortie du moteur concerné (sans mécanisme de transmission de mouvement à engrenages). Les arbres de sortie des moteurs sont de préférence montés sur des paliers de type magnétique ou de type dynamique à gaz. Les paliers sont utilisés pour sustenter les compresseurs et les turbines . For example, the device 1 comprises two motors 14, 15 at high speed (for example 10,000 revolutions per minute or several tens of thousands of revolutions per minute) for driving the two compression stages 2, 3, respectively. The turbine can be coupled. to the engine 2 of one of the compression stages 2, 3, that is to say that the device may have a turbine 8 constituting the expansion mechanism which is coupled to the motor 2 for driving a stage 2 of compression (the first in particular). Thus, the power of the turbine or turbines 7 can be advantageously recovered and used to reduce the consumption of the engine or engines. Thus, by increasing the speed of the motors (and therefore the flow rate in the working gas cycle), the refrigeration power produced and therefore the electrical consumption of the liquefier (and vice versa) is increased. The compressors 2, 3 and turbine (s) 7 are preferably coupled directly to an output shaft of the motor concerned (without a geared movement transmission mechanism). The output shafts of the motors are preferably mounted on bearings of the magnetic type or of the dynamic gas type. The bearings are used to support compressors and turbines.
De plus, tout ou partie du dispositif, notamment ses organes froids peuvent être logés dans un carter étanche isolé thermiquement (notamment une enceinte sous vide contenant les pièces froides : échangeur 8 de refroidissement, turbine 7, ...et éventuellement l'échangeur de chaleur commun à contre-courant). In addition, all or part of the device, in particular its cold members, can be housed in a sealed thermally insulated casing (in particular a vacuum chamber containing the cold parts: cooling exchanger 8, turbine 7, etc. and possibly the heat exchanger. common heat against the current).

Claims

REVENDICATIONS
1. Installation de refroidissement et/ou de liquéfaction d'un flux de fluide, notamment du gaz naturel, comprenant un dispositif (1) de réfrigération à basse température, c'est-à- dire à une température comprise entre moins 100 degrés centigrade et moins 273 degrés centigrade, comprenant un circuit de travail (10) formant une boucle et contenant un fluide de travail, le dispositif (1) comprenant un échangeur (8) de refroidissement destiné à extraire de la chaleur à au moins un organe (25) par échange de chaleur avec le fluide de travail circulant dans le circuit (10) de travail, le circuit (10) de travail formant un cycle comprenant en série: un mécanisme (2, 3) de compression du fluide de travail, un mécanisme (6) de refroidissement du fluide de travail, un mécanisme (7) de détente du fluide de travail et un mécanisme (6, 8) de réchauffement du fluide de travail, dans lequel, le mécanisme de refroidissement du fluide de travail et le mécanisme de réchauffement comprennent un échangeur de chaleur (6) commun dans lequel le fluide de travail transite à contre-courant dans deux portions de transit distinctes du circuit selon qu'il est refroidi ou réchauffé, le dispositif (1) étant configuré pour assurer un débit massique égal dans lesdites deux portions de transit dans l'échangeur (6) de chaleur commun, le dispositif (1) comprenant une conduite (9) de dérivation d'une des deux portions de transit, ladite conduite (9) de dérivation comprenant une vanne (11) de dérivation qui, lorsqu'elle est ouverte, modifie le débit massique dans l'une des deux portions de transit, l'installation comprenant une conduite (25) de circulation dudit flux de fluide à refroidir en échange thermique avec l'échangeur (8) de refroidissement du dispositif (1) de réfrigération, dans lequel, le dispositif (1) de réfrigération est configuré pour refroidir l'échangeur (8) de refroidissement en vue de refroidir le fluide à refroidir circulant dans la conduite (25), avec la vanne (11) de dérivation fermée, et lors de la présence dégivre au-delà d'une quantité déterminée, pour réchauffer l'échangeur (8) de refroidissement avec la vanne ouverte en vue d'évacuer des impuretés solidifiée dans ledit échangeur (8) de refroidissement. 1. Installation for cooling and / or liquefying a flow of fluid, in particular natural gas, comprising a device (1) for refrigeration at low temperature, that is to say at a temperature between minus 100 degrees centigrade and minus 273 degrees centigrade, comprising a working circuit (10) forming a loop and containing a working fluid, the device (1) comprising a cooling exchanger (8) intended to extract heat from at least one member (25 ) by heat exchange with the working fluid circulating in the working circuit (10), the working circuit (10) forming a cycle comprising in series: a mechanism (2, 3) for compressing the working fluid, a mechanism (6) for cooling the working fluid, a mechanism (7) for expanding the working fluid and a mechanism (6, 8) for heating the working fluid, in which, the mechanism for cooling the working fluid and the mechanism heating system include an exchanger heat (6) in which the working fluid passes countercurrently in two separate transit portions of the circuit depending on whether it is cooled or reheated, the device (1) being configured to ensure an equal mass flow in said two transit portions in the common heat exchanger (6), the device (1) comprising a bypass pipe (9) from one of the two transit portions, said bypass pipe (9) comprising a valve (11) for bypass which, when open, modifies the mass flow in one of the two transit portions, the installation comprising a pipe (25) for circulating said flow of fluid to be cooled in heat exchange with the exchanger (8) for cooling the refrigeration device (1), in which the refrigeration device (1) is configured to cool the cooling exchanger (8) with a view to cooling the fluid to be cooled circulating in the pipe (25), with the fe bypass valve (11) rmée, and when there is defrost beyond a determined quantity, to reheating the cooling exchanger (8) with the valve open in order to evacuate the impurities solidified in said cooling exchanger (8).
2. Installation selon la revendication 1, caractérisée en ce que la vanne (11) de dérivation ouverte modifie le débit massique dans l'une des deux portions de transit pour assurer un débit massique différent dans lesdites deux portions de transit de façon à assurer un réchauffage déterminé ou un refroidissement moindre au niveau de l'échangeur (8) de refroidissement par rapport au fonctionnement du dispositif dans lequel les débits massiques sont identiques dans les deux portions. 2. Installation according to claim 1, characterized in that the open bypass valve (11) modifies the mass flow in one of the two transit portions to ensure a different mass flow in said two transit portions so as to ensure a determined heating or less cooling at the level of the cooling exchanger (8) compared to the operation of the device in which the mass flow rates are identical in the two portions.
3. Installation selon la revendication 1 ou 2, caractérisée en ce que la conduite (9) de dérivation et la vanne (11) de dérivation sont configurées pour diminuer d'une quantité déterminée le débit massique de fluide de travail prévu pour la portion de transit concernée. 3. Installation according to claim 1 or 2, characterized in that the pipe (9) bypass and the bypass valve (11) are configured to reduce by a determined amount the mass flow rate of working fluid provided for the portion of transit concerned.
4. Installation selon la revendication 3, caractérisée en ce que la conduite (9) de dérivation et la vanne (11) de dérivation sont configurées pour diminuer de 2% à 30% du débit massique et de préférence de 5% à 15% du débit massique prévu pour la portion de transit concernée. 4. Installation according to claim 3, characterized in that the pipe (9) bypass and the valve (11) bypass are configured to decrease from 2% to 30% of the mass flow and preferably from 5% to 15% of the mass flow rate planned for the transit portion concerned.
5. Installation selon l'une quelconque des revendications 1 à 4, caractérisée en ce qu'il comporte une conduite (9) de dérivation formant un bypass de la portion de transit prévue pour le réchauffage du fluide de travail dans l'échangeur (6) de chaleur commun., ladite conduite (9) de dérivation comprenant un extrémité amont raccordée au circuit (10) de travail en amont de l'échangeur (6) de chaleur commun et une extrémité aval raccordée au circuit (10) en aval de l'échangeur (6) de chaleur commun. 5. Installation according to any one of claims 1 to 4, characterized in that it comprises a bypass pipe (9) forming a bypass of the transit portion provided for heating the working fluid in the exchanger (6 ) common heat., said bypass pipe (9) comprising an upstream end connected to the working circuit (10) upstream of the common heat exchanger (6) and a downstream end connected to the circuit (10) downstream of the common heat exchanger (6).
6. Installation selon la revendication 5, caractérisée en ce que l'extrémité amont de la conduite (9) de dérivation est reliée au circuit (10) de travail en aval du mécanisme de détente (7), entre le mécanisme (7) de détente et l'échangeur (6) de chaleur commun, ou en amont du mécanisme (7) de détente, entre l'échangeur (6) de chaleur commun et le mécanisme (7) de détente. 6. Installation according to claim 5, characterized in that the upstream end of the pipe (9) bypass is connected to the working circuit (10) downstream of the expansion mechanism (7), between the mechanism (7) of expansion and the common heat exchanger (6), or upstream of the expansion mechanism (7), between the common heat exchanger (6) and the expansion mechanism (7).
7. Installation selon la revendication 5 ou 6, caractérisée en ce que l'extrémité aval de la conduite (9) de dérivation est reliée au circuit (10) entre l'échangeur (6) de chaleur commun et le mécanisme (2, 3) de compression ou au sein du mécanisme (2, 3) de compression. 7. Installation according to claim 5 or 6, characterized in that the downstream end of the pipe (9) bypass is connected to the circuit (10) between the exchanger (6) of common heat and the mechanism (2, 3 ) compression or within the compression mechanism (2, 3).
8. Installation selon l'une quelconque des revendication 1 à 7, caractérisée en ce qu'il comporte une conduite (9) de dérivation formant un bypass de la portion de transit prévue pour le refroidissement du fluide de travail dans l'échangeur (6) de chaleur commun., ladite conduite (9) de dérivation comprenant un extrémité amont raccordée au circuit (10) de travail en amont de l'échangeur (6) de chaleur commun et une extrémité aval raccordée au circuit (10) en aval de l'échangeur (6) de chaleur commun. 8. Installation according to any one of claims 1 to 7, characterized in that it comprises a bypass pipe (9) forming a bypass of the transit portion provided for cooling the working fluid in the exchanger (6 ) common heat., said bypass pipe (9) comprising an upstream end connected to the working circuit (10) upstream of the common heat exchanger (6) and a downstream end connected to the circuit (10) downstream of the common heat exchanger (6).
9. Installation selon la revendication 8, caractérisée en ce que l'extrémité amont de la conduite (9) de dérivation est reliée au circuit (10) de travail entre mécanisme (2, 3) de compression et l'échangeur (6) de chaleur commun ou au sein du mécanisme (2, 3) de compression. 9. Installation according to claim 8, characterized in that the upstream end of the pipe (9) bypass is connected to the circuit (10) between the working mechanism (2, 3) and the exchanger (6) of common heat or within the compression mechanism (2, 3).
10. Installation selon la revendication 8 ou 9, caractérisée en ce que l'extrémité aval de la conduite (9) de dérivation est reliée au circuit (10) de travail entre l'échangeur (6) de chaleur commun et le mécanisme (7) de détente ou entre le mécanisme (7) de détente et l'échangeur (6) de chaleur commun. 10. Installation according to claim 8 or 9, characterized in that the downstream end of the pipe (9) bypass is connected to the circuit (10) working between the exchanger (6) of common heat and the mechanism (7 ) expansion or between the expansion mechanism (7) and the common heat exchanger (6).
11. Installation selon l'une quelconque des revendications 1 à 10, caractérisée en ce qu'il comprend un contrôleur (12) électronique raccordé à la vanne (11) de dérivation, le contrôleur (12) électronique étant configuré pour piloter l'ouverture de la vanne (11) de dérivation pour assurer la montée en température de l'échangeur (6) de chaleur commun selon un profil déterminé et/ou pour limiter vitesse de montée en température de l'échangeur (6) de chaleur commun en dessous un seuil déterminé. 11. Installation according to any one of claims 1 to 10, characterized in that it comprises an electronic controller (12) connected to the bypass valve (11), the electronic controller (12) being configured to control the opening. of the bypass valve (11) to ensure the temperature rise of the common heat exchanger (6) according to a determined profile and / or to limit the rate of temperature rise of the common heat exchanger (6) below a determined threshold.
12. Installation selon la revendication 11, caractérisée en ce qu'il comprend un capteur (13) mesurant une température représentative de l'échangeur (6) de chaleur commun et en ce que le contrôleur (12) électronique est configuré pour piloter l'ouverture de la vanne (11) de dérivation en fonction de la mesure du capteur (3) mesurant une température représentative de l'échangeur (6). 12. Installation according to claim 11, characterized in that it comprises a sensor (13) measuring a temperature representative of the common heat exchanger (6) and in that the electronic controller (12) is configured to control the opening of the bypass valve (11) according to the measurement of the sensor (3) measuring a temperature representative of the exchanger (6).
13. Installation selon l'une quelconque des revendications 1 à13. Installation according to any one of claims 1 to
12, caractérisée en ce que le mécanisme (2, 3) de compression comprend un ou plusieurs compresseurs et au moins un moteur (4, 5) d'entraînement en rotation du ou des compresseurs (2, 3) la puissance de réfrigération du dispositif étant variable et contrôlée en régulant la vitesse de rotation du ou des moteurs (4, 5) d'entraînement, et en ce que le contrôleur (12) électronique est configuré diminuer la puissance de réfrigération du dispositif lorsque la vanne (11) de dérivation est ouverte. 12, characterized in that the compression mechanism (2, 3) comprises one or more compressors and at least one motor (4, 5) for driving in rotation the compressor or compressors (2, 3) the refrigeration power of the device being variable and controlled by regulating the speed of rotation of the drive motor (s) (4, 5), and in that the electronic controller (12) is configured to decrease the refrigeration power of the device when the bypass valve (11) is open.
14. Installation selon l'une quelconque des revendications 1 à14. Installation according to any one of claims 1 to
13, caractérisée en ce que la vanne (11) de dérivation est une vanne à ouverture progressive et/ou une vanne de type tout ou rien et autorisant un débit calibré déterminé ou associée à un organe de restriction de débit déterminé. 13, characterized in that the bypass valve (11) is a progressive opening valve and / or an all-or-nothing type valve and allowing a determined calibrated flow rate or associated with a determined flow restriction member.
15. Procédé de refroidissement et/ou de liquéfaction d'un flux de fluide, notamment du gaz naturel, utilisant une installation selon l'une quelconque des revendications 1 à 14, caractérisé en ce qu'il comporte une étape de refroidissement de l'échangeur (8) de refroidissement en vue de refroidir du fluide circulant dans la conduite (25) via le fonctionnement du dispositif de réfrigération sans ouverture de la vanne (11) de dérivation, le procédé comprenant une étape de dégivrage et d'évacuation d'impuretés solidifiées dans ledit échangeur (8) de refroidissement au cours de l'étape de refroidissement, l'étape de dégivrage et d'évacuation d' impuretés comprenant un réchauffage de l'échangeur (8) de refroidissement via un fonctionnement du dispositif de réfrigération avec un position ouverte de la vanne (11) de dérivation. 15. A method of cooling and / or liquefying a flow of fluid, in particular natural gas, using an installation according to any one of claims 1 to 14, characterized in that it comprises a step of cooling the cooling exchanger (8) for cooling the fluid circulating in the pipe (25) via the operation of the refrigeration device without opening the bypass valve (11), the method comprising a step of defrosting and evacuating impurities solidified in said cooling exchanger (8) during the cooling step, the defrosting and impurity removal step comprising reheating the cooling exchanger (8) via operation of the refrigeration device with an open position of the bypass valve (11).
EP20743083.6A 2019-08-05 2020-07-08 Cooling and/or liquefying system and method Pending EP4010647A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1908946A FR3099818B1 (en) 2019-08-05 2019-08-05 Refrigeration device and installation and method for cooling and/or liquefaction
PCT/EP2020/069187 WO2021023458A1 (en) 2019-08-05 2020-07-08 Cooling and/or liquefying system and method

Publications (1)

Publication Number Publication Date
EP4010647A1 true EP4010647A1 (en) 2022-06-15

Family

ID=68987873

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20743083.6A Pending EP4010647A1 (en) 2019-08-05 2020-07-08 Cooling and/or liquefying system and method

Country Status (9)

Country Link
US (1) US20220268516A1 (en)
EP (1) EP4010647A1 (en)
JP (1) JP2022542687A (en)
KR (1) KR20220042415A (en)
CN (1) CN114270109A (en)
AU (1) AU2020324281A1 (en)
CA (1) CA3146133A1 (en)
FR (1) FR3099818B1 (en)
WO (1) WO2021023458A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023143865A1 (en) 2022-01-28 2023-08-03 Cryostar Sas Method and system for refrigerating a cryogenic storage tank
FR3137165B1 (en) * 2022-06-22 2024-05-17 Gaztransport Et Technigaz Power and cooling system for floating structure
CN116717714B (en) * 2023-06-12 2024-05-14 天津新氢能源发展有限公司 Filling and recycling integrated hydrogen filling method

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1421120A (en) * 1971-12-01 1976-01-14 Boc International Ltd Gas liquefier
US4763486A (en) * 1987-05-06 1988-08-16 Marin Tek, Inc. Condensate diversion in a refrigeration system
TW366409B (en) * 1997-07-01 1999-08-11 Exxon Production Research Co Process for liquefying a natural gas stream containing at least one freezable component
US6843065B2 (en) * 2000-05-30 2005-01-18 Icc-Polycold System Inc. Very low temperature refrigeration system with controlled cool down and warm up rates and long term heating capabilities
CN100483040C (en) * 2000-06-28 2009-04-29 布鲁克斯自动化公司 Nonflammable mixed refrigerants (MR) for use with very low temperature throttle-cycle refrigeration systems
US7478540B2 (en) * 2001-10-26 2009-01-20 Brooks Automation, Inc. Methods of freezeout prevention and temperature control for very low temperature mixed refrigerant systems
TWI314637B (en) * 2003-01-31 2009-09-11 Shell Int Research Process of liquefying a gaseous, methane-rich feed to obtain liquefied natural gas
US8887524B2 (en) * 2006-03-29 2014-11-18 Sanyo Electric Co., Ltd. Refrigerating apparatus
JP2009121786A (en) * 2007-11-19 2009-06-04 Ihi Corp Cryogenic refrigerator and control method for it
FR2924205B1 (en) * 2007-11-23 2013-08-16 Air Liquide CRYOGENIC REFRIGERATION DEVICE AND METHOD
FR2940413B1 (en) * 2008-12-19 2013-01-11 Air Liquide METHOD OF CAPTURING CO2 BY CRYO-CONDENSATION
WO2011036581A2 (en) * 2009-09-28 2011-03-31 Koninklijke Philips Electronics N.V. System and method for liquefying and storing a fluid
FR2977014B1 (en) * 2011-06-24 2016-04-15 Saipem Sa PROCESS FOR THE LIQUEFACTION OF NATURAL GAS WITH A MIXTURE OF REFRIGERANT GAS.
US9494281B2 (en) * 2011-11-17 2016-11-15 Air Products And Chemicals, Inc. Compressor assemblies and methods to minimize venting of a process gas during startup operations
EP2604960A1 (en) * 2011-12-15 2013-06-19 Shell Internationale Research Maatschappij B.V. Method of operating a compressor and system and method for producing a liquefied hydrocarbon stream
CN102620524B (en) * 2012-04-16 2014-10-15 上海交通大学 Cascade type natural gas pressurized liquefaction process with sublimation removal of CO2
CN102620523B (en) * 2012-04-16 2014-10-15 上海交通大学 Mixed refrigerant circulation natural gas zone pressure liquefaction technology with sublimation removal of CO2
AU2015373431C1 (en) * 2014-12-29 2019-04-04 Shell Internationale Research Maatschappij B.V. Method and apparatus for cooling down a cryogenic heat exchanger and method of liquefying a hydrocarbon stream
CN107429954B (en) * 2015-05-01 2020-05-26 株式会社前川制作所 Refrigerator and method for operating refrigerator
FR3040773B1 (en) * 2015-09-03 2021-02-12 Cryostar Sas SYSTEM AND METHOD FOR TREATMENT OF GAS RESULTING FROM THE EVAPORATION OF A CRYOGENIC LIQUID
KR101876974B1 (en) * 2016-09-29 2018-07-10 대우조선해양 주식회사 BOG Re-liquefaction Apparatus and Method for Vessel
FR3072160B1 (en) * 2017-10-09 2019-10-04 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude REFRIGERATION DEVICE AND METHOD
GB2575980A (en) * 2018-07-30 2020-02-05 Linde Ag High temperature superconductor refrigeration system
FR3099819B1 (en) * 2019-08-05 2021-09-10 Air Liquide Refrigeration device and installation
FR3099815B1 (en) * 2019-08-05 2021-09-10 Air Liquide Refrigeration device and installation
FR3099816B1 (en) * 2019-08-05 2022-10-21 Air Liquide Process, device and installation for refrigeration and/or liquefaction
FR3099817B1 (en) * 2019-08-05 2022-11-04 Air Liquide Process and installation for cooling and/or liquefaction.
FR3099820B1 (en) * 2019-08-05 2022-11-04 Air Liquide Refrigeration device and installation
FR3107586B1 (en) * 2020-02-21 2022-11-18 Air Liquide Dilution refrigeration device and method
FR3110222B3 (en) * 2020-05-15 2022-04-22 Air Liquide Installation and process for refrigerating a fluid at cryogenic temperature
FR3114870B1 (en) * 2020-10-05 2022-12-16 Air Liquide Installation and process for refrigeration and/or liquefaction of a fluid
FR3125434A1 (en) * 2021-07-26 2023-01-27 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and apparatus for membrane separation of a mixture containing as main components hydrogen and carbon dioxide
KR102613977B1 (en) * 2021-09-30 2023-12-18 에이치디한국조선해양 주식회사 Gas treatment system and ship having the same
FR3137165B1 (en) * 2022-06-22 2024-05-17 Gaztransport Et Technigaz Power and cooling system for floating structure

Also Published As

Publication number Publication date
KR20220042415A (en) 2022-04-05
CA3146133A1 (en) 2021-02-11
CN114270109A (en) 2022-04-01
AU2020324281A1 (en) 2022-02-24
US20220268516A1 (en) 2022-08-25
FR3099818A1 (en) 2021-02-12
JP2022542687A (en) 2022-10-06
WO2021023458A1 (en) 2021-02-11
FR3099818B1 (en) 2022-11-04

Similar Documents

Publication Publication Date Title
EP4010647A1 (en) Cooling and/or liquefying system and method
WO2021023428A1 (en) Refrigeration and/or liquefaction method, device and system
EP4010646A1 (en) Cooling and/or liquefying method and system
FR2924205A1 (en) CRYOGENIC REFRIGERATION DEVICE AND METHOD
EP3414498B1 (en) Cryogenic refrigeration device
WO2021023456A1 (en) Refrigeration device and system
WO2021023459A1 (en) Refrigeration device and system
EP4038326B1 (en) Drive device, flying vehicle and method for cooling an engine
EP4136394A1 (en) Liquefied gas storage facility
EP4010644A1 (en) Refrigeration device and facility
WO2023169709A1 (en) Fluid circulation device, installation and method using such a device
WO2022171390A1 (en) Device and method for liquefying a fluid such as hydrogen and/or helium
WO2024120762A1 (en) Method and system for cooling a user fluid stream
WO2022171395A1 (en) Device and method for refrigerating or liquefying a fluid
FR3137746A1 (en) Device and process for liquefying a fluid.

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220307

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'EXPLOITATION DES PROCEDES GEORGES CLAUDE

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)