EP4010299A1 - Verfahren zur herstellung eines zirkondioxidrohlings mit farb- und transluzenzverlauf - Google Patents

Verfahren zur herstellung eines zirkondioxidrohlings mit farb- und transluzenzverlauf

Info

Publication number
EP4010299A1
EP4010299A1 EP20750275.8A EP20750275A EP4010299A1 EP 4010299 A1 EP4010299 A1 EP 4010299A1 EP 20750275 A EP20750275 A EP 20750275A EP 4010299 A1 EP4010299 A1 EP 4010299A1
Authority
EP
European Patent Office
Prior art keywords
weight
powder
base
ceramic
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20750275.8A
Other languages
English (en)
French (fr)
Inventor
Michael GÖDIKER
Eva Kolb
Christian Strasser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vita Zahnfabrik H Rauter GmbH and Co KG
Original Assignee
Vita Zahnfabrik H Rauter GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP19190774.0A external-priority patent/EP3772497A1/de
Priority claimed from EP19190778.1A external-priority patent/EP3772498A1/de
Application filed by Vita Zahnfabrik H Rauter GmbH and Co KG filed Critical Vita Zahnfabrik H Rauter GmbH and Co KG
Publication of EP4010299A1 publication Critical patent/EP4010299A1/de
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/0003Making bridge-work, inlays, implants or the like
    • A61C13/0022Blanks or green, unfinished dental restoration parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/08Artificial teeth; Making same
    • A61C13/083Porcelain or ceramic teeth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/802Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics
    • A61K6/818Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics comprising zirconium oxide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/802Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics
    • A61K6/822Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics comprising rare earth metal oxides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/802Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics
    • A61K6/824Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics comprising transition metal oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/008Producing shaped prefabricated articles from the material made from two or more materials having different characteristics or properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/24Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
    • B28B11/243Setting, e.g. drying, dehydrating or firing ceramic articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/003Pressing by means acting upon the material via flexible mould wall parts, e.g. by means of inflatable cores, isostatic presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/02Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein a ram exerts pressure on the material in a moulding space; Ram heads of special form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • C04B35/4885Composites with aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C2201/00Material properties
    • A61C2201/002Material properties using colour effect, e.g. for identification purposes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • C04B2235/3277Co3O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/75Products with a concentration gradient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9661Colour
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/348Zirconia, hafnia, zirconates or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/58Forming a gradient in composition or in properties across the laminate or the joined articles
    • C04B2237/582Forming a gradient in composition or in properties across the laminate or the joined articles by joining layers or articles of the same composition but having different additives

Definitions

  • the present invention relates to a method for producing a ceramic molded body, a ceramic molded body obtainable by the method according to the invention, and its use as dental restorations.
  • Ceramic materials usually have a higher strength, but are more demanding to process for dental restorations when it comes to their precisely fitting manufacture.
  • both glass-ceramic and oxide-ceramic materials have established themselves on the market. Melting processes are usually used in the manufacture of glass ceramics, while powder technology pressing and sintering processes are required for oxide ceramic materials.
  • multilayer blocks made of feldspar or leucite ceramics for the dental CAD-CAM application are known. From an aesthetic point of view, these correspond to the appearance of natural teeth, but usually have a strength in the range of 150-200 MPa. However, these strengths are less suitable, particularly when it comes to dental restorations with thin walls. On the other hand, high strengths can be achieved with layered zirconia blocks. However, these are usually too opaque to be used as monolithic dental restorations. The use of high-strength zirconium dioxide restorations therefore requires manual post-processing. This can consist in infiltrating the porous frameworks with colored liquids before sintering or the sintered restorations with stains or veneering ceramics are individually adapted in color to the natural tooth color.
  • a particular challenge of dental restorations is to create a natural-looking color gradient in the ceramic restoration.
  • high demands are placed on dental restorations with regard to their strength, especially their edge strength, their translucency and machinability.
  • One object of the present invention is a method for producing a sintered shaped body with a color gradient for use in the production of dental restorations, comprising the steps: a) mixing at least three different base powders for producing ceramic powder layer mixtures, b) layering the ceramic obtained in step a) Powder layer mixtures to at least 5 ceramic powder layers arranged one above the other, each powder layer differing from one another; c) pressing the ceramic powder layers arranged one on top of the other to form a press mold body; and d) sintering the molded body obtained in step c) to form a ceramic molded body, each ceramic powder layer comprising a mixture of at least three different base powders and the base powders each at least 80% by weight Zr0 2 and at least 0.02 to 0.1 % By weight Al 2 0 3 , preferably 0.02 to 0.08% by weight Al 2 0 3 , the weight data in each case being based on the total weight of the constituents of the base powder.
  • a ceramic powder layer consists of at least three base powders which can be distinguished from one another.
  • the powder layers consist of at least 3 or 4 distinguishable base powders, the ceramic powder layer preferably being a homogeneous one Mixture of the base powder is present.
  • the ceramic powder layers are arranged in layers on top of one another, the respectively adjacent powder layers differing in terms of their chemical composition and / or their physical properties. The differences in the compositions of the individual powder layers can be made through the choice and amount of suitable base powder.
  • the ceramic powder layers therefore comprise at least three different base powders. In one embodiment, at least two, preferably at least three, and in particular all ceramic powder layers comprise the same base powder, but in different amounts.
  • a modular system can be set up with which the properties, in particular the color, the translucency and physical properties of each individual ceramic powder layer can be set.
  • the ceramic powder layers usually also have organic components, such as pressing aids.
  • the proportion, if any, is limited and should not exceed 10% by weight, based on the ceramic powder layer.
  • one or more of the ceramic powder layers preferably has at least three base powders, preferably four base powders.
  • each powder layer having four different base powders, but different amounts of the respective base powders being present in each powder layer. It has surprisingly been found to be particularly effective and it can be operated inexpensively if each ceramic powder layer has four or more base powders.
  • the present invention therefore also relates to a ceramic powder layer which comprises four or more base powders.
  • each ceramic powder layer of the molded body has one or more coloring metal oxides.
  • the concentration of the coloring metal oxides differs in each powder layer.
  • Each intermediate layer that is to say each powder layer which is adjacent by two directly adjacent powder layers (neighboring layers), is preferably surrounded by a neighboring layer which has a higher concentration of coloring metal oxides than the intermediate layer.
  • Each intermediate layer is preferably surrounded by an adjacent layer which has a lower concentration of coloring metal oxides.
  • Each intermediate layer is particularly preferably surrounded by an adjacent layer which has a lower concentration of coloring metal oxides and a neighboring layer which has a higher concentration of coloring metal oxides.
  • the molded body has powder layers in which, starting from an outer powder layer, the concentration of one or more coloring metal oxides increases in layers. This has the particular advantage that a flowing color gradient can be set.
  • one or more of the ceramic powder layers of the molded body preferably all powder layers, contain coloring metal oxides in an amount of 0.1 to 2.5% by weight, particularly preferably 0.2 to 2.2% by weight .-% and especially from 0.2 to 1.5% by weight, based in each case on the total weight of the powder layer.
  • the molded body has powder layers in which, starting from an outer powder layer, the concentration of at least one coloring metal oxide increases, preferably up to the opposite outer layer.
  • each ceramic powder layer of the molded body has Fe 2 O.
  • the concentration of Fe 2 0 3 differs in each
  • Every intermediate layer that is to say every powder layer, is preferred is adjacent by two directly adjacent powder layers (neighboring layers), surrounded by a neighboring layer which has a higher concentration of Fe 2 O than the intermediate layer.
  • Each intermediate layer is preferably surrounded by a neighboring layer which has a lower concentration of Fe 2 O 3 .
  • each intermediate layer is surrounded by a neighboring layer which has a lower concentration of Fe 2 O 3 and a neighboring layer which has a higher concentration of Fe 2 O 3 .
  • the molded body has powder layers in which the concentration of Fe 2 O 3 increases in layers starting from an outer powder layer. This has the particular advantage that a flowing color gradient can be established.
  • one or more of the ceramic powder layers of the press mold body preferably all powder layers, contain Fe 2 O 3 in an amount of 0.01 to 0.25% by weight, particularly preferably from 0.02 to 0 , 2% by weight and especially from 0.1 to 0.18% by weight, based in each case on the total weight of the powder layer.
  • each ceramic powder layer of the press mold body has Er 2 0 3 .
  • the concentration of Er 2 0 3 differs in each powder layer.
  • Each intermediate layer that is to say each powder layer which is adjacent by two directly adjacent powder layers (neighboring layers), is preferably surrounded by a neighboring layer which has a higher concentration of Er 2 O 3 than the intermediate layer.
  • Each intermediate layer is preferably surrounded by an adjacent layer which has a lower concentration of Er 2 O 3 . It is particularly preferable for each intermediate layer to be surrounded by a neighboring layer which has a lower concentration of Er 2 0 3 and a neighboring layer which has a higher concentration of Er 2 0 3 .
  • the molded body has powder layers in which, starting from an outer powder layer, the concentration of Er 2 O 3 increases in layers. This has the particular advantage that a flowing color gradient can be established.
  • one or more of the ceramic powder layers of the molded body preferably all powder layers, have Er 2 0 3 in an amount of 0.01 to 1.5% by weight, particularly preferably from 0.05 to 1, 2 % By weight and especially from 0.1 to 0.9% by weight, or 0.2 to 0.5% by weight, in each case based on the total weight of the powder layer.
  • one or more of the powder layers, preferably each powder layer, of the molded body have Co 0 4 .
  • the amount of Co 3 O 4 can usually be in the range from 0.001 to 0.01, particularly preferably from 0.002 to 0.08% by weight and especially from 0.003 to 0.006% by weight, based in each case on the total weight of the powder layer .
  • the base powders of the present invention each comprise at least 80% by weight of Zr0 2 and at least 0.02% by weight of Al 2 0 3 , the weight data in each case being based on the total weight of the components of the base powder.
  • the base powders comprise Al 2 O 3 in an amount of 0.02 to 0.6% by weight, particularly preferably 0.03 to 0.4% by weight and especially 0.04 to 0 , 2 or 0.003 to 0.1 or 0.02 to 0.08% by weight, based in each case on the total weight of the base powder.
  • the base powders are suitable for the production of dental restorations and therefore have the necessary biocompatibility requirements even in the final sintered state.
  • the high proportion of zirconium dioxide which is preferably stabilized by yttrium oxide, also ensures high strength of the final sintered ceramics.
  • the base powders are chosen so that they are matched to one another with regard to their grain sizes and their sintering behavior, so that sintering defects do not occur during sintering. By mixing the base powders, an individual coloring and translucency can be achieved in each ceramic powder layer, which in turn is selected in such a way that it leads to a continuous and stepless color gradient with the adjacent powder layers, if any.
  • yttrium oxide or erbium oxide is advantageous for phase stabilization of the zirconium dioxide ceramics in the sintered state.
  • At least one, preferably at least two or three of the base powders, in particular all base powders, comprise yttrium oxide (Y 2 0 3 ) and / or erbium oxide (Er 2 0 3 ), preferably in an amount of at least 3% by weight, in particular of at least 5% by weight or at least 6% by weight and in particular from 4.5 to 11% by weight, especially from 6 to 10% by weight, in each case based on the total weight of the constituents of the base powder.
  • at least one of the base powders, preferably at least two or at least three of the base powders has coloring metal oxides.
  • these coloring metal oxides can be selected from the group consisting of iron oxide (Fe 2 0 3 ), cobalt oxide (C03O4) and erbium oxide (Er 2 0 3 ).
  • Individual tooth colors can be created by adding the coloring metal oxides. By mixing several base powders in each ceramic powder layer, a defined, coordinated material can be obtained.
  • At least one of the base powders preferably at least two or at least three of the base powders, contains zirconium dioxide, optionally together with hafnium dioxide, in an amount of at least 89% by weight, preferably in an amount of 89 to 98% by weight , in particular from 90 to 96% by weight, each based on the total weight of the constituents of the base powder.
  • the base powder can be zirconium dioxide (Zr0 2 ) and hafnium dioxide (Hf0 2 ), preferably in a weight ratio of Zr0 2 to Hf0 2 of 25: 1 to 98: 1, in particular 30: 1 to 90: 1 and especially 50: 1 up to 90: 1.
  • Zr0 2 zirconium dioxide
  • Hf0 2 hafnium dioxide
  • the powder layers contain a base powder
  • the powder layers have a base powder B which contains 85 to 93% by weight of zirconium dioxide, 0.02 to 0.1% by weight of aluminum oxide and 7.5 to 11% by weight of erbium oxide, the Weight data are based on the total weight of the base powder
  • the powder layers have a base powder C which contains 90 to 94% by weight of zirconium dioxide, 0.02 to 0.1% by weight of aluminum oxide and 5.5 to 8.0% by weight or 6.5 to Contains 9.5% by weight of yttrium oxide, the weight data being based in each case on the total weight of the base powder
  • the powder layers have a base powder D which contains 90 to 94% by weight of zirconium dioxide, 0.02 to 0.1% by weight of aluminum oxide, 5.5 to 8.0% by weight or 6.5 to 9.5% by weight of yttrium oxide and 0.1 to 0.3% by weight of iron oxide, the weight data in each case being based on the total weight of the base powder D.
  • At least one base powder preferably all base powders, additionally contain organic constituents, preferably in an amount of 3 to 6% by weight, in particular in an amount of 4 to 5% by weight.
  • organic constituents are binders and pressing aids, which can be easily removed thermally in the debinding step.
  • Suitable binders for zirconium dioxide sintering powder are known to the person skilled in the art. This includes, for example, polyvinyl alcohol (PVA).
  • the base powders preferably have a bulk density below 1.2 g / cm 3 .
  • base powders which have an average granulate size D 50 of 35 ⁇ m to 85 ⁇ m, preferably 40 ⁇ m to 80 ⁇ m and in particular 50 ⁇ m to 70 ⁇ m or 40 to 60 ⁇ m.
  • the granulate powders are measured dry using laser diffraction using a Cilas granulometer.
  • the inorganic constituents of the base powder that is to say after removal of the organic constituents such as binders, etc., usually have a particle size D 50 of 0.1 to 1 ⁇ m, preferably 0.2 ⁇ m to 0.8 ⁇ m and in particular 0.2 pm to 0.7 pm, measured by means of laser diffraction. It was found that the particle sizes make a positive contribution to sintering and in particular to the color transitions between the individual powder layers.
  • the layers are arranged, for example, in a cylindrical container with the formation of slices or disks.
  • the powder layers can be pressed uniaxially after each layer application. This can be done, for example, by a press ram, but only pre-consolidation takes place.
  • the uniaxial pressing of the layers perpendicular to the The layer surface is preferably carried out at a pressure of 10 to 20 MPa, in particular 12 to 15 MPa.
  • the pressing in step c) is initially carried out uniaxially and perpendicular to the layer surface, preferably with the formation of a pre-compressed molded body with a density below 2.8 g / cm 3 , preferably with a density in the range from 2.5 to 2.75 g / cm 3 , e.g. 2.65 g / cm 3 .
  • the uniaxial pre-compaction can lead to a better and more intimate mixing and thus a more even transition between the layers.
  • the pressing in step c) takes place isostatically, the isostatic pressing preferably taking place after uniaxial pre-compression, with the formation of a molded body with a density (green compact density) below 3.4 g / cm 3 , in particular one Density of 2.80 to 3.15 g / cm 3 , especially with a density of 2.85 to 3.10 g / cm 3 .
  • the isostatic pressing is preferably carried out after all layers of the compression molding have been arranged. Suitable pressures for isostatic pressing are usually in the range from 500 to 10,000 bar, preferably in the range from 800 to 8000 bar, for example 1000 to 7000 bar or 1000 to 3000 bar.
  • the thicknesses of the individual powder layers of the molded body can vary. In a preferred embodiment, at least two of the ceramic powder layers differ in terms of their thickness. At least two of the ceramic powder layers of the molded body preferably have a thickness difference of at least 5%.
  • the molded bodies can be in the form of cylindrical, circular disks with diameters in the range from 50 to 200 mm, for example 75 to 150 mm.
  • the total thickness of the cylindrical disks can for example be in the range from 8 to 40 mm, preferably from 10 to 30 mm, especially from 13 to 25 mm.
  • the dimensions relate to the molded body in the unsintered state.
  • Powder layers preferably both outer ceramic powder layers of the
  • Press-molded body has / have a greater thickness than a ceramic powder layer lying between the outer ceramic powder layers.
  • the above-described layer structure with at least one thicker outer layer has proven to be advantageous, since this represents a suitable structure for processing in CAD / CAM systems or other subtractive processing methods.
  • step b) of the method according to the invention five ceramic powder layers are arranged in step b) of the method according to the invention, the first powder layer 20 to 30%, preferably 22 to 28%, the second powder layer 10 to 20%, preferably 12 to 18%, the third powder layer makes up 15 to 25%, preferably 17 to 23%, the fourth powder layer 10 to 20%, preferably 12 to 18% and the fifth powder layer 20 to 30%, preferably 22 to 28% of the total thickness of the powder layers arranged one above the other the stipulation that the total thickness is 100%.
  • the sintering in step d) of the method according to the invention takes place at a temperature in the range from 950 to 1100 ° C., preferably from 980 to 1050 ° C., with the formation of a pre-sintered ceramic shaped body (white body).
  • the sintering usually takes place over a period of time which is sufficient to remove the binders present and to give the molded body sufficient strength for processing by subtractive methods.
  • the pre-sintered and debonded molded bodies are referred to as white bodies.
  • the white body density is preferably in a range from 3.15 to 3.35 g / cm 3 , in particular in the range from 3.2 to 3.3 g / cm 3 . These density ranges have proven to be particularly advantageous in terms of high edge stability and low tool wear.
  • the sintering in step d) of the method according to the invention for producing the white body takes place over a period of more than 30 minutes, preferably more than 1 hour, in particular more than 20 hours or more than 50 hours, for example 60 to 200 hours or 70 to 150 hours.
  • the pre-sintered ceramic shaped body in step d) be subtractive
  • Process is processed and preferably then in a further io Step is final sintered.
  • the sintering shrinkage is usually taken into account.
  • the Vickers hardness of one outer layer differs from the Vickers hardness of the opposite outer layer.
  • the difference in Vickers hardness is preferably at least 5%, more preferably at least 10%, in particular at least 15% or at least 20%, each based on the outer layer with the lower hardness.
  • the Vickers hardness [HV2] according to DIN EN 843 of the outer layer with the lower Vickers hardness is 45 to 60, particularly preferably from 50 to 59.
  • the Vickers hardness [HV2] according to DIN EN 843 of the outer layer with the higher Vickers hardness is preferably above 60 and especially in the range from 61 to 80, particularly preferably from 65 to 75.
  • the final sintering usually takes place at temperatures above 1350 ° C, preferably above 1400 ° C, especially in the range from 1420 ° C to 1600 ° C or 1450 ° C to 1550 ° C.
  • the sintering time for the final sintering usually takes place over a period of more than 4 minutes, preferably more than 5 minutes, in particular in the range from 5 to 120 minutes.
  • the present invention also provides a ceramic shaped body obtainable by the process according to the invention.
  • the ceramic moldings according to the invention can be used in particular in the dental field. Here they are characterized by high edge strength in dental restorations, an excellent structure and high 3-point flexural strength.
  • the ceramic molded bodies of the present invention are therefore preferably dental restorations, such as, for example, inlays, onlays, crowns, bridges, veneers and veneers or abutments for implants.
  • Another object of the present invention is the use of the ceramic molded body according to the invention for dental restorations or for the production of dental restorations.
  • Table 1 shows 4 base powders A to D which are used for the compositions of the ceramic powder layers.
  • the granulate size D 50 of the base powder is in the range of 40-80 ⁇ m.
  • the inorganic constituents of the base powder have a particle size D 50 of 0.2 to 0.7 ⁇ m.
  • the weight data relate in each case to the total weight of the powder composition.
  • the arrangements of the layers listed in Table 2 below show the composition of each individual ceramic powder layer in the molded body.
  • the molded bodies are intended for use in the production of dental restorations, so that the layer compositions are designed according to the position in the tooth.
  • the compositions of the Powder layers are formed from the base powders by varying the proportions in order to obtain an ideal color gradient.
  • the composition of each powder layer is achieved by homogeneously mixing the base powders in the specified amounts.
  • the powders are then placed in layers in a cylindrical press mold with a diameter of 100 mm and a layer thickness of 18 mm is set.
  • the powder layers are pre-pressed uniaxially at a pressure of 13 MPa perpendicular to the layer surface and then isostatically pressed at a pressure of 2000 bar.
  • the ceramic powder layers are arranged so that layer 1 (cutting edge) 25%, layer 2 (dentin / cutting edge) 15%, layer 3 (dentin) 20%, layer 4 (dentin / neck) 15% and layer 5 ( Neck) makes up 25% of the total thickness of the die body.
  • FIGS. 1 and 2 show, by way of example, dental restorations that are obtained from the exemplary ceramic molded body.
  • the layer transitions and color transitions are fluid.
  • the restorations show excellent edge strength and stability. Reworking and readjusting the tooth color is not necessary.
  • the optimal structure and the composition of the layers show a largely homogeneous shrinkage across all layers during the
  • the hardness of the ceramic can be optimally adjusted through the layer structure.
  • the Vickers hardness is measured after furnace firing on the top (light layer, cutting edge) and on the bottom (dark layer, tooth neck) of an exemplary disc.
  • the white body density and thus also the Vickers hardness on the underside is always greater than on the top.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Manufacturing & Machinery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Plastic & Reconstructive Surgery (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Dentistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dental Prosthetics (AREA)
  • Dental Preparations (AREA)
  • Materials For Medical Uses (AREA)

Abstract

Verfahren zur Herstellung eines keramischen Formkörpers umfassend die folgenden Schritte: a) Bereitstellen von 3 oder mehr keramischen Pulverschichten, die schichtweise übereinander angeordnet sind, b) Verpressen der schichtweise übereinander angeordneten keramischen Pulverschichten zur Ausbildung eines Pressformkörpers und Sintern des in Schritt b) erhaltenen Pressformkörpers zur Ausbildung eines keramischen Formkörpers, dadurch gekennzeichnet, dass die keramischen Pulverschichten jeweils eine voneinander verschiedene Zusammensetzung aufweisen, wobei jede keramische Pulverschicht eine Mischung aus mindestens 2 verschiedenen Basispulvern umfasst und die Basispulver jeweils mindestens 80 Gew.-% ZrO2 und mindestens 0,02 Gew.-% Al2O3 aufweisen, wobei die Gewichtsangaben jeweils bezogen sind auf das Gesamtgewicht der Bestandteile des Basispulvers.

Description

VERFAHREN ZUR HERSTELLUNG EINES ZIRKONDIOXIDROHLINGS MIT FARB-
UND TRANSLUZENZVERLAUF
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines keramischen Formkörpers, einen keramischen Formkörper, der nach dem erfindungsgemäßen Verfahren erhältlich ist, sowie dessen Verwendung als dentale Restaurationen.
Für zahnmedizinische dentale Restaurationen sind unterschiedlichste organische Polymermaterialien als auch keramische Materialien bekannt. Keramische Materialien weisen regelmäßig eine höhere Festigkeit auf, sind aber für dentale Restaurationen anspruchsvoller zu bearbeiten, wenn es um deren passgenaue Herstellung geht. Für keramische dentale Restaurationen haben sich am Markt sowohl glaskeramische als auch oxidkeramische Werkstoffe etabliert. Bei der Herstellung kommen für Glaskeramiken üblicherweise Schmelzverfahren zum Einsatz, während bei oxidkeramischen Materialien pulvertechnologische Press- und Sinterverfahren erforderlich sind.
Im Stand der Technik sind mehrschichtige Blöcke für die dentale CAD-CAM Anwendung aus Feldspat- oder Leuzitkeramik bekannt. Diese entsprechen unter ästhetischen Gesichtspunkten dem Erscheinungsbild natürlicher Zähne, weisen aber in der Regel eine Festigkeit auf, die im Bereich von 150 - 200 MPa liegt. Diese Festigkeiten sind jedoch insbesondere dann, wenn es sich um dentale Restaurationen mit dünnen Wandstärken handelt, weniger geeignet. Andererseits können mit geschichteten Zirkondioxidblöcken hohe Festigkeiten erzielt werden. Diese sind jedoch regelmäßig zu opak um als monolithische dentale Versorgung eingesetzt werden zu können. Der Einsatz hochfester Zirkoniumdioxid- Restaurationen erfordert somit eine manuelle Nachbearbeitung. Diese kann darin bestehen, dass die porösen Gerüste bereits vor dem Sintern mit Farbflüssigkeiten infiltriert werden oder die gesinterten Versorgungen mit Malfarben oder Verblendkeramik individualisiert farblich der natürlichen Zahnfarbe angepasst werden.
Eine besondere Herausforderung dentaler Restaurationen liegt darin einen natürlich erscheinenden Farbverlauf in der keramischen Restauration zu erzeugen. Gleichzeitig werden an dentale Restaurationen hohe Anforderungen hinsichtlich ihrer Festigkeit, insbesondere ihrer Kantenfestigkeit, ihrer Transluzenz und Bearbeitbarkeit gestellt.
Überraschend wurde gefunden, dass die im Stand der Technik aufgezeigten Probleme durch die vorliegende Erfindung gelöst werden können. Insbesondere wurde gefunden, dass ein wenige Basispulver umfassendes System genutzt werden kann, um einen stufenlosen Farbverlauf in keramischen Formkörpern zu erzeugen, bei denen sowohl Transluzenz als auch Festigkeit des Endprodukts individuell eingestellt werden können.
Ein Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung eines gesinterten Formkörpers mit Farbverlauf zur Verwendung in der Herstellung dentaler Restaurationen umfassend die Schritte: a) Mischen von mindestens drei verschiedenen Basispulvern zur Herstellung keramischer Pulverschichtmischungen, b) Schichtweises Anordnen der in Schritt a) erhaltenen keramischen Pulverschichtmischungen zu mindestens 5 übereinander geordneten keramischen Pulverschichten, wobei sich jede Pulverschicht voneinander unterscheidet; c) Verpressen der schichtweise übereinander angeordneten keramischen Pulverschichten zur Ausbildung eines Pressform körpers; und d) Sintern des in Schritt c) erhaltenen Formkörpers zur Ausbildung eines keramischen Formkörpers, wobei jede keramische Pulverschicht eine Mischung aus mindestens drei verschiedenen Basispulvern umfasst und die Basispulver jeweils mindestens 80 Gew.-% Zr02 und mindestens 0,02 bis 0,1 Gew.-% Al203, vorzugsweise 0,02 bis 0,08 Gew.-% Al203, aufweisen, wobei die Gewichtsangaben jeweils bezogen sind auf das Gesamtgewicht der Bestandteile des Basispulvers.
Bevorzugte Ausführungsformen der vorliegenden Erfindung befinden sich in den abhängigen Ansprüchen.
Im Rahmen der vorliegenden Erfindung besteht eine keramische Pulverschicht aus wenigstens drei voneinander unterscheidbaren Basispulvern. Insbesondere bestehen die Pulverschichten aus wenigstens 3 oder 4 unterscheidbaren Basispulvern, wobei die keramische Pulverschicht bevorzugt als eine homogene Mischung der Basispulver vorliegt. Die keramischen Pulverschichten werden schichtweise übereinander angeordnet, wobei sich die jeweils angrenzenden Pulverschichten hinsichtlich ihrer chemischen Zusammensetzung und/oder ihrer physikalischen Eigenschaften unterscheiden. Die Unterschiede in den Zusammensetzungen der einzelnen Pulverschichten können durch die Wahl und Menge geeigneter Basispulver erfolgen. Die keramischen Pulverschichten umfassen daher mindestens drei verschiedene Basispulver. In einer Ausführungsform umfassen wenigstens zwei, bevorzugt wenigstens drei und insbesondere alle keramischen Pulverschichten die gleichen Basispulver, jedoch in unterschiedlichen Mengen. Es hat sich gezeigt, dass mit einer begrenzten Anzahl von geeigneten Basispulvern ein Baukastensystem aufgebaut werden kann, mit dem die Eigenschaften, insbesondere die Farbe, die Transluzenz und physikalischen Eigenschaften jeder einzelnen keramischen Pulverschicht eingestellt werden kann. Neben den keramischen Bestandteilen weisen die keramischen Pulverschichten üblicherweise auch organische Bestandteile, wie etwa Presshilfsmittel, auf. Der Anteil ist jedoch, falls vorhanden, begrenzt und sollte 10 Gew.-%, bezogen auf die keramische Pulverschicht nicht übersteigen.
In einer bevorzugten Ausgestaltung weist eine oder mehrere der keramischen Pulverschichten, insbesondere jede keramische Pulverschicht, bevorzugt mindestens drei Basispulver, vorzugsweise vier Basispulver, auf.
Es hat sich als vorteilhaft herausgestellt, dass vier oder fünf keramische Pulverschichten bereitgestellt werden, die sich jeweils hinsichtlich ihrer Zusammensetzung unterscheiden. Insbesondere bei 5 oder mehr als 5 keramischen Pulverschichten lässt sich ein guter Farbübergang und Eigenschaftsübergang bewerkstelligen, der für dentale Restaurationen wichtig ist. So können hier auch insbesondere die in tieferen und dunkleren Farben ausgestalteten künstlichen Zahnhälse fließend zu den helleren Schneide- und Dentinbereichen künstlicher Zähne eingestellt werden und so den ästhetischen und mechanischen Anforderungen Rechnung getragen werden.
In einer speziell bevorzugten Ausführungsform werden in Schritt a) des erfindungsgemäßen Verfahrens mindestens fünf Pulverschichten bereitgestellt, wobei jede Pulverschicht vier voneinander unterschiedliche Basispulver aufweist, wobei jedoch in jeder Pulverschicht unterschiedliche Mengen der jeweiligen Basispulver vorliegen. Es hat sich überraschend gezeigt, dass besonders effektiv und kostengünstig gearbeitet werden kann, wenn jede keramische Pulverschicht vier oder mehr Basispulver aufweist. Ein weiterer Gegenstand der vorliegenden Erfindung ist daher auch eine keramische Pulverschicht, die vier oder mehr Basispulver umfasst.
In einer bevorzugten Ausgestaltung der vorliegenden Erfindung weist jede keramische Pulverschicht des Pressformkörpers ein oder mehrere färbende Metalloxide auf. In einer weiteren Ausführungsform unterscheidet sich die Konzentration der färbenden Metalloxide in jeder Pulverschicht. Bevorzugt ist jede Zwischenschicht, also jede Pulverschicht, die durch zwei direkt angrenzende Pulverschichten benachbart ist (Nachbarschichten), von einer Nachbarschicht umgeben, die eine höhere Konzentration an färbenden Metalloxiden aufweist als die Zwischenschicht. Bevorzugt ist jede Zwischenschicht von einer Nachbarschicht umgeben, die eine geringere Konzentration an färbenden Metalloxiden aufweist. Besonders bevorzugt ist jede Zwischenschicht von einer Nachbarschicht umgeben, die eine geringere Konzentration an färbenden Metalloxiden aufweist und einer Nachbarschicht, die eine höhere Konzentration an färbenden Metalloxiden aufweist.
In einer bevorzugten Ausgestaltung der Erfindung weist der Pressformkörper Pulverschichten auf, bei denen von einer äußeren Pulverschicht ausgehend die Konzentration eines oder mehrerer färbender Metalloxide schichtweise zunimmt. Dies hat insbesondere den Vorteil, dass sich ein fließender Farbverlauf einstellen lässt. In einer weiteren bevorzugten Ausgestaltung der Erfindung weisen eine oder mehrere der keramischen Pulverschichten des Pressformkörpers, vorzugsweise alle Pulverschichten, färbende Metalloxide in einer Menge von 0,1 bis 2,5 Gew.-%, besonders bevorzugt von 0,2 bis 2,2 Gew.-% und speziell von 0,2 bis 1,5 Gew.- %, jeweils bezogen auf das Gesamtgewicht der Pulverschicht, auf.
In einer bevorzugten Ausführungsform weist der Pressformkörper Pulverschichten auf, bei denen von einer äußeren Pulverschicht ausgehend die Konzentration wenigstens eines färbenden Metalloxids, vorzugsweise bis zur gegenüberliegenden äußeren Schicht, zunimmt.
In einer bevorzugten Ausgestaltung der vorliegenden Erfindung weist jede keramische Pulverschicht des Pressformkörpers Fe20 auf. In einer weiteren
Ausführungsform unterscheidet sich die Konzentration an Fe203 in jeder
Pulverschicht. Bevorzugt ist jede Zwischenschicht, also jede Pulverschicht, die durch zwei direkt angrenzende Pulverschichten benachbart ist (Nachbarschichten), von einer Nachbarschicht umgeben, die eine höhere Konzentration an Fe20 aufweist als die Zwischenschicht. Bevorzugt ist jede Zwischenschicht von einer Nachbarschicht umgeben, die eine geringere Konzentration an Fe203 aufweist. Besonders bevorzugt ist jede Zwischenschicht von einer Nachbarschicht umgeben, die eine geringere Konzentration an Fe203 aufweist und einer Nachbarschicht, die eine höhere Konzentration an Fe203 aufweist.
In einer bevorzugten Ausgestaltung der Erfindung weist der Pressformkörper Pulverschichten auf, bei der von einer äußeren Pulverschicht ausgehend die Konzentration an Fe203 schichtweise zunimmt. Dies hat insbesondere den Vorteil, dass sich ein fließender Farbverlauf einstellen kann. In einer weiteren bevorzugten Ausgestaltung der Erfindung weisen eine oder mehrere der keramischen Pulverschichten des Pressform körpers, vorzugsweise alle Pulverschichten, Fe203 in einer Menge von 0,01 bis 0,25 Gew.-%, besonders bevorzugt von 0,02 bis 0,2 Gew.-% und speziell von 0,1 bis 0,18 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Pulverschicht, auf.
In einer bevorzugten Ausgestaltung der vorliegenden Erfindung weist jede keramische Pulverschicht des Pressform körpers Er203 auf. In einer weiteren Ausführungsform unterscheidet sich die Konzentration an Er203 in jeder Pulverschicht. Bevorzugt ist jede Zwischenschicht, also jede Pulverschicht, die durch zwei direkt angrenzende Pulverschichten benachbart ist (Nachbarschichten), von einer Nachbarschicht umgeben, die eine höhere Konzentration an Er203 aufweist als die Zwischenschicht. Bevorzugt ist jede Zwischenschicht von einer Nachbarschicht umgeben, die eine geringere Konzentration an Er203 aufweist. Besonders bevorzugt ist jede Zwischenschicht von einer Nachbarschicht umgeben, die eine geringere Konzentration an Er203 aufweist und einer Nachbarschicht, die eine höhere Konzentration an Er203 aufweist.
In einer bevorzugten Ausgestaltung der Erfindung weist der Pressformkörper Pulverschichten auf, bei denen von einer äußeren Pulverschicht ausgehend die Konzentration an Er203 schichtweise zunimmt. Dies hat insbesondere den Vorteil, dass sich ein fließender Farbverlauf einstellen kann. In einer weiteren bevorzugten Ausgestaltung der Erfindung weisen eine oder mehrere der keramischen Pulverschichten des Pressformkörpers, vorzugsweise alle Pulverschichten, Er203 in einer Menge von 0,01 bis 1,5 Gew.-%, besonders bevorzugt von 0,05 bis 1,2 Gew.-% und speziell von 0,1 bis 0,9 Gew.-%, oder 0,2 bis 0,5 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Pulverschicht, auf.
In einer weiteren bevorzugten Ausgestaltung weisen ein oder mehrere der Pulverschichten, vorzugsweise jede Pulverschicht, des Pressformkörpers Co 04 auf. Üblicherweise kann die Menge an Co304 im Bereich von 0,001 bis 0,01, besonders bevorzugt von 0,002 bis 0,08 Gew.-% und speziell von 0,003 bis 0,006 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Pulverschicht, liegen.
Die Basispulver der vorliegenden Erfindung umfassen jeweils mindestens 80 Gew.- % Zr02 und mindestens 0,02 Gew.-% Al203, wobei die Gewichtsangaben jeweils bezogen sind auf das Gesamtgewicht der Bestandteile des Basispulvers. In einer bevorzugten Ausgestaltung der vorliegenden Erfindung umfassen die Basispulver Al203 in einer Menge von 0,02 bis 0,6 Gew.-%, besonders bevorzugt 0,03 bis 0,4 Gew.-% und speziell 0,04 bis 0,2 oder 0,003 bis 0,1 oder 0,02 bis 0,08 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Basispulver. Die Basispulver sind geeignet für die Herstellung dentaler Restaurationen und weisen daher auch im endgesinterten Zustand die dafür erforderlichen Anforderungen der Biokompatibilität auf. Der hohe Anteil an Zirkoniumdioxid, welches bevorzugt durch Yttriumoxid stabilisiert wird, sorgt zudem für eine hohe Festigkeit der endgesinterten Keramiken. Die Basispulver werden so gewählt, dass sie hinsichtlich ihrer Korngrößen und ihres Sinterverhaltens aufeinander abgestimmt sind, so dass es bei der Sinterung nicht zu Sinterfehlstellen kommt. Durch das Vermischen der Basispulver kann in jeder keramischen Pulverschicht eine individuelle Einfärbung und Transluzenz erzielt werden, die wiederum so gewählt ist, dass sie mit den angrenzenden Pulverschichten, sofern vorhanden, zu einem kontinuierlichen und stufenlosen Farbverlauf führt.
Zur Phasenstabilisierung der Zirkoniumdioxid-Keramiken im gesinterten Zustand ist das Vorhandensein von Yttriumoxid oder Erbiumoxid vorteilhaft.
In einer bevorzugten Ausführungsform umfasst wenigstens ein, vorzugsweise wenigstens zwei oder drei der Basispulver, insbesondere alle Basispulver Yttriumoxid (Y203) und/oder Erbiumoxid (Er203), vorzugsweise in einer Menge von wenigstens 3 Gew.-%, insbesondere von wenigstens 5 Gew.-% oder wenigstens 6 Gew.-% und insbesondere von 4,5 bis 11 Gew.-%, speziell von 6 bis 10 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Bestandteile des Basispulvers. In einer Ausgestaltung der vorliegenden Erfindung weist wenigstens eines der Basispulver, vorzugsweise wenigstens zwei oder wenigstens drei der Basispulver färbende Metalloxide auf. Beispielsweise können diese färbenden Metalloxide ausgewählt sein aus der Gruppe bestehend aus Eisenoxid (Fe203), Kobaltoxid (C03O4) und Erbiumoxid (Er203). Durch Zusatz der färbenden Metalloxide lassen sich individuelle Zahnfarben erstellen. Durch Vermischen mehrerer Basispulver in jeder keramischen Pulverschicht kann ein definiert abgestimmtes Material erhalten werden.
In einer Ausgestaltung der vorliegenden Erfindung weist wenigstens eines der Basispulver, vorzugsweise wenigstens zwei oder wenigstens drei der Basispulver Zirkondioxid, gegebenenfalls zusammen mit Hafniumdioxid, in einer Menge von wenigstens 89 Gew.-%, vorzugsweise in einer Menge von 89 bis 98 Gew.-%, insbesondere von 90 bis 96 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Bestandteile des Basispulvers, auf.
In einer Ausführungsform können die Basispulver Zirkoniumdioxid (Zr02) und Hafniumdioxid (Hf02), vorzugsweise in einem Gewichtsverhältnis von Zr02 zu Hf02 von 25:1 bis 98:1, insbesondere 30:1 bis 90:1 und speziell 50:1 bis 90:1 aufweisen.
In einer bevorzugten Ausgestaltung enthalten die Pulverschichten ein Basispulver
A. welches 92 bis 96 Gew.-% Zirkoniumdioxid, 0,02 bis 0,1 Gew.-% Aluminiumoxid, 3,5 bis 6,5 Gew.-% oder 5,0 bis 9,5 Gew.-% Yttriumoxid und 0,02 bis 0,1 Gew.-% Kobaltoxid aufweist, wobei die Gewichtsangaben jeweils bezogen sind auf das Gesamtgewicht des Basispulvers A.
In einer weiteren bevorzugten Ausgestaltung weisen die Pulverschichten ein Basispulver B auf, welches 85 bis 93 Gew.-% Zirkoniumdioxid, 0,02 bis 0,1 Gew.- % Aluminiumoxid und 7,5 bis 11 Gew.-% Erbiumoxid enthält, wobei die Gewichtsangaben jeweils bezogen sind auf das Gesamtgewicht des Basispulvers
B.
In einer weiteren Ausführungsform weisen die Pulverschichten ein Basispulver C, welches 90 bis 94 Gew.-% Zirkoniumdioxid, 0,02 bis 0,1 Gew.-% Aluminiumoxid und 5,5 bis 8,0 Gew.-% oder 6,5 bis 9,5 Gew.-% Yttriumoxid enthält, wobei die Gewichtsangaben jeweils bezogen sind auf das Gesamtgewicht des Basispulvers
C. In einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung weisen die Pulverschichten ein Basispulver D auf, welches 90 bis 94 Gew.-% Zirkoniumdioxid, 0,02 bis 0,1 Gew.-% Aluminiumoxid, 5,5 bis 8,0 Gew.-% oder 6,5 bis 9,5 Gew.-% Yttriumoxid und 0,1 bis 0,3 Gew.-% Eisenoxid aufweist, wobei die Gewichtsangaben jeweils bezogen sind auf das Gesamtgewicht des Basispulvers D.
In einer weiteren Ausgestaltung der vorliegenden Erfindung weisen wenigstens ein Basispulver, vorzugsweise alle Basispulver zusätzlich organische Bestandteile, vorzugsweise in einer Menge von 3 bis 6 Gew.-%, insbesondere in einer Menge von 4 bis 5 Gew.-% auf. Als organische Bestandteile kommen insbesondere Bindemittel und Presshilfsmittel in Frage, die im Entbinderungsschritt thermisch leicht entfernt werden können. Geeignete Binder für Zirkoniumdioxid-Sinterpulver sind dem Fachmann bekannt. Hierzu zählt beispielsweise Polyvinylalkohol (PVA).
Bevorzugt weisen die Basispulver eine Schüttdichte unterhalb von 1,2 g/cm3 auf.
Es hat sich als vorteilhaft herausgestellt Basispulver einzusetzen, die eine durchschnittliche Granulatgröße D50 von 35 pm bis 85 pm, bevorzugt von 40 pm bis 80 pm und insbesondere von 50 pm bis 70 pm oder 40 bis 60 pm aufweisen. Vermessen werden die Granulatpulver trocken mittels Laserbeugung mittels eines Cilas Granulometer.
Üblicherweise weisen die anorganischen Bestandteile der Basispulver, also nach Entfernung der organischen Bestandteile, wie Bindemittel, etc., eine Partikelgröße D50 von 0,1 bis 1 pm, bevorzugt von 0,2 pm bis 0,8 pm und insbesondere von 0,2 pm bis 0,7 pm, gemessen mittels Laserbeugung, auf. Es wurde gefunden, dass die Partikelgrößen einen positiven Beitrag zur Sinterung und insbesondere für die Farbübergänge zwischen den einzelnen Pulverschichten leisten.
In einer speziell bevorzugten Ausgestaltung der vorliegenden Erfindung werden in Schritt b) fünf keramische Pulverschichten schichtweise übereinander angeordnet. Die Anordnung der Schichten kann beispielsweise in einem zylindrischen Behälter erfolgen unter Ausbildung von Scheiben oder Disks. Üblicherweise kann nach jedem Schichtauftrag ein uniaxiales Verpressen der Pulverschichten erfolgen. Dies kann beispielsweise durch einen Pressstempel erfolgen, wobei jedoch lediglich eine Vorverfestigung erfolgt. Das uniaxiale Verpressen der Schichten senkrecht zur Schichtoberfläche erfolgt bevorzugt bei einem Druck von 10 bis 20 MPa, insbesondere 12 bis 15 MPa.
Weiter bevorzugt erfolgt das Verpressen in Schritt c) zunächst uniaxial und senkrecht zur Schichtoberfläche, vorzugsweise unter Ausbildung eines vorverdichteten Pressformkörpers mit einer Dichte unterhalb 2,8 g/cm3, vorzugsweise mit einer Dichte im Bereich von 2,5 bis 2,75 g/cm3, bspw. 2,65 g/cm3. Das uniaxiale Vorverdichten kann zu einer besseren und innigeren Vermischung und damit gleichmäßigerem Übergang zwischen den Schichten führen.
In einer weiteren Ausgestaltung des erfindungsgemäßen Verfahrens erfolgt das Verpressen in Schritt c) isostatisch, wobei das isostatische Verpressen vorzugsweise im Anschluss eines uniaxialen Vorverdichtens erfolgt, unter Ausbildung eines Pressformkörpers mit einer Dichte (Grünlingsdichte) unterhalb von 3,4 g/cm3, insbesondere einer Dichte von 2,80 bis 3,15 g/cm3, speziell mit einer Dichte von 2,85 bis 3,10 g/cm3. Das isostatische Verpressen erfolgt bevorzugt nachdem alle Schichten des Formpresskörpers angeordnet sind. Geeignete Drucke für das isostatische Verpressen liegen dabei gewöhnlich im Bereich von 500 bis 10000 bar, bevorzugt im Bereich von 800 bis 8000 bar, beispielsweise 1000 bis 7000 bar oder 1000 bis 3000 bar.
Die Dicken der einzelnen Pulverschichten des Pressformkörpers können variieren. In einer bevorzugten Ausgestaltung unterscheiden sich wenigstens zwei der keramischen Pulverschichten hinsichtlich ihrer Dicke. Vorzugsweise weisen wenigstens zwei der keramischen Pulverschichten des Pressformkörpers einen Dickenunterschied von wenigstens 5% auf. Typischerweise können die Pressformkörper in Form zylindrischer, kreisförmiger Scheiben mit Durchmessern im Bereich von 50 bis 200 mm, beispielsweise 75 bis 150 mm vorliegen. Die Gesamtdicke der zylindrischen Scheiben kann dabei beispielsweise im Bereich von 8 bis 40 mm, vorzugsweise von 10 bis 30 mm, speziell von 13 bis 25 mm betragen. Die Maße beziehen sich dabei auf den Pressformkörper im ungesinterten Zustand.
Hinsichtlich der Farbgestaltung und der anschließenden Bearbeitung hat es sich als vorteilhaft herausgestellt, dass wenigstens eine der äußeren keramischen
Pulverschichten, vorzugsweise beide äußeren keramischen Pulverschichten des
Pressformkörpers, eine größere Dicke aufweist/aufweisen als eine zwischen den äußeren keramischen Pulverschichten liegende keramische Pulverschicht. Insbesondere bei der Verwendung der erfindungsgemäß hergestellten keramischen Formkörper für die Herstellung dentaler Restaurationen hat sich der zuvor beschriebene Schichtaufbau mit wenigstens einer dickeren äußeren Schicht als vorteilhaft erwiesen, da dies für die Bearbeitung in CAD/CAM Systemen oder anderen subtraktiven Bearbeitungsverfahren einen geeigneten Aufbau darstellt.
In einer speziell bevorzugten Ausgestaltung der vorliegenden Erfindung werden in Schritt b) des erfindungsgemäßen Verfahrens fünf keramische Pulverschichten angeordnet, wobei die erste Pulverschicht 20 bis 30%, vorzugsweise 22 bis 28%, die zweite Pulverschicht 10 bis 20%, vorzugsweise 12 bis 18%, die dritte Pulverschicht 15 bis 25%, vorzugsweise 17 bis 23%, die vierte Pulverschicht 10 bis 20%, vorzugsweise 12 bis 18% und die fünfte Pulverschicht 20 bis 30%, vorzugsweise 22 bis 28% der Gesamtdicke der übereinander angeordneten Pulverschichten ausmacht, mit der Maßgabe, dass sich die Gesamtdicke auf 100% ergänzt.
In einer weiteren Ausgestaltung der vorliegenden Erfindung erfolgt die Sinterung in Schritt d) des erfindungsgemäßen Verfahrens bei einer Temperatur im Bereich von 950 bis 1100 °C, vorzugsweise von 980 bis 1050 °C unter Ausbildung eines vorgesinterten keramischen Formkörpers (Weißling). Üblicherweise erfolgt die Sinterung über einen Zeitraum, der ausreicht um die vorhandenen Bindemittel zu entfernen und dem Pressformkörper eine genügende Festigkeit für die Bearbeitung durch subtraktive Verfahren zu verleihen. Die vorgesinterten und entbinderten Pressformkörper werden als Weißlinge bezeichnet. Die Weißlingsdichte liegt bevorzugt in einem Bereich von 3,15 bis 3,35 g/cm3, insbesondere im Bereich von 3,2 bis 3,3 g/cm3. Diese Dichtebereiche haben sich als besonders vorteilhaft herausgestellt im Bezug auf hoher Kantenstabilität und geringem Werkzeugverschleiß.
In einer Ausgestaltung erfolgt die Sinterung in Schritt d) des erfindungsgemäßen Verfahrens zur Herstellung des Weißlings über einen Zeitraum oberhalb von 30 Minuten, bevorzugt oberhalb von 1 Stunde, insbesondere oberhalb von 20 Stunden oder oberhalb von 50 Stunden, beispielsweise 60 bis 200 Stunden oder 70 bis 150 Stunden.
Insbesondere zur Herstellung keramischer dentaler Restaurationen bietet es sich an, dass der in Schritt d) vorgesinterte keramische Formkörper durch subtraktive
Verfahren bearbeitet wird und vorzugsweise anschließend in einem weiteren io Schritt endgesintert wird. Bei Anwendung subtraktiver Verfahren wird üblicherweise die Sinterschwindung mit einberechnet.
Es hat sich überraschend gezeigt, dass sich eine optimale Einstellung der Oberflächenhärte im Schichtenverbund mit Hilfe des erfindungsgemäßen Verfahrens einstellen lässt. Im Schneidbereich einer dentalen Restauration kann somit eine geringere Härte eingestellt werden als beispielsweise im Zahnhalsbereich. In einer bevorzugten Ausgestaltung der vorliegenden Erfindung unterscheidet sich die Vickershärte der einen äußeren Schicht von der Vickershärte der gegenüberliegenden äußeren Schicht. Vorzugsweise beträgt der Unterschied der Vickershärte mindestens 5 %, weiter bevorzugt mindestens 10 %, insbesondere mindestens 15 % oder mindestens 20 % jeweils bezogen auf die äußere Schicht mit der geringeren Härte.
Bevorzugt beträgt die Vickershärte [HV2] gemäß DIN EN 843 der äußeren Schicht mit der geringeren Vickershärte 45 bis 60, besonders bevorzugt von 50 bis 59. Bevorzugt liegt die Vickershärte [HV2] gemäß DIN EN 843 der äußeren Schicht mit der höheren Vickershärte oberhalb von 60 und speziell im Bereich von 61 bis 80, besonders bevorzugt von 65 bis 75.
Die Endsinterung erfolgt üblicherweise bei Temperaturen oberhalb von 1350 °C, bevorzugt oberhalb von 1400 °C, speziell im Bereich von 1420 °C bis 1600 °C oder 1450 °C bis 1550 °C.
Die Sinterdauer für die Endsinterung erfolgt üblicherweise über einen Zeitraum von mehr als 4 Minuten, bevorzugt mehr als 5 Minuten, insbesondere im Bereich von 5 bis 120 Minuten.
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein keramischer Formkörper erhältlich nach dem erfindungsgemäßen Verfahren.
Die erfindungsgemäßen keramischen Formkörper können insbesondere im Dentalbereich eingesetzt werden. Hier zeichnen sie sich durch eine hohe Kantenfestigkeit bei dentalen Restaurationen, ein hervorragendes Gefüge und eine hohe 3-Punkt-Biegefestigkeit aus. Die keramischen Formkörper der vorliegenden Erfindung sind daher bevorzugt dentale Restaurationen, wie beispielsweise Inlays, Onlays, Kronen, Brücken, Veneers und Verblendungen oder Abutments für Implantate. Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung des erfindungsgemäßen keramischen Formkörpers für dentale Restaurationen oder für die Herstellung dentaler Restaurationen.
Beispiele:
Tabelle 1 zeigt 4 Basispulver A bis D, die für die Zusammensetzungen der keramischen Pulverschichten zum Einsatz kommen. Die Granulatgröße D50 der Basispulver liegt im Bereich von 40-80 pm. Die anorganischen Bestandteile der Basispulver weisen eine Partikelgröße D50 von 0,2 bis 0,7 pm auf.
Die Gewichtsangaben beziehen sich jeweils auf das Gesamtgewicht der Pulverzusammensetzung.
Tabelle 1
Die in der folgenden Tabelle 2 aufgeführten Anordnungen der Schichten zeigen die Zusammensetzung jeder einzelnen keramischen Pulverschicht in dem Pressformkörper. Die Pressform körper sind für die Verwendung in der Herstellung dentaler Restaurationen vorgesehen, so dass die Schichtzusammensetzungen entsprechend der Position im Zahn ausgestaltet sind. Die Zusammensetzungen der Pulverschichten werden aus den Basispulvern gebildet, in dem die Anteile variiert werden um einen idealen Farbverlauf zu erhalten. Die Zusammensetzung jeder Pulverschicht wird durch homogenes Vermischen der Basispulver in den angegebenen Mengen erzielt. Anschließend werden die Pulver schichtweise in eine zylinderförmige Pressform mit einem Durchmesser von 100 mm gegeben und eine Schichtdicke von 18 mm eingestellt. Die Pulverschichten werden uniaxial bei einem Druck von 13 MPa senkrecht zur Schichtoberfläche vorgepresst und anschließend isostatisch bei einem Druck von 2000 bar verpresst.
Nachfolgend erfolgt die Entbinderung bei ca. 1000 °C über einen Zeitraum von ca. 100 Stunden. Die so erhaltenen Weißlinge werden über CAD/CAM Systeme zu dentalen Restaurationen gefräst.
Diese vorgesinterten und bearbeiteten Weißlinge werden anschließend bei 1450 °C über einen Zeitraum von 120 Minuten endgesintert.
Tabelle 2
Die keramischen Pulverschichten sind im vorliegenden Beispiel so angeordnet, dass Schicht 1 (Schneide) 25%, Schicht 2 (Dentin/Schneide) 15%, Schicht 3 (Dentin) 20%, Schicht 4 (Dentin/Hals) 15% und Schicht 5 (Hals) 25% der Gesamtdicke des Pressform körpers ausmacht.
Figur 1 und 2 zeigen beispielhaft dentale Restaurationen, die aus dem beispielhaften keramischen Formkörper erhalten werden.
Die Schichtübergänge und Farbübergänge sind fließend. Die Restaurationen zeigen eine hervorragende Kantenfestigkeit und Stabilität auf. Ein Nacharbeiten und Nachjustieren der Zahnfarbe ist nicht erforderlich.
Der optimale Aufbau und die Zusammensetzung der Schichten zeigen eine über alle Schichten hinweg weitestgehend homogene Schwindung während der
Sinterung. Dies ist insbesondere für eine passgenaue Anfertigung der dentalen Restaurationen von Vorteil, da aufwendiges Nacharbeiten weitestgehend vermieden werden kann.
Überraschend wurde gefunden, dass die Härte der Keramik optimal durch den Schichtaufbau eingestellt werden kann. Hierzu wird die Vickershärte nach einem Ofenbrand auf der Oberseite (helle Schicht, Schneide) und auf der Unterseite (dunkle Schicht, Zahnhals) einer exemplarischen Disc gemessen. Bezüglich der exemplarischen Ausgestaltung ist die Weißlingsdichte und somit auch die Vickershärte an der Unterseite immer größer als an der Oberseite.
Die nachfolgende Tabelle 3 zeigt die gemäß DIN EN 843 bestimmten Werte der Vickershärte [HV2]:
Tabelle 3:

Claims

Patentansprüche
1. Verfahren zur Herstellung eines gesinterten Formkörpers mit Farbverlauf zur Verwendung in der Herstellung dentaler Restaurationen umfassend die Schritte: a) Mischen von mindestens drei verschiedenen Basispulvern zur Herstellung keramischer Pulverschichtmischungen, b) Schichtweises Anordnen der in Schritt a) erhaltenen keramischen Pulverschichtmischungen zu mindestens 5 übereinander geordneten keramischen Pulverschichten, wobei sich jede Pulverschicht voneinander unterscheidet; c) Verpressen der schichtweise übereinander angeordneten keramischen Pulverschichten zur Ausbildung eines Pressform körpers; und d) Sintern des in Schritt c) erhaltenen Formkörpers zur Ausbildung eines keramischen Formkörpers, wobei jede keramische Pulverschicht eine Mischung aus mindestens drei verschiedenen Basispulvern umfasst und die Basispulver jeweils mindestens 80 Gew.-% Zr02 und mindestens 0,02 bis 0,1 Gew.-% Al203 aufweisen, wobei die Gewichtsangaben jeweils bezogen sind auf das Gesamtgewicht der Bestandteile des Basispulvers.
2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass wenigstens eines, vorzugsweise wenigstens 2 oder wenigstens 3 der Basispulver, insbesondere alle Basispulver Y20 und/oder Er203, vorzugsweise in einer Menge von wenigstens 3 Gew.-%, insbesondere von wenigstens 5 Gew.-% oder wenigstens 6 Gew.-% und insbesondere von 4,5 bis 11 Gew.-%, speziell von 6 bis 10 Gew.-% bezogen auf das Gesamtgewicht der Bestandteile des Basispulvers, umfasst.
3. Verfahren gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass wenigstens eines der Basispulver, vorzugsweise wenigstens 2 oder wenigstens 3 der Basispulver, färbende Metalloxide aufweist.
4. Verfahren gemäß einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass wenigstens eines der Basispulver, vorzugsweise wenigstens 2 oder wenigstens 3 der Basispulver, Zirkondioxid und/oder Hafniumoxid in einer Menge von wenigstens 89 Gew.-%, vorzugsweise in einer Menge von 89 bis 98 Gew.-%, insbesondere von 90 bis 96 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Bestandteile des Basispulvers, aufweist.
5. Verfahren gemäß einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass jede keramische Pulverschicht mindestens 3 Basispulver, vorzugsweise 4 Basispulver, umfasst.
6. Verfahren gemäß einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass 5 Pulverschichten bereitgestellt werden, die jeweils 4 voneinander unterschiedliche Basispulver in unterschiedlichen Mengen aufweisen.
7. Verfahren gemäß einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Pulverschichten ein Basispulver A, enthaltend 92 bis 96 Gew.-% Zirkondioxid, 0,02 bis 0,1 Gew.-% Al203, 3,5 bis 6,5 Gew.-% Y203 und 0,02 bis 0,1 Gew.-% Co304, wobei die Gewichtsangaben jeweils bezogen sind auf das Gesamtgewicht des Basispulvers A, aufweisen.
8. Verfahren gemäß einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Pulverschichten ein Basispulver B, enthaltend 85 bis 93 Gew.-% Zirkondioxid, 0,02 bis 0,1 Gew.-% Al203 und 7,5 bis 11,0 Gew.-% Er203, wobei die Gewichtsangaben jeweils bezogen sind auf das Gesamtgewicht des Basispulvers B, aufweisen.
9. Verfahren gemäß einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Pulverschichten ein Basispulver C, enthaltend 90 bis 94 Gew.-% Zirkondioxid, 0,02 bis 0,1 Gew.-% Al203 und 5,5 bis 8,0 Gew.- % Y203, wobei die Gewichtsangaben jeweils bezogen sind auf das Gesamtgewicht des Basispulvers C, aufweisen.
10. Verfahren gemäß einem oder mehreren der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Pulverschichten ein Basispulver D, enthaltend 90 bis 94 Gew.-% Zirkondioxid, 0,02 bis 0,1 Gew.-% Al203, 5,5 bis 8,0 Gew.-% Y20 und 0,1 bis 0,3 Gew.-% Fe20 , wobei die Gewichtsangaben jeweils bezogen sind auf das Gesamtgewicht des Basispulvers D, aufweisen.
11. Verfahren gemäß einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass sich wenigstens 2 der keramischen Pulverschichten hinsichtlich ihrer Dicke unterscheiden, vorzugsweise einen Dickenunterschied von wenigstens 5 % aufweisen.
12. Verfahren gemäß einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass wenigstens eine der äußeren keramischen Pulverschichten, vorzugsweise beide äußeren keramischen Pulverschichten eine größere Dicke aufweist/aufweisen als eine zwischen den äußeren keramische Pulverschichten liegende keramische Pulverschicht.
13. Verfahren gemäß einem oder mehreren der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der in Schritt d) vorgesinterte keramische Formkörper durch subtraktive Verfahren bearbeitet wird und vorzugsweise anschließend in einem weiteren Schritt endgesintert wird.
14. Verfahren gemäß einem oder mehreren der vorangehenden Ansprüche dadurch gekennzeichnet, dass die Basispulver eine durchschnittliche Granulatgröße D50 von 35 pm bis 85 pm, bevorzugt von 40 pm bis 80 pm und insbesondere von 50 pm bis 70 pm oder 40 bis 60 pm aufweisen.
15. Verfahren gemäß einem oder mehreren der vorangehenden Ansprüche dadurch gekennzeichnet, dass die anorganischen Bestandteile der Basispulver durchschnittliche Partikelgröße D50 von 0,1 bis 1 pm, bevorzugt von 0,2 pm bis 0,8 pm und insbesondere von 0,2 pm bis 0,7 pm, gemessen mittels Laserbeugung, aufweisen.
16. Verfahren gemäß einem oder mehreren der vorangehenden Ansprüche dadurch gekennzeichnet, dass die die Konzentration an Fe203 schichtweise zunimmt und vorzugsweise alle Pulverschichten, Fe203 in einer Menge von 0,01 bis 0,25 Gew.-%, besonders bevorzugt von 0,02 bis 0,2 Gew.-% und speziell von 0,1 bis 0,18 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Pulverschicht, aufweisen.
17. Keramischer Formkörper, vorzugsweise eine dentale Restauration, erhältlich nach einem Verfahren gemäß einem der vorangehenden Ansprüche.
18. Verwendung des keramischen Formkörpers gemäß Anspruch 17 für dentale Restaurationen.
EP20750275.8A 2019-08-08 2020-08-05 Verfahren zur herstellung eines zirkondioxidrohlings mit farb- und transluzenzverlauf Pending EP4010299A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP19190774.0A EP3772497A1 (de) 2019-08-08 2019-08-08 Zirkondioxidrohling mit farb- und transluzenzverlauf
EP19190778.1A EP3772498A1 (de) 2019-08-08 2019-08-08 Verfahren zur herstellung eines zirkondioxidrohlings mit farb- und transluzenzverlauf
PCT/EP2020/072044 WO2021023788A1 (de) 2019-08-08 2020-08-05 Verfahren zur herstellung eines zirkondioxidrohlings mit farb- und transluzenzverlauf

Publications (1)

Publication Number Publication Date
EP4010299A1 true EP4010299A1 (de) 2022-06-15

Family

ID=71899781

Family Applications (2)

Application Number Title Priority Date Filing Date
EP20750275.8A Pending EP4010299A1 (de) 2019-08-08 2020-08-05 Verfahren zur herstellung eines zirkondioxidrohlings mit farb- und transluzenzverlauf
EP20750276.6A Pending EP4010300A1 (de) 2019-08-08 2020-08-05 Zirkondioxidrohling mit farb- und transluzenzverlauf

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP20750276.6A Pending EP4010300A1 (de) 2019-08-08 2020-08-05 Zirkondioxidrohling mit farb- und transluzenzverlauf

Country Status (4)

Country Link
US (2) US20220273403A1 (de)
EP (2) EP4010299A1 (de)
JP (2) JP2022544088A (de)
WO (2) WO2021023791A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11672632B2 (en) 2020-10-05 2023-06-13 Pritidenta Gmbh Multi-layered zirconia dental blank with reverse layers, process for its preparation and uses thereof
CN113461421B (zh) * 2021-07-30 2022-02-01 北京大学口腔医学院 一种叠层氧化锆牙科陶瓷材料及其制备方法
US11771534B2 (en) * 2021-12-22 2023-10-03 Franz Collection Inc. Apparatus and method for three-dimensional laminating a ceramic denture in a color-and-transmittance variable manner
DE102022104741A1 (de) * 2022-02-28 2023-09-14 Bredent Gmbh & Co. Kg Vorrichtung und Verfahren zur Mischung von Bestandteilen eines keramischen Ausgangsstoffes
JP2024064856A (ja) 2022-10-28 2024-05-14 株式会社松風 安定化剤濃度のΔSP(m)の最大値が0.5未満であるジルコニア被切削体

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102285795A (zh) * 2011-05-30 2011-12-21 北京大学口腔医学院 牙科复色可切削氧化锆陶瓷及制备方法
JP6392203B2 (ja) * 2012-04-16 2018-09-19 ヴィタ ツァーンファブリーク ハー. ラオテル ゲーエムベーハー ウント コー カーゲー 少なくとも2つの層を有する非緻密焼結セラミック成形体の製造プロセス
KR101324467B1 (ko) * 2012-06-12 2013-11-06 (주)에큐세라 다양한 색상과 투광성이 있는 기능성 지르코니아 블록
CN103058655B (zh) * 2013-01-18 2014-09-10 秦皇岛爱迪特高技术陶瓷有限公司 一种梯度透明性氧化锆牙科陶瓷及其制备方法
KR101276616B1 (ko) * 2013-03-05 2013-06-19 주식회사 디맥스 색상 구배를 갖는 인공치아용 지르코니아 블록의 제조방법
EP2995434B1 (de) * 2013-05-10 2020-02-19 Kuraray Noritake Dental Inc. Verfahren zur herstellung von gesinterter zirkonoxidkörper, zirkonoxidzusammensetzungen und kalzinierter zirkonoxidkörper
EP2829251B1 (de) * 2013-07-22 2019-04-10 Ivoclar Vivadent AG Steuerung der Sinterkinetik von Oxidkeramik
DE102016106370A1 (de) * 2016-03-23 2017-09-28 Degudent Gmbh Verfahren zur Herstellung eines eingefärbten Rohlings sowie Rohling
CN107175747B (zh) * 2017-05-12 2020-04-07 爱迪特(秦皇岛)科技股份有限公司 强度、颜色均匀过渡的牙科氧化锆修复材料及其制备方法

Also Published As

Publication number Publication date
US20220273403A1 (en) 2022-09-01
JP2022544088A (ja) 2022-10-17
WO2021023788A1 (de) 2021-02-11
US20220289632A1 (en) 2022-09-15
JP2022543125A (ja) 2022-10-07
EP4010300A1 (de) 2022-06-15
WO2021023791A1 (de) 2021-02-11

Similar Documents

Publication Publication Date Title
EP3558671B1 (de) Die verwendung eines mehrschichtigen oxidkeramikkörpers mit angepasstem sinterverhalten
EP4010299A1 (de) Verfahren zur herstellung eines zirkondioxidrohlings mit farb- und transluzenzverlauf
EP2024300B1 (de) Verfahren zur herstellung einer keramik
DE102016106370A1 (de) Verfahren zur Herstellung eines eingefärbten Rohlings sowie Rohling
EP2847138B1 (de) Vorgesinterter rohling für dentale zwecke
EP2765119B1 (de) Rohling für dentale Zwecke
EP1372520B1 (de) Expandierendes modellmaterial für zahntechnische zwecke
DE102015122865A1 (de) Verfahren zur Herstellung einer dentalen Restauration
EP3718980A1 (de) Verfahren zur herstellung von mehrfarbigen glaskeramik-rohlingen
EP1435346B1 (de) Fräskeramiken aus Metalloxid-Pulvern mit bimodaler Korngrössenverteilung
WO2013167722A1 (de) Vorgesinterter rohling für dentale zwecke
DE102015122861A1 (de) Verfahren zur Herstellung eines Rohlings, Rohling sowie eine dentale Restauration
EP2956427B1 (de) Mehrphasige werkstoffe auf basis von zirkonoxid
DE102015122864A1 (de) Verfahren zur Herstellung eines Rohlings sowie dentale Restauration
EP3569189A1 (de) Poröser silikat-keramischer körper, dentalrestauration sowie verfahren zur herstellung davon
WO2008023053A2 (de) Verfahren zur herstellung von farbigen keramischen sinterkörpern, insbesondere für zahnmedizinische anwendungen
EP3772498A1 (de) Verfahren zur herstellung eines zirkondioxidrohlings mit farb- und transluzenzverlauf
EP3772497A1 (de) Zirkondioxidrohling mit farb- und transluzenzverlauf
WO2023117732A1 (de) Mehrschichtiger aufbau
EP4197486B1 (de) Rohling sowie verfahren zur herstellung eines solchen
DE102017116630A1 (de) Verfahren zur Herstellung eines mehrschichtigen keramischen Formkörpers sowie gesinterter Weißling
WO2019053253A1 (de) Verfahren zur herstellung eines formkörpers mittels sintern
DE102007040260A1 (de) Verfahren zur Herstellung von farbigen keramischen Sinterkörpern, insbesondere für zahnmedizinische Anwendungen

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220118

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)