EP4004474B1 - Tube bundle heat exchanger - Google Patents

Tube bundle heat exchanger Download PDF

Info

Publication number
EP4004474B1
EP4004474B1 EP20758111.7A EP20758111A EP4004474B1 EP 4004474 B1 EP4004474 B1 EP 4004474B1 EP 20758111 A EP20758111 A EP 20758111A EP 4004474 B1 EP4004474 B1 EP 4004474B1
Authority
EP
European Patent Office
Prior art keywords
tube
tubes
medium
inlet
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20758111.7A
Other languages
German (de)
French (fr)
Other versions
EP4004474A1 (en
EP4004474C0 (en
Inventor
Stefan Krolla
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kelvion Machine Cooling Systems GmbH
Original Assignee
Kelvion Machine Cooling Systems GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kelvion Machine Cooling Systems GmbH filed Critical Kelvion Machine Cooling Systems GmbH
Publication of EP4004474A1 publication Critical patent/EP4004474A1/en
Application granted granted Critical
Publication of EP4004474B1 publication Critical patent/EP4004474B1/en
Publication of EP4004474C0 publication Critical patent/EP4004474C0/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1607Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with particular pattern of flow of the heat exchange media, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/163Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing
    • F28D7/1638Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing with particular pattern of flow or the heat exchange medium flowing inside the conduits assemblies, e.g. change of flow direction from one conduit assembly to another one
    • F28D7/1646Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing with particular pattern of flow or the heat exchange medium flowing inside the conduits assemblies, e.g. change of flow direction from one conduit assembly to another one with particular pattern of flow of the heat exchange medium flowing outside the conduit assemblies, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0229Double end plates; Single end plates with hollow spaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0265Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/027Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0282Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by varying the geometry of conduit ends, e.g. by using inserts or attachments for modifying the pattern of flow at the conduit inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0033Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cryogenic applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/163Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing
    • F28D7/1638Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing with particular pattern of flow or the heat exchange medium flowing inside the conduits assemblies, e.g. change of flow direction from one conduit assembly to another one
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/163Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing
    • F28D7/1669Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing the conduit assemblies having an annular shape; the conduits being assembled around a central distribution tube

Definitions

  • the invention relates to a tube bundle heat exchanger with the features in the preamble of claim 1.
  • a tube bundle heat exchanger is from US-A-2986454 known.
  • a tube bundle heat exchanger can e.g. B. be configured so that a cryogenic medium flows into a lower cross-section half of a cylindrical heat exchanger, flows through the heat exchanger in the longitudinal direction, is deflected by 180° at the end of the cylindrical heat exchanger and flows back to the common tube sheet via a tube bundle in the upper half of the heat exchanger .
  • the result of the semi-circular tube fields of the tube sheet is that the lower half of the tube sheet has a correspondingly low temperature due to the cryogenic medium, while the second semi-circular tube field in the tube sheet is significantly warmer.
  • the direct flow of cryogenic media onto the tube sheet leads to stress peaks within the tube sheet. The This also applies to heat exchangers in which the medium is not deflected, i.e. in which the medium flows over the entire tube sheet.
  • the invention is based on the object of demonstrating a tube bundle heat exchanger in which the thermal load on the tube sheet, the tube connection to the tube bundle and the tube bundle is reduced.
  • the tube bundle heat exchanger has a tube bundle in a housing, the housing having a first inlet and a first outlet for a first medium to be passed through the tube bundle. Furthermore, the housing has a second inlet and a second outlet for a second medium for passage through a flow space surrounding the tube bundle within the housing.
  • the heat exchanger has tube sheets to hold the tubes and separate the two media.
  • a separating body is arranged as a flow distributor between the first inlet and the tube sheet.
  • the separating body has the function of preventing the first medium from flowing directly against the tube sheet. So that the first medium can nevertheless enter the tube bundle, inlet tubes are arranged on the separating body.
  • the inlet tubes bridge a compensating space between the separating body and the tube sheet and protrude into the individual tubes of the tube bundle.
  • the first medium is fed directly into the tubes by means of the individual tubes, bypassing the tube sheet.
  • the tube sheet is not flowed directly against.
  • the separating body that is directly subjected to the flow is cooled down considerably, in particular when it is being flowed on, by a cryogenic medium, which, according to the invention, has no effect on the thermal stresses in the tube sheet, because the tube sheet is decoupled from the separating body.
  • the tube sheet is just above the housing with connected to the separator. The tube sheet, the tube connections and also the tubes are significantly relieved.
  • the individual inlet tubes are not firmly connected to the tubes of the tube bundle. This compensates for thermal changes in length between the inlet tubes and the tubes of the tube bundle.
  • the separating body is used for thermal decoupling from the tube sheet.
  • Shell and tube heat exchangers in which the inlet and outlet are located at one end of the housing, while a deflection chamber is arranged at the other end of the housing, have greater thermally induced stresses within the tube sheet due to the design.
  • the temperature gradient in the tube sheet is greater.
  • the temperature of a cryogenic medium could be -160°C at the first inlet and +50°C at the first outlet. In this case, the temperature difference within the tube sheet is over 200 °C.
  • the tube sheet is not divided into an upper and lower half.
  • the first inlet is connected to a first group of tubes of the tube bundle that is adjacent to a second group of tubes.
  • the first group has an outer envelope surface which is predominantly, i.e. more than 50%, adjacent to an envelope surface of the second group.
  • the second group can enclose or surround the first group over more than 180° and in particular completely enclose it.
  • the second group of tubes is then arranged essentially annularly around the first group of tubes. In other words, one can also speak of a core area and an edge area. The areas are not necessarily strictly concentric.
  • a distinction can essentially be made between an inner group and an outer group of tubes, with the second group being the outer group having a larger proportion of tubes which are adjacent to the housing than the first, inner group.
  • the first medium Via a deflection at the end or a deflection chamber, the first medium first flows through the first group and, after deflection, back through the second group. Both groups of tubes are also connected to a common tube sheet.
  • Temperature gradient compared to semi-circular tube arrays. In a cryogenic medium, much lower temperatures prevail in the core area than in the edge area to the transition of the housing. The temperature gradient runs in a star shape between the core area and the outer areas.
  • the tube sheet is significantly shielded in the arrangement of the groups of tubes according to the invention and is therefore exposed to significantly lower thermally induced stresses than in the case of an arrangement with semi-circular tube patterns. This is particularly advantageous when using cryogenic gases or liquid nitrogen, because voltage peaks are capped. A radial temperature gradient, rather than a temperature gradient running from the edge to across the center, also results in a more favorable stress distribution within the tube bundle.
  • Another advantage is that due to the fact that there is no need for separating fixtures within the heat exchanger (inlet) chamber, an approx. 20% larger number of tubes with the same nominal diameter can be installed within the tube sheet or the cylindrical housing.
  • the required wall thicknesses for high-pressure applications are significantly reduced due to smaller nominal diameters. Analogously, this means a reduction in the shell diameter of the heat exchanger with the same number of tubes. As a result, the mass and the manufacturing costs can be reduced.
  • the inlet tubes extend over at least half the thickness of the tube sheet.
  • the thickness is measured between an upstream and a downstream side of the tubesheet with respect to the flow direction of the first medium.
  • the inlet tubes preferably penetrate the tube sheet completely, so that the first medium, e.g. B. a cryogenic medium with a very low temperature, is introduced remote from a point of attachment of the tubes in the tube sheet.
  • the tubes can be welded to the tubesheet. Due to better accessibility, the tubes are welded to the tube sheet from the inflow side. By the inlet pipes bridge this inflow-side connection points of the pipes and In particular, if the cryogenic medium is fed deep into the tubes of the tube sheet, the connection points between the tubes and the tube sheet are additionally relieved.
  • the tube bundle heat exchanger is designed as a double-tube safety heat exchanger.
  • the tubes carrying the first medium are each arranged in an outer tube.
  • the second medium only comes into contact with the outer tube.
  • the first medium only comes into contact with the inner tube.
  • the outer tubes are fixed in a tube sheet for the outer tubes. It is located on the downstream side of the tubesheet for the inner tubes.
  • the tubesheets are spaced apart so that there is a common leak space that can be monitored, which is connected to all spaces between the inner and outer tubes. This leakage space can also be used as a test space to monitor the pressure of a test medium in the leakage space.
  • a further separating body which serves as a flow collector and which, viewed in the direction of flow of the first medium, is arranged behind an outlet-side tube sheet and in front of the first outlet.
  • This design relates to a tube bundle heat exchanger in which the first inlet is located at one end of a particular cylindrical housing and the first outlet at the opposite end of the cylindrical housing. In this design, the first medium is therefore not deflected in a collection chamber at the end.
  • a separating body can also be useful when flowing out of such a tube bundle heat exchanger in order to reduce stress peaks on the tube base.
  • the separating body has discharge tubes which are connected in a fluid-conducting manner to the tubes carrying the first medium, in order to conduct the first medium through the tube sheet on the outlet side and the separating body to the first outlet.
  • it is a mirror image arrangement to the configuration on the inlet side of the shell and tube heat exchanger. In this sense, both ends of the tube bundle heat exchanger can be configured identically.
  • a collecting chamber is arranged in front of the tube plate on the inlet side.
  • the second group of tubes opens into this collection chamber.
  • the first outlet is connected to the collection chamber.
  • the collection chamber is essentially ring-shaped. It can be delimited in a fluid-tight manner from the compensation chamber.
  • the collection chamber is preferably connected to the compensation chamber in a fluid-conducting manner.
  • the compensating space preferably serves not only to compensate for thermal changes in length between the separating body and the tube sheet, but also to absorb leaks that result from the fact that the inlet tubes are preferably arranged to be longitudinally displaceable in the tubes of the tube bundle.
  • the compensating space is at the same time part of the collection chamber for the medium flowing back.
  • the leakage currents are usually so small that they can be neglected.
  • Sealing means can be arranged between the inlet tubes and the tubes of the tube bundle.
  • the inlet pipes completely pass through the separating body and are connected to the separating body on the inlet side.
  • the separating body is an independent component that is preferably welded into the housing.
  • the inlet pipes are in turn connected to the separating body, specifically preferably on the inflow side, ie on their side facing the first inlet. For example, they are connected to the separating body in a materially bonded manner.
  • the manufacture is comparable to the manufacture of a tube bundle that is connected to a tube sheet.
  • the separating body can be designed as a disk-shaped body, similar to a tube plate Having a plurality of openings into which the inlet tubes are inserted. The same applies to the structure of a separating body serving as a flow collector, which is mounted on the outlet side in a tube bundle through which flow occurs unidirectionally in the longitudinal direction.
  • the invention allows the first inlet to be directly opposite the separating body when required.
  • the direct flow against the separating body is harmless for the thermal stresses within the tube bundle heat exchanger and in particular within the tube bundle due to the indirect flow of the tube sheet or tube bundle in this sense.
  • the invention does not rule out that the inlet is arranged at an angle deviating from 180° to the separating body, so that the inflowing first medium is deflected.
  • the inlet opens into an inflow chamber. It can be expanded in the shape of a funnel as required.
  • the cross section of the inlet does not have to correspond to the cross section of the tube bundle or that of the separator.
  • the purpose of the inflow chamber is to distribute the inflowing medium evenly to all openings in the separating body or the individual inlet tubes and thus evenly to the tube bundle.
  • the figure 1 shows a tube bundle heat exchanger 1 to the prior art. Based on this tube bundle heat exchanger 1, the essential components are named, which are also in the following designs according to the invention figure 5 find again.
  • the tube bundle heat exchanger 1 has a housing 2.
  • the housing 2 is cylindrical.
  • the housing 2 has a first inlet 3 on the left in the image plane and a first outlet 4 on the right in the image plane for a first medium M1 which flows into the first inlet 3 and flows out of the first outlet 4 .
  • the first medium M1 is passed through a tube bundle 5 . Only a single tube 6 of the tube bundle 5 is shown for better illustration.
  • the tube bundle is surrounded by a flow space 7 for a second medium M2.
  • the second medium M2 flows in the image plane on the right via a second inlet 8 through the flow chamber 7 to the second outlet 9 at the other end of the housing 2.
  • the second medium M2 is deflected several times within the housing 2.
  • baffle plates 10 are arranged in the housing 2 so that the flow path of the second medium M2 is lengthened.
  • the second medium M2 does not come into contact with the first medium M1.
  • the tubes 6 of the tube bundle 5 are fastened in tube sheets 11 at the first inlet and on a tube sheet 12 at the first outlet 4 .
  • the tube bundle heat exchanger is designed as a double-tube safety heat exchanger.
  • each tube 6 is surrounded by an outer tube, which is connected in a second tube sheet 13 at the first inlet 3 or in a second tube sheet 14 at the first outlet 4 .
  • the space between the tube sheets 11, 13 or 12, 14 can be monitored for leak detection.
  • the tube sheets 11, 13 or 12, 14 are at a small distance from one another.
  • the figure 2 shows a shell and tube heat exchanger 15.
  • the tube bundle heat exchanger 15 has a cylindrical housing 2 with a first inlet 3 for the first medium M1.
  • a tube bundle 5 runs through a flow space 7 for a second medium, not shown in detail, which is fed via the figure 1 illustrated second inlet 8 or second outlet 9 can flow into and out of the housing 2.
  • the tubes 6 of the tube bundle 5 are fastened in a tube sheet 11 .
  • the separating body 16 is configured in a disk shape and has a plurality of through openings in which the inlet pipes 18 run.
  • the inlet pipes 18 are arranged in alignment with the pipes 6 so that in each case one inlet pipe 18 is aligned opposite the pipe 6 of the pipe bundle 5 in the axial direction.
  • the inlet pipes 18 all have the same length. They extend through the separating body 16 and bridge a gap-shaped compensation space 19 in front of the tube sheet 11. They extend to a downstream side 20 of the tube sheet 11 and thus also pass through the entire tube sheet 11.
  • the medium M1 flows through the one first inlet into the inflow chamber 17, only the separating body 16 or the inlet pipes 18 arranged therein are impinged directly.
  • the tube sheet 11 is not flowed directly against.
  • the medium M1 only enters the tube bundle 5 on the downstream side of the tube sheet 11 .
  • the inlet pipes 18 can be shifted in length relative to the pipes 6 of the pipe bundle 5 . Any leakage currents are collected in the compensating space 19 . They cannot escape here because the compensating space 19 is limited on the one hand by the separating body 16 and on the peripheral side by the head piece 35 .
  • the first medium M1 can only flow into the tubes 6 of the tube bundle 5 .
  • the figure 2 shows that the tubes 6 of the tube bundle 5 are fixed on an upstream side 21 of the tube sheet 11, in particular by welding.
  • the inlet pipes 18 are also fixed on the inlet side to a front side 22 of the separating body 16 facing the first medium M1.
  • the shape of the figure 3 differs from that of figure 2 characterized in that the tube bundle heat exchanger 23 is designed as a double tube safety heat exchanger.
  • the design of the figure 3 for each tube 6 carrying the medium M1 there is an outer tube 24 that is installed in the tube sheet 13 on the inlet side (see figure 1 ) is attached. Between the outer tube 24 and the respective inner tube 6 there is a monitorable leakage space. Due to the fact that the tube sheet 13 for the outer tubes 24 is arranged at a small distance from the tube sheet 11 for the tubes 6 of the tube bundle 5, leakage monitoring can be carried out via the intermediate space 25 between the tube sheets 11, 13. For this purpose, the intermediate space 25 is connected to the leakage space between the tube 6 for the medium M1 and the outer tube 24 . Leakage monitoring is not shown.
  • the inlet tubes 18 also extend through the second tube sheet 13 for the outer tubes 24. Accordingly, the inlet tubes 18 end on the downstream side 26 of the second tube sheet 13. All other structural features are identical to the exemplary embodiment in FIG figure 2 .
  • the figure 4 shows another tube bundle heat exchanger 27 for the prior art.
  • the main difference compared to the shell and tube heat exchanger figure 1 is that the shell-and-tube heat exchanger 27 has a deflection chamber 28 in the image plane on the right, with the first inlet 3 and the first outlet 4 for the first medium M1 being arranged on the left in the image plane.
  • the housing 2 is cylindrical. Accordingly, a circular tube pattern results here in the tube plate 11.
  • the tube bundle heat exchanger 27 is in turn designed as a double-tube safety heat exchanger, so that there is also a second tube plate 13 for the outer tubes, which are not shown in detail.
  • the second medium M2 flows in via the first inlet 8 .
  • the first outlet 4 is arranged adjacent to the first inlet 8 . Only the first inlet 3 is arranged at a distance from the second outlet 9 .
  • a separating plate 30 is located in a chamber 29 at the inlet-side end in the image plane on the left, in order to separate the medium M1 flowing in from below from the medium M1 flowing out above.
  • an additional separating body 16 can be provided, as in the exemplary embodiments of FIG figures 5 and 7 is shown.
  • the separating body 16 does not differ from that of the embodiment of FIG figures 2 and 3 .
  • the tube sheet 11 is also configured identically.
  • the header 32 is configured differently.
  • the medium M1 flows into the head piece 32 via the first inlet 3 and then flows through the inflow chamber 17 in order to enter the individual inlet pipes 18 in the separating body 16 .
  • the medium M1 now flows into the tubes 6 of the tube bundle 5 .
  • the medium M1 only flows into a first group G1 of tubes 6 .
  • the tubes 6 of the first group G1 open into a deflection chamber as shown in figure 4 denoted by the reference numeral 28.
  • a tube sheet 12 is also arranged there, so that the first medium M1 flows out of the core area and is conducted into those tubes 6 which surround the first group G1 of tubes 6 .
  • This second group G2 is located radially outside the first group G1. As far as possible, this second group G2 surrounds the first group G1, so to speak, on the circumference.
  • the figure 6 shows an example of a tube array looking at the end face of a tube plate 11.
  • the first group G1 of tubes 6 is marked with an X.
  • the first medium M1 flows into these tubes 6 into the image plane. It is deflected behind the second tube sheet 12 and flows back via the tubes 6 of the second group G2.
  • These tubes 6 are marked with a dot in the middle.
  • the dot indicates the opposite direction of flow Die figure 6 also shows an enveloping surface 37 of the first group G1.
  • the enveloping surface 37 surrounds the first group G1 of tubes 6. It is drawn in with a broken line. It is not physically present, but simply designates a boundary between the first group G1 and the second group G2.
  • the inner envelope surface of the second group G2 corresponds to the outer envelope surface 37 of the inner group G1. They lie congruently on top of each other. The two enveloping surfaces are therefore not only partially adjacent, rather the enveloping surface of the second group G2 surrounds the enveloping surface 37 of the first group G1.
  • the returning medium M2 flows out of the tubes 6 of the second group G2 into a collection chamber 33.
  • This collection chamber 33 is configured in the shape of a ring. All tubes 6 of the outer or second group G2 open into the collection chamber 33.
  • the collection chamber 33 in the head piece 32 is connected to the first outlet 4 for the medium. In this case, the first outlet is at the top of the image plane. A partition as in the embodiment of figure 4 not necessary.
  • the separating body 16 separates the medium M1 flowing back from the medium flowing in.
  • the separating body 16 is located for the most part within the collection chamber 33 and is surrounded by the medium M1 flowing back in the collection chamber 33 .
  • the compensation space 19 is thus also located within the collection chamber 33.
  • the compensation space 19 is connected to the collection chamber 33 in a fluid-conducting manner. So that any leakage flows can pass from the compensation chamber 19 into the collection chamber 33 and can also flow out via the first outlet 4 for the first medium M1.
  • figure 7 differs from that of figure 5 solely because a second tube sheet 13 has been installed, which is connected to corresponding outer tubes 24 .
  • the description is too figure 5 and the reference numerals introduced there or to the previous description of the figure 3 referenced, which also shows the design as a double-tube safety heat exchanger.
  • the tube bundle heat exchanger 34 according to figure 7 is a combination of the design of the figures 5 and 3 .
  • the figure 8 shows another embodiment with a differently designed head piece 36.
  • the first inlet 3 is not directly opposite the separating body 16.
  • the first inlet 3 is located off-centre at the end and essentially in the lower half of the head piece 36.
  • the first inlet 3 leads via a feed line into the inflow chamber 17.
  • the inflow chamber 17 is not arranged centrally in the head piece 36, but rather eccentrically. It is mainly located in the lower half of the head piece 36. In contrast to the other exemplary embodiments, it is also not funnel-shaped, but in this sectional view rectangular and essentially to the tube pattern of the tube sheet in figure 9 adjusted.
  • the figure 9 shows the head piece 36 in a view of the inflow chamber 17 from the viewing direction of the tube bundle.
  • the inflow chamber 17 is essentially configured in a semicircular or semicylindrical manner with rounded corners when viewed from this direction.
  • the access to the first inlet 3 is located in the lower area of the inflow chamber 17.
  • the collection chamber 33 is essentially circular and surrounds the inflow chamber 17 on the circumference.
  • the figure 10 shows a detailed representation of the separating body 16. He is in the inflow chamber 17 of figure 9 deployed. The assembly situation is in the figure 8 shown. In the installed position, the separating body 16 is welded to the inflow chamber 17 on the peripheral side in a fluid-tight manner and closes it off from the collecting space 33. The inlet pipes 18 are inserted into the individual through-openings 38 in the separating body 16, as in FIG figure 8 can be seen.
  • the drilling pattern of the through openings 38 in the separating body 16 corresponds to the hole pattern in the tube sheet 11 according to FIG figure 11 .
  • the tubes 6 marked with X denote the tubes of the first group G1.
  • the figure 11 shows an envelope surface 37 as a boundary between the first group G1 and the second group G2.
  • the inner envelope surface of the second group G2 is identical to the outer envelope surface 37 of the first group G1.
  • the difference to the embodiment of figure 6 consists in the fact that the first group G1 is offset relative to the second group G2 towards the underside of the image plane 11 .
  • this arrangement of the tubes 6 or the placement of the groups G1, G2 can be advantageous.
  • the first group G1 of tubes 6 is predominantly in the lower half of the tube sheet 11.
  • This exemplary embodiment makes it clear that the two groups G1, G2 of tubes 6 do not have to be arranged concentrically, but at least on the predominant peripheral area of the first group G1 Tubes 6 of the second group G2 are arranged. It shouldn't for reasons of space be possible to arrange lateral tubes 6 of the second group G2 next to the tubes 6 of the first group G1, as is the case for example in the horizontal plane, these positions in the tube sheet 11 remain free.
  • the distance between the tubes 6 of the first group G1 and the edge of the tube sheet 11, or the distance from the inside of the enclosing housing 2 is greater than the distance between the outer tubes 6 of the second group G2 and the housing 2.
  • the two bottom pipes are still assigned to group G1, ie to be used as inflow pipes.
  • group G1 three sides and thus the majority of the tubes 6 of the first group G1 would be surrounded on the outside by the second group G2 in relation to their common enveloping surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

Die Erfindung betrifft einen Rohrbündelwärmetauscher mit den Merkmalen im Oberbegriff des Patentanspruchs 1. Ein solcher Rohrbündelwärmetauscher ist aus der US-A-2986454 bekannt.The invention relates to a tube bundle heat exchanger with the features in the preamble of claim 1. Such a tube bundle heat exchanger is from US-A-2986454 known.

Ein Rohrbündelwärmetauscher kann z. B. so konfiguriert sein, dass ein kryogenes Medium in eine untere Querschnittshälfte eines zylindrischen Wärmetauschers einströmt, den Wärmetauscher in Längsrichtung durchströmt, am Ende des zylindrischen Wärmetauschers um 180° umgelenkt wird und über ein Rohrbündel in der oberen Hälfte des Wärmetauschers wieder zum gemeinsamen Rohrboden zurückströmt. Die halbkreisförmigen Rohrfelder des Rohrbodens haben zur Folge, dass die untere Hälfte des Rohrbodens durch das kryogene Medium eine entsprechend niedrige Temperatur aufweist, während das zweite halbkreisförmige Rohrfeld im Rohrboden deutlich wärmer ist. Die direkte Anströmung des Rohrbodens mit kryogenen Medien führt zu Spannungsspitzen innerhalb des Rohrbodens. Das gilt auch bei Wärmetauschern, bei denen das Medium nicht umgelenkt wird, bei denen also der gesamte Rohrboden von dem Medium angeströmt wird.A tube bundle heat exchanger can e.g. B. be configured so that a cryogenic medium flows into a lower cross-section half of a cylindrical heat exchanger, flows through the heat exchanger in the longitudinal direction, is deflected by 180° at the end of the cylindrical heat exchanger and flows back to the common tube sheet via a tube bundle in the upper half of the heat exchanger . The result of the semi-circular tube fields of the tube sheet is that the lower half of the tube sheet has a correspondingly low temperature due to the cryogenic medium, while the second semi-circular tube field in the tube sheet is significantly warmer. The direct flow of cryogenic media onto the tube sheet leads to stress peaks within the tube sheet. The This also applies to heat exchangers in which the medium is not deflected, i.e. in which the medium flows over the entire tube sheet.

Der Erfindung liegt die Aufgabe zugrunde einen Rohrbündelwärmetauscher aufzuzeigen, bei welchen die thermische Belastung des Rohrbodens, der Rohrverbindung zum Rohrbündel und des Rohrbündels reduziert ist.The invention is based on the object of demonstrating a tube bundle heat exchanger in which the thermal load on the tube sheet, the tube connection to the tube bundle and the tube bundle is reduced.

Diese Aufgabe ist bei einem Rohrbündelwärmetauscher mit den Merkmalen des Patentanspruchs 1 gelöst.This problem is solved in a tube bundle heat exchanger with the features of patent claim 1 .

Die Unteransprüche betreffen vorteilhafte Weiterbildungen der Erfindung.The dependent claims relate to advantageous developments of the invention.

Der erfindungsgemäße Rohrbündelwärmetauscher besitzt ein Rohrbündel in einem Gehäuse, wobei das Gehäuse einen ersten Einlass und einen ersten Auslass für ein erstes Medium zur Durchleitung durch das Rohrbündel besitzt. Ferner besitzt das Gehäuse einen zweiten Einlass sowie einen zweiten Auslass für ein zweites Medium zur Durchleitung durch einen das Rohrbündel umgebenden Strömungsraum innerhalb des Gehäuses. Der Wärmetauscher besitzt Rohrböden, um die Rohre zu halten und um die beiden Medien voneinander zu trennen.The tube bundle heat exchanger according to the invention has a tube bundle in a housing, the housing having a first inlet and a first outlet for a first medium to be passed through the tube bundle. Furthermore, the housing has a second inlet and a second outlet for a second medium for passage through a flow space surrounding the tube bundle within the housing. The heat exchanger has tube sheets to hold the tubes and separate the two media.

Zwischen dem ersten Einlass und dem Rohrboden ist ein Trennkörper als Strömungsverteiler angeordnet. Der Trennkörper hat die Funktion, ein direktes Anströmen des Rohrbodens durch das erste Medium zu verhindern. Damit das erste Medium dennoch in das Rohrbündel eintreten kann, sind an dem Trennkörper Einleitrohre angeordnet. Die Einleitrohre überbrücken einen Ausgleichsraum zwischen dem Trennkörper und dem Rohrboden und ragen in die einzelnen Rohre des Rohrbündels. Mittels der Einzelrohre wird das erste Medium unter Umgehung des Rohrbodens unmittelbar in die Rohre geleitet. Der Rohrboden wird nicht direkt angeströmt.A separating body is arranged as a flow distributor between the first inlet and the tube sheet. The separating body has the function of preventing the first medium from flowing directly against the tube sheet. So that the first medium can nevertheless enter the tube bundle, inlet tubes are arranged on the separating body. The inlet tubes bridge a compensating space between the separating body and the tube sheet and protrude into the individual tubes of the tube bundle. The first medium is fed directly into the tubes by means of the individual tubes, bypassing the tube sheet. The tube sheet is not flowed directly against.

Der unmittelbar angeströmte Trennkörper wird insbesondere beim Anströmen durch ein kryogenes Medium stark heruntergekühlt, was erfindungsgemäß keinen Einfluss auf die thermischen Spannungen im Rohrboden hat, weil der Rohrboden vom Trennkörper entkoppelt ist. Der Rohrboden ist nur unmittelbar über das Gehäuse mit dem Trennkörper verbunden. Der Rohrboden, die Rohrverbindungen und auch die Rohre werden erheblich entlastet.The separating body that is directly subjected to the flow is cooled down considerably, in particular when it is being flowed on, by a cryogenic medium, which, according to the invention, has no effect on the thermal stresses in the tube sheet, because the tube sheet is decoupled from the separating body. The tube sheet is just above the housing with connected to the separator. The tube sheet, the tube connections and also the tubes are significantly relieved.

Die einzelnen Einleitrohre sind insbesondere nicht fest mit den Rohren des Rohrbündels verbunden. Dadurch werden thermische Längenänderungen zwischen den Einleitrohren und den Rohren des Rohrbündels kompensiert. Der Trennkörper dient zur thermischen Entkopplung vom Rohrboden.In particular, the individual inlet tubes are not firmly connected to the tubes of the tube bundle. This compensates for thermal changes in length between the inlet tubes and the tubes of the tube bundle. The separating body is used for thermal decoupling from the tube sheet.

Rohrbündelwärmetauscher, bei denen sich Einlass und Auslass an einem Ende des Gehäuses befinden, während am anderen Ende des Gehäuses eine Umlenkkammer angeordnet ist, weisen bauartbedingt größere thermisch bedingte Spannungen innerhalb des Rohrbodens auf. Der Temperaturgradient im Rohrboden ist größer. Beispielsweise könnte die Temperatur eines kryogenen Mediums am ersten Einlass -160 °C betragen und am ersten Ausgang +50 °C. Die Temperaturdifferenz innerhalb des Rohrbodens liegt in diesem Fall bei über 200 °C.Shell and tube heat exchangers, in which the inlet and outlet are located at one end of the housing, while a deflection chamber is arranged at the other end of the housing, have greater thermally induced stresses within the tube sheet due to the design. The temperature gradient in the tube sheet is greater. For example, the temperature of a cryogenic medium could be -160°C at the first inlet and +50°C at the first outlet. In this case, the temperature difference within the tube sheet is over 200 °C.

Es ist daher vorgesehen, dass der Rohrboden nicht in eine obere und untere Hälfte eingeteilt ist. Der erste Einlass ist an eine erste Gruppe von Rohren des Rohrbündels angeschlossen, die einer zweiten Gruppe von Rohren benachbart ist. Die erste Gruppe besitzt eine äußere Hüllfläche, die überwiegend, d.h. zu mehr als 50%, einer Hüllfläche der zweiten Gruppe benachbart ist. Die zweite Gruppe kann die erste Gruppe über mehr als 180° einfassen, bzw. umgeben und insbesondere vollständig umschließen. Die zweite Gruppe von Rohren ist dann im Wesentlichen ringförmig um die erste Gruppe von Rohren angeordnet. Anders ausgedrückt kann auch von einem Kernbereich und einem Randbereich gesprochen werden. Die Bereiche sind nicht zwangsläufig strikt konzentrisch. Es kann im Wesentlichen zwischen einer inneren Gruppe und einer äußeren Gruppe von Rohren unterschieden werden, wobei die zweite Gruppe als äußere Gruppe einen größeren Anteil von Rohren hat, die dem Gehäuse benachbart sind, als die erste, innere Gruppe.It is therefore envisaged that the tube sheet is not divided into an upper and lower half. The first inlet is connected to a first group of tubes of the tube bundle that is adjacent to a second group of tubes. The first group has an outer envelope surface which is predominantly, i.e. more than 50%, adjacent to an envelope surface of the second group. The second group can enclose or surround the first group over more than 180° and in particular completely enclose it. The second group of tubes is then arranged essentially annularly around the first group of tubes. In other words, one can also speak of a core area and an edge area. The areas are not necessarily strictly concentric. A distinction can essentially be made between an inner group and an outer group of tubes, with the second group being the outer group having a larger proportion of tubes which are adjacent to the housing than the first, inner group.

Über eine endseitige Umlenkung oder auch eine Umlenkkammer strömt das erste Medium zunächst durch die erste Gruppe und nach der Umlenkung durch die zweite Gruppe wieder zurück. Beide Gruppen von Rohren sind ebenfalls an einen gemeinsamen Rohrboden angeschlossen. Allerdings ergibt sich ein günstigerer Temperaturgradient im Vergleich zu halbkreisförmigen Rohrfeldern. Bei einem kryogenen Medium herrschen im Kernbereich viel niedrigere Temperaturen als im Randbereich zum Übergang des Gehäuses. Der Temperaturgradient verläuft sternförmig zwischen dem Kernbereich und den äußeren Bereichen. In Kombination mit dem Trennkörper, der als Strömungsverteiler dient und welcher den Kernbereich des Rohrbodens vor dem direkten Anströmen schützt, wird erreicht, dass der Rohrboden bei der erfindungsgemäßen Anordnung der Gruppen von Rohren signifikant abgeschirmt wird und dadurch deutlich geringeren thermisch induzierten Spannungen ausgesetzt ist als bei einer Anordnung mit halbkreisförmigen Rohrbildern. Das ist insbesondere bei der Verwendung tiefkalter Gase oder bei flüssigem Stickstoff von Vorteil, weil Spannungsspitzen gekappt werden. Ein radial verlaufender Temperaturgradient, anstatt eines Temperaturgradienten der vom Rand bis quer zur Mitte verläuft, bewirkt auch eine günstigere Spannungsverteilung innerhalb des Rohrbündels.Via a deflection at the end or a deflection chamber, the first medium first flows through the first group and, after deflection, back through the second group. Both groups of tubes are also connected to a common tube sheet. However, there is a cheaper one Temperature gradient compared to semi-circular tube arrays. In a cryogenic medium, much lower temperatures prevail in the core area than in the edge area to the transition of the housing. The temperature gradient runs in a star shape between the core area and the outer areas. In combination with the separating body, which serves as a flow distributor and which protects the core area of the tube sheet from direct flow, the tube sheet is significantly shielded in the arrangement of the groups of tubes according to the invention and is therefore exposed to significantly lower thermally induced stresses than in the case of an arrangement with semi-circular tube patterns. This is particularly advantageous when using cryogenic gases or liquid nitrogen, because voltage peaks are capped. A radial temperature gradient, rather than a temperature gradient running from the edge to across the center, also results in a more favorable stress distribution within the tube bundle.

Ein weiterer Vorteil ist, dass durch die Nicht-Erfordernis von Trenneinbauten innerhalb der Wärmetauscher-(Eintritts) -Kammer eine ca. 20 % größere Anzahl von Rohren bei gleichem Nenndurchmesser innerhalb des Rohrbodens bzw. des zylindrischen Gehäuses verbaut werden kann. Durch kleinere Nenndurchmesser reduzieren sich die erforderlichen Wanddicken bei Hochdruckanwendungen erheblich. Analog bedeutet dies eine Verringerung des Manteldurchmessers des Wärmeübertragers bei gleicher Rohranzahl. Dadurch können die Masse und die Herstellkosten reduziert werden.Another advantage is that due to the fact that there is no need for separating fixtures within the heat exchanger (inlet) chamber, an approx. 20% larger number of tubes with the same nominal diameter can be installed within the tube sheet or the cylindrical housing. The required wall thicknesses for high-pressure applications are significantly reduced due to smaller nominal diameters. Analogously, this means a reduction in the shell diameter of the heat exchanger with the same number of tubes. As a result, the mass and the manufacturing costs can be reduced.

In einer vorteilhaften Weiterbildung der Erfindung, erstrecken sich die Einleitrohre über mindestens die Hälfte einer Dicke des Rohrbodens. Die Dicke wird zwischen einer stromaufwärtigen und einer stromabwärtigen Seite des Rohrbodens, bezogen auf die Strömungsrichtung des ersten Mediums, gemessen. Bevorzugt durchsetzen die Einleitrohre den Rohrboden vollständig, so dass das erste Medium, z. B. ein kryogenes Medium mit sehr niedriger Temperatur, entfernt von einer Befestigungsstelle der Rohre im Rohrboden eingeleitet wird. Die Rohre können mit dem Rohrboden verschweißt sein. Aufgrund der besseren Zugänglichkeit erfolgt das Verschweißen der Rohre mit dem Rohrboden von der Anströmseite her. Indem die Einleitrohre diese anströmseitigen Verbindungsstellen der Rohre überbrücken und das insbesondere kryogene Medium tief in die Rohre des Rohrbodens leiten, werden die Verbindungsstellen zwischen den Rohren und dem Rohrboden zusätzlich entlastet.In an advantageous development of the invention, the inlet tubes extend over at least half the thickness of the tube sheet. The thickness is measured between an upstream and a downstream side of the tubesheet with respect to the flow direction of the first medium. The inlet tubes preferably penetrate the tube sheet completely, so that the first medium, e.g. B. a cryogenic medium with a very low temperature, is introduced remote from a point of attachment of the tubes in the tube sheet. The tubes can be welded to the tubesheet. Due to better accessibility, the tubes are welded to the tube sheet from the inflow side. By the inlet pipes bridge this inflow-side connection points of the pipes and In particular, if the cryogenic medium is fed deep into the tubes of the tube sheet, the connection points between the tubes and the tube sheet are additionally relieved.

In einer weiteren bevorzugten Ausgestaltung der Erfindung ist der Rohrbündelwärmetauscher als Doppelrohrsicherheitswärmeübertrager ausgebildet. Bei einem Doppelrohrsicherheitswärmeübertrager sind die das erste Medium führenden Rohre jeweils in einem Außenrohr angeordnet. Das zweite Medium kommt nur mit dem Außenrohr in Kontakt. Das erste Medium kommt nur mit dem inneren Rohr in Kontakt. Zwischen dem inneren Rohr und dem Außenrohr befindet sich ein überwachbarer Leckageraum. Die Außenrohre sind in einem Rohrboden für die Außenrohre befestigt. Er befindet sich auf der stromabwärtigen Seite des Rohrbodens für die inneren Rohre. Die Rohrböden sind im Abstand zueinander angeordnet, sodass ein gemeinsamer überwachbarer Leckageraum besteht, der an alle Zwischenräume zwischen den Innen- und Außenrohren angeschlossen ist. Dieser Leckageraum kann auch als Prüfraum verwendet werden, um den Druck eines Prüfmediums im Leckageraum zu überwachen.In a further preferred embodiment of the invention, the tube bundle heat exchanger is designed as a double-tube safety heat exchanger. In a double-tube safety heat exchanger, the tubes carrying the first medium are each arranged in an outer tube. The second medium only comes into contact with the outer tube. The first medium only comes into contact with the inner tube. There is a leakage space between the inner tube and the outer tube that can be monitored. The outer tubes are fixed in a tube sheet for the outer tubes. It is located on the downstream side of the tubesheet for the inner tubes. The tubesheets are spaced apart so that there is a common leak space that can be monitored, which is connected to all spaces between the inner and outer tubes. This leakage space can also be used as a test space to monitor the pressure of a test medium in the leakage space.

In einer vorteilhaften Ausgestaltung der Erfindung ist ein weiterer Trennkörper vorgesehen, der als Strömungssammler dient und welcher in Strömungsrichtung des ersten Mediums betrachtet hinter einem auslassseitigen Rohrboden und vor dem ersten Auslass angeordnet ist. Diese Bauform bezieht sich auf einen Rohrbündelwärmetauscher, bei welchem sich der erste Einlass an einem Ende eines insbesonderen zylindrischen Gehäuses befindet und der erste Auslass am gegenüberliegenden Ende des zylindrischen Gehäuses. Bei dieser Bauform wird das erste Medium demzufolge nicht in einer endseitigen Sammelkammer umgelenkt. Auch beim Ausströmen aus einem solchen Rohrbündelwärmetauscher kann ein Trennkörper sinnvoll sein, um Spannungsspitzen am Rohrboden zu reduzieren. Der Trennkörper besitzt Ausleitrohre, die fluidleitend an die das erste Medium führenden Rohre angeschlossen sind, um das erste Medium durch den auslassseitigen Rohrboden und den Trennkörper zum ersten Ausgang zu leiten. Es befindet sich ein Ausgleichsraum zwischen dem Trennkörper und dem Rohrboden, um divergierende thermische Längenänderungen der Ausleitrohre gegenüber dem Rohrbündel und dem Rohrboden auszugleichen. In vorteilhafter Weise handelt es sich um eine spiegelbildliche Anordnung zur Konfiguration auf der Einlassseite des Rohrbündelwärmetauschers. Beide Enden des Rohrbündelwärmetauschers können in diesem Sinne identisch konfiguriert sein.In an advantageous embodiment of the invention, a further separating body is provided, which serves as a flow collector and which, viewed in the direction of flow of the first medium, is arranged behind an outlet-side tube sheet and in front of the first outlet. This design relates to a tube bundle heat exchanger in which the first inlet is located at one end of a particular cylindrical housing and the first outlet at the opposite end of the cylindrical housing. In this design, the first medium is therefore not deflected in a collection chamber at the end. A separating body can also be useful when flowing out of such a tube bundle heat exchanger in order to reduce stress peaks on the tube base. The separating body has discharge tubes which are connected in a fluid-conducting manner to the tubes carrying the first medium, in order to conduct the first medium through the tube sheet on the outlet side and the separating body to the first outlet. There is an equalizing space between the separating body and the tube sheet in order to compensate for diverging thermal changes in length of the outlet tubes in relation to the tube bundle and the tube sheet. Advantageously, it is a mirror image arrangement to the configuration on the inlet side of the shell and tube heat exchanger. In this sense, both ends of the tube bundle heat exchanger can be configured identically.

In einer Weiterbildung der Erfindung ist vor dem einlassseitigen Rohrboden eine Sammelkammer angeordnet. In diese Sammelkammer mündet die zweite Gruppe von Rohren. An die Sammelkammer ist der erste Ausgang angeschlossen. Die Sammelkammer ist im Wesentlichen ringförmig ausgebildet. Sie kann von dem Ausgleichsraum fluiddicht abgegrenzt sein. Bevorzugt ist die Sammelkammer fluidleitend mit dem Ausgleichsraum verbunden. Der Ausgleichsraum dient vorzugsweise nicht nur zum Ausgleich thermischer Längenänderungen zwischen dem Trennkörper und dem Rohrboden, sondern auch zur Aufnahme von Leckagen, die sich dadurch ergeben, dass die Einlassrohre vorzugsweise längsverschieblich in den Rohren des Rohrbündels angeordnet sind. Vorzugsweise sind sie lediglich mit Spiel in die das erste Medium führenden Rohre gesteckt, wobei ein schmaler Ringspalt verbleibt, der ausreicht, um thermisch bedingte Längenänderungen zu kompensieren. Allerdings ergibt sich insbesondere bei gasförmigen Medien ein begrenzter Leckagestrom zum Ausgleichsraum. Der Ausgleichsraum wird dementsprechend mit dem Leckagestrom des ersten Mediums gefüllt.In a further development of the invention, a collecting chamber is arranged in front of the tube plate on the inlet side. The second group of tubes opens into this collection chamber. The first outlet is connected to the collection chamber. The collection chamber is essentially ring-shaped. It can be delimited in a fluid-tight manner from the compensation chamber. The collection chamber is preferably connected to the compensation chamber in a fluid-conducting manner. The compensating space preferably serves not only to compensate for thermal changes in length between the separating body and the tube sheet, but also to absorb leaks that result from the fact that the inlet tubes are preferably arranged to be longitudinally displaceable in the tubes of the tube bundle. They are preferably only inserted with play into the tubes carrying the first medium, leaving a narrow annular gap which is sufficient to compensate for thermally induced changes in length. However, there is a limited leakage flow to the expansion chamber, especially with gaseous media. The compensation space is accordingly filled with the leakage flow of the first medium.

In besonders vorteilhafter Weise ist der Ausgleichsraum gleichzeitig Bestandteil der Sammelkammer für das zurückströmende Medium. Die Leckageströme sind in der Regel so gering, dass sie vernachlässigt werden können. Zwischen den Einlassrohren und den Rohren des Rohrbündels können Dichtmittel angeordnet sein.In a particularly advantageous manner, the compensating space is at the same time part of the collection chamber for the medium flowing back. The leakage currents are usually so small that they can be neglected. Sealing means can be arranged between the inlet tubes and the tubes of the tube bundle.

Es wird als besonders günstig angesehen, wenn die Einleitrohre den Trennkörper vollständig durchsetzen und eingangsseitig mit dem Trennkörper verbunden sind. Der Trennkörper ist ein eigenständiges Bauteil, das vorzugsweise in das Gehäuse eingeschweißt ist. Die Einleitrohre werden wiederum mit dem Trennkörper verbunden und zwar vorzugsweise anströmseitig, also auf ihrer dem ersten Eingang zugewandten Seite. Sie werden beispielsweise stoffschlüssig mit dem Trennkörper verbunden. Die Herstellung ist vergleichbar mit der Herstellung eines Rohrbündels, das mit einem Rohrboden verbunden wird. Demzufolge kann der Trennkörper ähnlich wie ein Rohrboden als scheibenförmiger Körper ausgebildet sein, der eine Vielzahl von Öffnungen aufweist, in welche die Einleitrohre eingesetzt sind. Gleiches gilt für den Aufbau eines als Strömungssammler dienenden Trennkörpers, der bei einem unidirektional in Längsrichtung durchströmten Rohrbündel auslassseitig montiert ist.It is considered to be particularly advantageous if the inlet pipes completely pass through the separating body and are connected to the separating body on the inlet side. The separating body is an independent component that is preferably welded into the housing. The inlet pipes are in turn connected to the separating body, specifically preferably on the inflow side, ie on their side facing the first inlet. For example, they are connected to the separating body in a materially bonded manner. The manufacture is comparable to the manufacture of a tube bundle that is connected to a tube sheet. Accordingly, the separating body can be designed as a disk-shaped body, similar to a tube plate Having a plurality of openings into which the inlet tubes are inserted. The same applies to the structure of a separating body serving as a flow collector, which is mounted on the outlet side in a tube bundle through which flow occurs unidirectionally in the longitudinal direction.

Die Erfindung ermöglicht es, dass der erste Einlass dem Trennkörper bei Bedarf unmittelbar gegenüberliegt. Die unmittelbare Anströmung des Trennkörpers ist aufgrund der in diesem Sinne nur mittelbaren Anströmung des Rohrbodens bzw. des Rohrbündels unschädlich für die thermischen Spannungen innerhalb des Rohrbündelwärmetauschers und insbesondere innerhalb des Rohrbündels. Selbstverständlich schließt die Erfindung nicht aus, dass der Einlass in einem von 180° abweichenden Winkel zum Trennkörper angeordnet ist, sodass das einströmende erste Medium umgelenkt wird.The invention allows the first inlet to be directly opposite the separating body when required. The direct flow against the separating body is harmless for the thermal stresses within the tube bundle heat exchanger and in particular within the tube bundle due to the indirect flow of the tube sheet or tube bundle in this sense. Of course, the invention does not rule out that the inlet is arranged at an angle deviating from 180° to the separating body, so that the inflowing first medium is deflected.

Es wird als vorteilhaft angesehen, wenn der Einlass in eine Zuströmkammer mündet. Sie kann je nach Bedarf trichterförmig erweitert sein. Der Querschnitt des Einlasses muss nicht dem Querschnitt des Rohrbündels oder dem des Trennkörpers entsprechen. Die Zuströmkammer dient dazu, das einströmende Medium gleichmäßig auf alle Öffnungen im Trennkörper bzw. die einzelnen Einleitrohre und damit gleichmäßig auf das Rohrbündel zu verteilen.It is considered advantageous if the inlet opens into an inflow chamber. It can be expanded in the shape of a funnel as required. The cross section of the inlet does not have to correspond to the cross section of the tube bundle or that of the separator. The purpose of the inflow chamber is to distribute the inflowing medium evenly to all openings in the separating body or the individual inlet tubes and thus evenly to the tube bundle.

Die Erfindung wird nachfolgend unter Bezugnahme auf die Figuren 5 bis 11 näher beschrieben. Die anderen nachfolgend beschriebenen Figuren 1 bis 4 dienen lediglich zur Illustrierung der beanspruchten Erfindung und sind keine Ausführungsformen der Erfindung. Die Zeichnungen zeigen schematisch dargestellte Ausführungsbeispiele. Es zeigen:

Figur 1
Im Längsschnitt einen Rohrbündelwärmetauscher in einer ersten Bauform (Stand der Technik);
Figur 2
Im Längsschnitt den Endbereich eines Rohrbündelwärmetauschers gemäß einer ersten Bauform (Einwegeversion);
Figur 3
Im Längsschnitt in den Endbereich eines Rohrbündelwärmetauschers gemäß einer zweiten Bauform;
Figur 4
Im Längsschnitt einen Rohrbündelwärmetauscher mit einer endseitigen Umlenkkammer (Stand der Technik);
Figur 5
Einen Längsschnitt durch den Endbereich eines Wärmetauschers in einer ersten Ausführungsform der Erfindung (Mehrwegeversion);
Figur 6
Eine Stirnansicht auf einen Rohrboden eines erfindungsgemäßen Wärmetauschers;
Figur 7
Einen Längsschnitt durch einen Endbereich eines Wärmetauschers in einer weiteren Ausführungsform (Mehrwegeversion);
Figur 8
Im Längsschnitt ein weiteres Ausführungsbeispiel durch den Endbereich eines Rohrbündelwärmetauschers gemäß einer weiteren Ausführungsform (Mehrwegeversion);
Figur 9
Eine Ansicht auf ein Kopfstück des Rohrbündelwärmetauschers gemäß Figur 8 aus Blickrichtung des Rohrbündels;
Figur 10
Eine stirnseitige Ansicht auf einen Trennkörper gemäß dem Ausführungsbeispiel der Figur 8 und
Figur 11
eine Stirnansicht auf einen Rohrboden eines Rohrbündelwärmetauschers gemäß der Bauform der Figur 8.
The invention is described below with reference to the Figures 5 to 11 described in more detail. The others described below Figures 1 to 4 are merely illustrative of the claimed invention and are not embodiments of the invention. The drawings show schematically illustrated exemplary embodiments. Show it:
figure 1
A tube bundle heat exchanger in a first design (prior art) in longitudinal section;
figure 2
In longitudinal section, the end area of a tube bundle heat exchanger according to a first design (one-way version);
figure 3
In longitudinal section in the end area of a tube bundle heat exchanger according to a second design;
figure 4
In longitudinal section, a tube bundle heat exchanger with a deflection chamber at the end (prior art);
figure 5
A longitudinal section through the end area of a heat exchanger in a first embodiment of the invention (multi-path version);
figure 6
An end view of a tube sheet of a heat exchanger according to the invention;
figure 7
A longitudinal section through an end area of a heat exchanger in a further embodiment (multi-path version);
figure 8
In a longitudinal section, another exemplary embodiment through the end area of a tube bundle heat exchanger according to another embodiment (multi-path version);
figure 9
A view of a head piece of the tube bundle heat exchanger according to figure 8 viewed from the tube bundle;
figure 10
An end view of a separating body according to the embodiment of figure 8 and
figure 11
an end view of a tube sheet of a tube bundle heat exchanger according to the design of figure 8 .

Die Figur 1 zeigt einen Rohrbündelwärmetauscher 1 zum Stand der Technik. Anhand dieses Rohrbündelwärmetauschers 1 werden die wesentlichen Komponenten benannt, die sich auch bei den nachfolgenden, erfindungsgemäßen Bauformen ab Figur 5 wiederfinden.The figure 1 shows a tube bundle heat exchanger 1 to the prior art. Based on this tube bundle heat exchanger 1, the essential components are named, which are also in the following designs according to the invention figure 5 find again.

Der Rohrbündelwärmetauscher 1 besitzt ein Gehäuse 2. Das Gehäuse 2 ist zylindrisch. Das Gehäuse 2 besitzt in der Bildebene links einen ersten Einlass 3 und in der Bildebene rechts einen ersten Auslass 4 für ein erstes Medium M1 das in den ersten Einlass 3 einströmt und aus dem ersten Auslass 4 ausströmt. Das erste Medium M1 wird durch ein Rohrbündel 5 geleitet. Von dem Rohrbündel 5 ist zur besseren Veranschaulichung nur ein einzelnes Rohr 6 dargestellt.The tube bundle heat exchanger 1 has a housing 2. The housing 2 is cylindrical. The housing 2 has a first inlet 3 on the left in the image plane and a first outlet 4 on the right in the image plane for a first medium M1 which flows into the first inlet 3 and flows out of the first outlet 4 . The first medium M1 is passed through a tube bundle 5 . Only a single tube 6 of the tube bundle 5 is shown for better illustration.

Das Rohrbündel ist von einem Strömungsraum 7 für ein zweites Medium M2 umgeben. Das zweite Medium M2 strömt in der Bildebene rechts über einen zweiten Einlass 8 durch den Strömungsraum 7 zu dem zweiten Auslass 9 am anderen Ende des Gehäuses 2. Hierbei wird das zweite Medium M2 mehrfach innerhalb des Gehäuses 2 umgelenkt. Zu diesem Zweck sind in dem Gehäuse 2 Umlenkbleche 10 angeordnet, sodass der Strömungspfad des zweiten Mediums M2 verlängert wird. Das zweite Medium M2 kommt nicht mit dem ersten Medium M1 in Kontakt. Hierzu sind die Rohre 6 der Rohrbündel 5 in Rohrböden 11 am ersten Einlass und an einem Rohrboden 12 am ersten Auslass 4 befestigt. Bei diesem Ausführungsbeispiel ist der Rohrbündelwärmetauscher als Doppelrohrsicherheitswärmeübertrager ausgebildet. Hierfür ist jedes Rohr 6 von einem Außenrohr umgeben, das in einem zweiten Rohrboden 13 am ersten Einlass 3 bzw. einem zweiten Rohrboden 14 am ersten Auslass 4 verbunden ist. Der Zwischenraum zwischen den Rohrböden 11, 13, bzw. 12, 14 kann zur Leckageerkennung überwacht werden. Hierzu befinden sich die Rohrböden 11, 13, bzw. 12, 14 in geringem Abstand zueinander.The tube bundle is surrounded by a flow space 7 for a second medium M2. The second medium M2 flows in the image plane on the right via a second inlet 8 through the flow chamber 7 to the second outlet 9 at the other end of the housing 2. The second medium M2 is deflected several times within the housing 2. For this purpose, baffle plates 10 are arranged in the housing 2 so that the flow path of the second medium M2 is lengthened. The second medium M2 does not come into contact with the first medium M1. For this purpose, the tubes 6 of the tube bundle 5 are fastened in tube sheets 11 at the first inlet and on a tube sheet 12 at the first outlet 4 . In this exemplary embodiment, the tube bundle heat exchanger is designed as a double-tube safety heat exchanger. For this purpose, each tube 6 is surrounded by an outer tube, which is connected in a second tube sheet 13 at the first inlet 3 or in a second tube sheet 14 at the first outlet 4 . The space between the tube sheets 11, 13 or 12, 14 can be monitored for leak detection. For this purpose, the tube sheets 11, 13 or 12, 14 are at a small distance from one another.

Die Figur 2 zeigt einen Rohrbündelwärmetauscher 15. Bei diesem Rohrbündelwärmetauscher 15 werden die zur Figur 1 genannten Bezugszeichen für im Wesentlichen baugleiche Komponenten weiter verwendet. Der Rohrbündelwärmetauscher 15 besitzt ein zylindrisches Gehäuse 2 mit einem ersten Einlass 3 für das erste Medium M1. Innerhalb des zylindrischen Gehäuses 2 verläuft ein Rohrbündel 5 durch einen Strömungsraum 7 für ein nicht näher dargestelltes zweites Medium, das über den in Figur 1 dargestellten zweiten Einlass 8 bzw. zweiten Auslass 9 in und aus dem Gehäuse 2 strömen kann. Die Rohre 6 des Rohrbündels 5 sind in einem Rohrboden 11 befestigt. Zusätzlich befindet sich zwischen dem Rohrboden 11 und dem Einlass 3 ein Trennkörper 16. Er dient als Strömungsverteiler, wie anhand der fächerartig dargestellten Pfeile in einer sich trichterförmig erweiternden Zuströmkammer 17 in einem Kopfstück 35 des Gehäuses 2 verdeutlichen. Das Kopfstück 35 ist mit dem Rohrboden 11 und der Rohrboden 11 wiederum mit dem zylindrischen Teil des Gehäuses 2 verschweißt. Der gesamte Rohrbündelwärmetauscher 15 ist zylindrisch. Daher sind auch der Rohrboden 11, der Trennkörper 16 und das dazugehörige Kopfstück 35 bei diesem Ausführungsbeispiel zylindrisch. Der Trennkörper 16 ist scheibenförmig konfiguriert und besitzt mehrere Durchgangsöffnungen, in welchen die Einleitrohre 18 verlaufen. Die Einleitrohre 18 sind fluchtend zu den Rohren 6 angeordnet, sodass jeweils ein Einleitrohr 18 dem Rohr 6 des Rohrbündels 5 in Axialrichtung fluchtend gegenüberliegt. Die Einleitrohre 18 besitzen alle die gleiche Länge. Sie erstrecken sich durch den Trennkörper 16 hindurch und überbrücken einen spaltförmigen Ausgleichsraum 19 vor dem Rohrboden 11. Sie erstrecken sich bis zu einer stromabwärtigen Seite 20 des Rohrbodens 11 und durchsetzen somit auch den gesamten Rohrboden 11.The figure 2 shows a shell and tube heat exchanger 15. In this shell and tube heat exchanger 15 to figure 1 Mentioned reference numerals for essentially identical components continue to be used. The tube bundle heat exchanger 15 has a cylindrical housing 2 with a first inlet 3 for the first medium M1. Within the cylindrical housing 2, a tube bundle 5 runs through a flow space 7 for a second medium, not shown in detail, which is fed via the figure 1 illustrated second inlet 8 or second outlet 9 can flow into and out of the housing 2. The tubes 6 of the tube bundle 5 are fastened in a tube sheet 11 . In addition, there is a separating body 16 between the tube sheet 11 and the inlet 3. It serves as a flow distributor, as illustrated by the arrows shown in a fan shape in an inflow chamber 17 that widens like a funnel in a head piece 35 of the housing 2. The head piece 35 is in turn welded to the tube plate 11 and the tube plate 11 to the cylindrical part of the housing 2 . The entire tube bundle heat exchanger 15 is cylindrical. Therefore, the tube sheet 11, the separating body 16 and the associated head piece 35 are cylindrical in this embodiment. The separating body 16 is configured in a disk shape and has a plurality of through openings in which the inlet pipes 18 run. The inlet pipes 18 are arranged in alignment with the pipes 6 so that in each case one inlet pipe 18 is aligned opposite the pipe 6 of the pipe bundle 5 in the axial direction. The inlet pipes 18 all have the same length. They extend through the separating body 16 and bridge a gap-shaped compensation space 19 in front of the tube sheet 11. They extend to a downstream side 20 of the tube sheet 11 and thus also pass through the entire tube sheet 11.

Wenn das Medium M1 durch den einen ersten Einlass in die Zuströmkammer 17 einströmt, wird ausschließlich der Trennkörper 16 bzw. die darin angeordneten Einleitrohre 18 unmittelbar angeströmt. Der Rohrboden 11 wird nicht direkt angeströmt. Das Medium M1 tritt erst auf der stromabwärtigen Seite des Rohrbodens 11 in das Rohrbündel 5 ein. Zum Ausgleich thermischer Längenänderungen sind die Einleitrohre 18 längenverschieblich gegenüber den Rohren 6 des Rohrbündels 5 verlagerbar. Etwaige Leckageströme werden in dem Ausgleichsraum 19 aufgefangen. Hier können sie nicht entweichen, weil der Ausgleichsraum 19 einerseits durch den Trennkörper 16 und umfangsseitig durch das Kopfstück 35 begrenzt ist. Das erste Medium M1 kann nur in die Rohre 6 des Rohrbündels 5 einströmen.When the medium M1 flows through the one first inlet into the inflow chamber 17, only the separating body 16 or the inlet pipes 18 arranged therein are impinged directly. The tube sheet 11 is not flowed directly against. The medium M1 only enters the tube bundle 5 on the downstream side of the tube sheet 11 . To compensate for thermal changes in length, the inlet pipes 18 can be shifted in length relative to the pipes 6 of the pipe bundle 5 . Any leakage currents are collected in the compensating space 19 . They cannot escape here because the compensating space 19 is limited on the one hand by the separating body 16 and on the peripheral side by the head piece 35 . The first medium M1 can only flow into the tubes 6 of the tube bundle 5 .

Die Figur 2 zeigt, dass die Rohre 6 des Rohrbündels 5 auf einer stromauswärtigen Seite 21 des Rohrbodens 11, insbesondere schweißtechnisch fixiert sind. Auch die Einleitrohre 18 sind eingangsseitig an einer dem ersten Medium M1 zugewandten Vorderseite 22 des Trennkörpers 16 fixiert.The figure 2 shows that the tubes 6 of the tube bundle 5 are fixed on an upstream side 21 of the tube sheet 11, in particular by welding. The inlet pipes 18 are also fixed on the inlet side to a front side 22 of the separating body 16 facing the first medium M1.

Die Bauform der Figur 3 unterscheidet sich von derjenigen der Figur 2 dadurch, dass der Rohrbündelwärmetauscher 23 als Doppelrohrsicherheitswärmeübertrager ausgebildet ist. Bezüglich der grundsätzlichen Funktionsweise wird auf die Ausführungen zur Figur 2 Bezug genommen. Auch werden die dort eingeführten Bezugszeichen für die Figur 3 übernommen. Zusätzlich besitzt die Bauform der Figur 3 zu jedem das Medium M1 führenden Rohr 6 ein Außenrohr 24, dass in dem eingangsseitigen Rohrboden 13 (siehe Figur 1) befestigt ist. Zwischen dem Außenrohr 24 und dem jeweiligen Innenrohr 6 befindet sich ein überwachbarer Leckageraum. Dadurch, dass der Rohrboden 13 für die Außenrohre 24 in geringem Abstand zum Rohrboden 11 für die Rohre 6 des Rohrbündels 5 angeordnet ist, kann über den Zwischenraum 25 zwischen den Rohrböden 11, 13 eine Leckageüberwachung durchgeführt werden. Hierzu ist der Zwischenraum 25 mit dem Leckageraum zwischen dem Rohr 6 für das Medium M1 und dem Außenrohr 24 verbunden. Die Leckageüberwachung ist nicht dargestellt.The shape of the figure 3 differs from that of figure 2 characterized in that the tube bundle heat exchanger 23 is designed as a double tube safety heat exchanger. With regard to the basic functionality, reference is made to the statements on figure 2 referenced. Also, the references introduced there for the figure 3 accepted. In addition, the design of the figure 3 for each tube 6 carrying the medium M1, there is an outer tube 24 that is installed in the tube sheet 13 on the inlet side (see figure 1 ) is attached. Between the outer tube 24 and the respective inner tube 6 there is a monitorable leakage space. Due to the fact that the tube sheet 13 for the outer tubes 24 is arranged at a small distance from the tube sheet 11 for the tubes 6 of the tube bundle 5, leakage monitoring can be carried out via the intermediate space 25 between the tube sheets 11, 13. For this purpose, the intermediate space 25 is connected to the leakage space between the tube 6 for the medium M1 and the outer tube 24 . Leakage monitoring is not shown.

Im Unterschied zu der Bauform der Figur 2 erstrecken sich die Einleitrohre 18 auch durch den zweiten Rohrboden 13 für die Außenrohre 24. Dementsprechend enden die Einleitrohre 18 auf der stromabwärtigen Seite 26 des zweiten Rohrbodens 13. Alle weiteren konstruktiven Merkmale sind identisch zu dem Ausführungsbeispiel der Figur 2.In contrast to the design of the figure 2 the inlet tubes 18 also extend through the second tube sheet 13 for the outer tubes 24. Accordingly, the inlet tubes 18 end on the downstream side 26 of the second tube sheet 13. All other structural features are identical to the exemplary embodiment in FIG figure 2 .

Die Figur 4 zeigt einen weiteren Rohrbündelwärmetauscher 27 zum Stand der Technik. Der wesentliche Unterschied gegenüber dem Rohrbündelwärmetauscher der Figur 1 ist, dass der Rohrbündelwärmetauscher 27 eine Umlenkkammer 28 in der Bildebene rechts besitzt, wobei der erste Einlass 3 und der erste Auslass 4 für das erste Medium M1 in der Bildebene links angeordnet sind. Das Gehäuse 2 ist zylindrisch. Dementsprechend ergibt sich hier ein kreisförmiges Rohrbild im Rohrboden 11. Der Rohrbündelwärmetauscher 27 ist wiederum als Doppelrohrsicherheitswärmeübertrager ausgebildet, sodass es auch jeweils einen zweiten Rohrboden 13 für die nicht näher dargestellten Außenrohre gibt. Das zweite Medium M2 strömt bei diesem Ausführungsbeispiel über den ersten Einlass 8 ein. Genau wie bei der ersten Bauform ist der erste Auslass 4 dem ersten Einlass 8 benachbart angeordnet. Lediglich der erste Einlass 3 ist entfernt von dem zweiten Auslass 9 angeordnet. Am einlassseitigen Ende in der Bildebene links befindet sich in einer Kammer 29 ein Trennblech 30, um das von unten zuströmende Medium M1 von dem oben abströmenden Medium M1 zu trennen.The figure 4 shows another tube bundle heat exchanger 27 for the prior art. The main difference compared to the shell and tube heat exchanger figure 1 is that the shell-and-tube heat exchanger 27 has a deflection chamber 28 in the image plane on the right, with the first inlet 3 and the first outlet 4 for the first medium M1 being arranged on the left in the image plane. The housing 2 is cylindrical. Accordingly, a circular tube pattern results here in the tube plate 11. The tube bundle heat exchanger 27 is in turn designed as a double-tube safety heat exchanger, so that there is also a second tube plate 13 for the outer tubes, which are not shown in detail. In this exemplary embodiment, the second medium M2 flows in via the first inlet 8 . Exactly as in the first design, the first outlet 4 is arranged adjacent to the first inlet 8 . Only the first inlet 3 is arranged at a distance from the second outlet 9 . A separating plate 30 is located in a chamber 29 at the inlet-side end in the image plane on the left, in order to separate the medium M1 flowing in from below from the medium M1 flowing out above.

Bei einem Rohrbündelwärmetauscher dieser Bauart - unabhängig davon ob er als Doppelrohrsicherheitswärmeübertrager oder als Einfachrohrwärmeübertrager ausgebildet ist - kann ein zusätzlicher Trennkörper 16 vorgesehen sein, wie es in den Ausführungsbeispielen der Figuren 5 und 7 dargestellt ist. Der Trennkörper 16 unterscheidet sich nicht von demjenigen des Ausführungsbeispiels der Figuren 2 und 3. Auch der Rohrboden 11 ist identisch konfiguriert. Allerdings ist das Kopfstück 32 anders konfiguriert. Das Medium M1 strömt über den ersten Einlass 3 in das Kopfstück 32 ein, durchströmt anschließend die Zuströmkammer 17, um in die einzelnen Einleitrohre 18 im Trennkörper 16 einzutreten. Das Medium M1 strömt nun in die Rohre 6 des Rohrbündels 5 ein. Im Unterschied zu dem Ausführungsbeispiel der Figur 1 strömt das Medium M1 allerdings nur in eine erste Gruppe G1 von Rohren 6 ein. Das sind diejenigen Rohre 6, in welche die Einleitrohre 18 fassen. Sie bilden den Kern des Rohrbündels 5, bei welchem sämtliche Pfeile in P1 (Strömungsrichtung von M1) in der Bildebene von links nach rechts verlaufen. Die Rohre 6 der ersten Gruppe G1 münden in eine Umlenkkammer wie sie in Figur 4 mit dem Bezugszeichen 28 bezeichnet ist. Dort ist ebenfalls ein Rohrboden 12 angeordnet, sodass das erste Medium M1 aus dem Kernbereich ausströmt und in diejenigen Rohre 6 geleitet wird, die die erste Gruppe G1 von Rohren 6 umgeben. Das ist die zweite Gruppe G2 von Rohren 6. Diese zweite Gruppe G2 befindet sich radial außerhalb der ersten Gruppe G1. Diese zweite Gruppe G2 umgibt soweit möglich die erste Gruppe G1 gewissermaßen umfangsseitig.In a tube bundle heat exchanger of this type - regardless of whether it is designed as a double-tube safety heat exchanger or as a single-tube heat exchanger - an additional separating body 16 can be provided, as in the exemplary embodiments of FIG figures 5 and 7 is shown. The separating body 16 does not differ from that of the embodiment of FIG figures 2 and 3 . The tube sheet 11 is also configured identically. However, the header 32 is configured differently. The medium M1 flows into the head piece 32 via the first inlet 3 and then flows through the inflow chamber 17 in order to enter the individual inlet pipes 18 in the separating body 16 . The medium M1 now flows into the tubes 6 of the tube bundle 5 . In contrast to the embodiment of figure 1 however, the medium M1 only flows into a first group G1 of tubes 6 . These are the tubes 6 into which the inlet tubes 18 hold. They form the core of the tube bundle 5, in which all arrows in P1 (flow direction of M1) run from left to right in the image plane. The tubes 6 of the first group G1 open into a deflection chamber as shown in figure 4 denoted by the reference numeral 28. A tube sheet 12 is also arranged there, so that the first medium M1 flows out of the core area and is conducted into those tubes 6 which surround the first group G1 of tubes 6 . This is the second group G2 of tubes 6. This second group G2 is located radially outside the first group G1. As far as possible, this second group G2 surrounds the first group G1, so to speak, on the circumference.

Die Figur 6 zeigt ein Beispiel eines Rohrfeldes in Blickrichtung auf die Stirnseite eines Rohrbodens 11. Die erste Gruppe G1 von Rohren 6 ist mit einem X gekennzeichnet. In diese Rohre 6 strömt das erste Medium M1 in die Bildebene hinein. Es wird hinter dem zweiten Rohrboden 12 umgelenkt und strömt über die Rohre 6 der zweiten Gruppe G2 wieder zurück. Diese Rohre 6 sind mit einem Punkt in der Mitte gekennzeichnet. Der Punkt verdeutlicht die entgegengesetzte Strömungsrichtung Die Figur 6 zeigt ferner eine Hüllfläche 37 der ersten Gruppe G1. Die Hüllfläche 37 umgibt die erste Gruppe G1 von Rohren 6. Sie ist mit unterbrochener Linie eingezeichnet. Sie ist physikalisch nicht vorhanden, sondern bezeichnet lediglich eine Grenze zwischen der ersten Gruppe G1 und der zweiten Gruppe G2. Darüber hinaus ist anhand der Hüllfäche 37 zu erkennen, dass sie zu mehr als 50 % einer Hüllfläche der zweiten Gruppe G2 benachbart ist. Die innere Hüllfläche der zweiten Gruppe G2 entspricht der äußeren Hüllfläche 37 der inneren Gruppe G1. Sie liegen deckungsgleich übereinander. Daher sind die beiden Hüllflächen nicht nur teilweise benachbart, vielmehr umgibt die Hüllfläche der zweiten Gruppe G2 die Hüllfläche 37 der ersten Gruppe G1.The figure 6 shows an example of a tube array looking at the end face of a tube plate 11. The first group G1 of tubes 6 is marked with an X. The first medium M1 flows into these tubes 6 into the image plane. It is deflected behind the second tube sheet 12 and flows back via the tubes 6 of the second group G2. These tubes 6 are marked with a dot in the middle. The dot indicates the opposite direction of flow Die figure 6 also shows an enveloping surface 37 of the first group G1. The enveloping surface 37 surrounds the first group G1 of tubes 6. It is drawn in with a broken line. It is not physically present, but simply designates a boundary between the first group G1 and the second group G2. In addition, it can be seen from the enveloping surface 37 that it is more than 50% adjacent to an enveloping surface of the second group G2. The inner envelope surface of the second group G2 corresponds to the outer envelope surface 37 of the inner group G1. They lie congruently on top of each other. The two enveloping surfaces are therefore not only partially adjacent, rather the enveloping surface of the second group G2 surrounds the enveloping surface 37 of the first group G1.

Das zurückströmende Medium M2 strömt aus den Rohren 6 der zweiten Gruppe G2 in eine Sammelkammer 33. Diese Sammelkammer 33 ist ringförmig konfiguriert. Alle Rohre 6 der äußeren bzw. zweiten Gruppe G2 münden in die Sammelkammer 33. Die Sammelkammer 33 im Kopfstück 32 ist an den ersten Auslass 4 für das Medium angeschlossen. In diesem Fall befindet sich der erste Auslass in der Bildebene oben. Ein Trennblech wie bei dem Ausführungsbeispiel der Figur 4 ist nicht erforderlich. Der Trennkörper 16 trennt das zurückströmende Medium M1 von dem zuströmenden Medium. Zusätzlich befindet sich der Trennkörper 16 größtenteils innerhalb der Sammelkammer 33 und wird von dem zurückströmenden Medium M1 der in der Sammelkammer 33 umströmt. Gleichzeitig befindet sich dadurch auch der Ausgleichsraum 19 innerhalb der Sammelkammer 33. Der Ausgleichsraum 19 ist fluidleitend mit der Sammelkammer 33 verbunden. Sodass etwaige Leckageströme von dem Ausgleichsraum 19 in die Sammelkammer 33 übertreten können und auch über den ersten Ausgang 4 für das erste Medium M1 abströmen können.The returning medium M2 flows out of the tubes 6 of the second group G2 into a collection chamber 33. This collection chamber 33 is configured in the shape of a ring. All tubes 6 of the outer or second group G2 open into the collection chamber 33. The collection chamber 33 in the head piece 32 is connected to the first outlet 4 for the medium. In this case, the first outlet is at the top of the image plane. A partition as in the embodiment of figure 4 not necessary. The separating body 16 separates the medium M1 flowing back from the medium flowing in. In addition, the separating body 16 is located for the most part within the collection chamber 33 and is surrounded by the medium M1 flowing back in the collection chamber 33 . At the same time, the compensation space 19 is thus also located within the collection chamber 33. The compensation space 19 is connected to the collection chamber 33 in a fluid-conducting manner. So that any leakage flows can pass from the compensation chamber 19 into the collection chamber 33 and can also flow out via the first outlet 4 for the first medium M1.

Das Ausführungsbeispiel der Figur 7 unterscheidet sich von demjenigen der Figur 5 ausschließlich dadurch, dass ein zweiter Rohrboden 13 verbaut worden ist, der mit entsprechenden Außenrohren 24 verbunden ist. Im Übrigen wird auf die Beschreibung zu Figur 5 und die dort eingeführten Bezugszeichen bzw. auf die vorangegangene Beschreibung zu der Figur 3 verwiesen, die bereits ebenfalls die Bauform als Doppelrohrsicherheitswärmeübertrager zeigt. Der Rohrbündelwärmetauscher 34 gemäß Figur 7 ist insofern eine Kombination der Bauform der Figuren 5 und 3.The embodiment of figure 7 differs from that of figure 5 solely because a second tube sheet 13 has been installed, which is connected to corresponding outer tubes 24 . Incidentally, the description is too figure 5 and the reference numerals introduced there or to the previous description of the figure 3 referenced, which also shows the design as a double-tube safety heat exchanger. The tube bundle heat exchanger 34 according to figure 7 is a combination of the design of the figures 5 and 3 .

Die Figur 8 zeigt ein weiteres Ausführungsbeispiel mit einem anders gestalteten Kopfstück 36. Bei diesem Ausführungsbeispiel liegt der erste Einlass 3 dem Trennkörper 16 nicht unmittelbar gegenüber. Der erste Einlass 3 befindet sich stirnseitig außermittig und im Wesentlichen in der unteren Hälfte des Kopfstückes 36. Der erste Einlass 3 führt über eine Zuleitung in die Zuströmkammer 17. Die Zuströmkammer 17 ist bei diesem Ausführungsbeispiel nicht zentrisch im Kopfstück 36, sondern exzentrisch angeordnet. Sie befindet sich überwiegend in der unteren Hälfte des Kopfstückes 36. Sie ist im Unterschied zu den anderen Ausführungsbeispielen auch nicht trichterförmig, sondern in dieser Schnittansicht rechteckig und im Wesentlichen an das Rohrbild des Rohrbodens in Figur 9 angepasst.The figure 8 shows another embodiment with a differently designed head piece 36. In this embodiment, the first inlet 3 is not directly opposite the separating body 16. The first inlet 3 is located off-centre at the end and essentially in the lower half of the head piece 36. The first inlet 3 leads via a feed line into the inflow chamber 17. In this exemplary embodiment, the inflow chamber 17 is not arranged centrally in the head piece 36, but rather eccentrically. It is mainly located in the lower half of the head piece 36. In contrast to the other exemplary embodiments, it is also not funnel-shaped, but in this sectional view rectangular and essentially to the tube pattern of the tube sheet in figure 9 adjusted.

Die Figur 9 zeigt das Kopfstück 36 in einer Ansicht auf die Zuströmkammer 17 aus Blickrichtung des Rohrbündels. Die Zuströmkammer 17 ist im Wesentlichen aus dieser Blickrichtung halbkreisförmig bzw. halbzylindrisch konfiguriert mit gerundeten Ecken. Im unteren Bereich der Zuströmkammer 17 befindet sich der Zugang zum ersten Einlass 3. An die Sammelkammer 33 ist im oberen Bereich der Durchgang zum ersten Auslass 4 (Figur 8) angeschlossen. Die Sammelkammer 33 ist im Wesentlichen kreisrund und umgibt die Zuströmkammer 17 umfangseitig.The figure 9 shows the head piece 36 in a view of the inflow chamber 17 from the viewing direction of the tube bundle. The inflow chamber 17 is essentially configured in a semicircular or semicylindrical manner with rounded corners when viewed from this direction. The access to the first inlet 3 is located in the lower area of the inflow chamber 17. The passage to the first outlet 4 ( figure 8 ) connected. The collection chamber 33 is essentially circular and surrounds the inflow chamber 17 on the circumference.

Die Figur 10 zeigt in einer Detaildarstellung den Trennkörper 16. Er wird in die Zuströmkammer 17 der Figur 9 eingesetzt. Die Zusammbausituation ist in der Figur 8 gezeigt. In der Einbaulage ist der Trennkörper 16 umfangseitig fluiddicht mit der Zuströmkammer 17 verschweißt und verschließt diese gegenüber dem Sammelraum 33. In die einzelnen Durchgangsöffnungen 38 im Trennkörper 16 sind die Einleitrohre 18 eingesetzt, wie in Figur 8 zu erkennen ist.The figure 10 shows a detailed representation of the separating body 16. He is in the inflow chamber 17 of figure 9 deployed. The assembly situation is in the figure 8 shown. In the installed position, the separating body 16 is welded to the inflow chamber 17 on the peripheral side in a fluid-tight manner and closes it off from the collecting space 33. The inlet pipes 18 are inserted into the individual through-openings 38 in the separating body 16, as in FIG figure 8 can be seen.

Das Bohrmuster der Durchgangsöffnungen 38 im Trennkörper 16 entspricht dem Lochbild im Rohrboden 11 gemäß Figur 11. Wie bei dem Ausführungsbeispiel der Figur 6 bezeichnen die mit X gekennzeichneten Rohre 6 die Rohre der ersten Gruppe G1. Die Figur 11 zeigt eine Hüllfläche 37 als Begrenzung zwischen der ersten Gruppe G1 und der zweiten Gruppe G2. Die innere Hüllfläche der zweiten Gruppe G2 ist identisch zur äußeren Hüllfläche 37 der ersten Gruppe G1. Der Unterschied zu dem Ausführungsbeispiel der Figur 6 besteht darin, dass die erste Gruppe G1 gegenüber der zweiten Gruppe G2 zur Unterseite der Bildebene 11 versetzt angeordnet ist. Beim Einsatz von kryogenen Medien kann diese Anordnung der Rohre 6 bzw. die Platzierung der Gruppen G1, G2 von Vorteil sein.The drilling pattern of the through openings 38 in the separating body 16 corresponds to the hole pattern in the tube sheet 11 according to FIG figure 11 . As in the embodiment of figure 6 the tubes 6 marked with X denote the tubes of the first group G1. The figure 11 shows an envelope surface 37 as a boundary between the first group G1 and the second group G2. The inner envelope surface of the second group G2 is identical to the outer envelope surface 37 of the first group G1. The difference to the embodiment of figure 6 consists in the fact that the first group G1 is offset relative to the second group G2 towards the underside of the image plane 11 . When using cryogenic media, this arrangement of the tubes 6 or the placement of the groups G1, G2 can be advantageous.

Die erste Gruppe G1 von Rohren 6 befindet sich ganz überwiegend in der unteren Hälfte des Rohrbodens 11. Dieses Ausführungsbeispiel verdeutlicht, dass die zwei Gruppen G1, G2 von Rohren 6 nicht konzentrisch angeordnet sein müssen, dass aber mindestens auf den überwiegenden Umfangsbereich der ersten Gruppe G1 Rohre 6 der zweiten Gruppe G2 angeordnet sind. Sollte es aus Platzgründen nicht möglich sein, seitliche Rohre 6 der zweiten Gruppe G2 neben den Rohren 6 der ersten Gruppe G1 anzuordnen, wie es beispielsweise in der Horizontalebene der Fall ist, bleiben diese Positionen im Rohrboden 11 frei. In diesem Fall ist der Abstand der Rohre 6 der ersten Gruppe G1 vom Rand des Rohrbodens 11, bzw. der Abstand von der Innenseite des einschließenden Gehäuses 2 größer als der Abstand der außenliegenden Rohre 6 der zweiten Gruppe G2 zum Gehäuse 2.The first group G1 of tubes 6 is predominantly in the lower half of the tube sheet 11. This exemplary embodiment makes it clear that the two groups G1, G2 of tubes 6 do not have to be arranged concentrically, but at least on the predominant peripheral area of the first group G1 Tubes 6 of the second group G2 are arranged. It shouldn't for reasons of space be possible to arrange lateral tubes 6 of the second group G2 next to the tubes 6 of the first group G1, as is the case for example in the horizontal plane, these positions in the tube sheet 11 remain free. In this case, the distance between the tubes 6 of the first group G1 and the edge of the tube sheet 11, or the distance from the inside of the enclosing housing 2, is greater than the distance between the outer tubes 6 of the second group G2 and the housing 2.

In einer nicht näher dargestellten Ausführungsform wäre es sogar möglich, bei dem Rohrbild der Figur 11 die beiden untersten Rohre noch der Gruppe G1 zuzuordnen, d.h. als Zuströmrohre zu verwenden. Auch in diesem Fall wären drei Seiten und damit der überwiegende Teil der Rohre 6 der ersten Gruppe G1 bezogen auf ihre gemeinsame Hüllfläche außenseitig von der zweiten Gruppe G2 umgeben.In an embodiment not shown in detail, it would even be possible in the tube image figure 11 the two bottom pipes are still assigned to group G1, ie to be used as inflow pipes. In this case, too, three sides and thus the majority of the tubes 6 of the first group G1 would be surrounded on the outside by the second group G2 in relation to their common enveloping surface.

Bezugszeichen:References:

1 -1 -
Rohrbündelwärmetauschershell and tube heat exchanger
2 -2 -
GehäuseHousing
3 -3 -
erster Einlassfirst entry
4 -4 -
erster Auslassfirst outlet
5 -5 -
Rohrbündeltube bundle
6 -6 -
Rohr von 5tube of 5
7 -7 -
Strömungsraumflow space
8 -8th -
zweiter Einlasssecond inlet
9 -9 -
zweiter Auslasssecond outlet
10-10-
UmlenkblechBaffle plate
11 -11 -
Rohrbodentube sheet
12 -12 -
Rohrbodentube sheet
13 -13 -
Rohrboden für AußenrohrTube sheet for outer tube
14 -14 -
Rohrboden für AußenrohrTube sheet for outer tube
15 -15 -
Rohrbündelwärmetauschershell and tube heat exchanger
16 -16 -
Trennkörperseparator
17 -17 -
Zuströmkammerinflow chamber
18 -18 -
Einleitrohrinlet tube
19 -19 -
Ausgleichsraumbalancing room
20 -20 -
stromabwärtige Seite von 11downstream side of 11
21 -21 -
stromaufwärtige Seite von 11upstream side of 11
22 -22 -
Vorderseite von 16Front of 16
23 -23 -
Rohrbündelwärmetauschershell and tube heat exchanger
24 -24 -
Außenrohrouter tube
25 -25 -
Zwischenraum zwischen 11 und 13Space between 11 and 13
26 -26 -
stromabwärtige Seite von 13downstream side of 13
27 -27 -
Rohrbündelwärmetauschershell and tube heat exchanger
28 -28 -
Umlenkkammerdeflection chamber
29 -29 -
Kammerchamber
30 -30 -
Trennblechdivider
31 -31 -
Rohrbündelwärmetauschershell and tube heat exchanger
32 -32 -
Kopfstückheadpiece
33 -33 -
Sammelkammercollection chamber
34 -34 -
Rohrbündelwärmetauschershell and tube heat exchanger
35 -35 -
Kopfstückheadpiece
36 -36 -
Kopfstückheadpiece
37 -37 -
Hüllfläche von G1Envelope of G1
38 -38 -
Durchgangsöffnung in 16passage opening in 16
G1 -G1 -
erste Gruppe von Rohren 6first group of tubes 6
G2 -G2 -
zweite Gruppe von Rohren 6second group of tubes 6
P1 -P1 -
PfeilArrow
M1 -M1 -
erstes Mediumfirst media
M2 -M2 -
zweites Mediumsecond medium

Claims (9)

  1. Tube bundle heat exchanger comprising a tube bundle (5) in a housing (2), the housing (2) having a first inlet (3) and a first outlet (4) for a first medium (M1) for passage through the tube bundle (5) and a second inlet (8) and a second outlet (9) for a second medium (M2) for passage through a flow space (7) surrounding the tube bundle (5) within the housing (2), the ends of the tube bundle (5) being arranged in a tube sheet (11) that separates the flow space (7) for the second medium (M2) from the first medium (M1), a separating body (16) being arranged as a flow distributor between the first inlet (3) and the tube sheet (11), which prevents the first medium (M1) from flowing against the tube sheet (11) and which has inlet tubes (18) that span an equalisation space (19) between the separating body (16) and the tube sheet (11) and which project into the individual tubes (6) of the tube bundle (5) in order to conduct the first medium (M1) into the tubes (6) while bypassing the tube sheet (11), characterised in that the first inlet (3) is connected to a first group (G1) of tubes (6) of the tube bundle (5), the first group (G1) having an outer envelope surface (37) which is predominantly adjacent to an envelope surface of a second group (G2) of tubes (6) that is connected in a fluid-conducting manner to the first group (G1) of tubes (6), and wherein the first outlet (4) is connected to the second group (G2) of tubes (6).
  2. Tube bundle heat exchanger according to claim 1, characterised in that the inlet tubes (18) extend over at least half of a thickness of the tube sheet (11), the thickness being measured between an upstream side and a downstream side (20) of the tube sheet (11), with respect to the flow direction of the first medium (M1).
  3. Tube bundle heat exchanger according to claim 1 or 2, characterised in that it is configured as a double tube safety heat exchanger, in which the tubes (6) carrying the first medium (M1) are each arranged in an outer tube (24), so that a monitorable leakage space is arranged between the inner tube (6) and the outer tube (24), a tube sheet (13) for the outer tubes (24) being arranged on the downstream side (20) of the tube sheet (11) for the tubes (6) carrying the first medium (M1).
  4. Tube bundle heat exchanger according to any one of claims 1 to 3, characterised in that, viewed in the direction of flow of the first medium (M1), a further separating body is arranged as a flow collector downstream of an outlet-side tube sheet (12) and the first outlet (4), which separating body has discharge tubes connected in a fluid-conducting manner to the tubes (6) carrying the first medium (M1) in order to conduct the first medium (M1) through the outlet-side tube sheet (12) and the separating body to the first outlet (4).
  5. Tube bundle heat exchanger according to claim 1, characterised in that a collecting chamber (33), into which the second group (G2) of tubes opens, is arranged between the inlet-side separating body (16) and the inlet-side tube sheet (11), the first outlet (4) being connected to the collecting chamber (33).
  6. Tube bundle heat exchanger according to any one of claims 1 to 5, characterised in that the inlet tubes (18) are arranged in a longitudinally displaceable manner in the tubes (6) carrying the first medium (M1), it being possible to collect any leakage flow in the equalisation space (19) between the separating body (16) and the tube sheet (11).
  7. Tube bundle heat exchanger according to claim 6, characterised in that the equalisation space (19) is connected to the collecting chamber (33) in a fluid-conducting manner.
  8. Tube bundle heat exchanger according to any one of claims 1 to 7, characterised in that the inlet tubes (18) pass completely through the separating body (16) and are connected to the separating body (16) on the inlet side.
  9. Tube bundle heat exchanger according to any one of claims 1 to 8, characterised in that the first inlet (3) opens into an inflow chamber (17).
EP20758111.7A 2019-07-25 2020-07-24 Tube bundle heat exchanger Active EP4004474B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019120096.2A DE102019120096A1 (en) 2019-07-25 2019-07-25 Shell and tube heat exchanger
PCT/DE2020/100663 WO2021013312A1 (en) 2019-07-25 2020-07-24 Tube bundle heat exchanger

Publications (3)

Publication Number Publication Date
EP4004474A1 EP4004474A1 (en) 2022-06-01
EP4004474B1 true EP4004474B1 (en) 2023-06-07
EP4004474C0 EP4004474C0 (en) 2023-06-07

Family

ID=72147851

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20758111.7A Active EP4004474B1 (en) 2019-07-25 2020-07-24 Tube bundle heat exchanger

Country Status (7)

Country Link
US (1) US11408682B2 (en)
EP (1) EP4004474B1 (en)
JP (1) JP2022534130A (en)
KR (1) KR20220076450A (en)
CN (1) CN114144633B (en)
DE (1) DE102019120096A1 (en)
WO (1) WO2021013312A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115790247B (en) * 2023-01-06 2023-04-21 中国核动力研究设计院 Flow equalizing component and heat exchange device

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2986454A (en) * 1957-07-23 1961-05-30 American Cyanamid Co Tubular catalytic converter
US3374832A (en) * 1966-05-13 1968-03-26 Lummus Co Inlet cone device and method
GB1212526A (en) * 1967-06-15 1970-11-18 Foster Wheeler Brown Boilers Improvements in shell and tube heat exchangers
US3451472A (en) 1967-08-02 1969-06-24 Julian W Keck Two-stage baffle for high pressure feedwater heaters
NO126588B (en) * 1971-11-24 1973-02-26 Peder Langsholt
DE2454757A1 (en) * 1974-11-19 1976-05-20 Peter Schmidt Shell-and-tube heat exchanger - can be switched from condensing to vaporising duty or vice-versa
JPS5563395A (en) * 1978-11-01 1980-05-13 Toyo Eng Corp Heat exchanger
DE3215601A1 (en) * 1982-04-27 1983-10-27 GEA GmbH, 4630 Bochum Tube-in-tube cooler
US4585057A (en) * 1982-09-30 1986-04-29 Krw Energy Systems Inc. Cooled tubesheet inlet for abrasive fluid heat exchanger
JPH01142392A (en) * 1987-11-30 1989-06-05 Babcock Hitachi Kk Double tube type heat transfer tube
DE9210444U1 (en) * 1992-08-05 1992-11-19 Funke Wärmeaustauscher Apparatebau GmbH, 3212 Gronau Safety heat exchanger
ITMI20022449A1 (en) * 2002-11-19 2004-05-20 Tycon Technoglass S P A HEAT EXCHANGER WITH SILICON CARBIDE TUBE BAND E
ITMI20031268A1 (en) * 2003-06-24 2004-12-25 Italprotec S A S Di Cotogni Carla E C TUBE BAND HEAT EXCHANGER.
DE102008048405B3 (en) * 2008-09-23 2010-04-22 Alstom Technology Ltd. Tube bundle heat exchanger for the regulation of a wide power range
CN201297874Y (en) * 2008-10-16 2009-08-26 北京航天石化技术装备工程公司 Shell and tube heat exchanger with baffle plate having diamond-shaped round-cornered holes
FR2957664B1 (en) * 2010-03-22 2012-04-20 Ciat Sa TUBE THERMAL EXCHANGER AND METHOD OF ASSEMBLING SUCH EXCHANGER
PL2482020T5 (en) * 2011-01-31 2023-03-27 Haldor Topsøe A/S Heat exchanger
EP2671636A1 (en) * 2012-06-06 2013-12-11 Ammonia Casale S.A. Pressure vessel with replaceable tubes
CN203731927U (en) * 2013-12-04 2014-07-23 英特换热设备(浙江)有限公司 Collector fixing structure suitable for shell-and-tube heat exchanger
EP3397915A1 (en) * 2015-12-30 2018-11-07 BITZER Kühlmaschinenbau GmbH Heat exchanger with a tube bundle and shell with a flow at the shell side with improved efficiency
ES2767089T3 (en) * 2017-01-31 2020-06-16 Alfa Laval Corp Ab Apparatus and method for protecting the tube sheet of a synthesis gas loop boiler
US10371422B2 (en) * 2017-02-13 2019-08-06 Daikin Applied Americas Inc. Condenser with tube support structure

Also Published As

Publication number Publication date
JP2022534130A (en) 2022-07-27
CN114144633B (en) 2023-06-06
EP4004474A1 (en) 2022-06-01
US11408682B2 (en) 2022-08-09
CN114144633A (en) 2022-03-04
WO2021013312A1 (en) 2021-01-28
DE102019120096A1 (en) 2021-01-28
US20220163265A1 (en) 2022-05-26
KR20220076450A (en) 2022-06-08
EP4004474C0 (en) 2023-06-07

Similar Documents

Publication Publication Date Title
EP1608865B1 (en) Exhaust gas heat exchanger and sealing device for the same
EP2304370B1 (en) Conversion set for a tube bundle heat exchanger
DE60103389T2 (en) A HEAT EXCHANGE
EP2881692B1 (en) Gas turbine cooling air cooler, gas turbine or gas and steam turbine power station and method for cooling cooling air
DE112013004284B4 (en) Microchannel heat exchanger
DE69706169T2 (en) PLATE HEAT EXCHANGER WITH CONNECTING TUBES LINED WITH BELLOWS
DE2708696A1 (en) MULTI-LAYER TUBE FLOOR FOR HEAT EXCHANGER
DE19628561C1 (en) Plate heat exchanger for heat exchanging media in separated circuits
WO2015007375A1 (en) Heat exchanger having an elastic element
DE202009005398U1 (en) Cooling system and shell reactor with such a cooling system
EP4004474B1 (en) Tube bundle heat exchanger
EP2926073B1 (en) Heat exchanger
DE10333463C5 (en) Tube heat exchanger
DE102017212965A1 (en) Heat exchanger for a gas boiler
DE69715919T2 (en) Plate heat exchanger
EP0130404B1 (en) Multi-stage heat exchanger
EP1126227A1 (en) Steam condenser
AT513300B1 (en) heat exchangers
EP1956329B1 (en) Device for cooling fluids
DE2527810C3 (en) Plate heat exchanger
DE102009040561A1 (en) Heat exchanger e.g. direct-current heat exchanger, for use as e.g. condenser in rectification column during low-temperature analysis of air for obtaining oxygen, has fluid channels formed by gaps between radially arranged tubes
DE19717832C2 (en) Heat exchanger arrangement
DE3147512A1 (en) Heat exchangers having U-tubes
DE2307685A1 (en) DEVICE FOR STRENGTHENING PARTITION WALLS IN HEAT EXCHANGERS
DE3209584C2 (en) Device for superheating steam

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220104

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20221214

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1576265

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230615

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020003721

Country of ref document: DE

U01 Request for unitary effect filed

Effective date: 20230704

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20230712

U20 Renewal fee paid [unitary effect]

Year of fee payment: 4

Effective date: 20230714

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230907

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231007

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502020003721

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230731

26N No opposition filed

Effective date: 20240308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230724