EP3999265A1 - Layer construction method and layer construction device for additively manufacturing at least one component region of a component, and computer program product and storage medium - Google Patents

Layer construction method and layer construction device for additively manufacturing at least one component region of a component, and computer program product and storage medium

Info

Publication number
EP3999265A1
EP3999265A1 EP20750570.2A EP20750570A EP3999265A1 EP 3999265 A1 EP3999265 A1 EP 3999265A1 EP 20750570 A EP20750570 A EP 20750570A EP 3999265 A1 EP3999265 A1 EP 3999265A1
Authority
EP
European Patent Office
Prior art keywords
layer
component
layer construction
construction method
scan lines
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20750570.2A
Other languages
German (de)
French (fr)
Inventor
Katrin Friedberger
Sebastian Rott
Steffen Schlothauer
Wolfgang NIETSCH
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Aero Engines AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Aero Engines AG filed Critical MTU Aero Engines AG
Publication of EP3999265A1 publication Critical patent/EP3999265A1/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/009Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine components other than turbine blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/366Scanning parameters, e.g. hatch distance or scanning strategy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/66Treatment of workpieces or articles after build-up by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/49Scanners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • B23K15/0086Welding welding for purposes other than joining, e.g. built-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0626Energy control of the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/10Auxiliary heating means
    • B22F12/17Auxiliary heating means to heat the build chamber or platform
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/41Radiation means characterised by the type, e.g. laser or electron beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/44Radiation means characterised by the configuration of the radiation means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/04Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/001Turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • Layer construction method and layer construction device for the additive manufacture of at least one component area of a component as well as a computer program product and storage medium
  • the invention relates to a layer construction method and a layer construction device for the additive production of at least one component region of a component.
  • the invention further relates to a computer program product, a computer-readable storage medium and a component with at least one additively manufactured component area.
  • Additive layer construction processes describe processes in which geometric data are determined based on a virtual model of a component or component area to be manufactured, which is broken down into layer data (so-called "slicing"). Depending on the geometry of the model, an exposure or irradiation strategy is determined according to which the selective solidification of a material is to take place. In the layer construction process, the desired material is then deposited in layers and selectively scanned and solidified by means of the at least one energy beam in order to additively build up the desired component area. Various irradiation parameters such as the energy beam power and the exposure speed of an energy beam to be used for solidification are important for the resulting microstructure. The arrangement of so-called scan lines is also important.
  • the scan lines which can also be referred to as melting traces or exposure vectors, define the paths along which the at least one energy beam scans and melts the material and can generally run linearly or non-linearly.
  • additive or generative manufacturing processes differ from conventional abrasive or primary forming manufacturing methods.
  • additive manufacturing processes are generative laser sintering or laser melting processes, which can be used, for example, to manufacture components for turbomachines such as aircraft engines.
  • selective laser melting thin powder layers of the material or materials used are applied to a building platform and melted and solidified locally with the aid of one or more laser beams in the area of a build-up and joining zone. The building platform is then lowered, another layer of powder applied and locally solidified again.
  • the component can then be processed further if necessary or used without further processing steps.
  • the component can then be processed further if necessary or used without further processing steps.
  • selective laser sintering the component is made in a similar way produced by laser-assisted sintering of powdery materials.
  • the energy is supplied here, for example, by laser beams from a CO 2 laser, Nd: YAG laser, Yb fiber laser, diode laser or the like.
  • Electron beam processes are also known in which the material is selectively scanned and solidified by one or more electron beams.
  • a disadvantage of the known layered construction method is the fact that components manufactured with them often have a comparatively high structural anisotropy, which leads to different mechanical properties depending on the direction. This leads to reduced strengths and stiffnesses, which have to be taken into account and compensated for in the component design.
  • the object of the present invention is to improve a layer construction method and a layer construction device of the type mentioned at the beginning in such a way that components or component areas with more uniform mechanical properties in all directions can be produced. Further objects of the invention consist in specifying a computer program product and a computer-readable storage medium which enable a corresponding control of such a layer construction device. Finally, it is the object of the invention to specify a component with at least one additively manufactured component area with more uniform mechanical properties in all directions.
  • a first aspect of the invention relates to a layered construction method for the additive manufacture of at least one component region of a component, in particular a component of a fluid flow machine.
  • the layer construction process comprises at least the steps a) Application of at least one powder layer of a material to at least one build-up and joining zone at least one ner movable building platform, b) local solidification of the material to form a component layer, in that the material is selectively scanned and melted with at least one energy beam along scan lines, c) layer-by-layer lowering of the building platform by a predefined layer thickness and d) Repeat steps a) to c) until the component area is completed.
  • a component or component area with more uniform mechanical properties in all directions, that is to say with an isotropic or at least largely isotropic structure, is achieved according to the invention in that in step b) a distance h s from at least two center lines of adjacent scan lines in at least one component layer according to formula I.
  • b smin denotes a minimum weld pool width of the scan lines.
  • the distance between the center lines of at least two scan lines that lie directly next to one another in the component layer is set in this way for a component that is as free from defects as possible with more uniform properties in all directions and a very fine structure to increase strength that the quotient b smin / h s 0.85, 0.85 1, 0.852, 0.853, 0.854, 0.855, 0.856, 0.857, 0.858, 0.859, 0.860, 0.861, 0.862,
  • the distance h s is also referred to as the hatch distance and, via the associated local energy input, significantly influences the stretching of the material grains in the direction of build-up.
  • a lower energy input volume energy leads to a lower mean grain size KG and thus to a finer-grain structure.
  • the quotient b smin / hs mentioned is preferably set for several pairs of scan lines, whereby it does not have to be chosen identically for each pair of scan lines, but can move within the specified limits.
  • the scan lines can basically run linearly or non-linearly. Furthermore, in a Component layer Groups of scan lines in different patterns (exposure strategy) are generated, for example in the form of a line exposure, a stripe exposure, a chess strategy, an Iceland strategy, etc.
  • exposure strategy for example in the form of a line exposure, a stripe exposure, a chess strategy, an Iceland strategy, etc.
  • "a” in the context of this disclosure is to be read as an indefinite article , that is, without expressly specifying the contrary, always as “at least one”. Conversely, “a” can also be understood as “just one”.
  • step b) a laser beam with a power between 200 W and 300 W, that is with a power of 200 W, 201 W, 202 W, 203 W, 204 W, 205 W, 206 W, 207 W, 208 W, 209 W, 210 W, 21 1 W, 212 W,
  • the microstructure can be positively influenced for conventional metallic or intermetallic materials and, in particular, a higher isotropy can be achieved. This leads to higher strengths and stiffnesses as well as to a reduction in the work involved in component design.
  • step b) an average scanning speed of the at least one energy beam to a value between 800 mm / s and 1,100 mm / s the means, for example, from 800 mm / s, 805 mm / s, 810 mm / s, 815 mm / s, 820 mm / s, 825 mm / s, 830 mm / s, 835 mm / s, 840 mm / s, 845 mm / s, 850 mm / s, 855 mm / s, 860 mm / s,
  • 1095 mm / s or 1 100 mm / s is set, with corresponding intermediate values as e.g. 900 mm / s, 901 mm / s, 902 mm / s, 903 mm / s, 904 mm / s, 905 mm / s, 906 mm / s,
  • 907 mm / s, 908 mm / s, 909 mm / s, 910 mm / s etc. are to be regarded as also disclosed.
  • a further spatial equalization of the properties of the component or component area is achieved in a further embodiment in that the building platform in step c) by a layer thickness between 30 mm and 50 mm, i.e. by 30 mm, 31 mm, 32 mm, 33 mm, 34 mm,
  • each component layer is produced with the same layer thickness or that the layer thickness is varied one or more times during the layer-wise build-up.
  • step b) the distance h s from at least two center lines of mutually adjacent scan lines to a value between 130 mm and 150 mm, that is, for example, to a value of 130 mm,
  • the distance h s of the majority of the center lines of adjacent scan lines or the distance h s of all center lines of adjacent scan lines in at least one component layer is set according to formula I.
  • the quotient defined in formula I is set for several or for all pairs of scan lines of an individual component layer. This also advantageously contributes to the generation of an at least largely isotropic or quasi-isotropic structure.
  • a material from the group of steel, aluminum alloys, titanium alloys, cobalt-based alloys, chromium-based alloys, nickel-based alloys, copper alloys, intermetallic alloys or any mixture thereof is used.
  • the material can in principle also be a plastic such as ABS, PLA, PETG, nylon, PET, PTFE or the like, components or component areas with higher mechanical, thermal and chemical resistance can generally be achieved with the aid of metallic and / or intermetallic materials getting produced.
  • the material contains elements from the group iron, titanium, nickel, chromium, cobalt, copper, aluminum or titanium.
  • the material can be an alloy from the group consisting of steel, aluminum alloy, titanium alloy, cobalt alloy, chromium alloy, nickel-based alloy or copper alloys.
  • the material can be a high temperature resistant nickel-based alloy such as Mar M-247, Inconel 718 (IN718), Inconel 738 (IN738), Waspaloy or C263.
  • Intermetallic alloys such as Mg2Si and titanium aluminides can also be provided.
  • a heat treatment is understood to mean a method in which a temperature of the component area or of the entire component is varied in order to change the material properties and, in particular, the structural properties.
  • the heat treatment preferably comprises or is hot isostatic pressing (HIP), in which a high pressure is used to improve the material properties.
  • the pressure is applied to the component, for example, by an inert gas (e.g. argon). Plastic deformation, creep and / or diffusion can be achieved as a result of the pressure and a temperature that is higher than room temperature. Internal microporosity or other defects can also be eliminated, thereby improving the mechanical properties of the component.
  • Hot isostatic pressing also enables the component to be bonded to other materials, which can be either solid or powder.
  • a second aspect of the invention relates to a layer construction device for the additive production of at least one component region of a component using an additive layer construction method.
  • the layer building device comprises at least one powder feed for applying at least one powder layer of a material to at least one building and joining zone of at least one movable building platform, at least one radiation source for generating at least one energy beam for layer-wise and local solidification of the material by selective scanning and melting of the material along scan lines and a control device.
  • the control device is designed to control the powder feed so that it applies at least one powder layer of the material to the build-up and joining zone of the building platform, and to control the building platform so that it is lowered in layers by a predefined layer thickness.
  • control device is configured to provide a distance h s from at least two center lines of adjacent scan lines in at least one component layer according to FIG Formula I.
  • the layer construction device is designed as a selective laser sintering and / or melting device. In this way, component areas and complete components can be produced whose mechanical properties are at least essentially direction-independent.
  • CO 2 lasers, Nd: YAG lasers, Yb fiber lasers, diode lasers or the like can be provided for generating a laser beam. It can also be provided that two or more electron and / or laser beams are used, the exposure or solidification parameters of which are adjusted or set in the manner described above.
  • Another aspect of the invention relates to a computer program product, comprising instructions which, when the computer program product is executed by a control device of a layer construction device according to the second aspect of the invention, cause the layer construction device to execute the layer construction method according to the first aspect of the invention.
  • Another aspect of the invention relates to a computer-readable storage medium, comprising commands which, when executed by a control device of a layer construction device according to the second aspect of the invention, cause the layer construction device to carry out the layer construction method according to the first aspect of the invention.
  • the present invention can be implemented with the aid of a computer program product which comprises program modules which are accessible from a computer-usable or computer-readable medium and which store program code which is generated by or in connection with one or more computers, processors or instruction execution systems of a layer construction device is used.
  • a computer usable or computer readable medium can be any device that can contain, store, communicate, distribute, or transport the computer program product for use by or in connection with the instruction execution system, device, or device.
  • the medium can be an electronic, magnetic, optical, electromagnetic, infrared or semiconductor system or a propagation medium per se, since signal carriers are not included in the definition of the physical, computer-readable medium.
  • Another aspect of the invention relates to a component, in particular a turbine component of a turbomachine, comprising at least one component area which is produced by means of a layer construction device according to the second aspect of the invention and / or by means of a layer construction method according to the first aspect of the invention.
  • the component according to the invention has a highly uniform and at least essentially direction-independent microstructure, which leads to a significantly higher resistance to cyclical loads and to significantly increased strength and rigidity values.
  • the features resulting therefrom and their advantages can be found in the descriptions of the first and second aspects of the invention, with advantageous configurations of each aspect of the invention being regarded as advantageous configurations of the respective other aspects of the invention.
  • the component can be designed as a turbine blade for a gas turbine, in particular for an aircraft engine.
  • FIG. 1 shows a schematic sectional view of a layer construction device according to the invention
  • FIG. 3 shows a schematic illustration of three scan lines which, according to the invention, are spaced from one another;
  • FIG. 5 shows a diagram in which an introduced volume energy is plotted on the abscissa axis and a resulting mean grain size of a generatively manufactured component is plotted on the ordinate axis;
  • FIG. 6 shows a diagram in which an introduced volume energy is plotted on the abscissa axis and a resulting maximum grain size of the generatively manufactured component is plotted on the ordinate axis;
  • FIGS. 5 and 6 shows a microstructural micrograph of a structure in the regions Va and Via shown in FIGS. 5 and 6;
  • FIG. 1 shows a schematic sectional view of a layer construction device 10 according to the invention.
  • the layer construction device 10 is used for the additive production of at least one component region 12 of a component 14 by an additive layer construction method.
  • the layer building device 10 holds at least one powder feed 16 with a powder container 18 and a coater 20.
  • the powder feed 16 is used to apply at least one powder layer of a material 22 to a build-up and joining zone II of a construction platform 24 that can be moved according to arrow B Arrow III moved in order to transport material 22 from the powder container 18 to the build-up and joining zone II.
  • the layer construction device 10 further comprises at least one radiation source 26 for generating at least one energy beam 28 for layer-wise and local solidification of the material 22 by the material 22 being selectively scanned and melted with the energy beam 28 along scan lines 40 (see FIG. 2) .
  • a control device 30 is provided, which is designed to control the powder feed 16 so that it applies at least one powder layer of the material 22 to the building and joining zone II of the building platform 24 and the building platform 24 in layers by a predefined layer thickness according to Arrow B lowers.
  • the control device 30 is configured to set a distance h s from at least two center lines M of adjacent scan lines 40 according to the formula I in at least one component layer
  • the layer construction device 10 comprises an optical device 32, by means of which the energy beam 28 can be moved over the construction and joining zone II.
  • the radiation source 26 and the device 32 are coupled to the control device 30 for data exchange.
  • the layer construction device 10 comprises a basically optional heating device 34, by means of which the powder bed can be tempered to a desired base temperature.
  • the heating device 34 can comprise, for example, one or more induction coil (s).
  • other heating elements for example IR radiators or the like, can also be provided.
  • FIG. 2 shows a schematic illustration of a scan line 40, in the present case linear, with a length l s .
  • the scan line 40 has a center line M along which the laser beam 28 was guided and melted the material 22.
  • a laser power of 250 W, a scanning speed of 960 mm / s and a layer thickness of 40 mm were set as exemplary process parameters.
  • the scan line 40 also has an area with a minimum weld pool width b smin and an area with a maximum melt pool width b smax .
  • the distance between the center line and an edge of the weld pool is formally 1 ⁇ 2 b s , the value b s varying along the scan line 40 between b smin and b smax .
  • FIG. 3 shows a schematic illustration of three scan lines 40 which, according to the invention, are spaced from one another and produced using the process parameters mentioned above.
  • the distance h s (hatch) between respectively adjacent center lines M of the scan lines 40 corresponds to the formula 0.85 £ b smin / h s £ 1.00 and is approximately 140 mm in the present example.
  • the scan lines 40 are arranged at least essentially in abutment and neither significantly overlap nor have significant gaps.
  • the value b s varies only slightly along the individual scan lines 40.
  • FIG. 4 shows a schematic illustration of three scan lines 40 which are arranged at a distance h s from one another, not according to the invention. It can be seen that the scan lines 40 partially overlap strongly and have widths (b s ) that vary considerably more in the direction of progress. At the same time, individual gaps still occur between adjacent scan lines 40. This leads to locally strongly varying energy inputs and accordingly to strongly varying grain sizes and a correspondingly anisotropic structure.
  • FIG. 5 shows a diagram in which an introduced volume energy VE in J / mm 3 is plotted on the abscissa axis and a resulting mean grain size KG in mm of a generatively manufactured component 14 (not shown) is plotted on the ordinate axis.
  • 6 shows a diagram in which the introduced volume energy VE [J / mm 3 ] is plotted on the abscissa axis and a resulting maximum grain size KG max [mm] of the generatively manufactured component 14 is plotted on the ordinate axis.
  • the diagrams illustrate the relationship between the mean or maximum grain size KG, KG max and the introduced volume energy VE, which is largely determined by the hatching distance h s .
  • FIG. 7 shows a micrograph of a structure in the regions Va and Via shown in FIG. 5 and FIG. 6, while FIG. 8 shows a micrograph of a structure in the regions shown in FIG. 5 and FIG Vb and VIb respectively.

Abstract

The invention relates to a layer construction method for the additive manufacturing of at least one component region (12) of a component (14), in particular a component (14) of a continuous flow machine. The layer construction method comprises at least the following steps: a) applying at least one powder layer of a material (22) to at least one construction and joining zone (II) of at least one moveable construction platform (24); b) locally solidifying the material (22) to form a component layer, wherein the material (22) is selectively scanned along scan lines (40) by at least one energy beam (28) and fused; c) lowering the construction platform (24) layer-by-layer by a predefined layer thickness; and d) repeating the steps a) to c) until the component region (12) is complete. In step b), a distance hs between at least two central lines (M) of neighbouring scan lines (40) in at least one component layer is adjusted according to formula I 0.85 ≤ bsmin/hs ≤ 1.00 (I), wherein bsmin represents a minimum melt pool width of the scan lines (40). The invention also relates to a layer construction device (10) for the additive manufacturing of at least one component region (12) of a component (14), to a computer program product, to a computer-readable storage medium, and to a component (14) having at least one additively manufactured component region (12).

Description

Schichtbauverfahren und Schichtbauvorrichtung zum additiven Herstellen zumindest eines Bau- teilbereichs eines Bauteils sowie Computerprogrammprodukt und Speichermedium Layer construction method and layer construction device for the additive manufacture of at least one component area of a component as well as a computer program product and storage medium
Beschreibung description
Die Erfindung betrifft ein Schichtbauverfahren und eine Schichtbauvorrichtung zum additiven Herstellen zumindest eines Bauteilbereichs eines Bauteils. Die Erfindung betrifft weiterhin ein Computerprogrammprodukt, ein computerlesbares Speichermedium und ein Bauteil mit wenigs- tens einem additiv hergestellten Bauteilbereich. The invention relates to a layer construction method and a layer construction device for the additive production of at least one component region of a component. The invention further relates to a computer program product, a computer-readable storage medium and a component with at least one additively manufactured component area.
Additive Schichtbauverfahren bezeichnen Prozesse, bei denen anhand eines virtuellen Modells eines herzustellenden Bauteils oder Bauteilbereichs Geometriedaten ermittelt werden, welche in Schichtdaten zerlegt werden (sog.„slicen“). Abhängig von der Geometrie des Modells wird eine Belichtungs- bzw. Bestrahlungsstrategie bestimmt, gemäß welcher die selektive Verfestigung ei- nes Werkstoffs erfolgen soll. Beim Schichtbauverfahren wird dann der gewünschte Werkstoff schichtweise abgelagert und selektiv mittels des wenigstens einen Energiestrahls abgetastet und verfestigt, um den gewünschten Bauteilbereich additiv aufzubauen. Verschiedene Bestrahlungs- parameter wie beispielsweise die Energiestrahlleistung und die Belichtungsgeschwindigkeit ei- nes zum Verfestigen zu verwendenden Energiestrahls sind für die entstehende Gefügestruktur von Bedeutung. Zusätzlich ist auch die Anordnung von sogenannten Scanlinien von Bedeutung. Die Scanlinien, welche auch als Schmelzspuren oder als Belichtungsvektoren bezeichnet werden können, definieren die Strecken, entlang welchen der wenigstens eine Energiestrahl den Werk- stoff abtastet und aufschmilzt und können generell linear oder nicht-linear verlaufen. Damit un- terscheiden sich additive bzw. generative Herstellungsverfahren von konventionellen abtragen- den oder urformenden Fertigungsmethoden. Beispiele für additive Herstellungsverfahren sind generative Lasersinter- bzw. Laserschmelzverfahren, die beispielsweise zur Herstellung von Bauteilen für Strömungsmaschinen wie Flugtriebwerke verwendet werden können. Beim selek- tiven Laserschmelzen werden dünne Pulverschichten des oder der verwendeten Werkstoffe auf eine Bauplattform aufgebracht und mit Hilfe eines oder mehrerer Laserstrahlen lokal im Bereich einer Aufbau- und Fügezone aufgeschmolzen und verfestigt. Anschließend wird die Bauplatt- form abgesenkt, eine weitere Pulverschicht aufgebracht und erneut lokal verfestigt. Dieser Zyk- lus wird solange wiederholt, bis das fertige Bauteil bzw. der fertige Bauteilbereich erhalten wird. Das Bauteil kann anschließend bei Bedarf weiterbearbeitet oder ohne weitere Bearbeitungs- schritte verwendet werden. Beim selektiven Lasersintern wird das Bauteil in ähnlicher Weise durch laserunterstütztes Sintern von pulverförmigen Werkstoffen hergestellt. Die Zufuhr der Energie erfolgt hierbei beispielsweise durch Laserstrahlen eines CO2-Lasers, Nd:YAG-Lasers, Yb-Faserlasers, Diodenlasers oder dergleichen. Ebenfalls bekannt sind Elektronenstrahlverfah- ren, bei welchen der Werkstoff durch einen oder mehrere Elektronenstrahlen selektiv abgetastet und verfestigt wird. Additive layer construction processes describe processes in which geometric data are determined based on a virtual model of a component or component area to be manufactured, which is broken down into layer data (so-called "slicing"). Depending on the geometry of the model, an exposure or irradiation strategy is determined according to which the selective solidification of a material is to take place. In the layer construction process, the desired material is then deposited in layers and selectively scanned and solidified by means of the at least one energy beam in order to additively build up the desired component area. Various irradiation parameters such as the energy beam power and the exposure speed of an energy beam to be used for solidification are important for the resulting microstructure. The arrangement of so-called scan lines is also important. The scan lines, which can also be referred to as melting traces or exposure vectors, define the paths along which the at least one energy beam scans and melts the material and can generally run linearly or non-linearly. This means that additive or generative manufacturing processes differ from conventional abrasive or primary forming manufacturing methods. Examples of additive manufacturing processes are generative laser sintering or laser melting processes, which can be used, for example, to manufacture components for turbomachines such as aircraft engines. In selective laser melting, thin powder layers of the material or materials used are applied to a building platform and melted and solidified locally with the aid of one or more laser beams in the area of a build-up and joining zone. The building platform is then lowered, another layer of powder applied and locally solidified again. This cycle is repeated until the finished component or the finished component area is obtained. The component can then be processed further if necessary or used without further processing steps. With selective laser sintering, the component is made in a similar way produced by laser-assisted sintering of powdery materials. The energy is supplied here, for example, by laser beams from a CO 2 laser, Nd: YAG laser, Yb fiber laser, diode laser or the like. Electron beam processes are also known in which the material is selectively scanned and solidified by one or more electron beams.
Als nachteilig an den bekannten Schichtbauverfahren ist der Umstand anzusehen, dass damit hergestellte Bauteile häufig eine vergleichsweise hohe Gefügeanisotropie aufweisen, die zu rich- tungsabhängig unterschiedlichen mechanischen Eigenschaften führt. Dies führt zu verringerten Festigkeiten und Steifigkeiten, die bei der Bauteilauslegung berücksichtigt und kompensiert werden müssen. A disadvantage of the known layered construction method is the fact that components manufactured with them often have a comparatively high structural anisotropy, which leads to different mechanical properties depending on the direction. This leads to reduced strengths and stiffnesses, which have to be taken into account and compensated for in the component design.
Aufgabe der vorliegenden Erfindung ist es, ein Schichtbauverfahren und eine Schichtbauvorrich- tung der eingangs genannten Art so zu verbessern, dass eine Herstellung von Bauteilen oder Bauteilbereichen mit gleichmäßigeren mechanischen Eigenschaften in alle Richtungen ermög- licht ist. Weitere Aufgaben der Erfindung bestehen darin, ein Computerprogrammprodukt und ein computerlesbares Speichermedium anzugeben, welche eine entsprechende Steuerung einer solchen Schichtbauvorrichtung ermöglichen. Schließlich ist es Aufgabe der Erfindung, ein Bau- teil mit wenigstens einem additiv hergestellten Bauteilbereich mit gleichmäßigeren mechani- schen Eigenschaften in alle Richtungen anzugeben. The object of the present invention is to improve a layer construction method and a layer construction device of the type mentioned at the beginning in such a way that components or component areas with more uniform mechanical properties in all directions can be produced. Further objects of the invention consist in specifying a computer program product and a computer-readable storage medium which enable a corresponding control of such a layer construction device. Finally, it is the object of the invention to specify a component with at least one additively manufactured component area with more uniform mechanical properties in all directions.
Die Aufgaben werden erfindungsgemäß durch ein Schichtbauverfahren mit den Merkmalen des Patentanspruchs 1 , durch eine Schichtbauvorrichtung mit den Merkmalen des Patentanspruchs 9, durch ein Computerprogrammprodukt gemäß Patentanspruch 1 1, durch ein computerlesbares Speichermedium gemäß Patentanspruch 12 sowie durch ein Bauteil gemäß Patentanspruch 13 gelöst. Vorteilhafte Ausgestaltungen mit zweckmäßigen Weiterbildungen der Erfindung sind in den jeweiligen Unteransprüchen angegeben, wobei vorteilhafte Ausgestaltungen jedes Erfin- dungsaspekts als vorteilhafte Ausgestaltungen der jeweils anderen Erfindungsaspekte anzusehen sind. The objects are achieved according to the invention by a layer construction method with the features of claim 1, by a layer construction device with the features of claim 9, by a computer program product according to claim 11, by a computer-readable storage medium according to claim 12 and by a component according to claim 13. Advantageous refinements with expedient refinements of the invention are specified in the respective subclaims, with advantageous refinements of each aspect of the invention being regarded as advantageous refinements of the other respective aspects of the invention.
Ein erster Aspekt der Erfindung betrifft ein Schichtbauverfahren zum additiven Herstellen zu- mindest eines Bauteilbereichs eines Bauteils, insbesondere eines Bauteils einer Strömungsma- schine. Das Schichtbauverfahren umfasst zumindest die Schritte a) Aufträgen von mindestens einer Pulverschicht eines Werkstoffs auf mindestens eine Aufbau- und Fügezone mindestens ei- ner bewegbaren Bauplattform, b) lokales Verfestigen des Werkstoffs zum Ausbilden einer Bau- teilschicht, indem der Werkstoff mit wenigstens einem Energiestrahl entlang von Scanlinien se- lektiv abgetastet und aufgeschmolzen wird, c) Schichtweises Absenken der Bauplattform um ei- ne vordefinierte Schichtdicke und d) Wiederholen der Schritte a) bis c) bis zur Fertigstellung des Bauteilbereichs. Ein Bauteil bzw. Bauteilbereich mit gleichmäßigeren mechanischen Eigenschaf- ten in alle Richtungen, das heißt mit einem isotropen oder zumindest weitgehend isotropen Ge- füge, wird erfindungsgemäß dadurch erreicht, dass in Schritt b) ein Abstand hs von wenigstens zwei Mittellinien einander benachbarter Scanlinien in wenigstens einer Bauteilschicht gemäß der Formel I A first aspect of the invention relates to a layered construction method for the additive manufacture of at least one component region of a component, in particular a component of a fluid flow machine. The layer construction process comprises at least the steps a) Application of at least one powder layer of a material to at least one build-up and joining zone at least one ner movable building platform, b) local solidification of the material to form a component layer, in that the material is selectively scanned and melted with at least one energy beam along scan lines, c) layer-by-layer lowering of the building platform by a predefined layer thickness and d) Repeat steps a) to c) until the component area is completed. A component or component area with more uniform mechanical properties in all directions, that is to say with an isotropic or at least largely isotropic structure, is achieved according to the invention in that in step b) a distance h s from at least two center lines of adjacent scan lines in at least one component layer according to formula I.
0,85 £ bsmin/hs £ 1 ,00 (I) £ 0.85 b smin / h s £ 1.00 (I)
eingestellt wird, wobei bsmin eine minimale Schmelzbadbreite der Scanlinien bezeichnet. Mit an- deren Worten ist es erfindungsgemäß vorgesehen, dass für ein möglichst bindefehlerfreies Bau- teil mit gleichmäßigeren Eigenschaften in alle Richtungen und einem hochfeinen Gefüge zur Festigkeitssteigerung der Abstand zwischen den Mittellinien zumindest zweier Scanlinien, die in der Bauteilschicht unmittelbar nebeneinander liegen, derart eingestellt wird, dass der Quotient bsmin/hs 0,85, 0,85 1 , 0,852, 0,853, 0,854, 0,855, 0,856, 0,857, 0,858, 0,859, 0,860, 0,861, 0,862,is set, where b smin denotes a minimum weld pool width of the scan lines. In other words, it is provided according to the invention that the distance between the center lines of at least two scan lines that lie directly next to one another in the component layer is set in this way for a component that is as free from defects as possible with more uniform properties in all directions and a very fine structure to increase strength that the quotient b smin / h s 0.85, 0.85 1, 0.852, 0.853, 0.854, 0.855, 0.856, 0.857, 0.858, 0.859, 0.860, 0.861, 0.862,
0,863, 0,864, 0,865, 0,866, 0,867, 0,868, 0,869, 0,870, 0,871 , 0,872, 0,873, 0,874, 0,875, 0,876, 0,877, 0,878, 0,879, 0,880, 0,881 , 0,882, 0,883, 0,884, 0,885, 0,886, 0,887, 0,888, 0,889, 0,890, 0,891 , 0,892, 0,893, 0,894, 0,895, 0,896, 0,897, 0,898, 0,899, 0,900, 0,901, 0,902, 0,903, 0,904,0.863, 0.864, 0.865, 0.866, 0.867, 0.868, 0.869, 0.870, 0.871, 0.872, 0.873, 0.874, 0.875, 0.876, 0.877, 0.878, 0.879, 0.880, 0.881, 0.882, 0.883, 0.884, 0.885, 0.886, 0.887, 0.888, 0.889, 0.890, 0.891, 0.892, 0.893, 0.894, 0.895, 0.896, 0.897, 0.898, 0.899, 0.900, 0.901, 0.902, 0.903, 0.904,
0,905, 0,906, 0,907, 0,908, 0,909, 0,910, 0,91 1, 0,912, 0,913, 0,914, 0,915, 0,916, 0,917, 0,918,0.905, 0.906, 0.907, 0.908, 0.909, 0.910, 0.911, 0.912, 0.913, 0.914, 0.915, 0.916, 0.917, 0.918,
0,919, 0,920, 0,921, 0,922, 0,923, 0,924, 0,925, 0,926, 0,927, 0,928, 0,929, 0,930, 0,93 1, 0,932,0.919, 0.920, 0.921, 0.922, 0.923, 0.924, 0.925, 0.926, 0.927, 0.928, 0.929, 0.930, 0.93 1, 0.932,
0,933, 0,934, 0,935, 0,936, 0,937, 0,938, 0,939, 0,940, 0,941, 0,942, 0,943, 0,944, 0,945, 0,946,0.933, 0.934, 0.935, 0.936, 0.937, 0.938, 0.939, 0.940, 0.941, 0.942, 0.943, 0.944, 0.945, 0.946,
0,947, 0,948, 0,949, 0,950, 0,95 1, 0,952, 0,953, 0,954, 0,955, 0,956, 0,957, 0,958, 0,959, 0,960,0.947, 0.948, 0.949, 0.950, 0.95 1, 0.952, 0.953, 0.954, 0.955, 0.956, 0.957, 0.958, 0.959, 0.960,
0,961 , 0,962, 0,963, 0,964, 0,965, 0,966, 0,967, 0,968, 0,969, 0,970, 0,971, 0,972, 0,973, 0,974,0.961, 0.962, 0.963, 0.964, 0.965, 0.966, 0.967, 0.968, 0.969, 0.970, 0.971, 0.972, 0.973, 0.974,
0,975, 0,976, 0,977, 0,978, 0,979, 0,980, 0,981, 0,982, 0,983, 0,984, 0,985, 0,986, 0,987, 0,988,0.975, 0.976, 0.977, 0.978, 0.979, 0.980, 0.981, 0.982, 0.983, 0.984, 0.985, 0.986, 0.987, 0.988,
0,989, 0,990, 0,991, 0,992, 0,993, 0,994, 0,995, 0,996, 0,997, 0,998, 0,999 oder 1 ,00 beträgt, wobei entsprechende Zwischenwerte als mitoffenbart anzusehen sind. Der Abstand hs wird auch als Hatchabstand bezeichnet und beeinflusst über den damit verbundenen lokalen Energieeintrag wesentlich die Streckung der entstehenden Materialkörner in Aufbaurichtung. Generell gilt, dass ein geringerer Energieeintrag (Volumenenergie) zu einer geringeren mittleren Korngröße KG und damit zu einem feinkörnigeren Gefüge führt. Vorzugsweise wird der genannte Quotient bsmin/hs für mehrere Scanlinienpaare eingestellt, wobei er nicht für jedes Scanlinienpaar identisch gewählt werden muss, sondern sich innerhalb der angegebenen Grenzen bewegen kann. Die Scanlinien können grundsätzlich linear oder nicht-linear verlaufen. Weiterhin können in einer Bauteilschicht Gruppen von Scanlinien in unterschiedlichen Mustern (Belichtungsstragie) er- zeugt werden, zum Beispiel in Form einer Linienbelichtung, einer Streifenbelichtung, einer Chess-Strategie, einer Islandstragie etc. Generell sind„ein/eine“ im Rahmen dieser Offenbarung als unbestimmte Artikel zu lesen, also ohne ausdrücklich gegenteilige Angabe immer auch als „mindestens ein/mindestens eine“. Umgekehrt können„ein/eine“ auch als„nur ein/nur eine“ ver- standen werden. 0.989, 0.990, 0.991, 0.992, 0.993, 0.994, 0.995, 0.996, 0.997, 0.998, 0.999 or 1.00, whereby corresponding intermediate values are to be regarded as also disclosed. The distance h s is also referred to as the hatch distance and, via the associated local energy input, significantly influences the stretching of the material grains in the direction of build-up. In general, a lower energy input (volume energy) leads to a lower mean grain size KG and thus to a finer-grain structure. The quotient b smin / hs mentioned is preferably set for several pairs of scan lines, whereby it does not have to be chosen identically for each pair of scan lines, but can move within the specified limits. The scan lines can basically run linearly or non-linearly. Furthermore, in a Component layer Groups of scan lines in different patterns (exposure strategy) are generated, for example in the form of a line exposure, a stripe exposure, a chess strategy, an Iceland strategy, etc. In general, "a" in the context of this disclosure is to be read as an indefinite article , that is, without expressly specifying the contrary, always as “at least one”. Conversely, “a” can also be understood as “just one”.
In einer vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, dass in Schritt b) ein Laser- strahl mit einer Leistung zwischen 200 W und 300 W, das heißt mit einer Leistung von 200 W, 201 W, 202 W, 203 W, 204 W, 205 W, 206 W, 207 W, 208 W, 209 W, 210 W, 21 1 W, 212 W,In an advantageous embodiment of the invention it is provided that in step b) a laser beam with a power between 200 W and 300 W, that is with a power of 200 W, 201 W, 202 W, 203 W, 204 W, 205 W, 206 W, 207 W, 208 W, 209 W, 210 W, 21 1 W, 212 W,
213 W, 214 W, 215 W, 216 W, 217 W, 218 W, 219 W, 220 W, 221 W, 222 W, 223 W, 224 W,213 W, 214 W, 215 W, 216 W, 217 W, 218 W, 219 W, 220 W, 221 W, 222 W, 223 W, 224 W,
225 W, 226 W, 227 W, 228 W, 229 W, 230 W, 231 W, 232 W, 233 W, 234 W, 235 W, 236 W,225 W, 226 W, 227 W, 228 W, 229 W, 230 W, 231 W, 232 W, 233 W, 234 W, 235 W, 236 W,
237 W, 238 W, 239 W, 240 W, 241 W, 242 W, 243 W, 244 W, 245 W, 246 W, 247 W, 248 W,237 W, 238 W, 239 W, 240 W, 241 W, 242 W, 243 W, 244 W, 245 W, 246 W, 247 W, 248 W,
249 W, 250 W, 251 W, 252 W, 253 W, 254 W, 255 W, 256 W, 257 W, 258 W, 259 W, 260 W,249 W, 250 W, 251 W, 252 W, 253 W, 254 W, 255 W, 256 W, 257 W, 258 W, 259 W, 260 W,
261 W, 262 W, 263 W, 264 W, 265 W, 266 W, 267 W, 268 W, 269 W, 270 W, 271 W, 272 W,261 W, 262 W, 263 W, 264 W, 265 W, 266 W, 267 W, 268 W, 269 W, 270 W, 271 W, 272 W,
273 W, 274 W, 275 W, 276 W, 277 W, 278 W, 279 W, 280 W, 281 W, 282 W, 283 W, 284 W,273 W, 274 W, 275 W, 276 W, 277 W, 278 W, 279 W, 280 W, 281 W, 282 W, 283 W, 284 W,
285 W, 286 W, 287 W, 288 W, 289 W, 290 W, 291 W, 292 W, 293 W, 294 W, 295 W, 296 W,285 W, 286 W, 287 W, 288 W, 289 W, 290 W, 291 W, 292 W, 293 W, 294 W, 295 W, 296 W,
297 W, 298 W, 299 W oder 300 W als Energiestrahl verwendet wird. Hierdurch kann für übliche metallische oder intermetallische Werkstoffe die Gefügestruktur positiv beeinflusst und insbe- sondere eine höhere Isotropie erreicht werden. Dies führt zu höheren Festigkeiten und Steifigkei- ten sowie zu einer Verringerung des Aufwands bei der Bauteilauslegung. 297 W, 298 W, 299 W or 300 W is used as the energy beam. As a result, the microstructure can be positively influenced for conventional metallic or intermetallic materials and, in particular, a higher isotropy can be achieved. This leads to higher strengths and stiffnesses as well as to a reduction in the work involved in component design.
Gleichmäßigere Eigenschaften in alle Richtungen und ein hochfeines Gefüge zur Festigkeitsstei- gerung ergeben sich in weiterer Ausgestaltung dadurch, dass in Schritt b) eine mittlere Scange- schwindigkeit des wenigstens einen Energiestrahls auf einen Wert zwischen 800 mm/s und 1 100 mm/s, das heißt beispielsweise von 800 mm/s, 805 mm/s, 810 mm/s, 815 mm/s, 820 mm/s, 825 mm/s, 830 mm/s, 835 mm/s, 840 mm/s, 845 mm/s, 850 mm/s, 855 mm/s, 860 mm/s,More uniform properties in all directions and a very fine structure to increase strength result in a further embodiment in that in step b) an average scanning speed of the at least one energy beam to a value between 800 mm / s and 1,100 mm / s, the means, for example, from 800 mm / s, 805 mm / s, 810 mm / s, 815 mm / s, 820 mm / s, 825 mm / s, 830 mm / s, 835 mm / s, 840 mm / s, 845 mm / s, 850 mm / s, 855 mm / s, 860 mm / s,
865 mm/s, 870 mm/s, 875 mm/s, 880 mm/s, 885 mm/s, 890 mm/s, 895 mm/s, 900 mm/s,865 mm / s, 870 mm / s, 875 mm / s, 880 mm / s, 885 mm / s, 890 mm / s, 895 mm / s, 900 mm / s,
905 mm/s, 910 mm/s, 915 mm/s, 920 mm/s, 925 mm/s, 930 mm/s, 935 mm/s, 940 mm/s,905 mm / s, 910 mm / s, 915 mm / s, 920 mm / s, 925 mm / s, 930 mm / s, 935 mm / s, 940 mm / s,
945 mm/s, 950 mm/s, 955 mm/s, 960 mm/s, 965 mm/s, 970 mm/s, 975 mm/s, 980 mm/s,945 mm / s, 950 mm / s, 955 mm / s, 960 mm / s, 965 mm / s, 970 mm / s, 975 mm / s, 980 mm / s,
985 mm/s, 990 mm/s, 995 mm/s, 1000 mm/s, 1005 mm/s, 1010 mm/s, 1015 mm/s, 1020 mm/s, 1025 mm/s, 1030 mm/s, 1035 mm/s, 1040 mm/s, 1045 mm/s, 1050 mm/s, 1055 mm/s, 985 mm / s, 990 mm / s, 995 mm / s, 1000 mm / s, 1005 mm / s, 1010 mm / s, 1015 mm / s, 1020 mm / s, 1025 mm / s, 1030 mm / s, 1035 mm / s, 1040 mm / s, 1045 mm / s, 1050 mm / s, 1055 mm / s,
1060 mm/s, 1065 mm/s, 1070 mm/s, 1075 mm/s, 1080 mm/s, 1085 mm/s, 1090 mm/s, 1060 mm / s, 1065 mm / s, 1070 mm / s, 1075 mm / s, 1080 mm / s, 1085 mm / s, 1090 mm / s,
1095 mm/s oder 1 100 mm/s eingestellt wird, wobei entsprechende Zwischenwerte wie bei- spielsweise 900 mm/s, 901 mm/s, 902 mm/s, 903 mm/s, 904 mm/s, 905 mm/s, 906 mm/s,1095 mm / s or 1 100 mm / s is set, with corresponding intermediate values as e.g. 900 mm / s, 901 mm / s, 902 mm / s, 903 mm / s, 904 mm / s, 905 mm / s, 906 mm / s,
907 mm/s, 908 mm/s, 909 mm/s, 910 mm/s usw. als mitoffenbart anzusehen sind. 907 mm / s, 908 mm / s, 909 mm / s, 910 mm / s etc. are to be regarded as also disclosed.
Eine weitere räumliche Vergleichmäßigung der Eigenschaften des Bauteils bzw. Bauteilbereichs wird in weiterer Ausgestaltung dadurch erzielt, dass die Bauplattform in Schritt c) um eine Schichtdicke zwischen 30 mm und 50 mm, das heißt um 30 mm, 31 mm, 32 mm, 33 mm, 34 mm,A further spatial equalization of the properties of the component or component area is achieved in a further embodiment in that the building platform in step c) by a layer thickness between 30 mm and 50 mm, i.e. by 30 mm, 31 mm, 32 mm, 33 mm, 34 mm,
35 mm, 36 mm, 37 mm, 38 mm, 39 mm, 40 mm, 41 mm, 42 mm, 43 mm, 44 mm, 45 mm, 46 mm,35 mm, 36 mm, 37 mm, 38 mm, 39 mm, 40 mm, 41 mm, 42 mm, 43 mm, 44 mm, 45 mm, 46 mm,
47 mm, 48 mm, 49 mm oder 50 mm abgesenkt wird. Generell kann es vorgesehen sein, dass jede Bauteilschicht mit der gleichen Schichtdicke hergestellt wird oder dass die Schichtdicke wäh- rend des schichtweisen Aufbaus ein- oder mehrmals variiert wird. 47 mm, 48 mm, 49 mm or 50 mm is lowered. In general, it can be provided that each component layer is produced with the same layer thickness or that the layer thickness is varied one or more times during the layer-wise build-up.
In einer weiteren vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, dass in Schritt b) der Abstand hs von wenigstens zwei Mittellinien voneinander benachbarter Scanlinien auf einen Wert zwischen 130 mm und 150 mm, das heißt beispielsweise auf einen Wert von 130 mm,In a further advantageous embodiment of the invention it is provided that in step b) the distance h s from at least two center lines of mutually adjacent scan lines to a value between 130 mm and 150 mm, that is, for example, to a value of 130 mm,
131 mm, 132 mm, 133 mm, 134 mm, 135 mm, 136 mm, 137 mm, 138 mm, 139 mm, 140 mm,131 mm, 132 mm, 133 mm, 134 mm, 135 mm, 136 mm, 137 mm, 138 mm, 139 mm, 140 mm,
141 mm, 142 mm, 143 mm, 144 mm, 145 mm, 146 mm, 147 mm, 148 mm, 149 mm oder 150 mm eingestellt wird. Dies trägt vorteilhaft zur Erzeugung eines zumindest weitgehend isotropen oder quasi-isotropen Gefüges bei. 141 mm, 142 mm, 143 mm, 144 mm, 145 mm, 146 mm, 147 mm, 148 mm, 149 mm or 150 mm. This advantageously contributes to the generation of an at least largely isotropic or quasi-isotropic structure.
Weitere Vorteile ergeben sich dadurch, dass der Abstand hs der Mehrheit der Mittellinien be- nachbarter Scanlinien oder der Abstand hs aller Mittellinien benachbarter Scanlinien in wenigs- tens einer Bauteilschicht gemäß der Formel I eingestellt wird. Mit anderen Worten ist es vorge- sehen, dass der in Formel I definierte Quotient für mehrere oder für alle Scanlinienpaare einer einzelnen Bauteilschicht eingestellt wird. Dies trägt ebenfalls vorteilhaft zur Erzeugung eines zumindest weitgehend isotropen oder quasi-isotropen Gefüges bei. Further advantages result from the fact that the distance h s of the majority of the center lines of adjacent scan lines or the distance h s of all center lines of adjacent scan lines in at least one component layer is set according to formula I. In other words, it is provided that the quotient defined in formula I is set for several or for all pairs of scan lines of an individual component layer. This also advantageously contributes to the generation of an at least largely isotropic or quasi-isotropic structure.
Weitere Vorteile ergeben sich, wenn ein Werkstoff aus der Gruppe Stahl, Aluminiumlegierun- gen, Titanlegierungen, Kobaltbasislegierungen, Chrombasislegierung, Nickelbasislegierung, Kupferlegierungen, intermetallische Legierungen oder eine beliebige Mischungen hieraus ver- wendet wird. Obwohl der Werkstoff grundsätzlich auch ein Kunststoff wie beispielsweise ABS, PLA, PETG, Nylon, PET, PTFE oder dergleichen sein kann, können mit Hilfe von metallischen und/oder intermetallischen Werkstoffen generell Bauteile bzw. Bauteilbereiche mit höherer me- chanischer, thermischer und chemischer Beständigkeit hergestellt werden. Beispielsweise kann der Werkstoff Elemente aus der Gruppe Eisen, Titan, Nickel, Chrom, Cobalt, Kupfer, Alumini- um oder Titan enthalten. Der Werkstoff kann eine Legierung aus der Gruppe Stahl, Aluminium- legierung, Titanlegierung, Kobaltlegierung, Chromlegierung, Nickelbasislegierung oder Kupfer- legierungen sein. Beispielsweise kann der Werkstoff eine hochtemperaturfeste Nickelbasislegie- rungen wie etwa Mar M-247, Inconel 718 (IN718), Inconel 738 (IN738), Waspaloy oder C263 sein. Ebenso können intermetallische Legierungen wie Mg2Si und Titanaluminide vorgesehen sein. Further advantages result if a material from the group of steel, aluminum alloys, titanium alloys, cobalt-based alloys, chromium-based alloys, nickel-based alloys, copper alloys, intermetallic alloys or any mixture thereof is used. Although the material can in principle also be a plastic such as ABS, PLA, PETG, nylon, PET, PTFE or the like, components or component areas with higher mechanical, thermal and chemical resistance can generally be achieved with the aid of metallic and / or intermetallic materials getting produced. For example, can the material contains elements from the group iron, titanium, nickel, chromium, cobalt, copper, aluminum or titanium. The material can be an alloy from the group consisting of steel, aluminum alloy, titanium alloy, cobalt alloy, chromium alloy, nickel-based alloy or copper alloys. For example, the material can be a high temperature resistant nickel-based alloy such as Mar M-247, Inconel 718 (IN718), Inconel 738 (IN738), Waspaloy or C263. Intermetallic alloys such as Mg2Si and titanium aluminides can also be provided.
Weitere Vorteile ergeben sich, indem zumindest der Bauteilbereich nach der Herstellung einer Wärmebehandlung, insbesondere einem heiß-isostatischen Pressverfahren unterzogen wird. Un- ter einer Wärmebehandlung wird im Rahmen der vorliegenden Erfindung ein Verfahren verstan- den, bei dem eine Temperatur des Bauteilbereichs oder des gesamten Bauteils variiert wird, um die Stoff- und insbesodere die Gefügeeigenschaften zu verändern. Vorzugsweise umfasst oder ist die Wärmebehandlung ein heißes isostatisches Pressen (HIP), bei dem ein hoher Druck zur Ver- besserung der Materialeigenschaften verwendet wird. Der Druck wird beispielsweise durch ein Inertgas (z. B. Argon) auf das Bauteil aufgebracht. Durch den Druck und einer gegenüber der Raumtemperatur erhöhten Temperatur können plastische Verformung, Kriechen und/oder Diffu- sion erreicht werden. Ebenso können eine innere Mikroporosität oder andere Defekte beseitigt werden, wodurch die mechanischen Eigenschaften des Bauteils verbessert werden. Heißes isostatisches Pressen ermöglicht auch die Verbindung des Bauteils mit weiteren Materialien, die entweder in fester oder in Pulverform vorliegen können. Further advantages result in that at least the component area is subjected to a heat treatment, in particular a hot isostatic pressing process, after production. In the context of the present invention, a heat treatment is understood to mean a method in which a temperature of the component area or of the entire component is varied in order to change the material properties and, in particular, the structural properties. The heat treatment preferably comprises or is hot isostatic pressing (HIP), in which a high pressure is used to improve the material properties. The pressure is applied to the component, for example, by an inert gas (e.g. argon). Plastic deformation, creep and / or diffusion can be achieved as a result of the pressure and a temperature that is higher than room temperature. Internal microporosity or other defects can also be eliminated, thereby improving the mechanical properties of the component. Hot isostatic pressing also enables the component to be bonded to other materials, which can be either solid or powder.
Ein zweiter Aspekt der Erfindung betrifft eine Schichtbauvorrichtung zur additiven Herstellung zumindest eines Bauteilbereichs eines Bauteils durch ein additives Schichtbauverfahren. Die Schichtbauvorrichtung umfasst mindestens eine Pulverzufürrung zum Auftrag von mindestens einer Pulverschicht eines Werkstoffs auf mindestens eine Aufbau- und Fügezone mindestens ei- ner bewegbaren Bauplattform, mindestens eine Strahlungsquelle zum Erzeugen wenigstens eines Energiestrahls zum schichtweisen und lokalen Verfestigen des Werkstoffs durch selektives Ab- tasten und Aufschmelzen des Werkstoffs entlang von Scanlinien und eine Steuereinrichtung. Die Steuereinrichtung ist dazu ausgebildet, die Pulverzuführung so zu steuern, dass diese mindestens eine Pulverschicht des Werkstoffs auf die Aufbau- und Fügezone der Bauplattform aufträgt, und die Bauplattform so zu steuern, dass diese schichtweise um eine vordefinierte Schichtdicke ab- gesenkt wird. Eine Herstellung von Bauteilen oder Bauteilbereichen mit gleichmäßigeren me- chanischen Eigenschaften in alle Richtungen, das heißt zumindest weitgehend oder vollständig ohne Vorzugsorientierung im Gefüge, ist erfindungsgemäß dadurch ermöglicht, dass die Steuer- einrichtung dazu konfiguriert ist, in wenigstens einer Bauteilschicht einen Abstand hs von we- nigstens zwei Mittellinien einander benachbarter Scanlinien gemäß der Formel I A second aspect of the invention relates to a layer construction device for the additive production of at least one component region of a component using an additive layer construction method. The layer building device comprises at least one powder feed for applying at least one powder layer of a material to at least one building and joining zone of at least one movable building platform, at least one radiation source for generating at least one energy beam for layer-wise and local solidification of the material by selective scanning and melting of the material along scan lines and a control device. The control device is designed to control the powder feed so that it applies at least one powder layer of the material to the build-up and joining zone of the building platform, and to control the building platform so that it is lowered in layers by a predefined layer thickness. A production of components or component areas with more uniform Mechanical properties in all directions, that is at least largely or completely without a preferred orientation in the structure, is made possible according to the invention in that the control device is configured to provide a distance h s from at least two center lines of adjacent scan lines in at least one component layer according to FIG Formula I.
0,85 £ bsmin/hs £ 1 ,00 (I) £ 0.85 b smin / h s £ 1.00 (I)
einzustellen, wobei bsmin eine minimale Schmelzbadbreite der Scanlinien bezeichnet. Weitere Merkmale und deren Vorteile sind den Beschreibungen des ersten Erfindungsaspekts zu entneh- men, wobei vorteilhafte Ausgestaltungen des ersten Erfindungsaspekts als vorteilhafte Ausge- staltungen des zweiten Erfindungsaspekts anzusehen sind. Umgekehrt sind vorteilhafte Ausge- staltungen des zweiten Erfindungsaspekts als vorteilhafte Ausgestaltungen des ersten Erfin- dungsaspekts anzusehen. ln einer vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, dass die Schichtbau Vorrich- tung als selektive Lasersinter- und/oder -Schmelzvorrichtung ausgebildet ist. Hierdurch können Bauteilbereiche und komplette Bauteile hergestellt werden, deren mechanischen Eigenschaften zumindest im Wesentlichen richtungsunabhängig sind. Zur Erzeugung eines Laserstrahls können beispielsweise CO2-Laser, Nd:YAG-Laser, Yb-Faserlaser, Diodenlaser oder dergleichen vorge- sehen sein. Ebenso kann vorgesehen sein, dass zwei oder mehr Elektronen- und/oder Laserstrah- len verwendet werden, deren Belichtungs- bzw. Verfestigungsparameter in der vorstehend be- schriebenen Weise angepasst bzw. eingestellt werden. set, where b smin denotes a minimum weld pool width of the scan lines. Further features and their advantages can be found in the descriptions of the first aspect of the invention, with advantageous refinements of the first aspect of the invention being regarded as advantageous refinements of the second aspect of the invention. Conversely, advantageous refinements of the second aspect of the invention are to be regarded as advantageous refinements of the first aspect of the invention. In an advantageous embodiment of the invention it is provided that the layer construction device is designed as a selective laser sintering and / or melting device. In this way, component areas and complete components can be produced whose mechanical properties are at least essentially direction-independent. For example, CO 2 lasers, Nd: YAG lasers, Yb fiber lasers, diode lasers or the like can be provided for generating a laser beam. It can also be provided that two or more electron and / or laser beams are used, the exposure or solidification parameters of which are adjusted or set in the manner described above.
Ein weiterer Aspekt der Erfindung betrifft ein Computerprogrammprodukt, umfassend Befehle, die bei der Ausführung des Computerprogrammprodukts durch eine Steuereinrichtung einer Schichtbauvorrichtung gemäß dem zweiten Erfindungsaspekt die Schichtbauvorrichtung veran- lassen, das Schichtbauverfahren nach dem ersten Erfindungsaspekt auszuführen. Ein weiterer Aspekt der Erfindung betrifft ein computerlesbares Speichermedium, umfassend Befehle, die bei der Ausführung durch eine Steuereinrichtung einer Schichtbauvorrichtung gemäß dem zweiten Erfindungsaspekt die Schichtbauvorrichtung veranlassen, das Schichtbauverfahren gemäß dem ersten Erfindungsaspekt auszuführen. Another aspect of the invention relates to a computer program product, comprising instructions which, when the computer program product is executed by a control device of a layer construction device according to the second aspect of the invention, cause the layer construction device to execute the layer construction method according to the first aspect of the invention. Another aspect of the invention relates to a computer-readable storage medium, comprising commands which, when executed by a control device of a layer construction device according to the second aspect of the invention, cause the layer construction device to carry out the layer construction method according to the first aspect of the invention.
Die vorliegende Erfindung kann mit Hilfe eines Computerprogrammprodukts realisiert werden, das Programmmodule umfasst, die von einem computerverwendbaren oder computerlesbaren Medium aus zugänglich sind und Programmcode speichern, der von oder in Verbindung mit ei- nem oder mehreren Computern, Prozessoren oder Befehlsausführungssystemen einer Schicht- bauvorrichtung verwendet wird. Für die Zwecke dieser Beschreibung kann ein computerver- wendbares oder computerlesbares Medium jede Vorrichtung sein, die das Computerprogramm- produkts zur Verwendung durch oder in Verbindung mit dem Befehlsausführungssystem, der Vorrichtung oder der Vorrichtung enthalten, speichern, kommunizieren, verbreiten oder trans- portieren kann. Das Medium kann ein elektronisches, magnetisches, optisches, elektromagneti- sches, Infrarot- oder Halbleitersystem oder ein Ausbreitungsmedium an sich sein, da Signalträ- ger nicht in der Definition des physischen, computerlesbaren Mediums enthalten sind. Dazu ge- hören ein Halbleiter- oder Festkörperspeicher, Magnetband, eine austauschbare Computerdisket- te, ein Direktzugriffsspeicher (RAM), ein Nur-Lese-Speicher (ROM), eine starre Magnetplatte und eine optische Platte wie ein Nur-Lese-Speicher (CD-ROM, DVD, Blue-Ray etc.), oder eine beschreibbare optische Platte (CD-R, DVD-R). Sowohl Prozessoren als auch Programmcode zur Implementierung der einzelnen Aspekte der Erfindung können zentralisiert oder verteilt werden (oder eine Kombination davon). The present invention can be implemented with the aid of a computer program product which comprises program modules which are accessible from a computer-usable or computer-readable medium and which store program code which is generated by or in connection with one or more computers, processors or instruction execution systems of a layer construction device is used. For purposes of this description, a computer usable or computer readable medium can be any device that can contain, store, communicate, distribute, or transport the computer program product for use by or in connection with the instruction execution system, device, or device. The medium can be an electronic, magnetic, optical, electromagnetic, infrared or semiconductor system or a propagation medium per se, since signal carriers are not included in the definition of the physical, computer-readable medium. These include solid state or solid state memory, magnetic tape, a removable computer disk, random access memory (RAM), read only memory (ROM), rigid magnetic disk, and an optical disk such as read only memory (CD) -ROM, DVD, Blue-Ray etc.), or a writable optical disk (CD-R, DVD-R). Processors as well as program code for implementing the various aspects of the invention can be centralized or distributed (or a combination thereof).
Ein weiterer Aspekt der Erfindung betrifft ein Bauteil, insbesondere ein Turbinenbauteil einer Strömungsmaschine, umfassend zumindest einen Bauteilbereich, der mittels einer Schichtbau- vorrichtung gemäß dem zweiten Erfindungsaspekt und/oder mittels eines Schichtbauverfahrens gemäß dem ersten Erfindungsaspekt hergestellt ist. Hierdurch weist das erfindungsgemäße Bau- teil eine stark vergleichmäßigte und zumindest im Wesentlichen richtungsunabhängige Gefü- gestruktur auf, die zu einer wesentliche höheren Beständigkeit gegen zyklische Lasten sowie zu signifikant erhöhten Festigkeits- und Steifigkeitswerten führt. Die sich hieraus ergebenden Merkmale und deren Vorteile sind den Beschreibungen des ersten und zweiten Erfindungsas- pekts zu entnehmen, wobei vorteilhafte Ausgestaltungen jedes Erfindungsaspekts als vorteilhafte Ausgestaltungen der jeweils anderen Erfindungsaspekte anzusehen sind. Das Bauteil kann als Turbinenschaufel für eine Gasturbine, insbesondere für ein Flugtriebwerk ausgebildet sein. Another aspect of the invention relates to a component, in particular a turbine component of a turbomachine, comprising at least one component area which is produced by means of a layer construction device according to the second aspect of the invention and / or by means of a layer construction method according to the first aspect of the invention. As a result, the component according to the invention has a highly uniform and at least essentially direction-independent microstructure, which leads to a significantly higher resistance to cyclical loads and to significantly increased strength and rigidity values. The features resulting therefrom and their advantages can be found in the descriptions of the first and second aspects of the invention, with advantageous configurations of each aspect of the invention being regarded as advantageous configurations of the respective other aspects of the invention. The component can be designed as a turbine blade for a gas turbine, in particular for an aircraft engine.
Weitere Merkmale der Erfindung ergeben sich aus den Ansprüchen, den Figuren und der Figu- renbeschreibung. Die vorstehend in der Beschreibung genannten Merkmale und Merkmalskom- binationen, sowie die nachfolgend in der Figurenbeschreibung genannten und/oder in den Figu- ren alleine gezeigten Merkmale und Merkmalskombinationen sind nicht nur in der jeweils ange- gebenen Kombination, sondern auch in anderen Kombinationen verwendbar, ohne den Rahmen der Erfindung zu verlassen. Es sind somit auch Ausführungen von der Erfindung als umfasst und offenbart anzusehen, die in den Figuren nicht explizit gezeigt und erläutert sind, jedoch durch separierte Merkmalskombinationen aus den erläuterten Ausführungen hervorgehen und erzeug- bar sind. Es sind auch Ausführungen und Merkmalskombinationen als offenbart anzusehen, die somit nicht alle Merkmale eines ursprünglich formulierten unabhängigen Anspruchs aufweisen. Es sind darüber hinaus Ausführungen und Merkmalskombinationen, insbesondere durch die oben dargelegten Ausführungen, als offenbart anzusehen, die über die in den Rückbezügen der Ansprüche dargelegten Merkmalskombinationen hinausgehen oder von diesen abweichen. Dabei zeigt: Further features of the invention emerge from the claims, the figures and the description of the figures. The features and feature combinations mentioned above in the description, as well as the features and feature combinations mentioned below in the description of the figures and / or shown alone in the figures, can be used not only in the respectively specified combination, but also in other combinations, without departing from the scope of the invention. There are thus also embodiments of the invention to be considered as encompassed and disclosed, which are not explicitly shown and explained in the figures, but emerge from the explanations explained by separate combinations of features and generate. are cash. Designs and combinations of features are also to be regarded as disclosed, which therefore do not have all the features of an originally formulated independent claim. In addition, designs and combinations of features, in particular through the statements set out above, are to be regarded as disclosed which go beyond the combinations of features set forth in the back references of the claims or differ from them. It shows:
Fig. 1 eine schematische Schnittansicht einer erfmdungsgemäßen Schichtbauvorrichtung; 1 shows a schematic sectional view of a layer construction device according to the invention;
Fig. 2 eine schematische Darstellung einer Scanlinie; 2 shows a schematic representation of a scan line;
Fig. 3 eine schematische Darstellung von drei Scanlinien, die erfindungsgemäß voneinander be- abstandet sind; 3 shows a schematic illustration of three scan lines which, according to the invention, are spaced from one another;
Fig. 4 eine schematische Darstellung von drei Scanlinien, die in einem nicht- erfindungsgemäßen Abstand zueinander angeordnet sind; 4 shows a schematic illustration of three scan lines which are arranged at a distance from one another, not according to the invention;
Fig. 5 ein Diagramm, in dem auf der Abszissenachse eine eingebrachte Volumenenergie und auf der Ordinatenachse eine resultierende mittlere Korngröße eines generativ hergestell- ten Bauteils aufgetragen sind; 5 shows a diagram in which an introduced volume energy is plotted on the abscissa axis and a resulting mean grain size of a generatively manufactured component is plotted on the ordinate axis;
Fig. 6 ein Diagramm, in dem auf der Abszissenachse eine eingebrachte Volumenenergie und auf der Ordinatenachse eine resultierende maximale Korngröße des generativ hergestell- ten Bauteils aufgetragen sind; 6 shows a diagram in which an introduced volume energy is plotted on the abscissa axis and a resulting maximum grain size of the generatively manufactured component is plotted on the ordinate axis;
Fig. 7 ein Gefügeschliffbild eines Gefüges in den in Fig. 5 und Fig. 6 gezeigten Bereichen Va bzw. Via; und 7 shows a microstructural micrograph of a structure in the regions Va and Via shown in FIGS. 5 and 6; and
Fig. 8 ein Gefügeschliffbild eines Gefüges in den in Fig. 5 und Fig. 6 gezeigten Bereich Vb bzw. VIb. 8 shows a micrograph of a microstructure in the area Vb or VIb shown in FIGS. 5 and 6.
Fig. 1 zeigt schematische Schnittansicht einer erfmdungsgemäßen Schichtbauvorrichtung 10.1 shows a schematic sectional view of a layer construction device 10 according to the invention.
Die Schichtbauvorrichtung 10 dient zur additiven Herstellung zumindest eines Bauteilbereichs 12 eines Bauteils 14 durch ein additives Schichtbauverfahren. Die Schichtbauvorrichtung 10 um- fasst mindestens eine Pulverzuführung 16 mit einem Pulverbehälter 18 und einem Beschichter 20. Die Pulverzuführung 16 dient zum Auftrag von mindestens einer Pulverschicht eines Werk- stoffs 22 auf eine Aufbau- und Fügezone II einer gemäß Pfeil B bewegbaren Bauplattform 24. Hierzu wird der Beschichter 20 gemäß Pfeil III bewegt, um Werkstoff 22 aus dem Pulverbehälter 18 zur Aufbau- und Fügezone II zu transportieren. Die Schichtbauvorrichtung 10 umfasst wei- terhin mindestens eine Strahlungsquelle 26 zum Erzeugen wenigstens eines Energiestrahls 28 zum schichtweisen und lokalen Verfestigen des Werkstoffs 22, indem der Werkstoff 22 mit dem Energiestrahl 28 entlang von Scanlinien 40 (s. Fig. 2) selektiv abgetastet und aufgeschmolzen wird. Zusätzlich ist eine Steuereinrichtung 30 vorgesehen, welche dazu ausgebildet ist, die Pul- verzuführung 16 so zu steuern, dass diese mindestens eine Pulverschicht des Werkstoffs 22 auf die Aufbau- und Fügezone II der Bauplattform 24 aufträgt und die Bauplattform 24 schichtweise um eine vordefinierte Schichtdicke gemäß Pfeil B absenkt. Zusätzlich ist die Steuereinrichtung 30 dazu konfiguriert, in wenigstens einer Bauteilschicht einen Abstand hs von wenigstens zwei Mittellinien M einander benachbarter Scanlinien 40 gemäß der Formel I The layer construction device 10 is used for the additive production of at least one component region 12 of a component 14 by an additive layer construction method. The layer building device 10 holds at least one powder feed 16 with a powder container 18 and a coater 20. The powder feed 16 is used to apply at least one powder layer of a material 22 to a build-up and joining zone II of a construction platform 24 that can be moved according to arrow B Arrow III moved in order to transport material 22 from the powder container 18 to the build-up and joining zone II. The layer construction device 10 further comprises at least one radiation source 26 for generating at least one energy beam 28 for layer-wise and local solidification of the material 22 by the material 22 being selectively scanned and melted with the energy beam 28 along scan lines 40 (see FIG. 2) . In addition, a control device 30 is provided, which is designed to control the powder feed 16 so that it applies at least one powder layer of the material 22 to the building and joining zone II of the building platform 24 and the building platform 24 in layers by a predefined layer thickness according to Arrow B lowers. In addition, the control device 30 is configured to set a distance h s from at least two center lines M of adjacent scan lines 40 according to the formula I in at least one component layer
0,85 £ bsmin/hs £ 1 ,00 (I) £ 0.85 b smin / h s £ 1.00 (I)
einzustellen, wobei bsmin eine minimale Schmelzbadbreite der Scanlinien 40 bezeichnet. Weiter- hin umfasst die Schichtbauvorrichtung 10 eine optische Einrichtung 32, mittels welcher der Energiestrahl 28 über die Aufbau- und Fügezone II bewegt werden kann. Die Strahlungsquelle 26 und die Einrichtung 32 sind mit der Steuereinrichtung 30 zum Datenaustausch gekoppelt. Weiterhin umfasst die Schichtbauvorrichtung 10 eine grundsätzlich optionale Heizeinrichtung 34, mittels welcher das Pulverbett auf eine gewünschte Basistemperatur temperierbar ist. Die Heizeinrichtung 34 kann beispielsweise eine oder mehrere Induktionsspule(n) umfassen. Alter- nativ oder zusätzlich können auch andere Heizelemente, beispielsweise IR-Strahler oder derglei- chen vorgesehen sein. set, where b smin denotes a minimum weld pool width of the scan lines 40. Furthermore, the layer construction device 10 comprises an optical device 32, by means of which the energy beam 28 can be moved over the construction and joining zone II. The radiation source 26 and the device 32 are coupled to the control device 30 for data exchange. Furthermore, the layer construction device 10 comprises a basically optional heating device 34, by means of which the powder bed can be tempered to a desired base temperature. The heating device 34 can comprise, for example, one or more induction coil (s). As an alternative or in addition, other heating elements, for example IR radiators or the like, can also be provided.
Fig. 2 zeigt eine schematische Darstellung einer vorliegend linear ausgeführten Scanlinie 40 mit einer Länge ls. Die Scanlinie 40 weist eine Mittellinie M auf, entlang welcher der Laserstrahl 28 geführt wurde und den Werkstoff 22 aufgeschmolzen hat. Als exemplarische Prozessparameter wurden eine Laserleistung von 250 W, eine Scangeschwindigkeit von 960 mm/s und eine Schichtdicke von 40 mm eingestellt. Die Scanlinie 40 weist weiterhin einen Bereich mit einer minimalen Schmelzbadbreite bsmin und einen Bereich mit einer maximalen Schmelzbadbreite bsmax auf. Der Abstand zwischen der Mittellinie und einem Rand des Schmelzbads beträgt formal ½ bs, wobei der Wert bs entlang der Scanlinie 40 zwischen bsmin und bsmax variiert. Fig. 3 zeigt eine schematische Darstellung von drei Scanlinien 40, die erfindungsgemäß vonei- nander beabstandet und unter Verwendung der vorstehend genannten Prozessparameter herge- stellt sind. Dies bedeutet, dass der Abstand hs (engl. hatch) zwischen jeweils benachbarten Mit- tellinien M der Scanlinien 40 der Formel 0,85 £ bsmin/hs £ 1 ,00 entspricht und im vorliegenden Beispiel etwa 140 mm beträgt. Hierdurch ist die gezielte Erzeugung eines zumindest weitgehend oder quasi-isotropen Gefüges mit zumindest weitgehender Defektfreiheit gewährleistet. Man er- kennt, dass die Scanlinien 40 zumindest im Wesentlichen auf Stoß angeordnet sind und sich we- der wesentlich überlappen, noch wesentliche Lücken aufweisen. Zudem variiert der Wert bs ent- lang der einzelnen Scanlinien 40 nur geringfügig. FIG. 2 shows a schematic illustration of a scan line 40, in the present case linear, with a length l s . The scan line 40 has a center line M along which the laser beam 28 was guided and melted the material 22. A laser power of 250 W, a scanning speed of 960 mm / s and a layer thickness of 40 mm were set as exemplary process parameters. The scan line 40 also has an area with a minimum weld pool width b smin and an area with a maximum melt pool width b smax . The distance between the center line and an edge of the weld pool is formally ½ b s , the value b s varying along the scan line 40 between b smin and b smax . 3 shows a schematic illustration of three scan lines 40 which, according to the invention, are spaced from one another and produced using the process parameters mentioned above. This means that the distance h s (hatch) between respectively adjacent center lines M of the scan lines 40 corresponds to the formula 0.85 £ b smin / h s £ 1.00 and is approximately 140 mm in the present example. This ensures the targeted generation of an at least largely or quasi-isotropic structure with at least extensive freedom from defects. It can be seen that the scan lines 40 are arranged at least essentially in abutment and neither significantly overlap nor have significant gaps. In addition, the value b s varies only slightly along the individual scan lines 40.
Fig. 4 zeigt eine schematische Darstellung von drei Scanlinien 40, die in einem nicht- erfindungsgemäßen Abstand hs zueinander angeordnet sind. Man erkennt, dass sich die Scanli- nien 40 teilweise stark überlappen und in Verlaufsrichtung wesentlich stärker variierende Breiten (bs) aufweisen. Gleichzeitig treten dennoch einzelne Lücken zwischen benachbarten Scanlinien 40 auf. Dies führt zu lokal stark variierenden Energieeinträgen und dementsprechend zu stark variierenden Korngrößen und einem entsprechend anisotropen Gefüge. 4 shows a schematic illustration of three scan lines 40 which are arranged at a distance h s from one another, not according to the invention. It can be seen that the scan lines 40 partially overlap strongly and have widths (b s ) that vary considerably more in the direction of progress. At the same time, individual gaps still occur between adjacent scan lines 40. This leads to locally strongly varying energy inputs and accordingly to strongly varying grain sizes and a correspondingly anisotropic structure.
Fig. 5 zeigt ein Diagramm, in dem auf der Abszissenachse eine eingebrachte Volumenenergie VE in J/mm3 und auf der Ordinatenachse eine resultierende mittlere Korngröße KG in mm eines generativ hergestellten Bauteils 14 (nicht gezeigt) aufgetragen sind. Fig. 6 zeigt ein Diagramm, in dem auf der Abszissenachse die eingebrachte Volumenenergie VE [J/mm3] und auf der Ordi- natenachse eine resultierende maximale Korngröße KGmax [mm] des generativ hergestellten Bau- teils 14 aufgetragen sind. Die Diagramme illustrieren den Zusammenhang zwischen der mittle- ren bzw. maximalen Korngröße KG, KGmax und der eingebrachten Volumenenergie VE, die we- sentlich durch den Hatchabstand hs mitbestimmt wird. Die Bereiche Va, VIa markieren einen zumindest nahezu isotropen Werkstoffzustand ohne nennenswerte Vorzugsorientierung im Ge- füge, während die Bereiche Vb, VIb stark anisotrope Zustände bzw. Gefügestrukturen markie- ren. Während Unterschiede quer zur Aufbaurichtung zumindest in erster Näherung vernachläs- sigbar sind, zeigen sich insbesondere in Aufbaurichtung große Differenzen in den mechanischen Eigenschaften, die mit dem Grad der Isotropie bzw. Anisotropie des Gefüges Zusammenhängen. Fig. 7 zeigt zur weiteren Verdeutlichung ein Gefügeschliffbild eines Gefüges in den in Fig. 5 und Fig. 6 gezeigten Bereichen Va bzw. Via, während Fig. 8 ein Gefügeschliffbild eines Gefü- ges in den in Fig. 5 und Fig. 6 gezeigten Bereichen Vb bzw. VIb zeigt. Die in den Unterlagen angegebenen Parameterwerte zur Definition von Prozess- und Messbe- dingungen für die Charakterisierung von spezifischen Eigenschaften des Erfindungsgegenstands sind auch im Rahmen von Abweichungen - beispielsweise aufgrund von Messfehlern, System- fehlern, DIN-Toleranzen und dergleichen - als vom Rahmen der Erfindung mitumfasst anzuse- hen. 5 shows a diagram in which an introduced volume energy VE in J / mm 3 is plotted on the abscissa axis and a resulting mean grain size KG in mm of a generatively manufactured component 14 (not shown) is plotted on the ordinate axis. 6 shows a diagram in which the introduced volume energy VE [J / mm 3 ] is plotted on the abscissa axis and a resulting maximum grain size KG max [mm] of the generatively manufactured component 14 is plotted on the ordinate axis. The diagrams illustrate the relationship between the mean or maximum grain size KG, KG max and the introduced volume energy VE, which is largely determined by the hatching distance h s . The areas Va, VIa mark an at least almost isotropic material state without any significant preferential orientation in the structure, while the areas Vb, VIb mark strongly anisotropic states or microstructures. While differences across the direction of construction are negligible, at least in a first approximation There are large differences in the mechanical properties, particularly in the direction of construction, which are related to the degree of isotropy or anisotropy of the structure. For further clarification, FIG. 7 shows a micrograph of a structure in the regions Va and Via shown in FIG. 5 and FIG. 6, while FIG. 8 shows a micrograph of a structure in the regions shown in FIG. 5 and FIG Vb and VIb respectively. The parameter values specified in the documents for the definition of process and measurement conditions for the characterization of specific properties of the subject of the invention are also within the scope of the invention within the scope of deviations - for example due to measurement errors, system errors, DIN tolerances and the like to see included.
Bezugszeichenliste: List of reference symbols:
10 Schichtbauvorrichtung10 layer construction device
12 Bauteilbereich 12 Component area
14 Bauteil 14 component
16 Pul verzuführung 16 Powder feed
18 Pulverbehälter 18 powder containers
20 Beschichter 20 coaters
22 Werkstoff 22 material
24 Bauplattform 24 building platform
26 Strahlungsquelle 26 Radiation source
28 Energiestrahl 28 energy beam
30 Steuereinrichtung 30 control device
32 Einrichtung 32 Setup
34 Heizeinrichtung 34 Heater
40 Scanlinie 40 scan line
II Aufbau- und Fügezone II build-up and joining zone
B Bewegung der BauplattformB Movement of the build platform
M Mittellinie M center line
bs Schmelzbadbreite bsmin minimale Schmelzbadbreite bsmax maximale Schmelzbadbreite hs Abstand b s weld pool width b smin minimum weld pool width b smax maximum weld pool width h s distance

Claims

Patentansprüche Claims
1. Schichtbauverfahren zum additiven Herstellen zumindest eines Bauteilbereichs (12) eines Bauteils (14), insbesondere eines Bauteils ( 14) einer Strömungsmaschine, umfassend zumindest folgende Schritte: 1. Layered construction method for the additive manufacture of at least one component region (12) of a component (14), in particular a component (14) of a turbo machine, comprising at least the following steps:
a) Aufträgen von mindestens einer Pulverschicht eines Werkstoffs (22) auf mindes- tens eine Aufbau- und Fügezone (II) mindestens einer bewegbaren Bauplattform (24); b) lokales Verfestigen des Werkstoffs (22) zum Ausbilden einer Bauteilschicht, in- dem der Werkstoff (22) mit wenigstens einem Energiestrahl (28) entlang von Scanli- nien (40) selektiv abgetastet und aufgeschmolzen wird; a) application of at least one powder layer of a material (22) to at least one build-up and joining zone (II) of at least one movable building platform (24); b) local solidification of the material (22) to form a component layer, in that the material (22) is selectively scanned and melted with at least one energy beam (28) along scan lines (40);
c) Schichtweises Absenken der Bauplattform (24) um eine vordefinierte Schichtdi- cke; und c) lowering the construction platform (24) in layers by a predefined layer thickness; and
d) Wiederholen der Schritte a) bis c) bis zur Fertigstellung des Bauteilbereichs ( 12), dadurch gekennzeichnet, dass d) repeating steps a) to c) until the component region (12) is completed, characterized in that
in Schritt b) ein Abstand hs von wenigstens zwei Mittellinien (M) einander benachbarter Scanli- nien (40) in wenigstens einer Bauteilschicht gemäß der Formel I in step b) a distance h s from at least two center lines (M) of adjacent scan lines (40) in at least one component layer according to formula I
0,85 £ bsmin/hs £ 1 ,00 (l) 0.85 £ b smin / h s £ 1.00 (l)
eingestellt wird, wobei bsmin eine minimale Schmelzbadbreite der Scanlinien (40) bezeichnet. is set, where b smin denotes a minimum weld pool width of the scan lines (40).
2. Schichtbauverfahren nach Anspruch 1 , 2. Layer construction method according to claim 1,
dadurch gekennzeichnet, dass characterized in that
in Schritt b) ein Laserstrahl mit einer Leistung zwischen 200 W und 300 W als Energiestrahl (28) verwendet wird. in step b) a laser beam with a power between 200 W and 300 W is used as the energy beam (28).
3. Schichtbauverfahren nach Anspruch 1 oder 2, 3. Layer construction method according to claim 1 or 2,
dadurch gekennzeichnet, dass characterized in that
in Schritt b) eine mittlere Scangeschwindigkeit des wenigstens einen Energiestrahls (28) auf ei- nen Wert zwischen 800 mm/s und 1 100 mm/s eingestellt wird. in step b) an average scanning speed of the at least one energy beam (28) is set to a value between 800 mm / s and 1,100 mm / s.
4. Schichtbauverfahren nach einem der Ansprüche 1 bis 3, 4. Layer construction method according to one of claims 1 to 3,
dadurch gekennzeichnet, dass die Bauplattform (24) in Schritt c) um eine Schichtdicke zwischen 30 mm und 50 mm abgesenkt wird. characterized in that the construction platform (24) is lowered in step c) by a layer thickness between 30 mm and 50 mm.
5. Schichtbauverfahren nach einem der Ansprüche 1 bis 4, 5. Layer construction method according to one of claims 1 to 4,
dadurch gekennzeichnet, dass characterized in that
in Schritt b) der Abstand hs von wenigstens zwei Mittellinien (M) voneinander benachbarter Scanlinien (40) auf einen Wert zwischen 130 mm und 150 mm eingestellt wird. in step b) the distance h s between at least two center lines (M) of mutually adjacent scan lines (40) is set to a value between 130 mm and 150 mm.
6. Schichtbauverfahren nach einem der Ansprüche 1 bis 5, 6. Layer construction method according to one of claims 1 to 5,
dadurch gekennzeichnet, dass characterized in that
der Abstand hs der Mehrheit der Mittellinien (M) benachbarter Scanlinien (40) oder der Abstand hs aller Mittellinien (M) benachbarter Scanlinien (40) in wenigstens einer Bauteilschicht gemäß der Formel I eingestellt wird. the distance h s of the majority of the center lines (M) of adjacent scan lines (40) or the distance h s of all center lines (M) of adjacent scan lines (40) in at least one component layer according to formula I is set.
7. Schichtbauverfahren nach einem der Ansprüche l bis 6, 7. Layer construction method according to one of claims l to 6,
dadurch gekennzeichnet, dass characterized in that
ein Werkstoff (22) aus der Gruppe Stahl, Aluminiumlegierungen, Titanlegierungen, Kobaltba- sislegierungen, Chrombasislegierung, Nickelbasislegierung, Kupferlegierungen, intermetallische Legierungen oder eine beliebige Mischungen hieraus verwendet wird. a material (22) from the group of steel, aluminum alloys, titanium alloys, cobalt-based alloys, chromium-based alloys, nickel-based alloys, copper alloys, intermetallic alloys or any mixture thereof is used.
8. Schichtbauverfahren nach einem der Ansprüche 1 bis 7, 8. Layer construction method according to one of claims 1 to 7,
dadurch gekennzeichnet, dass characterized in that
zumindest der Bauteilbereich (12) nach der Herstellung einer Wärmebehandlung, insbesondere einem heiß-isostatischen Pressverfahren unterzogen wird. at least the component area (12) is subjected to a heat treatment, in particular a hot isostatic pressing process, after production.
9. Schichtbauvorrichtung (10) zur additiven Herstellung zumindest eines Bauteilbereichs (12) eines Bauteils (14) durch ein additives Schichtbauverfahren, umfassend: 9. Layer construction device (10) for the additive production of at least one component region (12) of a component (14) by an additive layer construction method, comprising:
- mindestens eine Pulverzuführung (16) zum Auftrag von mindestens einer Pulverschicht eines Werkstoffs (22) auf mindestens eine Aufbau- und Fügezone (II) mindestens einer bewegbaren Bauplattform (24); - At least one powder feed (16) for applying at least one powder layer of a material (22) to at least one construction and joining zone (II) of at least one movable construction platform (24);
- mindestens eine Strahlungsquelle (26) zum Erzeugen wenigstens eines Energiestrahls (28) zum schichtweisen und lokalen Verfestigen des Werkstoffs (22) durch selektives Abtasten und Aufschmelzen des Werkstoffs (22) entlang von Scanlinien (40); und - eine Steuereinrichtung (30), welche dazu ausgebildet ist: - At least one radiation source (26) for generating at least one energy beam (28) for layer-by-layer and local solidification of the material (22) by selective scanning and melting of the material (22) along scan lines (40); and - A control device (30) which is designed to:
- die Pulverzuführung ( 16) so zu steuern, dass diese mindestens eine Pulverschicht des Werkstoffs (22) auf die Aufbau- und Fügezone (II) der Bauplattform (24) aufträgt; und - to control the powder feed (16) so that it applies at least one powder layer of the material (22) to the build-up and joining zone (II) of the build platform (24); and
- die Bauplattform (24) so zu steuern, dass diese schichtweise um eine vordefinierte Schichtdicke abgesenkt wird, - to control the construction platform (24) so that it is lowered in layers by a predefined layer thickness,
dadurch gekennzeichnet, dass characterized in that
die Steuereinrichtung (30) dazu konfiguriert ist, in wenigstens einer Bauteilschicht einen Ab- stand hs von wenigstens zwei Mittellinien (M) einander benachbarter Scanlinien (40) gemäß der Formel I the control device (30) is configured to set a distance h s from at least two center lines (M) of adjacent scan lines (40) according to the formula I in at least one component layer
0,85 £ bsmin/hs £ 1 ,00 (I) £ 0.85 b smin / h s £ 1.00 (I)
einzustellen, wobei bsmin eine minimale Schmelzbadbreite der Scanlinien (40) bezeichnet. set, where b smin denotes a minimum weld pool width of the scan lines (40).
10. Schichtbauvorrichtung ( 10) nach Anspruch 9, 10. Layer construction device (10) according to claim 9,
dadurch gekennzeichnet, dass characterized in that
diese als selektive Lasersinter- und/oder -Schmelzvorrichtung ausgebildet ist. this is designed as a selective laser sintering and / or melting device.
1 1. Computerprogrammprodukt, umfassend Befehle, die bei der Ausführung des Computerpro- grammprodukts durch eine Steuereinrichtung (30) einer Schichtbauvorrichtung ( 10) nach An- spruch 9 oder 10 die Schichtbauvorrichtung ( 10) veranlassen, das Schichtbauverfahren nach ei- nem der Ansprüche 1 bis 8 auszuführen. 1 1. Computer program product, comprising instructions which, when the computer program product is executed by a control device (30) of a layer construction device (10) according to claim 9 or 10, cause the layer construction device (10), the layer construction method according to one of claims 1 to execute 8.
12. Computerlesbares Speichermedium, umfassend Befehle, die bei der Ausführung durch eine Steuereinrichtung (30) einer Schichtbauvorrichtung (10) nach Anspruch 9 oder 10 die Schicht- bauvorrichtung (10) veranlassen, das Schichtbauverfahren nach einem der Ansprüche 1 bis 8 auszuführen. 12. A computer-readable storage medium comprising instructions which, when executed by a control device (30) of a layer construction device (10) according to claim 9 or 10, cause the layer construction device (10) to carry out the layer construction method according to one of claims 1 to 8.
13. Bauteil ( 14), insbesondere Turbinenbauteil einer Strömungsmaschine, umfassend zumindest einen Bauteilbereich (12), der mittels einer Schichtbauvorrichtung ( 10) nach Anspruch 9 oder 10 und/oder mittels eines Schichtbauverfahrens nach einem der Ansprüche 1 bis 8 hergestellt ist. 13. Component (14), in particular turbine component of a turbomachine, comprising at least one component area (12) which is produced by means of a layer construction device (10) according to claim 9 or 10 and / or by means of a layer construction method according to one of claims 1 to 8.
EP20750570.2A 2019-07-16 2020-07-13 Layer construction method and layer construction device for additively manufacturing at least one component region of a component, and computer program product and storage medium Pending EP3999265A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019210487.8A DE102019210487A1 (en) 2019-07-16 2019-07-16 Layer construction method and layer construction device for the additive manufacture of at least one component area of a component as well as computer program product and storage medium
PCT/DE2020/000152 WO2021008640A1 (en) 2019-07-16 2020-07-13 Layer construction method and layer construction device for additively manufacturing at least one component region of a component, and computer program product and storage medium

Publications (1)

Publication Number Publication Date
EP3999265A1 true EP3999265A1 (en) 2022-05-25

Family

ID=71943886

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20750570.2A Pending EP3999265A1 (en) 2019-07-16 2020-07-13 Layer construction method and layer construction device for additively manufacturing at least one component region of a component, and computer program product and storage medium

Country Status (4)

Country Link
US (1) US20220288690A1 (en)
EP (1) EP3999265A1 (en)
DE (1) DE102019210487A1 (en)
WO (1) WO2021008640A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9358635B2 (en) * 2013-12-19 2016-06-07 Siemens Energy, Inc. Rastered laser melting of a curved surface path with uniform power density distribution
WO2017079091A1 (en) * 2015-11-06 2017-05-11 Velo3D, Inc. Adept three-dimensional printing
DE102015224324A1 (en) * 2015-12-04 2017-06-08 MTU Aero Engines AG Method and device for the additive production of at least one component region of a component
US10399146B2 (en) * 2016-01-12 2019-09-03 Hamilton Sundstrand Corporation Contour scanning for additive manufacturing process
DE102016011801A1 (en) * 2016-09-30 2018-04-05 Eos Gmbh Electro Optical Systems Method for calibrating a device for producing a three-dimensional object and device designed to carry out the method
US10753955B2 (en) * 2017-06-30 2020-08-25 General Electric Company Systems and method for advanced additive manufacturing
EP3461571A1 (en) * 2017-10-02 2019-04-03 Siemens Aktiengesellschaft Method for irradiating a powder coating in additive manufacturing with continuously defined manufacturing parameters

Also Published As

Publication number Publication date
WO2021008640A1 (en) 2021-01-21
US20220288690A1 (en) 2022-09-15
DE102019210487A1 (en) 2021-03-25

Similar Documents

Publication Publication Date Title
EP3235580B1 (en) Method and device for additive manufacture of at least one component area of a component
EP3183083B2 (en) Method for producing a three-dimensional object
EP2857139B1 (en) Device for laser processing materials with a laser head movable along a space direction
EP3074161B1 (en) Method and device for additively manufacturing at least one component region of a component
WO2011050765A1 (en) Method and device for producing a component of a turbomachine
DE102009051551A1 (en) Method and device for producing a component of a turbomachine
DE102012206122A1 (en) Multiple coil arrangement for a device for the generative production of components and corresponding manufacturing method
CH705662A1 (en) Process for producing articles of a solidified by gamma-prime nickel-base superalloy excretion by selective laser melting (SLM).
EP3225334A1 (en) Method and apparatus for additive manufacture of at least one component area of a component
EP2913124A2 (en) Production of residual compressive stresses in generative production
WO2020211887A1 (en) Layer building process and layer building apparatus for the additive manufacture of at least one wall of a component, as well as computer program product and storage medium
EP3216546A1 (en) Micro-forging in a generative production method
EP3621758B1 (en) Method for a component with a predetermined surface structure to be produced by additive manufacturing
EP2823917A2 (en) Regulation of generative production using eddy current test
EP3338918A1 (en) Layered construction device and layered construction method for additive manufacture of at least one component area of a component
DE102019200620A1 (en) Process for the production of rotor blades made of Ni-based alloys and rotor blade produced accordingly
DE102016207112A1 (en) Method for producing at least one component region of a component and induction auxiliary structure
DE102014219656A1 (en) Process for the production of components for gas turbines, and their products
DE102014222526A1 (en) Method and device for the generative production of at least one component region of a component
WO2018188757A1 (en) Method for powder-bed-based additive manufacture of a workpiece, method for producing correction parameters for said first method and computer program product for said second method
EP3999265A1 (en) Layer construction method and layer construction device for additively manufacturing at least one component region of a component, and computer program product and storage medium
DE102019219327A1 (en) Layer construction method and layer construction device for the additive manufacture of at least one component area of a component as well as computer program product and storage medium
DE102016212080A1 (en) Layer construction method and layer construction device for the additive production of at least one component region of a component
DE102020209464A1 (en) Layer building method and layer building device for the additive manufacturing of a component, component and computer program product
WO2021000981A1 (en) Layer building process and layer building device for the additive manufacture of at least one wall region of a component, computer program product, and component

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220126

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)