EP3924122A1 - Method of additive manufacturing with separation via a frangible zone - Google Patents

Method of additive manufacturing with separation via a frangible zone

Info

Publication number
EP3924122A1
EP3924122A1 EP20706800.8A EP20706800A EP3924122A1 EP 3924122 A1 EP3924122 A1 EP 3924122A1 EP 20706800 A EP20706800 A EP 20706800A EP 3924122 A1 EP3924122 A1 EP 3924122A1
Authority
EP
European Patent Office
Prior art keywords
additive manufacturing
cords
metallic material
initial
fusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20706800.8A
Other languages
German (de)
French (fr)
Inventor
Sébastien Yohann POUZET
Guillaume Valentin Giamondo MARION
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Safran SA
Original Assignee
Safran Aircraft Engines SAS
Safran SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Aircraft Engines SAS, Safran SA filed Critical Safran Aircraft Engines SAS
Publication of EP3924122A1 publication Critical patent/EP3924122A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/40Structures for supporting workpieces or articles during manufacture and removed afterwards
    • B22F10/47Structures for supporting workpieces or articles during manufacture and removed afterwards characterised by structural features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0626Energy control of the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/53Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • B22F2301/205Titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/14Titanium or alloys thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to the field of additive manufacturing and in particular that of additive manufacturing by direct metal deposition (DMD, from the English “Direct Metal Deposition”).
  • DMD direct metal deposition
  • additive manufacturing process by direct metal deposition is meant an additive manufacturing process in which a metallic material, for example in the form of powder or wire, is supplied to a substrate and melted by an energy beam, for example a laser or electron beam, to form a bead of molten metal on the substrate. After solidification of this bead, other cords can be successively superimposed on it in the same way, to form a three-dimensional metal part.
  • a metallic material for example in the form of powder or wire
  • an energy beam for example a laser or electron beam
  • the present disclosure aims to remedy these drawbacks, by proposing an additive manufacturing process of a part which makes it possible to insert a frangible zone between a first and a second part of the part to stop the part. propagation of cracks between said first and second parts of the part.
  • this object can be achieved thanks to the fact that in this method, which comprises steps of supplying metallic material on a substrate, fusion of one or more initial beads of the metallic material brought to the first part of the part, solidification of the initial beads, addition of metallic material to the initial beads, fusion of one or more subsequent beads of the metallic material brought to the initial cords, and solidification of the subsequent cords, the fusion of the subsequent cords is carried out by an energy input of a second intensity per unit of cord length, which is appreciably greater than a first intensity per unit of cord length which is that of the energy contribution by which the fusion of the initial cords takes place.
  • the wetting surface of the initial cords on the first part of the part, and therefore their strength of adhesion to this first part, can be less than that between the superimposed cords, thus creating a frangible zone to stop the propagation of cracks between the first part of the part and a second part formed at least partially by the subsequent beads.
  • the metallic material can be supplied in powder form, and in particular be supplied by spraying from a spray nozzle.
  • alternatives such as for example the provision of a wire of the metallic material, may possibly be considered.
  • the initial cords can comprise at
  • the second, higher intensity of the energy input per unit length of bead can only be used from a third layer of material, thus avoiding the boundary layer between the substrate and the initial beads. can be remelted by the energy input for the fusion of the subsequent beads, which could consolidate the substrate to the initial beads.
  • the energy input during the melting steps can be carried out by scanning an energy beam, in particular a laser beam, and more precisely a laser beam emitted in continuous mode.
  • a transmission power of the energy beam during the fusion of the initial cords can be appreciably less than a transmission power. of the energy beam during the fusion of the subsequent cords, and in particular to be between one half and three quarters, and more specifically about two thirds, of the emission power of the energy beam during the fusion of the subsequent cords.
  • a scanning speed and / or a laser point diameter may be substantially equal during the fusion of the initial beads and during the fusion of the subsequent beads, so as to ensure the continuity of the beads.
  • Alternative means to the laser beam can nevertheless be envisaged for ensuring the energy supply during the fusion steps, for example an electron beam.
  • the material may be an alloy based on
  • titanium and in particular TÎ6AI4V.
  • nickel-based alloys are also possible.
  • the method can include a preliminary step of additive manufacturing of the first part of the part, before the step of adding metallic material to the first part of the part
  • FIG. 2A-2B Figures 2A and 2B illustrate cross sections of
  • beads of metallic material deposited on a substrate and melted with different energy inputs per unit length of the bead
  • FIG. 3 illustrates the operation of separating the substrate from a part produced by additive manufacturing according to the process illustrated in Figures 1 A to 1 D
  • LMD laser metal deposition
  • Figures 1A to 1 D beads 1a to 1d of metallic material can be successively formed on a substrate, which can be formed by a first part 2 of a three-dimensional part to be manufactured, superimposed to create a wall forming a second part 3 of the three-dimensional part.
  • the metallic material can be projected in the form of powder, comprising particles of diameters for example between 45 and 75 ⁇ m, from a projection nozzle 4, and melted by a beam
  • the particles can be impelled by an inert gas such as argon, and form a beam of particles 6 converging, which can be, as illustrated, coaxial with the energy beam 5, for example by using an annular projection nozzle 4.
  • the metallic material of the particles can in particular be a titanium-based alloy, such as for example TÎ6AI4V, and the particle beam 6 have a mass flow rate dm / dt of, for example, 2 to 3 g / min.
  • the first part 2 can be in the same metallic material or in a material with a sufficiently similar composition.
  • the energy beam 5 can be a laser beam, and in particular a continuous laser beam, emitted for example by a YAG disk laser or by a fiber laser.
  • the wavelength l of this laser beam can be, for example,
  • the process can be carried out under an inert atmosphere, in particular under argon.
  • a first bead 1a can thus be formed directly on the first part 2.
  • the focal points of convergence f p and fi of the particle beam 6 and of the energy beam 5, respectively, can be located above the surface of the first part 2 so that these beams have respective diameters d p and di of, for example, 1, 5 to 2 mm and 2 to 3 mm, at the level of the surface of the first part 2.
  • the metallic material is simultaneously deposited on the first part 2 and melted by the energy input of the energy beam 5, so as to create a liquid bath 10 solidifying downstream with respect to the direction of scanning of the beams of particles 6 and energy 5 on the first part 2, to form this first bead 1 a .
  • the energy input of the energy beam 5 can be regulated so as to minimize the wetting surface of the liquid bath 10 on a first part 2, and therefore the contact surface A c of the bead 1 a with the first part 2, as illustrated on FIG. 2A, illustrating a cross section of the bead 1 A on the first part 2.
  • This regulation can in particular take place through the transmission power P-, of the energy bundle 5 for this first bead 1 a.
  • This first emission power P- can thus be, for example, between 350 and 430 W. It is thus possible to obtain a liquid bath 10 with a first depth r 1; which may be for example 1.1 mm, and a first length h, which may be for example 2.6 mm.
  • the distance in the Z axis between the first part 2 and the projection nozzle 4 can be increased by an increment Ad z , before starting to form, on the first bead 1 a, a second bead 1 b analogously, as illustrated in FIG. 1 B.
  • This increment Ad z can be, for example, between 0.7 and 0.9 mm.
  • the various parameters of the particle 6 and energy 5 beams such as their angles of convergence, the mass flow rate dm / dt as well as the emission power R 1; used to form the first bead 1 a, can be maintained for this second bead 1 b, just like the scanning speed v, so as to maintain an energy supply per unit length of the bead which is substantially identical and therefore substantially the same length h and depth p-, of the liquid bath 10, and avoid remelting the first bead 1 a in the first part 2.
  • the energy input per unit of length of bead can be increased substantially to form subsequent cords 1 c, 1 d superimposed on the first and second cords 1 a, 1 b, in order to increase the cohesion between the superimposed cords.
  • a second transmission power P 2 substantially greater than the first transmission power P 1 can be used, while maintaining the angles of convergence of the beams 5 and 6, the mass flow dm / dt and the scanning speed v.
  • the second transmission power P 2 can in particular be greater by a third up to twice the first transmission power Pi.
  • the second transmission power P 2 can be approximately 600 W. It is thus possible to obtain a liquid bath 10 ′ with a second depth p 2 and a second length l 2 substantially greater, respectively, than the first depth p-, and the first length li, which were those of the liquid bath 10 obtained with the first transmission power Pi.
  • the second depth p 2 can increase to 1, 7 mm, and the second length l 2 to 3.5 mm.
  • first part 2 and the projection nozzle 4 can be further increased by an additional Ad z increment, as illustrated in FIGS. 1 C and 1 D.
  • the superimposed beads 1 a to 1 d can thus form a second part 3, for example in the form of a wall, with a frangible zone 1 1 of reduced thickness compared to the second part 3, directly interposed between the first and second parts 2, 3 of the part, thus facilitating their subsequent separation, as illustrated in FIG. 3 , in particular to prevent the propagation of cracks between the first and second parts 2, 3 of the part.
  • the present invention has been described with reference to a specific embodiment, with projection of the metallic material in powder form and energy supply by laser beam, it is obvious that various modifications and changes can be made on these examples without departing from the general scope of the invention as defined by the claims.
  • the number of initial stacked cords for which the energy input per unit cord length is significantly less than that of Subsequent cords can be one, rather than two, or greater than two.
  • the energy input per unit length of cord can be regulated not only through the transmission power of the energy beam, but also, alternatively or in addition to this power regulation, through the scanning speed v and / or the mass flow dm / dt of the metallic material supplied.
  • the metallic material may be supplied in the form of a wire and / or the energy supply may be effected by an electron beam.
  • the first part of the part may itself have been manufactured at least partially by additive manufacturing in a step prior to the addition of metallic material intended to form the frangible zone. Therefore, the description and the drawings should be taken in an illustrative rather than a restrictive sense.

Abstract

The invention relates to the field of additive manufacturing and more particularly to a method of additive manufacturing through the addition of a metallic material, the melting of runs of the metallic material through the application of energy, and solidification of the runs. In this method, the intensity, per unit length of run, of the energy supplied for melting one or more initial runs 1a, 1b of the metallic material applied to a first part 2 of a component is appreciably lower than that of the energy supplied for melting one or more subsequent runs 1c, 1d of the metallic material added to the initial runs 1a, 1b. This then yields a frangible region 11, formed by the initial runs 1a, 1b, via which region a second part 3 of the component formed by this method can easily be separated from the first part 2 so as to avoid the spread of cracks between the first and second parts 2, 3 of the component.

Description

Description Description
Titre de l'invention : PROCEDE DE FABRICATION ADDITIVE AVEC SEPARATION Title of the invention: ADDITIVE MANUFACTURING PROCESS WITH SEPARATION
PAR ZONE SECABLE BY SECABLE ZONE
Domaine Technique Technical area
[0001 ] La présente invention concerne le domaine de la fabrication additive et en particulier celui de la fabrication additive par dépôt direct de métal (DMD, de l’anglais « Direct Métal Déposition »). [0001] The present invention relates to the field of additive manufacturing and in particular that of additive manufacturing by direct metal deposition (DMD, from the English "Direct Metal Deposition").
[0002] Par procédé de fabrication additive par dépôt direct de métal on entend un procédé de fabrication additive dans lequel un matériau métallique, par exemple en forme de poudre ou fil, est apporté sur un substrat et fondu par un faisceau énergétique, par exemple un faisceau laser ou d’électrons, pour former un cordon de métal fondu sur le substrat. Après solidification de ce cordon, d’autres cordons peuvent y être successivement superposés de la même manière, pour former une pièce métallique tridimensionnelle. By additive manufacturing process by direct metal deposition is meant an additive manufacturing process in which a metallic material, for example in the form of powder or wire, is supplied to a substrate and melted by an energy beam, for example a laser or electron beam, to form a bead of molten metal on the substrate. After solidification of this bead, other cords can be successively superimposed on it in the same way, to form a three-dimensional metal part.
[0003] Dans les publications de demandes de brevet US 2018/243828 A1 , US In the publications of patent applications US 2018/243828 A1, US
2015/306667 A1 , et WO 2015/019070 A1 il a aussi été proposé de moduler la puissance du faisceau énergétique dans des procédés de fabrication additive par dépôt direct de métal, de manière à créer des zones partiellement consolidées, pouvant être subséquemment coupées ou supprimées. 2015/306667 A1, and WO 2015/019070 A1, it has also been proposed to modulate the power of the energy beam in additive manufacturing processes by direct metal deposition, so as to create partially consolidated zones, which can subsequently be cut or eliminated .
[0004] Dans le domaine mécanique, il est parfois souhaitable de créer des zones frangibles destinées à être sacrifiées afin de protéger d’autres éléments plus critiques. [0004] In the mechanical field, it is sometimes desirable to create frangible zones intended to be sacrificed in order to protect other more critical elements.
Exposé de l’invention [0005] La présente divulgation vise à remédier à ces inconvénients, en proposant un procédé de fabrication additive d’une pièce qui permette d’ intercaler une zone frangible entre une première et une deuxième parties de la pièce pour arrêter la propagation de fissures entre lesdites première et deuxième parties de la pièce. Disclosure of the invention [0005] The present disclosure aims to remedy these drawbacks, by proposing an additive manufacturing process of a part which makes it possible to insert a frangible zone between a first and a second part of the part to stop the part. propagation of cracks between said first and second parts of the part.
[0006] Suivant un premier aspect, ce but peut être atteint grâce au fait que dans ce procédé, qui comporte des étapes d’apport de matériau métallique sur un substrat, fusion d’un ou plusieurs cordons initiaux du matériau métallique apporté sur la première partie de la pièce, solidification des cordons initiaux, apport de matériau métallique sur les cordons initiaux, fusion d’un ou plusieurs cordons subséquents du matériau métallique apporté sur les cordons initiaux, et solidification des cordons subséquents, la fusion des cordons subséquents s’effectue par un apport énergétique d’une deuxième intensité par unité de longueur de cordon, qui est sensiblement supérieure à une première intensité par unité de longueur de cordon qui est celle de l’apport énergétique par lequel s’effectue la fusion des cordons initiaux. [0006] According to a first aspect, this object can be achieved thanks to the fact that in this method, which comprises steps of supplying metallic material on a substrate, fusion of one or more initial beads of the metallic material brought to the first part of the part, solidification of the initial beads, addition of metallic material to the initial beads, fusion of one or more subsequent beads of the metallic material brought to the initial cords, and solidification of the subsequent cords, the fusion of the subsequent cords is carried out by an energy input of a second intensity per unit of cord length, which is appreciably greater than a first intensity per unit of cord length which is that of the energy contribution by which the fusion of the initial cords takes place.
[0007] Grâce à ces dispositions, la surface de mouillage des cordons initiaux sur la première partie de la pièce, et donc leur force d’adhésion à cette première partie, peut être inférieure à celle entre les cordons superposés, créant ainsi une zone frangible pour arrêter la propagation de fissures entre la première partie de la pièce et une deuxième partie formée au moins partiellement par les cordons subséquents. [0007] Thanks to these arrangements, the wetting surface of the initial cords on the first part of the part, and therefore their strength of adhesion to this first part, can be less than that between the superimposed cords, thus creating a frangible zone to stop the propagation of cracks between the first part of the part and a second part formed at least partially by the subsequent beads.
[0008] Suivant un deuxième aspect, le matériau métallique peut être apporté sous forme de poudre, et notamment être apporté par projection à partir d’une buse de projection. Toutefois, des alternatives, comme par exemple l’apport d’un fil du matériau métallique, peuvent éventuellement être envisagées. [0008] According to a second aspect, the metallic material can be supplied in powder form, and in particular be supplied by spraying from a spray nozzle. However, alternatives, such as for example the provision of a wire of the metallic material, may possibly be considered.
[0009] Suivant un troisième aspect, les cordons initiaux peuvent comprendre au [0009] According to a third aspect, the initial cords can comprise at
moins deux cordons superposés. Ainsi, la deuxième intensité, plus élevée, de l’apport énergétique par unité de longueur de cordon pourra n’être utilisée qu’à partir d’une troisième couche de matériau, évitant ainsi que la couche limite entre le substrat et les cordons initiaux puisse être refondue par l’apport énergétique pour la fusion des cordons subséquents, ce qui pourrait consolider le substrat aux cordons initiaux. minus two superimposed cords. Thus, the second, higher intensity of the energy input per unit length of bead can only be used from a third layer of material, thus avoiding the boundary layer between the substrate and the initial beads. can be remelted by the energy input for the fusion of the subsequent beads, which could consolidate the substrate to the initial beads.
[0010] Suivant un quatrième aspect, l’apport énergétique lors des étapes de fusion peut être effectué par balayage d’un faisceau énergétique, notamment un faisceau laser, et plus précisément un faisceau laser émis en mode continu. Afin d’obtenir des intensités différentes de l’apport énergétique par unité de longueur du cordon, une puissance d’émission du faisceau énergétique lors de la fusion des cordons initiaux peut être sensiblement moindre à une puissance d’émission du faisceau énergétique lors de la fusion des cordons subséquents, et notamment être entre une moitié et trois quarts, et plus spécifiquement environ deux tiers, de la puissance d’émission du faisceau énergétique lors de la fusion des cordons subséquents. Dans ce cas, une vitesse de balayage et/ou un diamètre de point laser peuvent être sensiblement égaux lors de la fusion des cordons initiaux et lors de la fusion des cordons subséquents, de manière à assurer la continuité des cordons. Des moyens alternatifs au faisceau laser sont néanmoins envisageables pour assurer l’apport énergétique lors des étapes de fusion, par exemple un faisceau d’électrons. [0010] According to a fourth aspect, the energy input during the melting steps can be carried out by scanning an energy beam, in particular a laser beam, and more precisely a laser beam emitted in continuous mode. In order to obtain different intensities of the energy input per unit length of the cord, a transmission power of the energy beam during the fusion of the initial cords can be appreciably less than a transmission power. of the energy beam during the fusion of the subsequent cords, and in particular to be between one half and three quarters, and more specifically about two thirds, of the emission power of the energy beam during the fusion of the subsequent cords. In this case, a scanning speed and / or a laser point diameter may be substantially equal during the fusion of the initial beads and during the fusion of the subsequent beads, so as to ensure the continuity of the beads. Alternative means to the laser beam can nevertheless be envisaged for ensuring the energy supply during the fusion steps, for example an electron beam.
[0011 ] Suivant un cinquième aspect, le matériau peut être un alliage à base de [0011] According to a fifth aspect, the material may be an alloy based on
titane, et notamment du TÎ6AI4V. Les alliages à base de nickel sont toutefois aussi envisageables. titanium, and in particular TÎ6AI4V. However, nickel-based alloys are also possible.
[0012] Suivant un sixième aspect, le procédé peut comprendre une étape préalable de fabrication additive de la première partie de la pièce, avant l’étape d’apport de matériau métallique sur la première partie de la pièce [0012] According to a sixth aspect, the method can include a preliminary step of additive manufacturing of the first part of the part, before the step of adding metallic material to the first part of the part
Brève description des dessins Brief description of the drawings
[0013] L'invention sera bien comprise et ses avantages apparaîtront mieux, à la lecture de la description détaillée qui suit, d'un mode de réalisation représenté à titre d'exemple non limitatif. La description se réfère aux dessins annexés sur lesquels : The invention will be well understood and its advantages will appear better on reading the following detailed description of an embodiment shown by way of non-limiting example. The description refers to the accompanying drawings in which:
[0014] [Fig. 1 A-1 D] les figures 1 A à 1 D illustrent schématiquement des étapes [0014] [Fig. 1 A-1 D] Figures 1 A to 1 D schematically illustrate steps
successives d’un procédé de fabrication additive suivant ce mode de réalisation, successive of an additive manufacturing process according to this embodiment,
[0015] [Fig. 2A-2B] les figures 2A et 2B illustrent des coupes transversales de [0015] [Fig. 2A-2B] Figures 2A and 2B illustrate cross sections of
cordons de matériau métallique déposé sur un substrat, et fondus avec des apports énergétiques différents par unité de longueur du cordon, et beads of metallic material deposited on a substrate, and melted with different energy inputs per unit length of the bead, and
[0016] [Fig. 3] la figure 3 illustre l’opération de séparation du substrat d’une pièce produite par fabrication additive suivant le procédé illustré sur les figures 1 A à 1 D [0016] [Fig. 3] Figure 3 illustrates the operation of separating the substrate from a part produced by additive manufacturing according to the process illustrated in Figures 1 A to 1 D
Description des modes de réalisation Description of embodiments
[0017] Un procédé de fabrication additive par dépôt directe de métal, plus [0017] An additive manufacturing process by direct metal deposition, more
spécifiquement par dépôt de métal par laser (LMD, de l’anglais « Laser Métal Déposition ») est illustré sur les figures 1 A à 1 D. Comme l’on peut voir sur ces figures, dans ce procédé des cordons 1 a à 1d de matériau métallique peuvent être successivement formés sur un substrat, qui peut être formé par une première partie 2 d’une pièce tridimensionnelle à fabriquer, superposés pour créer une paroi formant une deuxième partie 3 de la pièce tridimensionnelle.specifically by laser metal deposition (LMD, standing for "Laser Metal Deposition ") is illustrated in Figures 1A to 1 D. As can be seen in these figures, in this process beads 1a to 1d of metallic material can be successively formed on a substrate, which can be formed by a first part 2 of a three-dimensional part to be manufactured, superimposed to create a wall forming a second part 3 of the three-dimensional part.
Pour former chaque cordon 1 a à 1 d, le matériau métallique peut être projeté sous forme de poudre, comprenant des particules de diamètres par exemple entre 45 et 75 pm, à partir d’une buse de projection 4, et fondu par un faisceau To form each bead 1 a to 1 d, the metallic material can be projected in the form of powder, comprising particles of diameters for example between 45 and 75 μm, from a projection nozzle 4, and melted by a beam
énergétique 5, tandis que la première partie 2, portée par exemple par une table mobile 7 déplaçable en trois dimensions XYZ par des actionneurs linéaires 8 connectés à une unité de commande 9, est déplacée, par rapport à la buse de projection 4, avec une vitesse de balayage v de, par exemple, 200 à 400 mm/min, dans un plan XY parallèle à la surface de la première partie 2. Les particules peuvent être impulsées par un gaz inerte comme l’argon, et former un faisceau de particules 6 convergeant, qui peut être, comme illustré, coaxial avec le faisceau énergétique 5, par exemple en utilisant une buse de projection 4 annulaire. Le matériau métallique des particules peut notamment être un alliage à base de titane, comme par exemple le TÎ6AI4V, et le faisceau de particules 6 avoir un débit massique dm/dt de, par exemple, 2 à 3 g/min. energy 5, while the first part 2, carried for example by a movable table 7 movable in three dimensions XYZ by linear actuators 8 connected to a control unit 9, is moved, relative to the projection nozzle 4, with a scanning speed v of, for example, 200 to 400 mm / min, in an XY plane parallel to the surface of the first part 2. The particles can be impelled by an inert gas such as argon, and form a beam of particles 6 converging, which can be, as illustrated, coaxial with the energy beam 5, for example by using an annular projection nozzle 4. The metallic material of the particles can in particular be a titanium-based alloy, such as for example TÎ6AI4V, and the particle beam 6 have a mass flow rate dm / dt of, for example, 2 to 3 g / min.
[0018] Afin d’éviter la remontée d’impuretés, la première partie 2 peut être dans le même matériau métallique ou dans un matériau à composition suffisamment similaire. Le faisceau énergétique 5 peut être un faisceau laser, et notamment un faisceau laser continu, émis par exemple par un laser YAG à disque ou par un laser à fibre. La longueur d’onde l de ce faisceau laser peut être, par exemple, In order to prevent the rise of impurities, the first part 2 can be in the same metallic material or in a material with a sufficiently similar composition. The energy beam 5 can be a laser beam, and in particular a continuous laser beam, emitted for example by a YAG disk laser or by a fiber laser. The wavelength l of this laser beam can be, for example,
1030 pm pour un laser YAG à disque, ou 600 pm pour un laser à fibre. Le procédé peut être effectué sous atmosphère inerte, notamment sous argon. 1030 µm for a YAG disc laser, or 600 µm for a fiber laser. The process can be carried out under an inert atmosphere, in particular under argon.
[0019] Comme illustré sur la figure 1 A, un premier cordon 1 a peut ainsi être formé directement sur la première partie 2. Les foyers de convergence fp et fi du faisceau de particules 6 et du faisceau énergétique 5, respectivement, peuvent être situés au-dessus de la surface de la première partie 2 de manière à ce que ces faisceaux présentent des diamètres respectifs dp et di de, par exemple, 1 ,5 à 2 mm et 2 à 3 mm, au niveau de la surface de la première partie 2. Ainsi, le matériau métallique est simultanément déposé sur la première partie 2 et fondu par l’apport énergétique du faisceau énergétique 5, de manière à créer un bain liquide 10 se solidifiant en aval par rapport à la direction de balayage des faisceaux de particules 6 et énergétique 5 sur la première partie 2, pour former ce premier cordon 1 a. L’apport énergétique du faisceau énergétique 5 peut être régulé de manière à minimiser la surface de mouillage du bain liquide 10 sur a première partie 2, et donc la surface de contact Ac du cordon 1 a avec la première partie 2, comme illustré sur la figure 2A, illustrant une section transversale du cordon 1 A sur la première partie 2. Cette régulation peut notamment s’opérer à travers la puissance d’émission P-, du faisceau énergétique 5 pour ce premier cordon 1 a. Cette première puissance d’émission P-, peut ainsi être, par exemple, entre 350 et 430 W. On peut obtenir ainsi un bain liquide 10 avec une première profondeur r1 ; qui peut être par exemple 1 ,1 mm, et une première longueur h, qui peut être par exemple 2,6 mm. Par voie de comparaison, si la puissance d’émission, et donc l’apport énergétique du faisceau énergétique, était plus élevée, la section transversale du cordon 1 a serait celle illustrée sur la figure 2B, avec une surface de contact Ac sensiblement plus large, ce qui augmenterait la cohésion avec la première partie 2. As illustrated in Figure 1A, a first bead 1a can thus be formed directly on the first part 2. The focal points of convergence f p and fi of the particle beam 6 and of the energy beam 5, respectively, can be located above the surface of the first part 2 so that these beams have respective diameters d p and di of, for example, 1, 5 to 2 mm and 2 to 3 mm, at the level of the surface of the first part 2. Thus, the metallic material is simultaneously deposited on the first part 2 and melted by the energy input of the energy beam 5, so as to create a liquid bath 10 solidifying downstream with respect to the direction of scanning of the beams of particles 6 and energy 5 on the first part 2, to form this first bead 1 a . The energy input of the energy beam 5 can be regulated so as to minimize the wetting surface of the liquid bath 10 on a first part 2, and therefore the contact surface A c of the bead 1 a with the first part 2, as illustrated on FIG. 2A, illustrating a cross section of the bead 1 A on the first part 2. This regulation can in particular take place through the transmission power P-, of the energy bundle 5 for this first bead 1 a. This first emission power P- can thus be, for example, between 350 and 430 W. It is thus possible to obtain a liquid bath 10 with a first depth r 1; which may be for example 1.1 mm, and a first length h, which may be for example 2.6 mm. By way of comparison, if the transmission power, and therefore the energy contribution of the energy beam, were higher, the cross section of the bead 1 a would be that illustrated in FIG. 2B, with a contact surface A c appreciably more wide, which would increase the cohesion with the first part 2.
[0020] Afin de créer une pièce tridimensionnelle, des cordons supplémentaires, [0020] In order to create a three-dimensional part, additional cords,
formés subséquemment de manière analogue au premier cordon 1 a, peuvent être superposés, dans l’axe Z perpendiculaire à la surface de la première partie 2, à ce premier cordon 1 a. Pour cela, après avoir formé le premier cordon 1 a, la distance dans l’axe Z entre la première partie 2 et la buse de projection 4 peut être augmentée d’un incrément Adz, avant de commencer à former, sur le premier cordon 1 a, un deuxième cordon 1 b de manière analogue, comme illustré sur la figure 1 B. Cet incrément Adz peut être, par exemple, entre 0,7 et 0,9 mm. Les divers paramètres des faisceaux de particules 6 et énergétique 5, comme leurs angles de convergence, le débit massique dm/dt ainsi que la puissance d’émission R1 ; utilisés pour former le premier cordon 1 a, peuvent être maintenus pour ce deuxième cordon 1 b, tout comme la vitesse de balayage v, de manière à maintenir un apport énergétique par unité de longueur du cordon sensiblement identique et donc sensiblement les mêmes longueur h et profondeur p-, du bain liquide 10, et éviter de refondre le premier cordon 1 a à la première partie 2. [0021 ] T outefois, après avoir formé ce deuxième cordon 1 b sur le premier cordon 1 a, l’apport énergétique par unité de longueur de cordon peut être augmentée sensiblement pour former des cordons subséquents 1 c, 1 d superposés aux premier et deuxième cordons 1 a,1 b, afin d’augmenter la cohésion entre les cordons superposés. Ainsi, pour les cordons subséquents, une deuxième puissance d’émission P2 sensiblement supérieure à la première puissance d’émission P1 peut être utilisée, tout en maintenant les angles de convergence des faisceaux 5 et 6, le débit massique dm/dt et la vitesse de balayage v. La deuxième puissance d’émission P2 peut notamment être supérieure d’un tiers jusqu’au double de la première puissance d’émission P-i . Ainsi, si la première puissance d’émission P1 est entre 350 et 430 W, la deuxième puissance d’émission P2 peut être d’environ 600 W. On peut obtenir ainsi un bain liquide 10’ avec une deuxième profondeur p2 et une deuxième longueur l2 sensiblement supérieures, respectivement, à la première profondeur p-, et la première longueur l-i, qui étaient celles du bain liquide 10 obtenu avec la première puissance d’émission P-i. Ainsi, par exemple, la deuxième profondeur p2 peut augmenter à 1 ,7 mm, et la deuxième longueur l2 à 3,5 mm. subsequently formed in a manner analogous to the first bead 1 a, can be superimposed, in the Z axis perpendicular to the surface of the first part 2, to this first bead 1 a. For this, after having formed the first bead 1 a, the distance in the Z axis between the first part 2 and the projection nozzle 4 can be increased by an increment Ad z , before starting to form, on the first bead 1 a, a second bead 1 b analogously, as illustrated in FIG. 1 B. This increment Ad z can be, for example, between 0.7 and 0.9 mm. The various parameters of the particle 6 and energy 5 beams, such as their angles of convergence, the mass flow rate dm / dt as well as the emission power R 1; used to form the first bead 1 a, can be maintained for this second bead 1 b, just like the scanning speed v, so as to maintain an energy supply per unit length of the bead which is substantially identical and therefore substantially the same length h and depth p-, of the liquid bath 10, and avoid remelting the first bead 1 a in the first part 2. However, after having formed this second bead 1 b on the first bead 1 a, the energy input per unit of length of bead can be increased substantially to form subsequent cords 1 c, 1 d superimposed on the first and second cords 1 a, 1 b, in order to increase the cohesion between the superimposed cords. Thus, for the subsequent beads, a second transmission power P 2 substantially greater than the first transmission power P 1 can be used, while maintaining the angles of convergence of the beams 5 and 6, the mass flow dm / dt and the scanning speed v. The second transmission power P 2 can in particular be greater by a third up to twice the first transmission power Pi. Thus, if the first transmission power P 1 is between 350 and 430 W, the second transmission power P 2 can be approximately 600 W. It is thus possible to obtain a liquid bath 10 ′ with a second depth p 2 and a second length l 2 substantially greater, respectively, than the first depth p-, and the first length li, which were those of the liquid bath 10 obtained with the first transmission power Pi. Thus, for example, the second depth p 2 can increase to 1, 7 mm, and the second length l 2 to 3.5 mm.
[0022] Pour chaque cordon subséquent 1 c, 1 d, la distance dans l’axe Z entre la [0022] For each subsequent bead 1 c, 1 d, the distance in the Z axis between the
première partie 2 et la buse de projection 4 peut encore être augmentée d’un incrément Adz supplémentaire, comme illustré sur les figures 1 C et 1 D. Les cordons superposés 1 a à 1 d peuvent ainsi former une deuxième partie 3, par exemple en forme de paroi, avec une zone frangible 1 1 d’épaisseur réduite par rapport à la deuxième partie 3, directement intercalée entre les première et deuxième parties 2, 3 de la pièce, facilitant ainsi leur séparation subséquente, comme illustré sur la figure 3, notamment pour empêcher la propagation de fissures entre les première et deuxième parties 2, 3 de la pièce. first part 2 and the projection nozzle 4 can be further increased by an additional Ad z increment, as illustrated in FIGS. 1 C and 1 D. The superimposed beads 1 a to 1 d can thus form a second part 3, for example in the form of a wall, with a frangible zone 1 1 of reduced thickness compared to the second part 3, directly interposed between the first and second parts 2, 3 of the part, thus facilitating their subsequent separation, as illustrated in FIG. 3 , in particular to prevent the propagation of cracks between the first and second parts 2, 3 of the part.
[0023] Quoique la présente invention ait été décrite en se référant à un exemple de réalisation spécifique, avec projection du matériau métallique sous forme de poudre et apport énergétique par faisceau laser, il est évident que des différentes modifications et changements peuvent être effectués sur ces exemples sans sortir de la portée générale de l'invention telle que définie par les revendications. Par exemple, le nombre de cordons superposés initiaux pour lesquels l’apport énergétique par unité de longueur de cordon est sensiblement inférieur à celui de cordons subséquents peut être d’un seul, plutôt que deux, ou supérieur à deux. En outre, l’apport énergétique par unité de longueur de cordon peut être régulé non seulement à travers la puissance d’émission du faisceau énergétique, mais aussi, alternativement ou en complément à cette régulation de puissance, à travers la vitesse de balayage v et/ou le débit massique dm/dt du matériau métallique apporté. Le matériau métallique peut être apporté sous forme de fil et/ou l’apport énergétique être effectué par un faisceau d’électrons. La première partie de la pièce peut elle-même avoir été fabriquée au moins partiellement par fabrication additive dans une étape préalable à l’apport de matériau métallique destiné à former la zone frangible. Par conséquent, la description et les dessins doivent être considérés dans un sens illustratif plutôt que restrictif. Although the present invention has been described with reference to a specific embodiment, with projection of the metallic material in powder form and energy supply by laser beam, it is obvious that various modifications and changes can be made on these examples without departing from the general scope of the invention as defined by the claims. For example, the number of initial stacked cords for which the energy input per unit cord length is significantly less than that of Subsequent cords can be one, rather than two, or greater than two. Furthermore, the energy input per unit length of cord can be regulated not only through the transmission power of the energy beam, but also, alternatively or in addition to this power regulation, through the scanning speed v and / or the mass flow dm / dt of the metallic material supplied. The metallic material may be supplied in the form of a wire and / or the energy supply may be effected by an electron beam. The first part of the part may itself have been manufactured at least partially by additive manufacturing in a step prior to the addition of metallic material intended to form the frangible zone. Therefore, the description and the drawings should be taken in an illustrative rather than a restrictive sense.

Claims

Revendications Claims
[Revendication 1] Procédé de fabrication additive d'une pièce avec une zone frangible (11) intercalée entre une première et une deuxième parties (2,3) de la pièce pour arrêter la propagation de fissures entre lesdites première et deuxième parties (2,3) de la pièce, comprenant au moins les étapes suivantes : [Claim 1] A method of additive manufacturing of a part with a frangible zone (11) interposed between a first and a second part (2,3) of the part to stop the propagation of cracks between said first and second parts (2, 3) of the part, comprising at least the following steps:
- apport de matériau métallique sur la première partie (2) de la pièce, - addition of metallic material on the first part (2) of the part,
- fusion d'un ou plusieurs cordons initiaux (la,lb) du matériau métallique apporté sur la première partie (2) de la pièce, par un apport énergétique d'une première intensité par unité de longueur de cordon, - fusion of one or more initial cords (la, lb) of the metallic material brought to the first part (2) of the part, by an energy supply of a first intensity per unit of cord length,
- solidification des cordons initiaux (la,lb), - solidification of the initial cords (la, lb),
- apport de matériau métallique sur les cordons initiaux (la,lb), - addition of metallic material on the initial cords (la, lb),
- fusion d'un ou plusieurs cordons subséquents (lc,ld) du matériau - fusion of one or more subsequent beads (lc, ld) of the material
métallique apporté sur les cordons initiaux (la,lb), par un apport énergétique d'une deuxième intensité par unité de longueur de cordon, supérieure à la première intensité par unité de longueur de cordon, et metallic provided on the initial cords (la, lb), by an energy input of a second intensity per unit of cord length, greater than the first intensity per unit of cord length, and
- solidification des cordons subséquents (lc,ld). - solidification of subsequent cords (lc, ld).
[Revendication 2] Procédé de fabrication additive suivant la première [Claim 2] Additive manufacturing method according to the first
revendication, dans lequel le matériau métallique est apporté sous forme de poudre. claim, wherein the metallic material is supplied in powder form.
[Revendication 3] Procédé de fabrication additive suivant la revendication 2, dans lequel le matériau métallique est apporté par projection à partir d'une buse de projection (4). [Claim 3] An additive manufacturing method according to claim 2, wherein the metallic material is sprayed from a spray nozzle (4).
[Revendication 4] Procédé de fabrication additive suivant l'une quelconque des revendications 1 à 3, dans lequel les cordons initiaux (la, lb) [Claim 4] An additive manufacturing method according to any one of claims 1 to 3, wherein the initial cords (la, lb)
comprennent au moins deux cordons superposés. include at least two superimposed cords.
[Revendication 5] Procédé de fabrication additive suivant l'une quelconque des revendications 1 à 4, dans lequel la fusion de chaque cordon (la-ld) est simultanée à l'apport de matériau métallique correspondant. [Claim 5] An additive manufacturing method according to any one of claims 1 to 4, in which the melting of each bead (la-ld) is simultaneous with the supply of corresponding metallic material.
[Revendication 6] Procédé de fabrication additive suivant l'une quelconque des revendications 1 à 5, dans lequel l'apport énergétique lors des étapes de fusion est effectué par balayage d'un faisceau énergétique (5). [Claim 6] An additive manufacturing method according to any one of claims 1 to 5, in which the energy input during the melting steps is effected by scanning an energy beam (5).
[Revendication 7] Procédé de fabrication additive suivant la revendication 6, dans lequel le faisceau énergétique (5) est un faisceau laser. [Claim 7] An additive manufacturing method according to claim 6, wherein the energy beam (5) is a laser beam.
[Revendication 8] Procédé de fabrication additive suivant la revendication 7, dans lequel le faisceau laser est émis en mode continu. [Claim 8] An additive manufacturing method according to claim 7, wherein the laser beam is emitted in continuous mode.
[Revendication 9] Procédé de fabrication additive suivant l'une quelconque des revendications 6 à 8, dans lequel une puissance d'émission du faisceau énergétique (5) lors de la fusion des cordons initiaux est moindre à une puissance d'émission du faisceau énergétique (5) lors de la fusion des cordons subséquents. [Claim 9] The additive manufacturing method according to any one of claims 6 to 8, wherein a transmit power of the energy beam (5) upon melting of the initial strands is less than a transmit power of the energy beam. (5) during the fusion of the subsequent beads.
[Revendication 10] Procédé de fabrication additive suivant la revendication 9, dans lequel la puissance d'émission du faisceau énergétique (5) lors de la fusion des cordons initiaux (la,lb) est entre une moitié et trois quarts de la puissance d'émission du faisceau énergétique lors de la fusion des cordons subséquents (lc,ld). [Claim 10] The additive manufacturing method according to claim 9, wherein the transmit power of the energy beam (5) upon melting of the initial strands (la, lb) is between one half and three quarters of the power of emission of the energy beam during the fusion of the subsequent cords (lc, ld).
[Revendication 11] Procédé de fabrication additive suivant l'une quelconque des revendications 9 ou 10, dans lequel une vitesse de balayage et/ou un diamètre de point laser sont sensiblement égaux lors de la fusion des cordons initiaux (la,lb) et lors de la fusion des cordons subséquents (lc,ld). [Claim 11] An additive manufacturing method according to any one of claims 9 or 10, wherein a scanning speed and / or a laser spot diameter are substantially equal during the fusion of the initial strands (la, lb) and during the fusion. of the fusion of subsequent cords (lc, ld).
[Revendication 12] Procédé de fabrication additive suivant l'une quelconque des revendications 1 à 11, dans lequel le matériau est un alliage à base de titane. [Claim 12] An additive manufacturing method according to any one of claims 1 to 11, wherein the material is a titanium-based alloy.
[Revendication 13] Procédé de fabrication additive suivant l'une quelconque des revendications 1 à 12, comprenant une étape préalable de fabrication additive de la première partie (2) de la pièce, avant l'étape d'apport de matériau métallique sur la première partie (2) de la pièce. j [Claim 13] An additive manufacturing method according to any one of claims 1 to 12, comprising a preliminary step of additive manufacturing of the first part (2) of the part, before the step of adding metallic material to the first. part (2) of the part. j
EP20706800.8A 2019-02-14 2020-02-07 Method of additive manufacturing with separation via a frangible zone Pending EP3924122A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1901518 2019-02-14
PCT/FR2020/050216 WO2020165530A1 (en) 2019-02-14 2020-02-07 Method of additive manufacturing with separation via a frangible zone

Publications (1)

Publication Number Publication Date
EP3924122A1 true EP3924122A1 (en) 2021-12-22

Family

ID=67441264

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20706800.8A Pending EP3924122A1 (en) 2019-02-14 2020-02-07 Method of additive manufacturing with separation via a frangible zone

Country Status (4)

Country Link
US (1) US20220111441A1 (en)
EP (1) EP3924122A1 (en)
CN (1) CN113438997A (en)
WO (1) WO2020165530A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4166260A1 (en) * 2021-10-18 2023-04-19 Fundacion Tecnalia Research and Innovation An additive manufacturing process comprising directed-energy deposition and pre-depositing interface metal layers

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9636229B2 (en) * 2012-09-20 2017-05-02 Conformis, Inc. Solid freeform fabrication of implant components
GB201313926D0 (en) * 2013-08-05 2013-09-18 Renishaw Plc Additive manufacturing method and apparatus
EP4306233A3 (en) * 2013-10-18 2024-04-03 RTX Corporation Method of forming a component of a gas turbine engine
US20150283613A1 (en) * 2014-04-02 2015-10-08 Arcam Ab Method for fusing a workpiece
US20150306667A1 (en) 2014-04-24 2015-10-29 Shi-Chune Yao Utilization of Partial Sintering to Avoid the Use of Support Structures in the Direct Metal Laser Sintering Additive Manufacturing Processes
US10356945B2 (en) * 2015-01-08 2019-07-16 General Electric Company System and method for thermal management using vapor chamber
DE102015217469A1 (en) * 2015-09-11 2017-03-16 Eos Gmbh Electro Optical Systems Method and device for producing a three-dimensional object
FR3041278B1 (en) * 2015-09-23 2017-11-03 Manutech-Usd SYSTEM AND METHOD FOR ADDITIVE FABRICATION BY LASER FUSION OF A BED OF POWDER
FR3062324B1 (en) * 2017-01-30 2019-03-22 Safran Aircraft Engines PROCESS FOR MANUFACTURING PARTS PRODUCED IN METALLURGY OF POWDERS COMPRISING THE APPLICATION OF A COATING

Also Published As

Publication number Publication date
US20220111441A1 (en) 2022-04-14
WO2020165530A1 (en) 2020-08-20
CN113438997A (en) 2021-09-24

Similar Documents

Publication Publication Date Title
EP2318170B1 (en) Method of building up part of a metal workpiece by mig welding using pulsed current and wire feed
EP2540433B1 (en) Method of refilling a mold for glas using powder laser buildup
CA2892848C (en) Method for manufacturing a part by melting powder, the powder particles reaching the bath in a cold state
CA3008072C (en) Method for producing a pre-coated metal sheet, with removal of the coating by means of an inclined laser beam, and corresponding metal sheet
JP5377241B2 (en) Gas turbine rotor blade repair method and gas turbine rotor blade
FR2809647A1 (en) HYBRID LASER-ARC WELDING PROCESS WITH APPROPRIATE GAS MIXTURE
EP0904881B1 (en) Assembling or build-up diffusion brazing method of titanium aluminide workpieces
EP1923165A1 (en) Laser welding process improving penetration
US20140065320A1 (en) Hybrid coating systems and methods
EP3924122A1 (en) Method of additive manufacturing with separation via a frangible zone
WO2020229784A1 (en) Method for the additive manufacturing of a metal part
EP2209579B1 (en) Build-up welding method of a workpiece, in which ceramic particles are incorporated with the weld.
FR3036300A1 (en) METHOD FOR MANUFACTURING A WORKPIECE WITH ADDITIVE FABRICATION ASSEMBLY SURFACE
WO2018007770A2 (en) Additive manufacturing method comprising removal of material from between two layers
FR3054462A1 (en) PROCESS FOR ATOMIZING METAL DROPS FOR THE OBTAINING OF A METALLIC POWDER
FR2863769A1 (en) METHOD FOR MANUFACTURING CATHODE FILAMENT OF X-RAY TUBE AND X-RAY TUBE
FR3046740A1 (en) PROCESS FOR RECHARGING OR MANUFACTURING A METAL PIECE
CA3143859A1 (en) Method for attaching parts by spraying a powder of a ductile material; corresponding assembly
EP4017672A1 (en) Method for the additive manufacture of a turbomachine component
WO2018007769A1 (en) Additive manufacturing process using discrete surface elements
FR3123234A1 (en) additive manufacturing process of a three-dimensional part
JP2010053797A (en) Method of manufacturing impeller
CA3008072A1 (en) Method for producing a pre-coated metal sheet, with removal of the coating by means of an inclined laser beam, and corresponding metal sheet
FR3062397A1 (en) METHOD AND INSTALLATION FOR MANUFACTURING A PIECE BY PLASMAFORMING

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210719

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)