EP3892777B1 - Road finisher and method with transverse profile control - Google Patents

Road finisher and method with transverse profile control Download PDF

Info

Publication number
EP3892777B1
EP3892777B1 EP20168635.9A EP20168635A EP3892777B1 EP 3892777 B1 EP3892777 B1 EP 3892777B1 EP 20168635 A EP20168635 A EP 20168635A EP 3892777 B1 EP3892777 B1 EP 3892777B1
Authority
EP
European Patent Office
Prior art keywords
finishing machine
screed
road finishing
control system
height profile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20168635.9A
Other languages
German (de)
French (fr)
Other versions
EP3892777A1 (en
Inventor
Martin Buschmann
Ralf Weiser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Joseph Voegele AG
Original Assignee
Joseph Voegele AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Joseph Voegele AG filed Critical Joseph Voegele AG
Priority to PL20168635.9T priority Critical patent/PL3892777T3/en
Priority to EP20168635.9A priority patent/EP3892777B1/en
Priority to BR102021006565-6A priority patent/BR102021006565A2/en
Priority to CN202120731925.9U priority patent/CN216712654U/en
Priority to CN202110376748.1A priority patent/CN113494039B/en
Priority to US17/225,316 priority patent/US20210317620A1/en
Priority to JP2021065919A priority patent/JP2021167560A/en
Publication of EP3892777A1 publication Critical patent/EP3892777A1/en
Application granted granted Critical
Publication of EP3892777B1 publication Critical patent/EP3892777B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/22Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for consolidating or finishing laid-down unset materials
    • E01C19/23Rollers therefor; Such rollers usable also for compacting soil
    • E01C19/26Rollers therefor; Such rollers usable also for compacting soil self-propelled or fitted to road vehicles
    • E01C19/268Rollers therefor; Such rollers usable also for compacting soil self-propelled or fitted to road vehicles designed for rolling surfaces not situated in the plane of the riding surface of the apparatus, e.g. stepped-down surfaces, sloping edge of surfacing
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/48Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/48Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ
    • E01C19/4833Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ with tamping or vibrating means for consolidating or finishing, e.g. immersed vibrators, with or without non-vibratory or non-percussive pressing or smoothing means
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/48Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ
    • E01C19/4866Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ with solely non-vibratory or non-percussive pressing or smoothing means for consolidating or finishing
    • E01C19/4873Apparatus designed for railless operation
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C23/00Auxiliary devices or arrangements for constructing, repairing, reconditioning, or taking-up road or like surfaces
    • E01C23/01Devices or auxiliary means for setting-out or checking the configuration of new surfacing, e.g. templates, screed or reference line supports; Applications of apparatus for measuring, indicating, or recording the surface configuration of existing surfacing, e.g. profilographs
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C2301/00Machine characteristics, parts or accessories not otherwise provided for
    • E01C2301/14Extendable screeds

Definitions

  • the present invention relates to a road finisher and a method for operating a road finisher.
  • Road surfaces are often not only built in a completely horizontal and flat form, but also have a transverse profile in order to achieve beneficial effects such as improved drainage of rainwater.
  • straight sections with a roof profile i.e. sloping outwards on both sides from a highest line in the middle of the lane, are manufactured. Curves are manufactured with an increasing superelevation from the inner to the outer curve radius.
  • the settings are made by an operator, for example by means of the hydraulic adjustment of the leveling cylinders or manually operable adjusting nuts.
  • a partially automatic control is from the EP 0 849 399 B1 known.
  • a road preparation system is known in which profile data of a subgrade are used when laying a road surface.
  • a method for installing a road surface is known, in which a set of machine parameters is created and stored in advance and implemented during installation.
  • the object of the present invention is to provide a road finisher with an improved control system for automatic cross-section control and an improved method for operating a road finisher.
  • a road finisher comprises a screed, the screed comprising at least one compacting unit.
  • the paver further includes a GNSS receiver, a material conveyor, and an electronic control system, which in turn includes a memory and a data processor.
  • Digital building data in particular a desired height profile of a road surface to be finished, are stored in the memory.
  • the control system is configured to, on the basis of the building data, an actuator system present on the road finisher, in particular leveling cylinders and/or crown profile adjustment and/or Slope adjustment and/or berm adjustment, to automatically control in order to install the paving material with the desired height profile and thus a defined cross-section for the respective local coordinate point of the road finisher determined with the GNSS receiver.
  • Both the position of the entire screed in space and the orientation can be adjusted automatically individual plank parts to each other.
  • the cross slope of the screed can be set automatically to pave a banked curve.
  • a left and a right half of the plank can be automatically set at an angle to one another to produce a crown profile.
  • add-on or extendable elements can also be adjusted automatically; in particular, their inclination transverse to the direction of travel can be adjusted automatically.
  • the actuators can be, for example, hydraulic or electromotive control elements or drives.
  • the transverse profiles can therefore be planned exactly when the digital building data is created and then paved with the road finisher based on precise coordinates. Possible errors by an operator are excluded and he can take care of other operating functions of the road finisher.
  • the control system is preferably configured to automatically control the steering of the road finisher depending on the location. This ensures that the road surface is also installed in the precisely planned position, which is particularly important with a profiled road surface, since the planum and lateral terrain transitions are adapted to this. Due to the GNSS-based position determination of the road finisher, other reference systems such as mechanical, laser-based or visual monitoring by the operator can be omitted, but they can also continue to be used. The automatic control of the steering further relieves the operator.
  • control system is configured to automatically adjust the screed width depending on the location. In this way, changes in the desired width of the road surface are taken into account, with the operator not being additionally required or being able to limit himself to monitoring the automatic settings.
  • the already mentioned and the following automatic functions of the road finisher, based on the digital building data, which are processed by the electronic control system, can allow almost or completely autonomous paving of a road surface.
  • the screed preferably has a transverse inclination sensor, with the control system being configured to automatically control the actuator system on the basis of the data received from the transverse inclination sensor.
  • the screed can have several transverse inclination sensors, at least one of which is expediently attached to each inclination-adjustable screed part. For example, the transverse slope of a right and left half of the base plank, a right and left add-on or extension part and, if necessary, elements for berm adjustment on the add-on or extension parts can be measured. That's how it can be control system automatically make the desired settings with the help of this feedback mechanism.
  • the data from the transverse inclination sensors can indicate the absolute transverse inclination of the respective screed part in space and/or the relative inclination to one or more other screed parts.
  • the road finisher expediently has a sensor for measuring an actual height profile, with the control system being configured to calculate a deviation of the actual height profile from the target height profile and to automatically control the actuators as a function thereof.
  • the automatic paving activity is controlled by machine and the settings can be automatically readjusted in order to achieve the desired result. Not only the machine settings, as mentioned in the previous section, can be monitored, but also the actual paving result, which means that a particularly high paving quality is achieved.
  • control system is configured to automatically adjust the actuators when there is a transition between two transverse profiles.
  • transitions for example from a crown profile on a straight section of road to a curved section, are particularly complex to create manually, since the angling of two halves of the plank to one another must continuously transition into a transverse slope of an otherwise straight plank without causing any bumps.
  • a high road surface quality is particularly important in curve areas.
  • the automatic adjustment takes care of this installation with the highest quality and eliminates setting errors that are possible with manual control.
  • the GNSS position determination of the road finisher ensures the exact positioning of the roadway profiles and their transitions.
  • Transverse inclination sensors for example for a left and right half of the screed, can monitor the current setting of the screed. The operator therefore does not have to manually initiate the transition sequence based on a position determination he has made.
  • control system is configured to compare the actuator settings required to implement the target height profile with their control limits. This ensures that the paver used can pave the desired profiles. It is conceivable to carry out this check using an external data processing system. In both cases, the data from the road paver is stored digitally.
  • control system is configured to compare the adjustment speeds of the actuators required for installing the desired height profile with the possible adjustment speeds. In particular, this enables the incorporation of changes in the to plan the cross-section exactly and to adjust the driving and paving speed of the road finisher accordingly.
  • the road surface is installed in the desired geometry and in the intended position.
  • the position of the GNSS receiver or the receiving antenna on the road finisher can be taken into account, so that the position of the screed is referenced exactly.
  • Two GNSS receivers can also be used for this purpose.
  • a transverse inclination of the screed and/or a screed part is expediently determined by means of one or more transverse inclination sensors.
  • the transverse inclination of each adjustable screed part such as the left or right half of the base screed, extension elements, berm elements, if present, is measured using a separate sensor on the respective element.
  • the data is received and processed by the control system so that an automatic feedback mechanism monitors the exact setting of the bank.
  • the data can also be displayed to an operator.
  • An actual height profile of the paved road surface is preferably determined by means of a sensor. This data can be presented to the operator on a display device, for example. If necessary, the operator can also intervene manually in the production process and make corrections.
  • a difference between the actual height profile and the target height profile is calculated and the actuator system is automatically regulated to minimize the difference.
  • a particularly high production quality is achieved through this feedback mechanism.
  • the actuator system is preferably set automatically during the transition between two transverse profiles.
  • the settings of the screed have to be continuously changed during the transition between two cross profiles until the transition is completely completed. This is extremely difficult and error-prone to do manually. In addition, a second operator is often required. Thanks to the automatic control, paving is always of consistently high quality and the operator is relieved.
  • the digital building data are expediently transmitted from an external data processing system to the memory of the electronic control system by means of a radio or cable connection.
  • all preliminary calculations and data enrichment can be carried out on a PC.
  • the data of the target height profile of the road surface can be linked to the three-dimensional height profile of the subgrade, or can be calculated based on this.
  • the subgrade data may have been previously obtained by a surface scan.
  • the layer thickness of the paving material, the material requirements and other additional data can also be calculated in this way.
  • the external processing of the data is often more practicable, and it may be possible to dispense with the otherwise necessary display and input devices on the road finisher.
  • the actuator settings required for installing the desired height profile are compared with their control limits. This ensures that the road finisher and in particular the screed is suitable for producing the road surface with the desired transverse profiles.
  • the necessary adjustment speeds of the actuators are compared with the possible adjustment speeds before installation begins.
  • the paving speed can be planned and adjusted accordingly.
  • FIG. 1 shows a road finisher 1 with a screed 3 with tamper 5, screed plate 7 and pressure bar 9 for compacting paving material 11, which is deposited in front of the screed 3 by means of a material conveyor 13.
  • the screed 3 produces a road surface 15 with a predetermined transverse profile.
  • a leveling cylinder 17 can also be seen in this side view, which can be controlled, among other things, to set a transverse inclination of the screed 3 .
  • the road finisher 1 also includes a GNSS receiver 25 for determining the current location coordinates, a distance of the actual receiver antenna 27 from the paving screed 3 being able to be taken into account in order to determine the actual position of the screed 3 .
  • the GNSS receiver antenna 27 can also be arranged on the screed 3 .
  • Two GNSS receiver antennas 27 can also be used to exactly determine the position of the screed 3 .
  • An external data processing unit 29 can exchange data with the control system 19 by means of a radio connection 31 or cable connection 33 .
  • At least one axle of the road finisher 1 is equipped with a steering 35, which can also be controlled by the control system 19.
  • figure 2 shows a schematic representation of digital building data 37, which in this example includes a height profile 39 of a planum 41 and a target height profile 43 of the road surface 15 to be finished.
  • the desired height profile 43 is or defines the transverse profile and is shown here in the form of a roof profile.
  • the structure data 37 are each stored for local coordinate points 45 and together with the height data represent a three-dimensional dataset. It goes without saying that transitions between two types of profile are expediently designed to be gradual, ie without abrupt changes.
  • the subgrade data 39 can be obtained, for example, by a surface scan. For this purpose, for example, the subgrade is traveled over with a vehicle, with a surface scanner and a GNSS receiver being arranged on the vehicle and the height data 39 being stored with the respective location coordinates.
  • figure 3 shows a rear view of a road finisher 1 with the screed 3 in a transverse incline for finishing a sloping roadway surface, such as is used for banked curves.
  • the planum 41 already has the desired transverse inclination compared to the horizontal.
  • the road finisher 1 is thus already running on the subgrade 41 at an incline, with the right-left axis of the screed 3 being essentially perpendicular to the rest of the road finisher 1 .
  • transverse inclination sensors 53 can be arranged on the screed 3 or on the respective screed parts 47, 49, 51.
  • figure 4 shows a rear view of a road finisher 1 with the screed 3 in a crown position.
  • a left-hand screed half 47 and a right-hand screed half 49 are adjusted into a mutually inclined position by means of an actuator for adjusting the roof profile 55 .
  • a positive crown profile is shown here, in which the outer ends of the screed 3 are inclined downwards.
  • a negative roof profile is also possible, with the outer ends pointing upwards.
  • a screed 3 is shown without pull-out parts 51, with the pull-out parts 51 being able to be present.
  • sensors 57 for measuring the actual height profile 59 of the paved road surface 15 are shown.
  • the measurement data are compared by the control system 19 with the target height profile 43, and the actuator or actuators for the crown profile adjustment 55 are readjusted accordingly in order to prevent deviations.
  • the geometry of the screed 3 can be adjusted with the actuators 55 for adjusting the crown profile.
  • the transverse inclination of the entire screed 3 and the paving thickness of the road surface 15 can be adjusted by means of the leveling cylinder 17 .
  • figure 5 shows a rear view of a road finisher 1 with the screed 3 in the slope position.
  • the pull-out parts 51 are also inclined towards the halves 47, 49 of the base plank.
  • the settings are made with appropriate actuators for adjusting the slope 61 . For example, more steeply inclined rainwater outlets can be produced at the edges of a roadway.
  • FIG 6 shows a rear view of a road finisher 1 with a screed 3 in berm position.
  • sections 63 of the pull-out parts 51 can be brought into the angled position shown.
  • These berm sections 63 make it possible, for example, to produce a channel for water drainage at the side of the roadway.
  • the berm sections 63 can be automatically controlled by the control system 19 by means of actuators for berm adjustment 67 and can have further transverse inclination sensors 53, so that both the transverse inclination of the main surface 65 of the extension part and the transverse inclination of the berm section 63 can be measured.
  • figure 7 shows a rear view of a road finisher 1 with a screed 3 with extension parts 51, the lower surfaces, including the main surface 65 and, if present, the berm section 63, are adjustable in height. This can be done, for example, by hydraulic or electric drives and in addition to the inclination adjustment.
  • M or W transverse profiles can be set by combinations of the transverse inclinations of the screed parts 47, 49, 51.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Road Paving Machines (AREA)

Description

Die vorliegende Erfindung betrifft einen Straßenfertiger sowie ein Verfahren zum Betrieb eines Straßenfertigers.The present invention relates to a road finisher and a method for operating a road finisher.

Fahrbahnbeläge werden häufig nicht nur in vollständig horizontaler und flacher Form gebaut, sondern weisen ein Querprofil auf, um vorteilhafte Wirkungen zu erzielen, wie beispielsweise einen verbesserten Abfluss von Regenwasser. So werden gerade Streckenabschnitte mit einem Dachprofil, also von einer höchsten Linie in der Fahrbahnmitte beidseitig nach außen hin abfallend, gefertigt. Kurven werden mit einer vom inneren zum äußeren Kurvenradius ansteigenden Überhöhung gefertigt. Um derartige Profile mit einem Straßenfertiger einbauen zu können, ist es bislang bekannt, die Querneigung der Einbaubohle als Ganzes zu ändern und Abschnitte der Einbaubohle separat voneinander zu neigen. Die Einstellungen werden dabei von einem Bediener vorgenommen, beispielsweise mittels der hydraulischen Verstellung der Nivellierzylinder oder über manuell betätigbare Stellmuttern. Eine teilweise automatische Steuerung ist aus der EP 0 849 399 B1 bekannt.Road surfaces are often not only built in a completely horizontal and flat form, but also have a transverse profile in order to achieve beneficial effects such as improved drainage of rainwater. For example, straight sections with a roof profile, i.e. sloping outwards on both sides from a highest line in the middle of the lane, are manufactured. Curves are manufactured with an increasing superelevation from the inner to the outer curve radius. In order to be able to install such profiles with a road finisher, it has hitherto been known to change the transverse inclination of the screed as a whole and to incline sections of the screed separately from one another. The settings are made by an operator, for example by means of the hydraulic adjustment of the leveling cylinders or manually operable adjusting nuts. A partially automatic control is from the EP 0 849 399 B1 known.

Aus der US 2009/317186 A1 ist ein Straßenfertigungssystem bekannt, bei welchem Profildaten eines Planums beim Einbau eines Straßenbelags verwendet werden. Aus der EP 2 514 872 A1 ist ein Verfahren zum Einbau eines Straßenbelags bekannt, bei welchem ein Maschinenparametersatz vorab erstellt und gespeichert und beim Einbau umgesetzt wird.From the U.S. 2009/317186 A1 a road preparation system is known in which profile data of a subgrade are used when laying a road surface. From the EP 2 514 872 A1 a method for installing a road surface is known, in which a set of machine parameters is created and stored in advance and implemented during installation.

Aufgabe der vorliegenden Erfindung ist es, einen Straßenfertiger mit einem verbesserten Steuerungssystem zur automatischen Querprofilsteuerung sowie ein verbessertes Verfahren zum Betrieb eines Straßenfertigers bereitzustellen.The object of the present invention is to provide a road finisher with an improved control system for automatic cross-section control and an improved method for operating a road finisher.

Gelöst wird die Aufgabe durch einen Straßenfertiger mit den Merkmalen des Anspruchs 1 oder durch ein Verfahren zum Betrieb eines Straßenfertigers mit den Merkmalen des Anspruchs 9. Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.The object is achieved by a road finisher having the features of claim 1 or by a method for operating a road finisher having the features of claim 9. Advantageous developments of the invention are specified in the dependent claims.

Ein erfindungsgemäßer Straßenfertiger umfasst eine Einbaubohle, wobei die Einbaubohle mindestens ein Verdichtungsaggregat umfasst. Der Straßenfertiger umfasst des Weiteren einen GNSS-Empfänger, einen Materialförderer und ein elektronisches Steuerungssystem, welches wiederum einen Speicher und einen Datenprozessor umfasst. In dem Speicher sind digitale Bauwerksdaten, insbesondere ein Soll-Höhenprofil eines zu fertigenden Straßenbelags gespeichert. Das Steuerungssystem ist dazu konfiguriert, anhand der Bauwerksdaten eine am Straßenfertiger vorhandene Aktuatorik, insbesondere Nivellierzylinder und/oder Dachprofilverstellung und/oder Slope-Verstellung und/oder Berme-Verstellung, automatisch zu steuern, um das Einbaumaterial mit dem Soll-Höhenprofil und damit einem definierten Querprofil für den jeweiligen mit dem GNSS-Empfänger ermittelten Ortskoordinatenpunkt des Straßenfertigers einzubauen. Automatisch verstellt werden kann also sowohl die Lage der gesamten Einbaubohle im Raum, als auch die Orientierung einzelner Bohlenteile zueinander. So kann beispielsweise die Querneigung der Einbaubohle zum Einbau einer Kurvenüberhöhung automatisch eingestellt werden. Ebenso kann eine linke und eine rechte Bohlenhälfte abgewinkelt zueinander zur Fertigung eines Dachprofils automatisch eingestellt werden. Zusätzlich zur Hauptbohle können auch Anbau- bzw. Ausziehelemente automatisch eingestellt werden, insbesondere kann ihre Neigung quer zur Fahrtrichtung automatisch eingestellt werden. Bei der Aktuatorik kann es sich beispielsweise um hydraulische oder elektromotorische Stellelemente oder Antriebe handeln. Die Querprofile können also bei der Erstellung der digitalen Bauwerksdaten exakt geplant und anschließend präzise koordinatenbasiert mit dem Straßenfertiger eingebaut werden. Mögliche Fehler eines Bedieners werden ausgeschlossen und dieser kann sich um andere Betriebsfunktionen des Straßenfertigers kümmern.A road finisher according to the invention comprises a screed, the screed comprising at least one compacting unit. The paver further includes a GNSS receiver, a material conveyor, and an electronic control system, which in turn includes a memory and a data processor. Digital building data, in particular a desired height profile of a road surface to be finished, are stored in the memory. The control system is configured to, on the basis of the building data, an actuator system present on the road finisher, in particular leveling cylinders and/or crown profile adjustment and/or Slope adjustment and/or berm adjustment, to automatically control in order to install the paving material with the desired height profile and thus a defined cross-section for the respective local coordinate point of the road finisher determined with the GNSS receiver. Both the position of the entire screed in space and the orientation can be adjusted automatically individual plank parts to each other. For example, the cross slope of the screed can be set automatically to pave a banked curve. Likewise, a left and a right half of the plank can be automatically set at an angle to one another to produce a crown profile. In addition to the main screed, add-on or extendable elements can also be adjusted automatically; in particular, their inclination transverse to the direction of travel can be adjusted automatically. The actuators can be, for example, hydraulic or electromotive control elements or drives. The transverse profiles can therefore be planned exactly when the digital building data is created and then paved with the road finisher based on precise coordinates. Possible errors by an operator are excluded and he can take care of other operating functions of the road finisher.

Vorzugsweise ist das Steuerungssystem dazu konfiguriert, die Lenkung des Straßenfertigers ortsabhängig automatisch zu steuern. So wird sichergestellt, dass der Straßenbelag auch an der exakt vorhergesehenen Position eingebaut wird, was insbesondere bei einer profilierten Fahrbahnoberfläche wichtig ist, da Planum und seitliche Geländeübergänge darauf abgestimmt sind. Durch die GNSS-basierte Positionsbestimmung des Straßenfertigers können andere Referenzsysteme, wie mechanische, laserbasierte oder Sichtüberwachung durch den Bediener wegfallen, sie können aber auch zusätzlich weiter zum Einsatz kommen. Durch die automatische Steuerung der Lenkung wird der Bediener weiter entlastet.The control system is preferably configured to automatically control the steering of the road finisher depending on the location. This ensures that the road surface is also installed in the precisely planned position, which is particularly important with a profiled road surface, since the planum and lateral terrain transitions are adapted to this. Due to the GNSS-based position determination of the road finisher, other reference systems such as mechanical, laser-based or visual monitoring by the operator can be omitted, but they can also continue to be used. The automatic control of the steering further relieves the operator.

In einer vorteilhaften Variante ist das Steuerungssystem dazu konfiguriert, die Bohlenbreite ortsabhängig automatisch einzustellen. So werden Änderungen in der gewünschten Breite des Fahrbahnbelags berücksichtigt, wobei ebenfalls der Bediener nicht zusätzlich gefordert ist, oder sich darauf beschränken kann die automatischen Einstellungen zu überwachen. Die bereits erwähnten, sowie die noch folgenden automatischen Funktionen des Straßenfertigers, basierend auf den digitalen Bauwerksdaten, welche von dem elektronischen Steuerungssystem verarbeitet werden, können insgesamt ein nahezu oder vollständig autonomes Einbauen eines Straßenbelags ermöglichen.In an advantageous variant, the control system is configured to automatically adjust the screed width depending on the location. In this way, changes in the desired width of the road surface are taken into account, with the operator not being additionally required or being able to limit himself to monitoring the automatic settings. The already mentioned and the following automatic functions of the road finisher, based on the digital building data, which are processed by the electronic control system, can allow almost or completely autonomous paving of a road surface.

Bevorzugt weist die Einbaubohle einen Querneigungssensor auf, wobei das Steuerungssystem dazu konfiguriert ist, anhand der von dem Querneigungssensor empfangenen Daten die Aktuatorik automatisch zu steuern. Die Einbaubohle kann mehrere Querneigungssensoren aufweisen, wovon zweckmäßig jeweils mindestens einer an jedem neigungsverstellbaren Bohlenteil angebracht ist. So kann beispielsweise jeweils die Querneigung einer rechten und linken Hälfte der Grundbohle, eines rechten und linken Anbau- oder Ausziehteils und gegebenenfalls von Elementen zur Berme-Einstellung an den Anbau- oder Ausziehteilen gemessen werden. So kann das Steuerungssystem automatisch mit Hilfe dieses Rückmeldungsmechanismus die gewünschten Einstellungen exakt vornehmen. Die Daten der Querneigungssensoren können die absolute Querneigung des jeweiligen Bohlenteils im Raum und/oder die relative Neigung zu einem oder mehreren anderen Bohlenteilen angeben.The screed preferably has a transverse inclination sensor, with the control system being configured to automatically control the actuator system on the basis of the data received from the transverse inclination sensor. The screed can have several transverse inclination sensors, at least one of which is expediently attached to each inclination-adjustable screed part. For example, the transverse slope of a right and left half of the base plank, a right and left add-on or extension part and, if necessary, elements for berm adjustment on the add-on or extension parts can be measured. That's how it can be control system automatically make the desired settings with the help of this feedback mechanism. The data from the transverse inclination sensors can indicate the absolute transverse inclination of the respective screed part in space and/or the relative inclination to one or more other screed parts.

Zweckmäßig weist der Straßenfertiger einen Sensor zur Messung eines Ist-Höhenprofils auf, wobei das Steuerungssystem dazu konfiguriert ist, eine Abweichung des Ist-Höhenprofils von dem Soll-Höhenprofil zu berechnen und in Abhängigkeit davon die Aktuatorik automatisch zu steuern. So wird mit einem Rückmeldungsmechanismus die automatische Einbautätigkeit maschinell kontrolliert und es können die Einstellungen automatisch nachgeregelt werden, um das gewünschte Ergebnis zu erreichen. Es können also nicht nur die Maschineneinstellungen, wie im vorangegangenen Abschnitt erwähnt, überwacht werden, sondern auch das tatsächliche Einbauergebnis, wodurch eine besonders hohe Einbauqualität erreicht wird.The road finisher expediently has a sensor for measuring an actual height profile, with the control system being configured to calculate a deviation of the actual height profile from the target height profile and to automatically control the actuators as a function thereof. With a feedback mechanism, the automatic paving activity is controlled by machine and the settings can be automatically readjusted in order to achieve the desired result. Not only the machine settings, as mentioned in the previous section, can be monitored, but also the actual paving result, which means that a particularly high paving quality is achieved.

In einer vorteilhaften Variante ist das Steuerungssystem dazu konfiguriert, die Aktuatorik beim Übergang zwischen zwei Querprofilen automatisch zu verstellen. Solche Übergänge, beispielsweise von einem Dachprofil auf einem geraden Fahrbahnabschnitt zu einer Kurvenüberhöhung, sind besonders aufwändig manuell zu erstellen, da die Abwinkelung zweier Bohlenhälften zueinander kontinuierlich in eine Querneigung einer ansonsten geraden Bohle übergehen muss, ohne dass dabei Unebenheiten entstehen. Besonders in Kurvenbereichen ist eine hohe Fahrbahnqualität wichtig. Die automatische Verstellung erledigt diesen Einbau mit höchster Qualität und schließt Einstellungsfehler, welche bei der manuellen Regelung möglich sind, aus. Die GNSS-Positionsbestimmung des Straßenfertigers sichert dabei die exakte Positionierung der Fahrbahnprofile und deren Übergänge. Querneigungssensoren, beispielsweise jeweils für eine linke und rechte Bohlenhälfte, können die momentane Einstellung der Einbaubohle überwachen. Der Bediener muss also die Übergangssequenz nicht anhand einer von ihm vorgenommenen Positionsbestimmung manuell einleiten.In an advantageous variant, the control system is configured to automatically adjust the actuators when there is a transition between two transverse profiles. Such transitions, for example from a crown profile on a straight section of road to a curved section, are particularly complex to create manually, since the angling of two halves of the plank to one another must continuously transition into a transverse slope of an otherwise straight plank without causing any bumps. A high road surface quality is particularly important in curve areas. The automatic adjustment takes care of this installation with the highest quality and eliminates setting errors that are possible with manual control. The GNSS position determination of the road finisher ensures the exact positioning of the roadway profiles and their transitions. Transverse inclination sensors, for example for a left and right half of the screed, can monitor the current setting of the screed. The operator therefore does not have to manually initiate the transition sequence based on a position determination he has made.

Idealerweise ist das Steuerungssystem dazu konfiguriert, die zum Einbau des Soll-Höhenprofils nötigen Aktuatoreneinstellungen mit deren Stellgrenzen zu vergleichen. So wird sichergestellt, dass der verwendete Straßenfertiger die gewünschten Profile einbauen kann. Dabei ist es denkbar, diese Überprüfung auch mittels einer externen Datenverarbeitungsanlage vorzunehmen. In beiden Fällen sind dazu die Daten des Straßenfertigers digital vorgehalten.Ideally, the control system is configured to compare the actuator settings required to implement the target height profile with their control limits. This ensures that the paver used can pave the desired profiles. It is conceivable to carry out this check using an external data processing system. In both cases, the data from the road paver is stored digitally.

In einer weiteren Variante ist das Steuerungssystem dazu konfiguriert, die zum Einbau des Soll-Höhenprofils nötigen Verstellgeschwindigkeiten der Aktuatoren mit den möglichen Verstellgeschwindigkeiten zu vergleichen. Dies ermöglicht insbesondere den Einbau von Änderungen im Querprofil exakt zu planen und die Fahr- bzw Einbaugeschwindigkeit des Straßenfertigers entsprechend anzupassen.In a further variant, the control system is configured to compare the adjustment speeds of the actuators required for installing the desired height profile with the possible adjustment speeds. In particular, this enables the incorporation of changes in the to plan the cross-section exactly and to adjust the driving and paving speed of the road finisher accordingly.

Ein erfindungsgemäßes Verfahren zum Betrieb eines Straßenfertigers, insbesondere eines Stra-ßenfertigers nach einer der vorangegangenen Ausführungsformen, umfasst folgende Verfahrensschritte:

  • Vorhalten von digitalen Bauwerksdaten, insbesondere einem Soll-Höhenprofil und einem damit definierten Querprofil eines zu fertigenden Straßenbelags, in einem Speicher eines elektronischen Steuerungssystems des Straßenfertigers,
  • Einbau eines Einbaumaterials mittels einer Einbaubohle des Straßenfertigers, wobei die jeweilige aktuelle Position des Straßenfertigers mittels eines GNSS-Empfängers ermittelt wird und anhand des Soll-Höhenprofils eine am Straßenfertiger vorhandene Aktuatorik, insbesondere Nivellierzylinder und/oder Dachprofilverstellung und/oder Slope-Verstellung und/oder Berme-Verstellung, automatisch gesteuert wird.
A method according to the invention for operating a road finisher, in particular a road finisher according to one of the preceding embodiments, comprises the following method steps:
  • Provision of digital building data, in particular a target height profile and a cross profile of a road surface to be finished defined therewith, in a memory of an electronic control system of the road finisher,
  • Installation of paving material using a paving screed of the road finisher, with the respective current position of the road finisher being determined using a GNSS receiver and using the target height profile an actuator system present on the road finisher, in particular leveling cylinders and/or crown profile adjustment and/or slope adjustment and/or berm adjustment, is controlled automatically.

So wird der Straßenbelag in der gewünschten Geometrie und an der vorgesehenen Position eingebaut. Dabei kann die Position des GNSS-Empfängers bzw. der Empfangsantenne am Straßenfertiger berücksichtigt werden, so dass die Position der Einbaubohle exakt referenziert wird. Dazu können auch zwei GNSS-Empfänger zum Einsatz kommen.The road surface is installed in the desired geometry and in the intended position. The position of the GNSS receiver or the receiving antenna on the road finisher can be taken into account, so that the position of the screed is referenced exactly. Two GNSS receivers can also be used for this purpose.

Zweckmäßig wird eine Querneigung der Einbaubohle und/oder eines Bohlenteils mittels eines oder mehrerer Querneigungssensoren ermittelt. Idealerweise wird die Querneigung jedes verstellbaren Bohlenteils, wie linke oder rechte Hälfte der Grundbohle, Ausziehelemente, Berme-Elemente, sofern jeweils vorhanden, mittels eines eigenen Sensors an dem jeweiligen Element gemessen. Die Daten werden von dem Steuerungssystem empfangen und verarbeitet, so dass ein automatischer Rückkopplungsmechanismus die exakte Einstellung der Querneigung überwacht. Ebenso können die Daten einem Bediener angezeigt werden.A transverse inclination of the screed and/or a screed part is expediently determined by means of one or more transverse inclination sensors. Ideally, the transverse inclination of each adjustable screed part, such as the left or right half of the base screed, extension elements, berm elements, if present, is measured using a separate sensor on the respective element. The data is received and processed by the control system so that an automatic feedback mechanism monitors the exact setting of the bank. The data can also be displayed to an operator.

Vorzugsweise wird ein Ist-Höhenprofil des eingebauten Straßenbelags mittels eines Sensors ermittelt. Diese Daten können beispielsweise dem Bediener auf einem Anzeigegerät dargestellt werden. So kann der Bediener bei Bedarf auch manuell in den Fertigungsprozess eingreifen und Korrekturen vornehmen.An actual height profile of the paved road surface is preferably determined by means of a sensor. This data can be presented to the operator on a display device, for example. If necessary, the operator can also intervene manually in the production process and make corrections.

In einer vorteilhaften Variante wird eine Differenz des Ist-Höhenprofils zu dem Soll-Höhenprofil berechnet und die Aktuatorik zur Minimierung der Differenz automatisch geregelt. Durch diesen Rückkoppelungsmechanismus wird eine besonders hohe Fertigungsqualität erreicht.In an advantageous variant, a difference between the actual height profile and the target height profile is calculated and the actuator system is automatically regulated to minimize the difference. A particularly high production quality is achieved through this feedback mechanism.

Bevorzugt wird die Aktuatorik beim Übergang zwischen zwei Querprofilen automatisch eingestellt. Die Einstellungen der Einbaubohle müssen beim Übergang zweier Querprofile kontinuierlich geändert werden, bis der Übergang vollständig abgeschlossen ist. Dies ist manuell äußerst schwierig und fehleranfällig. Zudem wird oftmals eine zweite Bedienperson benötigt. Durch die automatische Regelung wird stets mit gleichbleibender hoher Qualität eingebaut und der Bediener entlastet.The actuator system is preferably set automatically during the transition between two transverse profiles. The settings of the screed have to be continuously changed during the transition between two cross profiles until the transition is completely completed. This is extremely difficult and error-prone to do manually. In addition, a second operator is often required. Thanks to the automatic control, paving is always of consistently high quality and the operator is relieved.

Zweckmäßig werden die digitalen Bauwerksdaten zu Beginn des Verfahrens von einer externen Datenverarbeitungsanlage in den Speicher des elektronischen Steuerungssystems mittels Funk- oder Kabelverbindung übertragen. So können alle Vorberechnungen und Datenanreicherungen an einem PC vorgenommen werden. Es können beispielsweise die Daten des Soll-Höhenprofils des Straßenbelags mit dem dreidimensionalen Höhenprofil des Planums verknüpft werden, bzw. basierend auf diesem berechnet werden. Die Planumsdaten können zuvor durch einen Oberflächenscan gewonnen worden sein. So können auch die Schichtstärke des Einbaumaterials, der Materialbedarf und andere zusätzliche Daten berechnet werden. Dabei ist es jedoch auch denkbar, derartige Berechnungen mittels des Steuerungssystems des Straßenfertigers selbst durchzuführen. Die externe Aufbereitung der Daten ist jedoch oftmals praktikabler, und es kann eventuell auf sonst nötige Anzeige- und Eingabegeräte am Straßenfertiger verzichtet werden.At the beginning of the process, the digital building data are expediently transmitted from an external data processing system to the memory of the electronic control system by means of a radio or cable connection. In this way, all preliminary calculations and data enrichment can be carried out on a PC. For example, the data of the target height profile of the road surface can be linked to the three-dimensional height profile of the subgrade, or can be calculated based on this. The subgrade data may have been previously obtained by a surface scan. The layer thickness of the paving material, the material requirements and other additional data can also be calculated in this way. However, it is also conceivable to carry out such calculations using the control system of the road finisher itself. However, the external processing of the data is often more practicable, and it may be possible to dispense with the otherwise necessary display and input devices on the road finisher.

In einer bevorzugten Variante werden vor Beginn des Einbaus die zum Einbau des Soll-Höhenprofils nötigen Aktuatoreneinstellungen mit deren Stellgrenzen verglichen. So wird sichergestellt, dass der Straßenfertiger und insbesondere die Einbaubohle zur Fertigung des Straßenbelags mit den gewünschten Querprofilen geeignet ist.In a preferred variant, before the start of the installation, the actuator settings required for installing the desired height profile are compared with their control limits. This ensures that the road finisher and in particular the screed is suitable for producing the road surface with the desired transverse profiles.

In einer weiteren vorteilhaften Variante werden vor Beginn des Einbaus die nötigen Verstellgeschwindigkeiten der Aktuatoren mit den möglichen Verstellgeschwindigkeiten verglichen. Entsprechend kann die Einbaugeschwindigkeit geplant und eingestellt werden.In a further advantageous variant, the necessary adjustment speeds of the actuators are compared with the possible adjustment speeds before installation begins. The paving speed can be planned and adjusted accordingly.

Im Folgenden werden Ausführungsbeispiele der Erfindung anhand der Figuren näher beschrieben. Dabei zeigen

Figur 1:
eine Seitenansicht eines Straßenfertigers,
Figur 2:
eine schematische Ansicht digitaler Bauwerksdaten,
Figur 3:
eine Rückansicht eines Straßenfertigers mit einer Einbaubohle in Querneigung,
Figur 4:
eine Rückansicht eines Straßenfertigers mit einer Einbaubohle in Dachprofilstellung,
Figur 5:
eine Rückansicht eines Straßenfertigers mit einer Einbaubohle in Slope-Stellung
Figur 6:
eine Rückansicht eines Straßenfertigers mit einer Einbaubohle in Berme-Stellung,
Figur 7:
eine Rückansicht eines Straßenfertigers mit einer Einbaubohle mit höhenverstellten Ausziehteilen.
Exemplary embodiments of the invention are described in more detail below with reference to the figures. show it
Figure 1:
a side view of a paver,
Figure 2:
a schematic view of digital building data,
Figure 3:
a rear view of a road finisher with a screed at an angle,
Figure 4:
a rear view of a road finisher with a screed in crown position,
Figure 5:
a rear view of a road finisher with a screed in the slope position
Figure 6:
a rear view of a road finisher with a screed in berm position,
Figure 7:
a rear view of a road finisher with a screed with height-adjustable extension parts.

Einander entsprechende Komponenten sind in den Figuren jeweils mit gleichen Bezugszeichen versehen.Corresponding components are each provided with the same reference symbols in the figures.

Figur 1 zeigt einen Straßenfertiger 1 mit einer Einbaubohle 3 mit Tamper 5, Glättblech 7 und Pressleiste 9 zum Verdichten von Einbaumaterial 11, welches mittels einem Materialförderer 13 vor der Einbaubohle 3 abgelegt ist. Die Einbaubohle 3 fertigt einen Straßenbelag 15 mit einem vorgegebenen Querprofil. In dieser Seitenansicht ist des Weiteren ein Nivellierzylinder 17 zu erkennen, welcher unter Anderem zur Einstellung einer Querneigung der Einbaubohle 3 angesteuert werden kann. Dazu ist ein Steuerungssystem 19, welches einen Speicher 21 und einen Datenprozessor 23 umfasst, auf geeignete Weise mit dem Nivellierzylinder 17 bzw. einer mit diesem verbundenen Hydrauliksteuerung verbunden. Der Straßenfertiger 1 umfasst zudem einen GNSS-Empfänger 25 zur Ermittlung der aktuellen Ortskoordinate, wobei eine Entfernung der tatsächlichen Empfängerantenne 27 zur Einbaubohle 3 berücksichtigt werden kann, um die tatsächliche Position der Bohle 3 zu bestimmen. Alternativ kann die GNSS-Empfängerantenne 27 auch auf der Einbaubohle 3 angeordnet sein. Auch können zwei GNSS-Empfängerantennen 27 verwendet werden, um die Position der Einbaubohle 3 exakt zu bestimmen. Eine externe Datenverarbeitungseinheit 29 kann mittels Funkverbindung 31 oder Kabelverbindung 33 Daten mit dem Steuerungssystem 19 austauschen. Wenigstens eine Achse des Straßenfertigers 1 ist mit einer Lenkung 35 ausgestattet, welche ebenfalls von dem Steuerungssystem 19 ansteuerbar sein kann. figure 1 shows a road finisher 1 with a screed 3 with tamper 5, screed plate 7 and pressure bar 9 for compacting paving material 11, which is deposited in front of the screed 3 by means of a material conveyor 13. The screed 3 produces a road surface 15 with a predetermined transverse profile. A leveling cylinder 17 can also be seen in this side view, which can be controlled, among other things, to set a transverse inclination of the screed 3 . For this purpose, a control system 19, which includes a memory 21 and a data processor 23, is connected in a suitable manner to the leveling cylinder 17 or to a hydraulic control system connected to it. The road finisher 1 also includes a GNSS receiver 25 for determining the current location coordinates, a distance of the actual receiver antenna 27 from the paving screed 3 being able to be taken into account in order to determine the actual position of the screed 3 . Alternatively, the GNSS receiver antenna 27 can also be arranged on the screed 3 . Two GNSS receiver antennas 27 can also be used to exactly determine the position of the screed 3 . An external data processing unit 29 can exchange data with the control system 19 by means of a radio connection 31 or cable connection 33 . At least one axle of the road finisher 1 is equipped with a steering 35, which can also be controlled by the control system 19.

Figur 2 zeigt eine schematische Darstellung digitaler Bauwerksdaten 37, welche in diesem Beispiel ein Höhenprofil 39 eines Planums 41, sowie ein Soll-Höhenprofil 43 des zu fertigenden Straßenbelags 15 umfassen. Das Soll-Höhenprofil 43 ist bzw. definiert das Querprofil und ist hier in Form eines Dachprofils dargestellt. Die Bauwerksdaten 37 sind jeweils für Ortskoordinatenpunkte 45 gespeichert und stellen zusammen mit den Höhendaten einen dreidimensionalen Datensatz dar. Die Querprofileinstellung der Einbaubohle 3 wird anhand der Bauwerksdaten 37 für den jeweiligen mit dem GNSS-Empfänger 25 erfassten Ortskoordinatenpunkt 45 eingestellt. Es versteht sich, dass Übergänge zwischen zwei Profilarten zweckmäßig graduell, also ohne abrupte Änderungen gestaltet sind. Die Planumsdaten 39 können beispielsweise durch einen Oberflächenscan gewonnen werden. Hierzu wird beispielsweise mit einem Fahrzeug das Planum abgefahren, wobei ein Oberflächenscanner und ein GNSS-Empfänger am Fahrzeug angeordnet sind und die Höhendaten 39 mit der jeweiligen Ortskoordinate abgespeichert werden. figure 2 shows a schematic representation of digital building data 37, which in this example includes a height profile 39 of a planum 41 and a target height profile 43 of the road surface 15 to be finished. The desired height profile 43 is or defines the transverse profile and is shown here in the form of a roof profile. The structure data 37 are each stored for local coordinate points 45 and together with the height data represent a three-dimensional dataset. It goes without saying that transitions between two types of profile are expediently designed to be gradual, ie without abrupt changes. The subgrade data 39 can be obtained, for example, by a surface scan. For this purpose, for example, the subgrade is traveled over with a vehicle, with a surface scanner and a GNSS receiver being arranged on the vehicle and the height data 39 being stored with the respective location coordinates.

Figur 3 zeigt eine Rückansicht eines Straßenfertigers 1 mit der Einbaubohle 3 in Querneigung zur Fertigung einer schrägen Fahrbahnoberfläche, wie sie beispielsweise als Kurvenüberhöhung verwendet wird. In der hier dargestellten Variante weist bereits das Planum 41 die gewünschte Querneigung im Vergleich zur Horizontalen auf. Somit fährt der Straßenfertiger 1 bereits geneigt auf dem Planum 41, wobei die Einbaubohle 3 mit ihrer Rechts-Links-Achse im Wesentlichen senkrecht zum restlichen Straßenfertiger 1 steht. Ebenso ist es jedoch möglich bei einem horizontalen Planum 41 die Einbaubohle 3 in eine Querneigung relativ zum Chassis des Straßenfertigers 1 und zum Planum 41 zu bringen, um einen Straßenbelag 15 mit quergeneigter Fahrbahnoberfläche auf dem horizontalen Planum 41 zu fertigen. Die Querneigung der gesamten Einbaubohle 3 wird dabei durch die Verstellung der Nivellierzylinder 17 vorgenommen.. Für alle Ausführungsformen kann die Einbaubohle 3 eine linke Bohlenhälfte 47, eine rechte Bohlenhälfte 49 sowie Verbreiterungs- und/oder Ausziehteile 51 aufweisen. Zur Überwachung der Querneigung können Querneigungssensoren 53 an der Einbaubohle 3 bzw. an den jeweiligen Bohlenteilen 47, 49, 51 angeordnet sein. figure 3 shows a rear view of a road finisher 1 with the screed 3 in a transverse incline for finishing a sloping roadway surface, such as is used for banked curves. In the variant shown here, the planum 41 already has the desired transverse inclination compared to the horizontal. The road finisher 1 is thus already running on the subgrade 41 at an incline, with the right-left axis of the screed 3 being essentially perpendicular to the rest of the road finisher 1 . However, it is also possible with a horizontal subgrade 41 to bring the screed 3 into a transverse incline relative to the chassis of the road finisher 1 and to the subgrade 41 in order to finish a road surface 15 with a transversely inclined roadway surface on the horizontal subgrade 41 . The transverse inclination of the entire screed 3 is carried out by adjusting the leveling cylinders 17 . In order to monitor the transverse inclination, transverse inclination sensors 53 can be arranged on the screed 3 or on the respective screed parts 47, 49, 51.

Figur 4 zeigt eine Rückansicht eines Straßenfertigers 1 mit der Einbaubohle 3 in einer Dachprofilstellung. Eine linke Bohlenhälfte 47 und eine rechte Bohlenhälfte 49 sind mittels eines Aktuators zur Dachprofilverstellung 55 in eine zueinander geneigte Position verstellt. Hier ist ein positives Dachprofil gezeigt, bei dem die äußeren Enden der Einbaubohle 3 nach unten geneigt sind. Ebenso ist auch ein negatives Dachprofil möglich, bei dem die äußeren Enden nach oben weisen. In diesem Beispiel ist eine Einbaubohle 3 ohne Ausziehteile 51 gezeigt, wobei die Ausziehteile 51 vorhanden sein können. figure 4 shows a rear view of a road finisher 1 with the screed 3 in a crown position. A left-hand screed half 47 and a right-hand screed half 49 are adjusted into a mutually inclined position by means of an actuator for adjusting the roof profile 55 . A positive crown profile is shown here, in which the outer ends of the screed 3 are inclined downwards. A negative roof profile is also possible, with the outer ends pointing upwards. In this example, a screed 3 is shown without pull-out parts 51, with the pull-out parts 51 being able to be present.

Zudem sind Sensoren 57 zur Messung des Ist-Höhenprofils 59 des eingebauten Straßenbelags 15 gezeigt. Die Messdaten werden von dem Steuerungssystem 19 mit dem Soll-Höhenprofil 43 verglichen, und der oder die Aktuatoren zur Dachprofilverstellung 55 entsprechend nachgeregelt, um Abweichungen zu verhindern. Mit den Aktuatoren 55 zur Dachprofilverstellung kann die Geometrie der Einbaubohle 3 verstellt werden. Zusätzlich kann mittels der Nivellierzylinder 17 die Querneigung der gesamten Einbaubohle 3 und die Einbaustärke des Straßenbelags 15 eingestellt werden.In addition, sensors 57 for measuring the actual height profile 59 of the paved road surface 15 are shown. The measurement data are compared by the control system 19 with the target height profile 43, and the actuator or actuators for the crown profile adjustment 55 are readjusted accordingly in order to prevent deviations. The geometry of the screed 3 can be adjusted with the actuators 55 for adjusting the crown profile. In addition, the transverse inclination of the entire screed 3 and the paving thickness of the road surface 15 can be adjusted by means of the leveling cylinder 17 .

Figur 5 zeigt eine Rückansicht eines Straßenfertigers 1 mit der Einbaubohle 3 in Slope-Stellung. Dabei sind die Ausziehteile 51 zusätzlich zu den Hälften 47, 49 der Grundbohle geneigt. Die Einstellungen werden mit entsprechenden Aktuatoren zur Slope-Verstellung 61 vorgenommen. So können beispielsweise an den Rändern einer Fahrbahn stärker geneigte Regenabflüsse gefertigt werden. figure 5 shows a rear view of a road finisher 1 with the screed 3 in the slope position. The pull-out parts 51 are also inclined towards the halves 47, 49 of the base plank. The settings are made with appropriate actuators for adjusting the slope 61 . For example, more steeply inclined rainwater outlets can be produced at the edges of a roadway.

Figur 6 zeigt eine Rückansicht eines Straßenfertigers 1 mit einer Einbaubohle 3 in Berme-Stellung. Dazu können Abschnitte 63 der Ausziehteile 51 in die gezeigte abgewinkelte Position gebracht werden. Diese Berme-Abschnitte 63 ermöglichen beispielsweise das Fertigen einer Rinne für den Wasserablauf am seitlichen Fahrbahnrand. Die Berme-Abschnitte 63 sind mittels Aktuatoren zur Berme-Verstellung 67 von dem Steuerungssystem 19 automatisch steuerbar und können weitere Querneigungssensoren 53 aufweisen, so dass sowohl die Querneigung der Hauptfläche 65 des Ausziehteils als auch die Querneigung des Berme-Abschnitts 63 gemessen werden kann. figure 6 shows a rear view of a road finisher 1 with a screed 3 in berm position. For this purpose, sections 63 of the pull-out parts 51 can be brought into the angled position shown. These berm sections 63 make it possible, for example, to produce a channel for water drainage at the side of the roadway. The berm sections 63 can be automatically controlled by the control system 19 by means of actuators for berm adjustment 67 and can have further transverse inclination sensors 53, so that both the transverse inclination of the main surface 65 of the extension part and the transverse inclination of the berm section 63 can be measured.

Figur 7 zeigt eine Rückansicht eines Straßenfertigers 1 mit einer Einbaubohle 3 mit Ausziehteilen 51, deren untere Flächen, umfassend Hauptfläche 65 und sofern vorhanden Berme-Abschnitt 63, höhenverstellbar sind. Dies kann beispielsweise durch hydraulische oder elektrische Antriebe und zusätzlich zur Neigungsverstellung erfolgen. figure 7 shows a rear view of a road finisher 1 with a screed 3 with extension parts 51, the lower surfaces, including the main surface 65 and, if present, the berm section 63, are adjustable in height. This can be done, for example, by hydraulic or electric drives and in addition to the inclination adjustment.

Ausgehend von den oben dargestellten Ausführungsformen eines Straßenfertigers 1 und eines Verfahrens zum Betrieb eines Straßenfertigers 1 sind vielerlei Variationen derselben denkbar. So können M- oder W-Querprofile durch Kombinationen der Querneigungen der Bohlenteile 47, 49, 51 eingestellt werden.Based on the above-described embodiments of a road finisher 1 and a method for operating a road finisher 1, many variations thereof are conceivable. Thus, M or W transverse profiles can be set by combinations of the transverse inclinations of the screed parts 47, 49, 51.

Claims (15)

  1. Road finishing machine (1) with a screed (3), wherein the screed (3) comprises at least one compacting unit (5, 7, 9), and the road finishing machine (1) furthermore comprises a GNSS receiver (25) as well as a material conveyor (13), wherein the road finishing machine (1) comprises an electronic control system (19) which comprises a memory (21) and a data processor (23), characterised in that in the memory (21), digital construction data (37), including a nominal height profile (43) of a road pavement (15) to be finished, are stored, and the control system (19) is configured to automatically control, based on the construction data (37), an actuator mechanism (17, 55, 61, 67) provided on the road finishing machine (1), including a levelling cylinder (17) and/or a transverse camber adjustment (55) and/or a slope adjustment (61) and/or a berm adjustment (67), to install laying material (11) with the nominal height profile (43) and thereby a defined transverse profile for the respective position coordinate point (45) of the road finishing machine (1) determined with the GNSS receiver (25).
  2. Road finishing machine according to claim 1, characterized in that the control system (19) is configured to automatically control the steering system (35) of the road finishing machine (1) depending on the position.
  3. Road finishing machine according to one of the preceding claims, characterized in that the control system (19) is configured to automatically adjust the screed's width depending on the position.
  4. Road finishing machine according to one of the preceding claims, characterized in that the screed (3) comprises a side slope sensor (53), wherein the control system (19) is configured to automatically control the actuator mechanism (17, 55, 61, 67) based on the data received from the side slope sensor (53).
  5. Road finishing machine according to one of the preceding claims, characterized in that it comprises a sensor (57) for measuring an actual height profile (59), wherein the control system (19) is configured to calculate a deviation of the actual height profile (59) from the nominal height profile (43), and to automatically control the actuator mechanism (17, 55, 61, 67) in response thereto.
  6. Road finishing machine according to one of the preceding claims, characterized in that the control system is configured to automatically adjust the actuator mechanism (17, 55, 61, 67) in the transition between two transverse profiles.
  7. Road finishing machine according to one of the preceding claims, characterized in that the control system (19) is configured to compare the actuator settings required for the installation of the nominal height profile (43) with their setting limits.
  8. Road finishing machine according to one of the preceding claims, characterized in that the control system (19) is configured to compare the adjustment speeds of the actuators (17, 55, 61, 67) required for the installation of the nominal height profile (43) with the possible adjustment speeds.
  9. Method for operating a road finishing machine (1) according to one of the preceding claims, comprising the following procedure steps:
    - storing digital construction data (37), including a nominal height profile (43) and a transverse profile of a road pavement (15) to be finished defined therewith, in a memory (21) of an electronic control system (19) of the road finishing machine (1),
    - installing a laying material (11) by means of a screed (3) of the road finishing machine (1), wherein the respective current position of the road finishing machine (1) is determined by means of a GNSS receiver (25) and, with reference to the nominal height profile (43), an actuator mechanism (17, 55, 61, 67) provided on the road finishing machine (1), including a levelling cylinder (17) and/or a transverse camber adjustment (55) and/or a slope adjustment (61) and/or a berm adjustment (67), is automatically controlled.
  10. Method according to claim 9, characterized in that a side slope of the screed (3) and/or a screed part (47, 49, 51, 63) is determined by means of one or several side slope sensors (53).
  11. Method according to claim 9 or 10, characterized in that an actual height profile (59) of the installed road pavement (15) is determined by means of a sensor (57), and a difference between the actual height profile (59) and the nominal height profile (43) is calculated and the actuator mechanism (17, 55, 61, 67) is automatically controlled to minimise the difference.
  12. Method according to one of claims 9 to 11, characterized in that the actuator mechanism (17, 55, 61, 67) is automatically adjusted in the transition between two transverse profiles.
  13. Method according to one of claims 9 to 12, characterized in that the digital construction data (37) are transmitted, at the beginning of the process, from an external data processing equipment (29) into the memory (21) of the electronic control system (19) by means of a radio or cable connection (31, 33).
  14. Method according to one of claims 9 to 13, characterized in that, before the beginning of the installation, the actuator settings required for the installation of the nominal height profile (43) are compared with their setting limits.
  15. Method according to one of claims 9 to 14, characterized in that, before the beginning of the installation, the required adjustment speeds of the actuators (17, 55, 61, 67) are compared with the possible adjustment speeds.
EP20168635.9A 2020-04-08 2020-04-08 Road finisher and method with transverse profile control Active EP3892777B1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PL20168635.9T PL3892777T3 (en) 2020-04-08 2020-04-08 Road finisher and method with transverse profile control
EP20168635.9A EP3892777B1 (en) 2020-04-08 2020-04-08 Road finisher and method with transverse profile control
BR102021006565-6A BR102021006565A2 (en) 2020-04-08 2021-04-06 ROAD FINISHING MACHINE AND METHOD FOR OPERATING IT
CN202110376748.1A CN113494039B (en) 2020-04-08 2021-04-07 Pavement finisher with lateral profile control
CN202120731925.9U CN216712654U (en) 2020-04-08 2021-04-07 Road surface finisher
US17/225,316 US20210317620A1 (en) 2020-04-08 2021-04-08 Road finishing machine with transverse profile control
JP2021065919A JP2021167560A (en) 2020-04-08 2021-04-08 Road finisher provided with traverse profile control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20168635.9A EP3892777B1 (en) 2020-04-08 2020-04-08 Road finisher and method with transverse profile control

Publications (2)

Publication Number Publication Date
EP3892777A1 EP3892777A1 (en) 2021-10-13
EP3892777B1 true EP3892777B1 (en) 2023-08-30

Family

ID=70227942

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20168635.9A Active EP3892777B1 (en) 2020-04-08 2020-04-08 Road finisher and method with transverse profile control

Country Status (6)

Country Link
US (1) US20210317620A1 (en)
EP (1) EP3892777B1 (en)
JP (1) JP2021167560A (en)
CN (2) CN113494039B (en)
BR (1) BR102021006565A2 (en)
PL (1) PL3892777T3 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3892777B1 (en) * 2020-04-08 2023-08-30 Joseph Vögele AG Road finisher and method with transverse profile control
EP4183922B1 (en) * 2021-11-18 2024-07-31 Joseph Vögele AG Levelling controller adaption by means of floor profile analysis
CN114875763B (en) * 2022-06-10 2024-02-06 苌永涛 Road and bridge construction foundation pit repairing device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2514872B1 (en) * 2011-04-18 2015-07-22 Joseph Vögele AG Paver for paving a road surface

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5549412A (en) * 1995-05-24 1996-08-27 Blaw-Knox Construction Equipment Corporation Position referencing, measuring and paving method and apparatus for a profiler and paver
DE29621976U1 (en) 1996-12-18 1997-02-13 ABG Allgemeine Baumaschinen GmbH, 31785 Hameln Paver
US7399139B2 (en) * 1998-10-27 2008-07-15 Somero Enterprises, Inc. Apparatus and method for three-dimensional contouring
JP4695397B2 (en) * 2003-02-13 2011-06-08 アドバンスド ペーヴィング テクノロジーズ インコーポレイテッド Asphalt distribution and compaction system
US8382395B2 (en) * 2008-06-20 2013-02-26 Caterpillar Inc. Paving system and method for controlling compactor interaction with paving material mat
PL2813619T3 (en) * 2013-06-11 2018-10-31 Joseph Vögele AG Screed for a road finisher
JP6018549B2 (en) * 2013-07-30 2016-11-02 大成ロテック株式会社 Vibrator device and concrete pavement construction method
JP2015045276A (en) * 2013-08-28 2015-03-12 前田道路株式会社 Engine noise reduction device of asphalt finisher
US10613524B2 (en) * 2016-01-15 2020-04-07 Caterpillar Paving Products Inc. Truck process management tool for transport operations
US10990245B2 (en) * 2016-01-15 2021-04-27 Caterpillar Paving Products Inc. Mobile process management tool for paving operations
US11186957B2 (en) * 2018-07-27 2021-11-30 Caterpillar Paving Products Inc. System and method for cold planer control
EP3892777B1 (en) * 2020-04-08 2023-08-30 Joseph Vögele AG Road finisher and method with transverse profile control

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2514872B1 (en) * 2011-04-18 2015-07-22 Joseph Vögele AG Paver for paving a road surface

Also Published As

Publication number Publication date
CN113494039A (en) 2021-10-12
CN216712654U (en) 2022-06-10
US20210317620A1 (en) 2021-10-14
EP3892777A1 (en) 2021-10-13
CN113494039B (en) 2022-10-21
BR102021006565A2 (en) 2021-10-19
PL3892777T3 (en) 2024-02-26
JP2021167560A (en) 2021-10-21

Similar Documents

Publication Publication Date Title
EP3892777B1 (en) Road finisher and method with transverse profile control
DE69411064T2 (en) Control device for a paver
EP2336424B1 (en) Self-propelled construction machine and method for controlling same
EP1825064B1 (en) Method and device for monitoring a road processing machine
EP3739122B1 (en) Road finisher and method for determining a thickness of a layer of an established installation layer
EP3498914B1 (en) Adjustment of the levelling cylinder in a road finisher
EP2987911B1 (en) Self-propelled milling machine, and method for unloading milled goods
EP4056758B1 (en) Method for manufacturing a road paving and asphalting system
WO2006092441A1 (en) Method and system for controlling a construction machine
EP3851584B1 (en) Road finisher with compression control
WO2007125017A1 (en) Road-making machine, levelling device and method of controlling the cutting depth or cutting inclination in a road-making machine
EP0834620A1 (en) Paving train
WO2002046533A1 (en) Laser height adjustment device for a construction machine
EP0388819A1 (en) Road-paving machine
EP2696173A1 (en) Construction machine with sensor unit
EP1876297B1 (en) Device and method for determining the position of a road compactor with respect to a finisher
EP3536857B1 (en) Slipform paver and method for operating a slipform paver
EP3252233B1 (en) Paver
EP0495171B1 (en) Laying-down course thickness adjusting method with a finisher
DE102018128998A1 (en) RAMPBAR AND WEAR PLATE FOR MOUNTING-MOUNTING ASSEMBLY OF AN ASPHALTING MACHINE
DE10038943A1 (en) Asphalt pavers and paving processes
EP4224112A2 (en) Measurement system and controller
EP4056760B1 (en) Road finisher with levelling cascade control
EP3214222B1 (en) Screeds assembly and method of operating same
DE102014010837A1 (en) Process for the production of a road surface and road paver

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220408

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230315

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020004922

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231130

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231230

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231201

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240102

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502020004922

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

26 Opposition filed

Opponent name: DYNAPAC GMBH

Effective date: 20240530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240423

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240425

Year of fee payment: 5

R26 Opposition filed (corrected)

Opponent name: DYNAPAC GMBH

Effective date: 20240530