EP3872206B1 - Procédé de fabrication d'un produit plan en acier laminé à froid, traité ultérieurement et produit plan en acier laminé à froid, traité ultérieurement - Google Patents

Procédé de fabrication d'un produit plan en acier laminé à froid, traité ultérieurement et produit plan en acier laminé à froid, traité ultérieurement Download PDF

Info

Publication number
EP3872206B1
EP3872206B1 EP21155199.9A EP21155199A EP3872206B1 EP 3872206 B1 EP3872206 B1 EP 3872206B1 EP 21155199 A EP21155199 A EP 21155199A EP 3872206 B1 EP3872206 B1 EP 3872206B1
Authority
EP
European Patent Office
Prior art keywords
cold
flat steel
steel product
rolling
rolled flat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21155199.9A
Other languages
German (de)
English (en)
Other versions
EP3872206A1 (fr
Inventor
Annette BÄUMER
Roland Sebald
Hans Ferkel
Karoline Drewes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
Original Assignee
ThyssenKrupp Steel Europe AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp Steel Europe AG filed Critical ThyssenKrupp Steel Europe AG
Publication of EP3872206A1 publication Critical patent/EP3872206A1/fr
Application granted granted Critical
Publication of EP3872206B1 publication Critical patent/EP3872206B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0268Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the invention relates to a cold-rolled flat steel product which has been post-treated to increase strength and has an increased yield strength and increased tensile strength, and a method for its manufacture.
  • Flat steel products of the type in question are rolled products obtained by cold rolling, such as steel strips or sheets, as well as blanks and blanks made from them.
  • High-strength flat steel products are becoming increasingly important, especially in the field of vehicle construction, since they enable the vehicle's dead weight to be reduced and the payload to be increased.
  • a low weight not only contributes to the optimal use of the technical performance of the respective drive unit, but also supports resource efficiency, cost optimization and climate protection.
  • a significant reduction in the dead weight of sheet steel constructions can be achieved by increasing the mechanical properties, in particular the strength of the processed flat steel product.
  • a steel flat product consisting of a two-phase steel is known.
  • the steel flat product is manufactured by hot and cold rolling. After cold rolling, it goes through an additional heat treatment to increase the yield strength.
  • the steel flat product consists of a steel which (in % by weight) contains 0.05 - 0.20% C, 0.2 - 1.5% Si, 0.01 - 1.5% Al, 1.0 - 3.0% Mn, ⁇ 0.02% P, ⁇ 0.005% S, ⁇ 0.008% N, and optionally 0.05 - 1.0%, 0.05 - 0.2% Mo, 0.005 - 0.2 % Ti, 0.001 - 0.05% Nb, 0.0001 - 0.005% B, balance Fe and unavoidable impurities.
  • the flat steel product has a microstructure consisting of (in area %) ⁇ 5% bainite, ⁇ 5% polygonal ferrite, ⁇ 90% martensite and ⁇ 2% by volume residual austenite, with at least half of the martensite being tempered martensite.
  • a special heat treatment to achieve the mechanical properties and structure.
  • the object of the invention was to specify a method for producing a flat steel product with a high yield point and a high tensile strength R m that can be carried out reliably and thereby leads to an optimal combination of properties of the flat steel product obtained.
  • the yield point of a flat steel product is understood to mean the lower yield point R el if the flat steel product has a pronounced yield point. Otherwise (ie for flat steel products without a pronounced yield point), the yield point of the flat steel product is understood to mean the yield point R p02 for the purposes of this application.
  • tensile strength and yield point are determined in accordance with DIN-EN ISO 6982-1, specimen form 2 (Annex B Tab. B1).
  • a steel flat product of the same quality should be created in the same way.
  • this object has been achieved by the invention in that the work steps specified in claim 1 are carried out when producing a cold-rolled flat steel product with a high yield point and a high tensile strength R m .
  • a flat steel product that achieves the above-mentioned object according to the invention has the features specified in claim 8 .
  • the temper rolling takes place at room temperature, although the flat steel product usually heats up to a certain extent as a result of the temper rolling.
  • the yield point can be increased both by plastic deformation during re-rolling and by tempering.
  • plastic deformation new dislocations occur in the lattice structure, which contribute to the increase in strength.
  • Tempering leads to the formation and growth of precipitations that prevent dislocations from sliding.
  • the subsequent tempering must be designed in such a way that sufficient thermal energy is introduced to enable the local recovery processes, but not too much thermal energy, otherwise global microstructure formation will occur.
  • afterglow temperatures in the range of 100° to 400°C have proven to be appropriate.
  • the afterglow temperature is preferably greater than 130°C and/or less than 330°C.
  • the annealing time is expediently 0.2-25 hours.
  • the tempering provided according to the invention after the skin-pass rolling is carried out as batch annealing.
  • the alloy of the steel from which the flat steel products to be processed according to the invention are made is selected in such a way that optimal mechanical properties are achieved under the influence of the additional post-treatment step.
  • C is present in the steel of a cold rolled steel flat product processed in accordance with the present invention at levels of 0.05-0.25% by weight to produce sufficient martensite to increase strength. At higher C contents, too little ferrite occurs. In addition, too high a C content has a negative effect on weldability.
  • the C content is preferably at most 0.20% by weight, particularly preferably at most 0.18%. On the other hand, if the C content is less than 0.05%, the desired strength is not obtained.
  • the C content is preferably at least 0.08% by weight, particularly preferably at least 0.12% by weight.
  • Si is present in the steel of a cold-rolled flat steel product processed according to the invention in contents of 0.05-0.6% in order to increase the strength by solid solution hardening without impairing the ductility.
  • Si serves as a ferrite former. Excessively high Si contents can impair the surface finish, for example as a result of adherent scale or grain boundary oxidation.
  • the Si content can be limited to a maximum of 0.6% by weight.
  • the Si content is preferably at most 0.42%.
  • the Si content can be set to at least 0.24% by weight.
  • Mn is present in the steel of a cold-rolled flat steel product processed according to the invention in amounts of 1.0-3.0% by weight in order to promote solid solution strengthening as well as martensite formation to increase strength. This is done by Mn stabilizing the austenite from which the martensite is formed. The volume fraction of the martensite is therefore adjusted by targeted adjustment of the Mn content.
  • the Mn content is preferably at least 1.5% by weight, in particular at least 1.7% by weight.
  • an excessive addition of Mn leads to an insufficient proportion of the martensite phase. Therefore, the Mn content is preferably at most 2.4% by weight.
  • Al is present in the steel of a cold-rolled flat steel product processed according to the invention in amounts of 0.02-1.5% by weight, on the one hand to serve as a deoxidizing agent and to bind nitrogen during melting and on the other hand to ensure the sufficient amount of ferrite and thus the ductility increase.
  • the maximum content of 1.5% by weight should not be exceeded. Compliance with an upper limit of 0.9% by weight has proven to be particularly advantageous.
  • N is an undesirable alloying component attributable to unavoidable impurities. Its content in the steel of a cold-rolled flat steel product processed according to the invention must therefore be at most 0.02% by weight. Too high an N content impairs the workability and, if B and/or Al is also present, can lead to the formation of harmful nitrides and thus prevent the effectiveness of these elements.
  • the N content is preferably at most 0.01% by weight. Optimally, it is limited to at most 0.008% by weight, especially at most 0.006% by weight.
  • P is an undesirable alloying component attributable to unavoidable impurities. Excessive addition of P can lead to embrittlement and thus to reduced crash properties. In addition, the weldability is impaired by the P content. For these reasons, the P content should not exceed 0.2% by weight.
  • the P content is preferably at most 0.05%, in particular at most 0.03%.
  • S is an undesirable alloying component attributable to unavoidable impurities. Its content in the steel of a cold-rolled flat steel product processed according to the invention may therefore not be more than 0.05% by weight. In order to ensure good ductility of the steel product, the formation of MnS or (Mn,Fe)S must be kept as low as possible.
  • the S content is preferably at most 0.01% by weight, particularly preferably at most 0.005% by weight.
  • Cr and Mo contribute to increasing the strength. They favor the formation of martensite by shifting the ferrite-pearlite transformation zones during heat treatment.
  • the Mo content is at least 0.005% by weight, preferably at least 0.005% by weight.
  • the Cr content is at least 0.2% by weight, preferably at least 0.3% by weight. If the Cr or Mo content is too high, however, undesirable carbides can form. In addition, the alloy cost increases excessively.
  • the Mo content is therefore at most 1.0% by weight, preferably at most 0.3% by weight.
  • the Cr content is at most 1.5% by weight, preferably at most 0.8% by weight.
  • Ti, B and Nb contribute to the increase in strength and lead to a finer microstructure.
  • B enables a higher proportion of martensite by suppressing the formation of ferrite and bainite, but can only develop its full effect through the additional addition of Ti, which prevents the formation of unwanted boron nitrides by forming fine Ti(C,N) precipitations.
  • This increase in strength due to the formation of precipitates is favored or reinforced by the additional addition of Nb. It has been shown that the sum of the contents of Ti, Nb and 15 times the content of B should be at least 0.02% by weight in order to achieve these properties (i.e. Ti+Nb+15 ⁇ B >_ 0 .02% by weight).
  • the boron content is less than 0.005% by weight, preferably less than 0.003% by weight.
  • V in the steel of the cold-rolled steel flat product processed according to the present invention results in an improvement in workability and an improved resistance to delayed cracking through a finer microstructure.
  • a V content in the range of 0.0005-0.05% by weight should be chosen, in particular it should be at least 0.005% by weight.
  • the Cu and Ni contribute to strengthening in the steel of the cold-rolled flat steel product processed according to the present invention, and may be added singly or in combination.
  • the Cu content is at least 0.0001% by weight, preferably at least 0.001% by weight. However, the Cu content should not exceed 0.5% by weight, preferably 0.08% by weight.
  • the Ni content is at least 0.002% by weight, preferably at least 0.01% by weight. At maximum, the Ni content should be no greater than 0.2% by weight, preferably no greater than 0.1% by weight.
  • the addition of Ca in the steel of the cold-rolled flat steel product processed according to the invention leads to a finer distribution of inclusions in the steel and forms spherical sulfides, which can reduce disadvantages of other harmful sulfides in further processing.
  • the Ca content should be at least 0.0005% by weight. However, since too high a Ca content can have adverse effects on castability and hot workability, it should be at most 0.007% by weight, preferably at most 0.005% by weight.
  • the steel has a carbon equivalent C eq of between 0.3% and 1.3%.
  • the carbon equivalent is well suited to characterizing the subsequent workability of the steel flat product. With values in the range of 0.3% to 1.3%, the steel flat product can both be welded and coated without any problems compared to other steel alloys with a similar strength and a higher proportion of alloying elements.
  • the carbon equivalent is preferably at most 0.7% for this. More preferably, the carbon equivalent is at least 0.3%.
  • a cold-rolled flat steel product is preferably used as the starting material for the post-treatment process according to the invention, the structure of which consists of at least two phases, of which martensite and ferrite are the dominant phases, with more than 10% by volume martensite and more than 60% by volume ferrite available.
  • the ferrite content is preferably more than 70% by volume, in particular more than 80%.
  • the remainder may contain bainite or precipitates.
  • the structure of the steel flat product should contain at least 60% by volume of ferrite in order to be able to set the necessary elongation. At least 10% by volume of martensite should also be present in the structure of the flat steel product according to the invention in order to achieve the strength and to enable a tempering effect.
  • the post-treated microstructure consists of at least two phases, of which ferrite and martensite are the dominant phases.
  • the martensite is now tempered martensite.
  • the ferrite phase shows slightly stretched grains, any previously present residual austenite has disintegrated.
  • the other phase components are unchanged compared to the starting product.
  • the post-treated flat steel product thus has a structure consisting of at least two phases which (in vol%) more than 10% tempered martensite and more than 60% ferrite.
  • the ferrite content is preferably more than 70% by volume, in particular more than 80%.
  • the cold-rolled flat steel product is coated between temper rolling and tempering. Coating has the advantage that protection against corrosion is guaranteed.
  • the cold-rolled flat steel product is coated, in particular electrolytically coated, between re-rolling and tempering.
  • the advantage of a coating between re-rolling and tempering is that any hydrogen absorbed during the coating is removed again during tempering. Hydrogen can lead to hydrogen embrittlement and should therefore be avoided if possible.
  • An electrolytic coating has the advantage that the flat steel product is not overheated, for example in comparison to hot-dip coating. Excessive heating during coating could affect the structure and thus the mechanical properties.
  • the cooling of the cold-rolled flat steel product to room temperature has two intermediate steps.
  • the cold-rolled flat steel product is cooled to a first cooling temperature T 1 in the first intermediate step and is held at the first cooling temperature T 1 for a first holding time t 1 .
  • the cold-rolled flat steel product is then cooled to a second cooling temperature T 2 in the second intermediate step and is held at the second cooling temperature T 2 for a second holding time t 2 .
  • This two-stage cooling process has the advantage that ferrite is formed in the first intermediate step and the proportion of bainite and residual austenite is adjusted in the second intermediate step.
  • the cooling can also take place in a single cooling step to room temperature.
  • the cold-rolled flat steel product that has been post-treated to increase strength can be provided with a metallic protective coating.
  • a metallic protective coating This is example useful if components are made from the steel flat product that are exposed to a corrosive environment in practical use.
  • the metallic coating can be applied in any suitable manner, application by hot-dip coating being particularly suitable here, for example in a continuous hot-dip coating plant.
  • a post-treated, cold-rolled flat steel product has a yield strength of at least 1000 MPa if the yield strength is at least 1000 MPa in at least one direction (ie, for example, transversely or longitudinally to the rolling direction).
  • the yield strength is at least 1000 MPa in at least one direction (ie, for example, transversely or longitudinally to the rolling direction).
  • the after-treatment steps according to the invention regularly result in a yield strength of at least 1000 MPa; preferred variants have a yield strength of at least 1200 MPa, in particular at least 1400 MPa.
  • a tensile strength of at least 1100 MPa is also achieved, with preferred embodiment variants having a tensile strength of at least 1200 MPa, in particular at least 1400 MPa.
  • the alloy-independent tensile strength R m is at least 400 MPa, preferably at least 450 MPa.
  • the high tensile strength is therefore not achieved by high alloying with elements that contribute to hardening (C, Si, Mn, Cr, Mo), but rather by the post-treatment steps of temper rolling and tempering according to the invention.
  • the cold-rolled steel flat product, which has been post-treated to increase strength, has the advantage that high strength can be achieved without excessive alloying. It is therefore correspondingly cheaper to produce.
  • the negative effects of the high alloy content on later processing steps such as welding or coating are eliminated. In this regard, low-alloy steels are easier to process.
  • the sum of the grain boundary lengths for small-angle grain boundaries of a square measuring field of 50 ⁇ m*50 ⁇ m in a longitudinal section is greater than 10 mm, preferably greater than 15 mm, particularly preferably greater than 20 mm.
  • the sum of the grain boundary lengths is determined using the EBSD method.
  • the EBSD method (electron backscattering diffraction) is one of the electron microscopic examination methods. The information from the electrons backscattered by the sample is used. The electron beam scans the surface of the sample during an analysis. The impinging electrons are scattered in the sample. Some of these hit lattice surfaces of the examined grain under Bragg conditions and are diffracted. The resulting diffraction pattern (Kikuchi pattern) is recorded using a phosphor screen and processed and interpreted by software.
  • the Kikuchi patterns contain information about the existing crystal symmetries, which allow conclusions to be drawn about the investigated crystallographic phases and the orientation of the examined grain, as well as lattice distortions, misorientation of grain boundaries, etc. If you now look at a square measuring field of 50 ⁇ m*50 ⁇ m on the surface of a section taken along the rolling direction (longitudinal section), it is possible to add up the total length of the small-angle grain boundaries which separate orientation differences of the lattice of ⁇ 15°.
  • the steel melts 1-17 have been cast into slabs for the subsequent tests 1-17.
  • the slabs cast from the steel melts were reheated to a reheating temperature of 1260-1300°C and then hot-rolled in a conventional manner at a hot-rolling finish temperature of 880-990°C, each into a hot strip having a thickness of 2-3 mm.
  • the hot strips obtained were cooled to a coiling temperature of 525-585° C. and coiled at this coiling temperature to form a coil.
  • the hot strips were cold-rolled in a similarly conventional manner with an overall degree of cold-rolling of 20-60% on average, which was achieved by cold-rolling, to form cold-rolled steel strips.
  • the cold-rolled steel strips then underwent continuous annealing at an annealing temperature of 816-916°C.
  • the steel strips were cooled to room temperature in two intermediate steps.
  • the steel strips were cooled to a first cooling temperature T 1 with 650° C. ⁇ T 1 ⁇ 800° C. and held at the first cooling temperature for a first holding time t 1 with 0s ⁇ t 1 ⁇ 20 s.
  • the steel strips were then cooled to a second cooling temperature T 2 and held at the second cooling temperature T 2 for a second holding time t 2 .
  • the following applied to the second cooling temperature T 2 and the second holding time t 2 450 ° C ⁇ T 2 ⁇ 550 ° C and 60 s ⁇ t 2 ⁇ 500 s
  • All of the steel strips produced in this way had a structure with more than 10% martensite and more than 60% ferrite.
  • Each of the cold-rolled steel strips obtained in the tests described above was then first subjected to temper rolling with a temper rolling degree W G2 and then to an additional tempering anneal carried out as a batch annealing, during which it was held at a temperature T G2 for more than 20 minutes .
  • cold-rolled steel strips according to the invention are optimally suited for the production of components which have high strength but do not have the high-alloy chemical analysis typical of this strength. This reduces the associated welding problems and the cost of the alloying components.
  • FIGs 1 and 2 show, as an example for the steel from example no. 13 described above (see Table 1), the increase in yield strength through temper rolling without tempering ( figure 1 ) and by tempering without prior temper rolling ( figure 2 ).
  • the difference in yield strength between the condition after re-rolling or tempering and the initial condition is plotted in each case. In all cases, the yield point was determined perpendicular to the rolling direction.
  • figure 1 shows this difference as a function of the degree of rolling.
  • figure 2 shows the difference as a function of the glow temperature during the initial glow. The annealing time was 20 minutes in each case. Both figures show a clear increase in the yield strength due to the respective post-treatment.
  • Figure 13 shows the synergistic effect of temper rolling and tempering on strength for steel #13.
  • the difference in yield strength between the condition after temper rolling and tempering and the condition after temper rolling without tempering is plotted.
  • a degree of rolling of 0% means the case without temper rolling. If the two effects (tempering and tempering) on the strength were independent of one another, there should not be any dependency on the degree of rolling, since the effect of rolling has just been subtracted. For all three afterglow temperatures (200°C, 300°C and 400°C) there should be a curve parallel to the x-axis. Instead, however, an increase with increasing degree of rolling can be seen for all three afterglow temperatures. The overall effect therefore goes beyond the sum of the two individual effects.
  • FIGs 4 and 5 show light microscopic longitudinal sections of steel no. 13 after nital etching.
  • the high ferrite content of more than 60% by volume can be clearly seen in both figures.
  • figure 4 shows the steel in its initial state without post-treatment.
  • steel No. 13 is shown after post-treatment to increase strength as shown in Table 2, in which the steel was first temper rolled to a degree of rolling of 30% and then tempered at 300° C. for more than 20 minutes. The rolling direction is included figure 5 in the plane of the drawing and runs horizontally.
  • the slightly stretched grains of the ferrite phase can be clearly seen.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Claims (9)

  1. Procédé de production d'un produit plat en acier laminé à froid qui a été soumis à un post-traitement pour augmenter la résistance, procédé dans lequel un produit plat en acier laminé à froid est fourni, le produit plat en acier fourni étant réalisé à l'aide des étapes de travail suivantes :
    - couler sous la forme d'une brame un acier dont la composition en % en poids est la suivante :
    - C : 0,05 à 0,25 %,
    - Si : 0,05 à 0,6 %,
    - Mn : 1,0 à 3,0 %,
    - Al : 0,02 à 1,5 %,
    - N : moins de 0,02 %,
    - P : 0,005 à 0,2 %,
    - S : moins de 0,05 %
    - un ou plusieurs éléments du groupe « Cr, Mo » avec la condition suivante :
    - Cr : 0,2 à 1,5 %,
    - Mo : 0,005 à 1,0 %,
    - éventuellement un ou plusieurs éléments du groupe « Ti, Nb, B » avec la condition suivante :
    - B : moins de 0,005 %
    - Ti+Nb+15*B : 0,02 à 0,15 %
    - et éventuellement un ou plusieurs éléments du groupe « V, Cu, Ni, Ca » avec la condition suivante :
    - V : 0,0005 à 0,05 %
    - Cu : 0,0001 à 0,5 %
    - Ni : 0,002 à 0,2 %
    - Ca : 0,0005 à 0,007 %
    - le reste étant du fer et des impuretés inévitables ;
    - réchauffer la brame à une température de réchauffage de 1200 à 1300 °C ;
    - laminer à chaud la brame réchauffée sous la forme d'une bande chaude, la température de fin de laminage à chaud de la bande à chaud à la fin du laminage à chaud étant de 800 à 1000 °C ;
    - bobiner la bande chaude à une température de bobinage de 400 à 700 °C ;
    - décaper la bande chaude ;
    - laminer à froid la bande chaude dans une ou plusieurs étapes de laminage à froid pour former un produit plat en acier laminé à froid, le degré de laminage à froid obtenu par le laminage à froid étant de 20 à 80 % au total ;
    - recuire en continu le produit plat en acier laminé à froid à une température de recuit continu de 700 à 950 °C ;
    - refroidir le produit plat en acier laminé à froid à la température ambiante ;
    caractérisé en ce que le produit plat en acier laminé à froid fourni est soumis à un post-traitement pour augmenter la résistance, les étapes de travail suivantes étant réalisées :
    - effectuer un laminage de finition sur le produit plat en acier laminé à froid, le degré de laminage WG2 atteint par le laminage de finition étant de 8 à 40 % au total ;
    - recuire le produit plat en acier soumis à un laminage de finition à une température de recuit TG2 de 100 à 400 °C sur une durée de recuit de 0,2 à 25 heures.
  2. Procédé selon la revendication 1, caractérisé en ce que l'acier a un équivalent carbone Cäq obtenu avec C äq = C + 1 6 Mn + 1 5 Mo + 1 15 Ni + 1 5 Cr + 1 5 V + 1 15 Cu ,
    Figure imgb0021
    et l'indice de production PWG obtenu avec P WG = T G 2 K W G 2 C äq
    Figure imgb0022
    est compris entre 0,1 et 2,7:
    TG2 : température de recuit dans l'unité °C
    WG2 : degré de laminage lors du laminage de finition en %
    Cäq : équivalent carbone en %
    K : constante d'une valeur de 10 °C
  3. Procédé selon l'une des revendications 1 à 2, caractérisé en ce que l'acier présente une structure à au moins deux phases qui contient en % en vol. plus de 10 % de martensite recuite et plus de 60 % de ferrite.
  4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que le produit plat en acier laminé à froid est pourvu d'un revêtement, notamment par voie électrolytique, entre le laminage de finition et le recuit.
  5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que le refroidissement du produit plat en acier laminé à froid à la température ambiante comporte deux étapes intermédiaires, le produit plat en acier laminé à froid étant refroidi à la première température de refroidissement T1 dans la première étape intermédiaire et un premier temps de maintien t1 étant maintenu à la première température de refroidissement T1, et le produit plat en acier laminé à froid étant refroidi à une deuxième température de refroidissement T2 dans la deuxième étape intermédiaire et un deuxième temps de maintien t2 étant maintenu à la deuxième température de refroidissement T2, ce qui suit s'appliquant aux températures de refroidissement T1, T2 : T 1 > T 2 , 450 ° C T 1 800 ° C et 400 ° C T 2 600 ° C
    Figure imgb0023
    et ce qui suit s'appliquant aux temps de maintien t1, t2 : 0 s t 1 20 s et 0 s t 2 900 s .
    Figure imgb0024
  6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que le produit plat en acier laminé à froid prévu pour la trempe est pourvu d'un revêtement protecteur métallique qui est appliqué notamment par revêtement par immersion à chaud.
  7. Produit plat en acier laminé à froid qui a été soumis à un post-traitement pour augmenter la résistance, lequel
    - comprend un acier dont la composition en % en poids est la suivante :
    - C : 0,05 à 0,25 %,
    - Si : 0,05 à 0,6 %,
    - Mn : 1,0à 3,0 %,
    - Al : 0,02 à 1,5 %,
    - N : moins de 0,02 %,
    - P : 0,005 à 0,2 %,
    - S : moins de 0,05 %
    - un ou plusieurs éléments du groupe « Cr, Mo » avec la condition suivante :
    - Cr : 0,2 à 1,5 %,
    - Mo : 0,005 à 1,0 %,
    - éventuellement un ou plusieurs éléments du groupe « Ti, Nb, B » avec la condition suivante :
    - B : moins de 0,005 %
    - Ti+Nb+15*B : 0,02 à 0,15 %
    - et éventuellement un ou plusieurs éléments du groupe « V, Cu, Ni, Ca » avec la condition suivante :
    - V : 0,0005 à 0,05 %
    - Cu : 0,0001 à 0,5 %
    - Ni : 0,002 à 0,2 %
    - Ca : 0,0005 à 0,007 %
    - le reste étant du fer et des impuretés inévitables ;
    et
    - présente une limite d'élasticité d'au moins 1000 MPa et une résistance à la traction Rm d'au moins 1100 MPa, déterminées selon DIN-EN ISO 6982-1, modèle d'essai 2 (Annexe B Tab. B1),
    - la résistance à la traction m indépendante de l'alliage étant d'au moins 400 MPa, avec R ˜ m = R m C + Si + Mn + Cr + Mo ,
    Figure imgb0025
    C, Si, Mn, Cr et Mo étant les teneurs respectives en éléments en pourcentage en poids
    - et l'acier ayant une structure qui comprend au moins deux phases et en % en volume plus de 10 % de martensite recuite et plus de 60 % de ferrite.
  8. Produit plat en acier laminé à froid qui a été soumis à un post-traitement pour augmenter la résistance selon la revendication 7, caractérisé en ce que l'acier a un équivalent carbone Cäq avec C a q = C + 1 6 Mn + 1 5 Mo + 1 15 Ni + 1 5 Cr + 1 5 V + 1 15 Cu ,
    Figure imgb0026
    qui est de la gamme de 0,5 % à 1,3 %.
  9. Produit plat en acier laminé à froid qui a été soumis à un post-traitement pour augmenter la résistance selon l'une des revendications 7 à 8, caractérisé en ce que la somme des longueurs de joint de grain pour des joints de grain aux petits angles d'une zone de mesure carrée de 50 µm*50 µm dans un polissage longitudinal est supérieure à 10 mm, de préférence supérieure à 15 mm, de manière particulièrement préférée supérieure à 20 mm.
EP21155199.9A 2020-02-28 2021-02-04 Procédé de fabrication d'un produit plan en acier laminé à froid, traité ultérieurement et produit plan en acier laminé à froid, traité ultérieurement Active EP3872206B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20160000 2020-02-28

Publications (2)

Publication Number Publication Date
EP3872206A1 EP3872206A1 (fr) 2021-09-01
EP3872206B1 true EP3872206B1 (fr) 2023-06-21

Family

ID=69845829

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21155199.9A Active EP3872206B1 (fr) 2020-02-28 2021-02-04 Procédé de fabrication d'un produit plan en acier laminé à froid, traité ultérieurement et produit plan en acier laminé à froid, traité ultérieurement

Country Status (1)

Country Link
EP (1) EP3872206B1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115948692B (zh) * 2022-09-22 2024-06-14 马鞍山钢铁股份有限公司 一种抗拉强度450MPa级汽车用冷轧罩式退火高强钢及其制造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2614465T3 (es) * 2012-07-10 2017-05-31 Thyssenkrupp Steel Europe Ag Producto plano de acero laminado en frío y procedimiento para su fabricación
EP3132063B1 (fr) 2014-04-15 2021-01-13 ThyssenKrupp Steel Europe AG Procédé de production d'un produit plat en acier laminé à froid à limite d'élasticité élevée et produit plat en acier laminé à froid
WO2016177420A1 (fr) * 2015-05-06 2016-11-10 Thyssenkrupp Steel Europe Ag Produit laminé plat en acier et son procédé de fabrication

Also Published As

Publication number Publication date
EP3872206A1 (fr) 2021-09-01

Similar Documents

Publication Publication Date Title
EP2710158B1 (fr) Produit plat en acier hautement résistant et son procédé de fabrication
EP2855717B1 (fr) Tôle d'acier et méthode pour son obtention
DE60125253T2 (de) Hochfestes warmgewalztes Stahlblech mit ausgezeichneten Reckalterungseigenschaften
EP3292228B1 (fr) PRODUIT EN ACIER PLAT ET PROCÉDÉ DE FABRICATION DE
CELLE-CI
DE60121233T2 (de) Hochfestes Kaltgewalztes Stahlblech mit hoch r-Wert, exzellenter Reckalterungseigenschaften und Alterungsbeständigkeit sowie Verfahren zur dessen Herstellung
EP3221484B1 (fr) Procédé de production d'une bande en acier polyphasé, durcissant à l'air, ayant une haute résistance et ayant d'excellentes propriétés de mise en oeuvre
DE112005003112T5 (de) Hochfestes Stahlblech und Verfahren zu dessen Herstellung
EP3688203B1 (fr) Produit d'acier plat et son procédé de fabrication
EP3535431B1 (fr) Produit d'acier à teneur en manganèse intermédiaire pour application à basse température et son procédé de fabrication
EP2374910A1 (fr) Acier, produit plat en acier, composant en acier et procédé de fabrication d'un composant en acier
EP3692178B1 (fr) Procede de fabrication d'une bande d'acier a partir d'un acier multiphase a tres haute resistance
EP3976838A1 (fr) Composant réalisé par formage d'un larget de tôle d'acier et procédé de réalisation correspondant
EP3872206B1 (fr) Procédé de fabrication d'un produit plan en acier laminé à froid, traité ultérieurement et produit plan en acier laminé à froid, traité ultérieurement
WO2007141152A1 (fr) Acier manganèse-bore, produit plat préparé à partir d'un tel acier et procédé pour sa préparation
WO2023025635A1 (fr) Produit plat en acier laminé à froid et son procédé de production
WO2020038883A1 (fr) Produit plat en acier laminé à chaud n'ayant pas subi un traitement par trempe et revenu, laminé à chaud ayant subi un traitement par trempe et revenu, ainsi que procédé de production associé
DE69012073T2 (de) Hochfestes kaltgewalztes Stahlblech, entweder feuerverzinkt oder nicht, mit verbesserten Streckbördeleigenschaften und Herstellungsverfahren.
EP3122910A2 (fr) Composants en alliage d'acier et procédé de fabrication de composants à haute résistance
DE3441087C2 (fr)
WO2024115199A1 (fr) Produit plat en acier laminé à froid et son procédé de fabrication
DE102022125128A1 (de) Verfahren zur Herstellung eines Stahlbandes aus einem hochfesten Mehrphasenstahl und entsprechendes Stahlband
DE102022102418A1 (de) Hochfestes schmelztauchbeschichtetes Stahlband mit durch Gefügeumwandlung bewirkter Plastizität und Verfahren zu dessen Herstellung
DE102020110319A1 (de) Verfahren zur Herstellung eines Stahlbandes mit einem Mehrphasengefüge und Stahlband hinzu
DE102022121780A1 (de) Verfahren zur Herstellung eines kaltgewalzten Stahlflachprodukts
EP4298255A1 (fr) Produit plat en acier laminé à chaud à haute résistance ayant une aptitude au formage à froid locale élevée et procédé de production d?un tel produit plat en acier

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211111

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DREWES, KAROLINE

Inventor name: FERKEL, HANS

Inventor name: SEBALD, ROLAND

Inventor name: BAEUMER, ANNETTE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C21D 9/46 20060101ALI20230208BHEP

Ipc: C21D 8/02 20060101ALI20230208BHEP

Ipc: C22C 38/40 20060101ALI20230208BHEP

Ipc: C22C 38/38 20060101ALI20230208BHEP

Ipc: C22C 38/32 20060101ALI20230208BHEP

Ipc: C22C 38/28 20060101ALI20230208BHEP

Ipc: C22C 38/26 20060101ALI20230208BHEP

Ipc: C22C 38/24 20060101ALI20230208BHEP

Ipc: C22C 38/22 20060101ALI20230208BHEP

Ipc: C22C 38/20 20060101ALI20230208BHEP

Ipc: C22C 38/06 20060101ALI20230208BHEP

Ipc: C22C 38/04 20060101ALI20230208BHEP

Ipc: C22C 38/02 20060101ALI20230208BHEP

Ipc: C22C 38/00 20060101AFI20230208BHEP

INTG Intention to grant announced

Effective date: 20230220

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502021000889

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1580933

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230620

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231023

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231021

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502021000889

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240219

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

26N No opposition filed

Effective date: 20240322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240222

Year of fee payment: 4