EP3870917B1 - Verfahren und anlage zur tieftemperaturzerlegung von luft - Google Patents

Verfahren und anlage zur tieftemperaturzerlegung von luft Download PDF

Info

Publication number
EP3870917B1
EP3870917B1 EP19797567.5A EP19797567A EP3870917B1 EP 3870917 B1 EP3870917 B1 EP 3870917B1 EP 19797567 A EP19797567 A EP 19797567A EP 3870917 B1 EP3870917 B1 EP 3870917B1
Authority
EP
European Patent Office
Prior art keywords
fed
pressure
column
low
pressure column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19797567.5A
Other languages
English (en)
French (fr)
Other versions
EP3870917A1 (de
EP3870917C0 (de
Inventor
Dimitri GOLUBEV
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP3870917A1 publication Critical patent/EP3870917A1/de
Application granted granted Critical
Publication of EP3870917C0 publication Critical patent/EP3870917C0/de
Publication of EP3870917B1 publication Critical patent/EP3870917B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/04206Division of the main heat exchange line in consecutive sections having different functions including a so-called "auxiliary vaporiser" for vaporising and producing a gaseous product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/0446Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the heat generated by mixing two different phases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04309Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • F25J3/04315Lowest pressure or impure nitrogen, so-called waste nitrogen expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/0443A main column system not otherwise provided, e.g. a modified double column flowsheet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/42Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/50Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/42Processes or apparatus involving steps for recycling of process streams the recycled stream being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/50Processes or apparatus involving steps for recycling of process streams the recycled stream being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/02Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/40One fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/50One fluid being oxygen

Definitions

  • the invention relates to a method and a system for the low-temperature separation of air according to the respective preambles of the independent patent claims.
  • Air separation plants have distillation column systems which can be designed, for example, as two-column systems, in particular as classic Linde double-column systems, but also as three- or multi-column systems.
  • distillation columns for obtaining nitrogen and/or oxygen in the liquid and/or gaseous state i.e. the distillation columns for nitrogen-oxygen separation
  • distillation columns for obtaining further air components in particular the noble gases krypton, xenon and/or argon, can be provided.
  • the distillation columns of the distillation column systems mentioned are operated at different pressure levels.
  • Known double column systems have a so-called high-pressure column (also referred to as a pressure column, medium-pressure column or lower column) and a so-called low-pressure column (also referred to as an upper column).
  • the high-pressure column is typically operated at a pressure level of 4 to 7 bar, in particular approximately 5.3 bar.
  • the low-pressure column is operated at a pressure level of typically 1 to 2 bar, in particular approximately 1.4 bar. In certain cases, higher pressure levels can also be used in both rectification columns.
  • the pressures specified here and below are absolute pressures at the top of the columns specified.
  • feed air fed into the high-pressure column is partially liquefied in a condenser evaporator connected downstream of the main heat exchanger.
  • the present invention sets itself the task of producing nitrogen with a relatively high purity (with an oxygen content typically in the ppm or ppb range, for example with approx. 1 ppm or 80 ppb or less, based on the molar proportion) at a pressure level of, for example, 9.5 bar absolute pressure, but at the same time also "impure" oxygen (with an oxygen content of, for example, 85 to 98 mol percent, preferably 90 to 98 mol percent) is to be delivered to provide an optimized solution.
  • a “condenser evaporator” is a heat exchanger in which a first, condensing fluid stream enters into indirect heat exchange with a second, evaporating fluid stream.
  • Each condenser evaporator has a liquefaction space and an evaporation space.
  • Liquefaction and evaporation rooms have liquefaction and evaporation passages, respectively.
  • the condensation (liquefaction) of the first fluid stream is carried out in the liquefaction space, and the evaporation of the second fluid stream is carried out in the evaporation space.
  • the evaporation and liquefaction spaces are formed by groups of passages that are in a heat exchange relationship with each other.
  • the so-called main condenser which connects a high-pressure column and a low-pressure column of an air separation plant in a heat-exchanging manner, is designed as a condenser evaporator.
  • the main condenser can be used in particular as a single- or multi-level bath evaporator, in particular as a cascade evaporator (such as in the EP 1 287 302 B1 described), or be designed as a falling film evaporator.
  • the main condenser can be formed by a single heat exchanger block or by several heat exchanger blocks arranged in a common pressure vessel.
  • a stream of liquid is forced through the evaporation space using its own pressure and is partially evaporated there.
  • This pressure is generated, for example, by a liquid column in the supply line to the evaporation space.
  • the height of this liquid column corresponds to the pressure loss in the evaporation space.
  • the gas-liquid mixture emerging from the evaporation space is passed on in a "once through" condenser evaporator of this type, separated according to phases, directly to the next process step or to a downstream device and in particular is not introduced into a liquid bath of the condenser evaporator, of which the remaining liquid portion is again would be sucked in.
  • expansion turbines for use in the present invention can be designed as turboexpanders. If a compressor is driven with one or more expansion turbines, but without energy supplied externally, for example by means of an electric motor, the term “turbine-driven” compressor or alternatively “booster” is used. Arrangements of turbine-driven compressors and expansion turbines are also referred to as “booster turbines”.
  • turbo compressors In air separation plants, multi-stage turbo compressors are used to compress the feed air to be separated, which are referred to here as “main air compressors”.
  • the mechanical structure of turbo compressors is generally known to those skilled in the art.
  • the medium to be compressed is compressed using turbine blades that are arranged on a turbine wheel or directly on a shaft.
  • a turbo compressor forms a structural unit, which, however, can have several compressor stages in a multi-stage turbo compressor.
  • a compressor stage usually includes a corresponding arrangement of turbine blades. All of these compressor stages can be driven by a common shaft. However, it can also be provided to drive the compressor stages in groups with different shafts, whereby the shafts can also be connected to one another via gears.
  • the main air compressor is further characterized by the fact that the entire amount of air fed into the distillation column system and used to produce air products, i.e. the entire feed air, is compressed. Accordingly, a “recompressor” can also be provided, in which only part of the amount of air compressed in the main air compressor is brought to an even higher pressure.
  • This can also be designed as a turbo compressor.
  • the use of a common compressor or compressor stages of such a compressor as the main air compressor and secondary compressor can also be provided.
  • additional turbo compressors in the form of the boosters mentioned are typically provided in air separation plants, but these usually only carry out compression to a relatively small extent compared to the main air compressor or the secondary compressor.
  • liquids and gases can be rich or poor in one or more components, where "rich” means a content of at least 50%, 75%, 90%, 95%, 99%, 99.5%, 99, 9% or 99.99% and “poor” can mean a content of not more than 50%, 25%, 10%, 5%, 1%, 0.1% or 0.01% on a molar, weight or volume basis .
  • the term “predominantly” can correspond to the definition of "rich”.
  • Liquids and gases may further be enriched or depleted in one or more components, these terms referring to a content in a starting liquid or gas from which the liquid or gas was obtained.
  • the liquid or gas is "enriched” if it has at least 1.1 times, 1.5 times, 2 times, 5 times, 10 times, 100 times or 1,000 times the content, and ""depleted” if this contains at most 0.9 times, 0.5 times, 0.1 times, 0.01 times or 0.001 times the content of a corresponding component, based on the starting liquid or gas.
  • oxygen or “nitrogen” is mentioned here, this also means a liquid or a gas that is rich in oxygen or nitrogen, but does not necessarily have to consist exclusively of this.
  • the present invention is based in particular on the finding that, given the initially mentioned requirements for the product range of an air separation plant, it is advantageous to use a double column system which is known per se and which comprises a high and a low pressure column.
  • a double column system which is known per se and which comprises a high and a low pressure column.
  • the present invention relates to a process and an air separation plant, by means of which nitrogen is produced with relatively high purity (with an oxygen content typically in the ppm or ppb range, for example with approximately 1 ppm or 80 ppb or less, based on the molar Share) at a pressure level of, for example, 8 to 12 bar, in particular approximately 9.5 bar absolute pressure, but at the same time also "impure" oxygen (with an oxygen content of, for example, 85 to 98 mol percent, preferably 90 to 98 mol percent) can be provided.
  • a so-called main condenser In a conventional double-column system of the type explained, the high-pressure column and the low-pressure column are connected to one another in a heat-exchanging manner by means of a so-called main condenser.
  • a common form of design of a corresponding double column system includes a so-called internal main condenser, i.e. a corresponding apparatus, which is arranged in a sump area of the low-pressure column.
  • so-called external main condensers can also be used, to which fluid is supplied, which is taken from the bottom area of the low-pressure column via lines and fed into the main condenser.
  • bottom liquid of the low-pressure column is evaporated and at the same time top gas of the high-pressure column is at least partially liquefied.
  • a corresponding device is a condenser evaporator of the type explained.
  • the high-pressure column and the low-pressure column are also arranged one above the other and have a common column shell or column shells connected to one another.
  • the column shells of the high-pressure column and the low-pressure column can be welded together or the high-pressure column and the Low-pressure columns can be arranged in a common outer shell, which in turn is housed in a so-called cold box.
  • the present invention can also use separately arranged high and low pressure columns, two-part low pressure columns and the like, provided this is expedient, for example for reasons of installation space.
  • the present invention is not limited to use with a conventional dual column system in which the high pressure column and the low pressure column are permanently connected to each other.
  • the present invention is not limited to one-piece high and low pressure columns.
  • the present invention is further based on the knowledge that it is particularly advantageous to use an impure nitrogen stream (also referred to as “waste gas” in the prior art, see Figure 2.3A and page 23 in Häring), which is withdrawn from the low-pressure column of a corresponding distillation column system , not or not exclusively, as is known from the prior art, to be carried out permanently from the air separation plant and, for example, to be used for the regeneration of adsorbers that serve to purify the feed air.
  • an impure nitrogen stream also referred to as “waste gas” in the prior art, see Figure 2.3A and page 23 in Häring
  • corresponding impure nitrogen is partially returned to the high-pressure column.
  • a corresponding proportion of the impure nitrogen is heated, in particular in the main heat exchanger of the air separation plant, compressed in the warm part of the air separation plant, and then cooled again and fed into the high-pressure column.
  • the present invention only uses a portion of the corresponding impure nitrogen in the manner explained, so that further impure nitrogen can be used, for example, for cold generation, regeneration of adsorbers, as a sealing gas in compressors and the like, or simply blown off into the atmosphere.
  • impure nitrogen or an “impure nitrogen stream” is mentioned here and below, this is understood to mean a gas mixture that consists predominantly of nitrogen, but can also contain considerable impurities of oxygen and smaller amounts of noble gases. In the context of the present invention, this is referred to as: According to the invention, the gas mixture referred to as “impure nitrogen” contains 8 to 15 Mole percent, especially 10 to 13 mole percent, of oxygen. The argon content is typically comparable to that of air and, depending on the process parameters, is typically 0.6 to 1.4 mol percent, in particular 0.7 to 1.3 mol percent.
  • the present invention proposes a method for the low-temperature separation of air, in which an air separation plant with a condenser evaporator and with a distillation column system is used, which has a high-pressure column operated in a first pressure range and one in a second pressure range below the first pressure range operated low pressure column.
  • the “first pressure range” can be in particular, for example, 7 to 13 bar
  • the “second pressure range” can be in particular 2 to 4 bar (absolute pressures in each case).
  • a bottom liquid referred to here as the “first” bottom liquid
  • first bottom liquid is formed in the high-pressure column of an air separation plant by low-temperature rectification. This has a higher oxygen content and a lower nitrogen content than atmospheric air.
  • a typical oxygen content of a corresponding first bottom liquid is typically 25 to 35 mol percent when using the measures according to the invention explained below.
  • a top gas referred to here as the “first” top gas, is formed in the high-pressure column, which has a lower oxygen content and a higher nitrogen content than atmospheric air.
  • the nitrogen content of this first overhead gas is typically more than 95, in particular more than 99, mole percent.
  • a bottom liquid is also formed by low-temperature rectification, which is referred to here as the “second” bottom liquid.
  • This has a higher oxygen content and a lower nitrogen content than the first bottom liquid.
  • the oxygen content is typically more than 90 mole percent.
  • a top gas is also formed in the low-pressure column, which is referred to here as the “second” top gas referred to as. This has a lower oxygen content and a higher nitrogen content than the first bottom liquid. It contains oxygen and nitrogen in the concentration ranges previously explained for “impure nitrogen”.
  • the basic operation of the high pressure column and the low pressure column is known.
  • Compressed and cooled air is fed into the high-pressure column in the form of one or more feed air streams and the first bottom liquid or a portion thereof is transferred to the low-pressure column and further rectified there.
  • the first overhead gas or a portion thereof can be liquefied or partially liquefied in a main condenser that connects the high-pressure column and the low-pressure column in a heat-exchanging manner, whereby a liquid return to the high-pressure column, possibly also to the low-pressure column, can be provided.
  • Portions of the first top gas can also be exported unliquefied or liquefied as corresponding products from the air separation plant.
  • the feeding and transfer of further material flows into or between the high and low pressure column is also known, but for reasons of clarity it is not explained in all configurations.
  • the second top gas is partially or completely removed from the low-pressure column as impure nitrogen.
  • the low-pressure column is therefore designed and operated in such a way that corresponding impure nitrogen forms at its head.
  • corresponding impure nitrogen can be used, for example, to regenerate adsorption devices and/or be blown off into the atmosphere.
  • a portion of the impure nitrogen is successively heated as a return quantity, compressed to a pressure in the first pressure range, cooled and then fed into the high-pressure column.
  • the return quantity is typically heated to a temperature in a temperature range above 0 ° C, typically to a temperature in a temperature range 0 ° C to 50 ° C.
  • the main heat exchanger of a corresponding air separation plant is typically used . Is this what we're talking about? the return quantity is heated, this does not exclude the fact that the return quantity can also be cooled down before it is heated. Such cooling can result in particular from a relaxation of the return quantity. After compression and cooling, if the latter is carried out in the main heat exchanger, there is in particular no further cooling downstream.
  • the compression to the pressure in the first pressure range typically takes place in such a way that the return quantity can be fed directly into the high-pressure column after the subsequent cooling, which is why a corresponding pressure is selected such that it at least corresponds to the pressure at the feed point into the high-pressure column.
  • the pressure in the first pressure range to which the return quantity is compressed is a pressure that is at least as high as the pressure at a feed point at which the return quantity is fed into the high-pressure column.
  • the pressure is advantageously not above the pressure range in which the high-pressure column is operated.
  • the corresponding treatment of part of the impure nitrogen in the form of the recirculated quantity results in a (quantity) amplification cycle for the high-pressure column, so to speak.
  • a nitrogen product an (impure) oxygen product directly from the cold part of the air separation plant under a relatively high pressure of 2 to 12 bar without any post-compression.
  • a combination of a double column operated under increased pressure with additional advantageous measures explained below is carried out.
  • the nitrogen in material stream 13 must be pure nitrogen It is clear that this is fed in via the valve 15 at the head of the high-pressure column 6, which the person skilled in the art would not take into account if it were impure nitrogen. However, no amplification circuit in the sense of the present invention can be implemented with pure nitrogen.
  • the pressure column is not reinforced with gas but with the liquid (pure nitrogen) to be added at the top of the column.
  • the gaseous nitrogen to be compressed must have an appropriate purity and an appropriate pressure.
  • the pressure must be significantly higher than the pressure in the pressure column to enable condensation against bottom liquid.
  • a liquid washing nitrogen stream from the high-pressure column and at least one additional rectification section for the low-pressure column are required. The removal of washing nitrogen for the low pressure column would in turn reduce the effect of the amplification in the high pressure column.
  • the return quantity can be heated in particular in the main heat exchanger of a corresponding air separation plant. Therefore, in this embodiment it is provided that the air separation plant has one Main heat exchanger, in which at least the majority of a total amount of air fed into the distillation column system is cooled, with the heating and cooling of the return amount being carried out at least partially in the main heat exchanger.
  • the impure nitrogen is heated, compressed and fed into the high-pressure column. Rather, in particular, a further portion of the impure nitrogen can be exported from the air separation plant.
  • Such a further portion can in particular be partially heated in the main heat exchanger, then expanded by means of a turbine or expansion machine, which can typically be braked by means of a generator, further heated in the main heat exchanger and exported from the air separation plant or used as regeneration gas in the manner explained .
  • a portion of the compressed and cooled air is passed through a condenser evaporator, at least partially liquefied in this and fed into the distillation column system. Furthermore, a further portion of the compressed and cooled air is fed into the distillation column system without being passed through the condenser evaporator.
  • this condenser evaporator could be arranged in a liquid container to which part of the second bottom liquid or the entire second bottom liquid is supplied. This would result in a particularly simple arrangement.
  • gas evaporating from the container could be removed as a gaseous oxygen product and heated in the main heat exchanger, whereas an unevaporated portion from the cold part of the air separation plant could be exported in liquid form without heating as a liquid oxygen product.
  • the present invention develops particular advantages when it is used with an arrangement in which a corresponding condenser evaporator is coupled to a further mass transfer column, as explained in detail below.
  • a liquid with an inlet oxygen content of 15% to 45%, in particular 20% to 40% is evaporated in the condenser evaporator, as it comes in particular from a corresponding mass transfer column and is obtained there as bottom liquid.
  • the condenser evaporator used in the invention can in particular be designed as a forced-flow condenser evaporator, in particular with a once-through configuration as explained above.
  • the condenser evaporator can therefore be designed in such a way that the specified liquid is pressed through an evaporation space by means of its own pressure and is partially evaporated there, with a portion not evaporated during the partial evaporation being prevented from flowing through the evaporation space again can.
  • the portion of the compressed and cooled air that is fed into the distillation column system without being passed through the condenser evaporator is at least partially fed into the high-pressure column as gaseous compressed air at a first feed position, and at a second
  • the return quantity is advantageously fed in at the feed position, which is located 1 to 10 theoretical plates above the first feed position. This is particularly advantageous because the return quantity has a higher nitrogen content than atmospheric air and therefore the feed at the second feed position is particularly favorable.
  • At least part of the first bottom liquid can be fed into the low-pressure column at a first point, possibly after supercooling but without measures influencing its composition.
  • the air liquefied or partially liquefied in the condenser evaporator can be fed into the low-pressure column at a second point.
  • the second point is arranged above the first point, in particular at the top of the low-pressure column.
  • the portion of the compressed and cooled air that is passed through the condenser evaporator, at least partially liquefied in this and fed into the distillation column system, is fed completely into the low-pressure column.
  • the further portion of the compressed and cooled air that is fed into the distillation column system without being passed through the condenser evaporator can, on the other hand, be partially, but advantageously also completely, fed into the high-pressure column.
  • a first portion of the impure nitrogen stream in the form of the recirculated quantity can be successively heated, compressed to the pressure in the first pressure range, cooled and fed into the high-pressure column;
  • a further portion of the impure nitrogen stream can be successively partially heated, expanded in an expansion turbine, heated again and discharged from the air separation plant. Cold can be generated by using an appropriate expansion turbine.
  • oxygen-rich gas can also be removed from a lower region of the low-pressure column and combined with the further portion of the impure nitrogen before it is partially heated. Cold can also be generated in this way, especially when appropriate oxygen is not required.
  • feed air supplied to the distillation column system and the return quantity of the impure nitrogen can be compressed in particular in different compressor stages of a single compressor (see above) or in compressors that are mechanically coupled to one another.
  • air separation plants can be optimized in terms of their construction and operating costs, in particular their energy consumption.
  • specialist literature e.g. b. FG Kerry, Industrial Gas Handbook: Gas Separation and Purification, CRC Press, 2006, Chapter 3.8, “Development of Low Oxygen-Purity Processes ", referenced.
  • air separation plants with so-called mixing columns can be used to obtain gaseous compressed oxygen of lower purity.
  • EP 3 179 186 A1 please refer to EP 3 179 186 A1 and the quotes there are referenced.
  • mixing column air an oxygen-rich liquid and gaseous compressed air near the bottom, so-called mixing column air, are fed in close to the top and subjected to a mass transfer.
  • impure oxygen can be withdrawn from the mixing column and taken from the air separation plant as a gas product.
  • a liquid that separates out in the bottom of the mixing column can be fed into the distillation column system used at a point that is suitable in terms of energy and/or separation technology.
  • the energy required to increase the pressure of an oxygen product can be reduced at the expense of the purity of the oxygen product.
  • a mass transfer column instead of a conventional mixing column, into which no feed air stream is fed, but instead another material stream.
  • This can in particular be an oxygen-enriched liquid from the high-pressure column, in particular its bottom liquid.
  • This liquid which is already enriched with oxygen compared to atmospheric air, is fed into the mass transfer column in particular liquid form and mixes with liquid flowing down in the mass transfer column in the sump.
  • the condenser evaporator Using the condenser evaporator, the mixed liquid formed is evaporated as explained below and the vapor formed rises in the mass transfer column.
  • the gas phase in a corresponding mass transfer column is not formed by compressed air, as in conventional mixing columns, but in this alternative manner.
  • injection equivalent refers to the compressed air expanded using a typical Lachmann turbine (“injection turbine”) and fed (“injected”) into the low-pressure column.
  • injection turbine Lachmann turbine
  • the air expanded in this way into the low-pressure column disrupts the rectification, which is why the amount of air that can be expanded in the injection turbine and thus the cold that can be generated in this way for a corresponding system is limited.
  • Nitrogen-rich air products which are taken from the high-pressure column and exported from the air separation plant, also influence the rectification in a corresponding way.
  • the amount of in the Air fed into the low-pressure column plus the nitrogen taken from the high-pressure column and exported from the air separation plant can be stated in relation to the total air supplied to the distillation column system. The value obtained is the “injection equivalent”.
  • the injection equivalent is therefore defined as the amount of compressed air that has been expanded into the low-pressure column of an air separation plant using an injection turbine, plus the amount of nitrogen that may have been taken from the high-pressure column and neither returned as liquid return to the high-pressure column itself nor as liquid return to the low-pressure column is given up, based on the total compressed air fed into the distillation column system.
  • the nitrogen that is taken from the high-pressure column can be pure or essentially pure nitrogen from the top of the high-pressure column, i.e. the first top gas mentioned above, but also a nitrogen-enriched gas that comes with a lower nitrogen content from an area below the head High pressure column can be removed.
  • M1 can also be zero.
  • the reason for the lower injection equivalent available in conventional mixing column processes compared to other processes for low-temperature separation of air is, in particular, the fact that the air stream fed into the mixing column does not optimally participate in the rectification process in the double column.
  • the oxygen present in this air flow goes completely to the high and high temperature Low pressure column over.
  • This oxygen is discharged from the air separation plant in the form of the top product of the mixing column.
  • the nitrogen contained in the air flow to the mixing column remains almost completely in the bottom liquid of the mixing column (after the exchange process in the mixing column).
  • This bottom liquid typically has an oxygen content of approximately 65% and, in the known processes, is fed into a low-pressure column at a feed point corresponding to this oxygen content.
  • this feed point is located in a comparatively low area of the low-pressure column, i.e. at a point where the oxygen content is still comparatively high.
  • the rectification or separation section located below the feed point can already be viewed as an oxygen section, since there is no further feed into the low-pressure column below the feed point for the bottom product of the mixing column. Therefore, from a separation perspective, the nitrogen from the air flow to the mixing column (which enters the low-pressure column in the form of the bottom liquid of the mixing column) must be separated from very far down.
  • this separation is extremely complex and requires a relatively large amount of power on the main capacitor. Therefore, the amount of injection into the low-pressure column or the injection equivalent mentioned must be reduced accordingly in order to be able to achieve a satisfactory separation.
  • a significant advantage of the modified operation of the mass transfer column described above is that the feed air is completely fed into the distillation column system and pre-separated there accordingly.
  • the air stream fed into the mixing column does not optimally participate in the rectification process in the double column and in particular the oxygen present in this air stream completely bypasses the high and low pressure column.
  • it does this within the framework of the previously described operation of the mass transfer column.
  • it is possible to greatly improve the rectification conditions and to reduce the effort required for rectification.
  • no oxygen molecules go past the rectification columns, as in conventional processes (all oxygen is treated in these by separation technology) and there is no excess nitrogen in the low-pressure column that requires more effort to be separated off.
  • the performance of the main condenser can be greatly reduced in this way or, in a corresponding system, a significant increase in the blow-in equivalent with the associated energy savings is possible.
  • air fed into the distillation column system is partially passed through the condenser evaporator, with portions of air also being fed into the distillation column system without being guided through the condenser evaporator, as already mentioned.
  • the operation of the condenser evaporator in conjunction with a mass transfer column takes place in particular in such a way that a mixed liquid is partially evaporated in the condenser evaporator, the mixed liquid being formed using bottom liquid which is produced from a mass transfer column in which a proportion of the first bottom liquid is formed in a first Feed position and a portion of the second bottom liquid are fed at a second feed position above the first feed position.
  • the mixed liquid can be obtained in the bottom of the mass transfer column and partially evaporated into the condenser evaporator, in particular by being diverted into this condenser evaporator.
  • the portion of the first bottom liquid that is fed into the mass transfer column at the first feed position is fed into the mass transfer column unheated.
  • An “unheated” feed is understood to mean that the portion is not subject to any targeted temperature-increasing measures. This applies at least to the case considered here when the operating pressure of the mass transfer column is below the operating pressure of the high-pressure column. Subcooling the portion of the first bottom liquid can also be advantageous in certain cases.
  • the portion of the second bottom liquid that is fed into the mass transfer column at the second feed position is, however, heated in the main heat exchanger before being fed into the mass transfer column according to the explained embodiment of the invention. In particular, this portion is taken from the main heat exchanger at an intermediate temperature level.
  • the mixed liquid represents the liquid already mentioned that is evaporated in the condenser evaporator.
  • the proportion of the mixed liquid that is not evaporated in the condenser evaporator is, in particular, partially or preferably completely fed into the low-pressure column.
  • liquid can also be removed from the explained mass transfer column at a removal position between the first and the second feed position and partially or completely fed into the low-pressure column. The same applies to a further portion of the first bottom liquid, which is fed directly into the low-pressure column, i.e. without being fed to the mass transfer column.
  • a heat exchanger in the form of a so-called subcooling countercurrent is used, in which a partial amount or the total amount of the portion of the second bottom liquid, which is fed into the mass transfer column at the second feed position, before heating in the main heat exchanger is heated, and/or a subset or the total amount of the return amount is heated in the main heat exchanger before further heating, and/or a subset or the total amount of the portion of the compressed and cooled air that is passed through the condenser evaporator is at least partially liquefied in this and is fed into the distillation column system, is cooled before being fed into the distillation column system, and/or a subset or the total amount of the non-evaporated portion of the mixed liquid is cooled before the partial feed or complete feed into the low-pressure column, and/or a subset or the total amount the liquid removed from the mass transfer column at the removal position between the first and the second feed position is cooled before the partial or complete feed
  • top gas is taken from the mass transfer column, heated and discharged from the air separation plant.
  • This top gas has a lower oxygen content than the second bottom liquid and can therefore be provided at a corresponding pressure as a process product that is available in addition to the nitrogen supplied.
  • the first top gas from the high-pressure column can also be implemented as a product in the manner explained.
  • an air separation plant could also be operated without a mass transfer column in the manner explained above.
  • the second bottom liquid or a part thereof, i.e. bottom liquid from the high-pressure column is partially evaporated in the condenser evaporator in an unchanged composition, with evaporated and non-evaporated portions thereof from the air separation plant being partially or completely exported as oxygen products.
  • the present invention also extends to an air separation plant.
  • an air separation plant For features and advantages of such an air separation plant, please refer to the corresponding independent patent claim.
  • such an air separation plant is set up to carry out a process in one or more of the previously explained configurations and has appropriately designed means for this purpose. Please refer expressly to the explanations above for features and advantages.
  • FIG. 1 an air separation plant according to an embodiment of the invention is illustrated in the form of a schematic process flow diagram and designated overall by 100.
  • feed air A is sucked in via a filter 1 by means of a main air compressor 2.
  • a main air compressor 2 After pre-cooling in non-specifically designated heat exchangers and a direct contact cooler, the correspondingly compressed air is fed to an adsorber station 3 where it is freed from undesirable components such as water and carbon dioxide.
  • the air is then supplied in the form of a feed air stream a to a main heat exchanger 4 of the air separation plant 100 and removed from it at the cold end.
  • the feed air flow initially designated a, is then divided into two partial flows b and c.
  • the partial stream b is at least liquefied or partially liquefied in a condenser evaporator 5 and, further denoted by b, passed through a subcooling countercurrent 6 and then fed into the low-pressure column 12 of a distillation column system 10, which in addition to the low-pressure column 12 also has a high-pressure column 11.
  • the partial stream c is fed directly into the high-pressure column 11.
  • the high-pressure column 11 using the partial stream c and other material streams fed into the high-pressure column 11, explained below, are passed through Low-temperature rectification forms a first bottoms liquid that has a higher oxygen content and a lower nitrogen content than atmospheric air, and a first top gas that has a lower oxygen content and a higher nitrogen content than atmospheric air.
  • the first bottom liquid is withdrawn from the high-pressure column 11 and divided into two partial streams d and e.
  • the partial stream d is fed into a mass transfer column 7 at a first feed position.
  • the partial stream e is passed through the subcooling counterflow 6 and fed into the low-pressure column 12.
  • the first top gas is removed from the high-pressure column and partially or completely liquefied to a first proportion in the form of a partial stream f in a main condenser 13, which connects the high-pressure column 11 and the low-pressure column 12 in a heat-exchanging manner. Part of this (see link A portion of the first top gas that is not passed through the main condenser 13 can be heated in the form of a material flow g in the main heat exchanger 4 and provided, for example, as a pressurized nitrogen product (PGAN) or sealing gas (SG).
  • PGAN pressurized nitrogen product
  • SG sealing gas
  • a second bottom liquid which has a higher oxygen content and a lower nitrogen content than the first bottom liquid
  • a second top gas which has a lower oxygen content and a higher nitrogen content than the first
  • the first bottom liquid is at least partially carried out in the form of a stream h from the bottom of the low-pressure column 12 by means of a pump (not specifically designated) and is partially provided as a liquid nitrogen product in the form of a stream i.
  • a further portion, illustrated here in the form of a material stream k, is passed through the subcooling counterflow 6, partially heated in the main heat exchanger 4 and fed into the mass transfer column 7 at a second feed position.
  • a mixed liquid is formed in the bottom. This is discharged and in the condenser evaporator 5, which is in particular a forced-flow condenser evaporator can be formed, evaporates.
  • a non-evaporated portion of the mixed liquid can be passed through the subcooling countercurrent 6 in the form of a material stream I and then fed into the low-pressure column 12.
  • a liquid in the form of a material stream m is withdrawn from the mass transfer column 7 at a removal position between the first feed position (material stream d) and the second feed position (material stream k), which can also be fed into the low-pressure column 12 after it has previously been passed through the subcooling counterflow 6 to be led.
  • Top gas from the top of the mass transfer column 7 can be passed through the main heat exchanger 4 in the form of a material stream n and provided as a gaseous nitrogen pressure product (GOX).
  • GOX gaseous nitrogen pressure product
  • second top gas is withdrawn from the head of the low-pressure column 12 as impure nitrogen in the form of a material stream o, passed through the subcooling counterflow 6, then heated in the main heat exchanger 4, compressed by means of a compressor 8, cooled by means of an aftercooler not specifically designated, in cooled further in the main heat exchanger 4 and, now designated p, returned to the high-pressure column 11.
  • This is the “return quantity” mentioned several times, i.e. a portion of the impure nitrogen.
  • q i.e.
  • a further portion of the impure nitrogen is branched off from the material stream o and, like a conventional impure nitrogen stream, is partially heated in the main heat exchanger 4, expanded by means of a generator turbine 9, further heated in the main heat exchanger 4 and used in a suitable manner, for example as regeneration gas in the adsorber station 3. In this way, cold can be generated.
  • FIG 2 an air separation plant according to a further embodiment of the present invention is illustrated and designated overall by 200. While the air separation plant 100 according to Figure 1 The embodiment 200 is particularly suitable for a full production quantity of oxygen Figure 2 particularly advantageous when lower oxygen production is desired.
  • the air separation plant 200 according to Figure 2 differs from the air separation plant 100 according to Figure 1 essentially in that an oxygen-rich gas is withdrawn from the low-pressure column in the form of a material stream r, passed through the subcooling counterflow 6, and with the to Figure 1 explained material flow q is combined.
  • FIG. 3 An air separation plant not according to the invention is illustrated and designated overall by 300.
  • the embodiment illustrated here is intended as a counterexample merely to facilitate understanding of the invention.
  • no mass transfer column 7 is provided here.
  • second bottom liquid in the form of material stream h is fed directly into a container 20, a so-called secondary condenser, in which a condenser evaporator, designated here as 5a, is arranged.
  • the first bottom liquid is not fed in.
  • the feed of the second bottom liquid takes place in particular with a materially unchanged composition.
  • a vaporized portion of the second bottom liquid fed in is carried out in the form of a stream s, non-evaporated portions in the form of a stream t.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

  • Die Erfindung betrifft ein Verfahren und eine Anlage zur Tieftemperaturzerlegung von Luft gemäß den jeweiligen Oberbegriffen der unabhängigen Patentansprüche.
  • Stand der Technik
  • Die Herstellung von Luftprodukten in flüssigem oder gasförmigem Zustand durch Tieftemperaturzerlegung von Luft in Luftzerlegungsanlagen ist bekannt und beispielsweise bei H.-W. Häring (Hrsg.), Industrial Gases Processing, Wiley-VCH, 2006, insbesondere Abschnitt 2.2.5, "Cryogenic Rectification", beschrieben.
  • Luftzerlegungsanlagen weisen Destillationssäulensysteme auf, die beispielsweise als Zweisäulensysteme, insbesondere als klassische Linde-Doppelsäulensysteme, aber auch als Drei- oder Mehrsäulensysteme ausgebildet sein können. Neben den Destillationssäulen zur Gewinnung von Stickstoff und/oder Sauerstoff in flüssigem und/oder gasförmigem Zustand, also den Destillationssäulen zur Stickstoff-Sauerstoff-Trennung, können Destillationssäulen zur Gewinnung weiterer Luftkomponenten, insbesondere der Edelgase Krypton, Xenon und/oder Argon, vorgesehen sein.
  • Die Destillationssäulen der genannten Destillationssäulensysteme werden auf unterschiedlichen Druckniveaus betrieben. Bekannte Doppelsäulensysteme weisen eine sogenannte Hochdrucksäule (auch als Drucksäule, Mitteldrucksäule oder untere Säule bezeichnet) und eine sogenannte Niederdrucksäule (auch als obere Säule bezeichnet) auf. Die Hochdrucksäule wird typischerweise auf einem Druckniveau von 4 bis 7 bar, insbesondere ca. 5,3 bar, betrieben. Die Niederdrucksäule wird auf einem Druckniveau von typischerweise 1 bis 2 bar, insbesondere ca. 1,4 bar, betrieben. In bestimmten Fällen können in beiden Rektifikationssäulen auch höhere Druckniveaus eingesetzt werden. Bei den hier und nachfolgend angegebenen Drücken handelt es sich um Absolutdrücke am Kopf der jeweils angegebenen Säulen.
  • Je nach den geforderten Produktspektren (d.h. der absolut und relativ zueinander herzustellenden Mengen an unterschiedlichen flüssigen und gasförmigen Luftprodukten) eignen sich unterschiedliche Anlagenkonfigurationen von Luftzerlegungsanlagen unterschiedlich gut. Werden beispielsweise überwiegend gasförmiger Stickstoff auf einem Druckniveau von z.B. 9,5 bar Absolutdruck gefordert, kann ein z.B. in der EP 2 789 958 A1 und der weiteren dort zitierten Patentliteratur beschriebenes Verfahren vorteilhaft sein. Dieses kann auch mit einer sogenannten Reinsauerstoffsäule verwendet und/oder mit einer (Vakuum-) Druckwechseladsorption kombiniert werden. Auf diese Weise kann auch Sauerstoff unterschiedlicher Reinheit bereitgestellt werden. In bestimmten Fällen ergibt sich hier jedoch weiterer Optimierungsbedarf.
  • In der DE 821 654 B ist ein Verfahren offenbart, bei dem in die Hochdrucksäule Stickstoff eingespeist wird. Dieser Stickstoff wird zuvor zum Aufkochen des Sumpfs der Hochdrucksäule verwendet. Seine Herkunft ist nicht beschrieben.
  • In der CN 106123489 A ist ein Verfahren offenbart, bei dem in einer Ausgestaltung in die Hochdrucksäule eingespeiste Einsatzluft zu einem Teil in einem dem Hauptwärmetauscher nachgeschalteten Kondensatorverdampfer verflüssigt wird.
  • In der DE 198 03 437 A1 ist ein Verfahren zur Tieftemperaturzerlegung von Luft beschrieben, in der in Ausgestaltungen eine als "Verstärkungskreislauf" bezeichnete Rückführung von Stickstoff vom Kopf der Niederdrucksäule in die Hochdrucksäule erfolgt. Dieser Stickstoff wird zur Rückführung zusammen mit weiterem Stickstoff vom Kopf der Niederdrucksäule verdichetet, wobei dieser weitere Stickstoff als Druckstickstoff aus der Luftzerlegungsanlage ausgeleitet wird.
  • Die vorliegende Erfindung stellt sich die Aufgabe, für den Fall, dass mittels einer Luftzerlegungsanlage Stickstoff mit relativ hoher Reinheit (mit einem typischerweise im ppm- oder ppb-Bereich liegenden Sauerstoffgehalt, beispielsweise mit ca. 1 ppm oder 80 ppb oder weniger, bezogen auf den molaren Anteil) auf einem Druckniveau von z.B. 9,5 bar Absolutdruck, zugleich aber auch "unreiner" Sauerstoff (mit einem Sauerstoffgehalt von z.B. 85 bis 98 Molprozent, vorzugsweise 90 bis 98 Molprozent) geliefert werden soll, eine optimierte Lösung bereitzustellen.
  • Offenbarung der Erfindung
  • Diese Aufgabe wird durch ein Verfahren und eine Anlage zur Tieftemperaturzerlegung von Luft mit den jeweiligen Merkmalen der unabhängigen Patentansprüche gelöst. Vorteilhafte Ausgestaltungen sind Gegenstand der jeweiligen abhängigen Patentansprüche sowie der nachfolgenden Beschreibung.
  • Nachfolgend werden zunächst einige bei der Beschreibung der vorliegenden Erfindung und ihrer Vorteile verwendete Begriffe sowie der zugrunde liegende technische Hintergrund näher erläutert.
  • Die in einer Luftzerlegungsanlage eingesetzten Vorrichtungen sind in der zitierten Fachliteratur, beispielsweise bei Häring in Abschnitt 2.2.5.6, "Apparatus", beschrieben. Sofern die nachfolgenden Definitionen nicht hiervon abweichen, wird daher zum Sprachgebrauch, der im Rahmen der vorliegenden Anmeldung verwendet wird, ausdrücklich auf die zitierte Fachliteratur verwiesen.
  • Als "Kondensatorverdampfer" wird ein Wärmetauscher bezeichnet, in dem ein erster, kondensierender Fluidstrom in indirekten Wärmeaustausch mit einem zweiten, verdampfenden Fluidstrom tritt. Jeder Kondensatorverdampfer weist einen Verflüssigungsraum und einen Verdampfungsraum auf. Verflüssigungs- und Verdampfungsraum weisen Verflüssigungs- bzw. Verdampfungspassagen auf. In dem Verflüssigungsraum wird die Kondensation (Verflüssigung) des ersten Fluidstroms durchgeführt, in dem Verdampfungsraum die Verdampfung des zweiten Fluidstroms. Der Verdampfungs- und der Verflüssigungsraum werden durch Gruppen von Passagen gebildet, die untereinander in Wärmeaustauschbeziehung stehen.
  • Insbesondere der eine Hochdrucksäule und eine Niederdrucksäule einer Luftzerlegungsanlage wärmetauschend verbindende sogenannte Hauptkondensator ist als Kondensatorverdampfer ausgebildet. Der Hauptkondensator kann insbesondere als ein- oder mehrstöckiger Badverdampfer, insbesondere als Kaskadenverdampfer (wie beispielsweise in der EP 1 287 302 B1 beschrieben), oder aber als Fallfilmverdampfer ausgebildet sein. Der Hauptkondensator kann durch einen einzigen Wärmetauscherblock oder durch mehrere Wärmetauscherblöcke, die in einem gemeinsamen Druckbehälter angeordnet sind, gebildet werden.
  • In einem "Forced-Flow"-Kondensatorverdampfer wird ein Flüssigkeitsstrom mittels seines eigenen Drucks durch den Verdampfungsraum gedrückt und dort partiell verdampft. Dieser Druck wird beispielsweise durch eine Flüssigkeitssäule in der Zuleitung zum Verdampfungsraum erzeugt. Die Höhe dieser Flüssigsäule entspricht dabei dem Druckverlust im Verdampfungsraum. Das aus dem Verdampfungsraum austretende Gas-Flüssigkeitsgemisch wird in einem "Once Through"-Kondensatorverdampfer dieser Art nach Phasen getrennt direkt zum nächsten Verfahrensschritt bzw. zu einer stromabwärtigen Vorrichtung weitergeleitet und insbesondere nicht in ein Flüssigkeitsbad des Kondensatorverdampfers eingeleitet, von dem der flüssig verbliebene Anteil erneut angesaugt würde.
  • Eine "Entspannungsturbine" bzw. "Entspannungsmaschine", die über eine gemeinsame Welle mit weiteren Entspannungsturbinen oder Energiewandlern wie Ölbremsen, Generatoren oder Verdichtern gekoppelt sein kann, ist zur Entspannung eines gasförmigen oder zumindest teilweise flüssigen Stroms eingerichtet. Insbesondere können Entspannungsturbinen zum Einsatz in der vorliegenden Erfindung als Turboexpander ausgebildet sein. Wird ein Verdichter mit einer oder mehreren Entspannungsturbinen angetrieben, jedoch ohne extern, beispielsweise mittels eines Elektromotors, zugeführte Energie, wird der Begriff "turbinengetriebener" Verdichter oder alternativ "Booster" verwendet. Anordnungen aus turbinengetriebenen Verdichtern und Entspannungsturbinen werden auch als "Boosterturbinen" bezeichnet.
  • In Luftzerlegungsanlagen kommen zur Verdichtung der zu zerlegenden Einsatzluft mehrstufige Turboverdichter zum Einsatz, die hier als "Hauptluftverdichter" bezeichnet werden. Der mechanische Aufbau von Turboverdichtern ist dem Fachmann grundsätzlich bekannt. In einem Turboverdichter erfolgt die Verdichtung des zu verdichtenden Mediums mittels Turbinenschaufeln, die auf einem Turbinenrad oder direkt auf einer Welle angeordnet sind. Ein Turboverdichter bildet dabei eine bauliche Einheit, die jedoch bei einem mehrstufigen Turboverdichter mehrere Verdichterstufen aufweisen kann. Eine Verdichterstufe umfasst dabei in der Regel eine entsprechende Anordnung von Turbinenschaufeln. Alle dieser Verdichterstufen können von einer gemeinsamen Welle angetrieben werden. Es kann jedoch auch vorgesehen sein, die Verdichterstufen gruppenweise mit unterschiedlichen Wellen anzutreiben, wobei die Wellen auch über Getriebe miteinander verbunden sein können.
  • Der Hauptluftverdichter zeichnet sich ferner dadurch aus, dass durch diesen die gesamte in das Destillationssäulensystem eingespeiste und zur Herstellung von Luftprodukten verwendete Luftmenge, also die gesamte Einsatzluft, verdichtet wird. Entsprechend kann auch ein "Nachverdichter" vorgesehen sein, in dem aber nur ein Teil der im Hauptluftverdichter verdichteten Luftmenge auf einen nochmals höheren Druck gebracht wird. Auch dieser kann als Turboverdichter ausgebildet sein. Auch die Verwendung eines gemeinsamen Verdichters bzw. von Verdichterstufen eines derartigen Verdichters als Hauptluftverdichter und Nachverdichter kann vorgesehen sein. Zur Verdichtung von Teilluftmengen sind in Luftzerlegungsanlagen typischerweise weitere Turboverdichter in Form der erwähnten Booster vorgesehen, die i.d.R. im Vergleich zu dem Hauptluftverdichter oder dem Nachverdichter jedoch nur eine Verdichtung in relativ geringem Umfang vornehmen.
  • Flüssigkeiten und Gase können im hier verwendeten Sprachgebrauch reich oder arm an einer oder an mehreren Komponenten sein, wobei "reich" für einen Gehalt von wenigstens 50%, 75%, 90%, 95%, 99%, 99,5%, 99,9% oder 99,99% und "arm" für einen Gehalt von höchstens 50%, 25%, 10%, 5%, 1%, 0,1% oder 0,01% auf Mol-, Gewichts- oder Volumenbasis stehen kann. Der Begriff "überwiegend" kann der Definition von "reich" entsprechen. Flüssigkeiten und Gase können ferner angereichert oder abgereichert an einer oder mehreren Komponenten sein, wobei sich diese Begriffe auf einen Gehalt in einer Ausgangsflüssigkeit oder einem Ausgangsgas beziehen, aus der oder dem die Flüssigkeit oder das Gas gewonnen wurde. Die Flüssigkeit oder das Gas ist "angereichert", wenn diese oder dieses zumindest den 1,1-fachen, 1,5-fachen, 2-fachen, 5-fachen, 10-fachen 100-fachen oder 1.000-fachen Gehalt, und "abgereichert", wenn diese oder dieses höchstens den 0,9-fachen, 0,5-fachen, 0,1-fachen, 0,01-fachen oder 0,001-fachen Gehalt einer entsprechenden Komponente, bezogen auf die Ausgangsflüssigkeit oder das Ausgangsgas enthält. Ist hier beispielsweise von "Sauerstoff" oder "Stickstoff" die Rede, sei hierunter auch eine Flüssigkeit oder ein Gas verstanden, der reich an Sauerstoff oder Stickstoff ist, jedoch nicht notwendigerweise ausschließlich hieraus bestehen muss.
  • Vorteile der Erfindung
  • Die vorliegende Erfindung beruht insbesondere auf der Erkenntnis, dass es bei den eingangs erwähnten Anforderungen an das Produktspektrum einer Luftzerlegungsanlage vorteilhaft ist, ein an sich bekanntes Doppelsäulensystem, das eine Hoch- und eine Niederdrucksäule umfasst, einzusetzen. Für ein Beispiel einer entsprechenden Anlage sei auf die eingangs zitierte Fachliteratur (Häring), insbesondere Figur 2.3A und die zugehörigen Erläuterungen, verwiesen. Die vorliegende Erfindung betrifft ein Verfahren und eine Luftzerlegungsanlage, mittels dessen bzw. derer Stickstoff mit relativ hoher Reinheit (mit einem typischerweise im ppm- oder ppb-Bereich liegenden Sauerstoffgehalt, beispielsweise mit ca. 1 ppm oder 80 ppb oder weniger, bezogen auf den molaren Anteil) auf einem Druckniveau von z.B. 8 bis 12 bar, insbesondere ca. 9,5 bar Absolutdruck, zugleich aber auch "unreiner" Sauerstoff (mit einem Sauerstoffgehalt von z.B. 85 bis 98 Molprozent, vorzugsweise 90 bis 98 Molprozent) geliefert bereitgestellt werden.
  • In einem herkömmlichen Doppelsäulensystem der erläuterten Art sind die Hochdrucksäule und die Niederdrucksäule mittels eines sogenannten Hauptkondensators wärmetauschend miteinander verbunden. Eine übliche Form der Ausgestaltung eines entsprechenden Doppelsäulensystems umfasst einen sogenannten innenliegenden Hauptkondensator, also einen entsprechenden Apparat, der in einem Sumpfbereich der Niederdrucksäule angeordnet ist. Es können jedoch auch sogenannte außenliegende Hauptkondensatoren verwendet werden, denen Fluid zugeführt wird, das aus dem Sumpfbereich der Niederdrucksäule über Leitungen entnommen und in den Hauptkondensator eingespeist wird. In dem Hauptkondensator eines bekannten Doppelsäulensystems oder vergleichbaren Apparaten wird Sumpfflüssigkeit der Niederdrucksäule verdampft und zugleich Kopfgas der Hochdrucksäule zumindest teilweise verflüssigt. Es handelt sich bei einem entsprechenden Apparat also um einen Kondensatorverdampfer der erläuterten Art.
  • In herkömmlichen Doppelsäulensystemen von Luftzerlegungsanlagen sind die Hochdrucksäule und die Niederdrucksäule ferner übereinander angeordnet und weisen einen gemeinsamen Säulenmantel oder miteinander verbundene Säulenmäntel auf. Insbesondere können dabei die Säulenmäntel der Hochdrucksäule und der Niederdrucksäule miteinander verschweißt werden oder die Hochdrucksäule und die Niederdrucksäule können in einer gemeinsamen Außenhülle angeordnet sein, die ihrerseits in einer sogenannten Coldbox untergebracht ist. Die vorliegende Erfindung kann jedoch auch getrennt voneinander angeordnete Hoch- und Niederdrucksäulen, zweigeteilte Niederdrucksäulen und dergleichen verwenden, sofern dies, beispielsweise aus Bauraumgründen, zweckmäßig ist. Mit anderen Worten ist die vorliegende Erfindung nicht auf die Verwendung mit einem herkömmlichen Doppelsäulensystem, in dem die Hochdrucksäule und die Niederdrucksäule dauerhaft miteinander verbunden sind, beschränkt. Ferner ist die vorliegende Erfindung nicht auf jeweils einteilige Hoch- und Niederdrucksäulen beschränkt.
  • Die vorliegende Erfindung beruht ferner auf der Erkenntnis, dass es besonders vorteilhaft ist, einen Unreinstickstoffstrom (im Stand der Technik auch als "Waste Gas" bezeichnet, siehe Figur 2.3A und Seite 23 bei Häring), der aus der Niederdrucksäule eines entsprechenden Destillationssäulensystems abgezogen wird, nicht bzw. nicht ausschließlich, wie aus dem Stand der Technik bekannt, dauerhaft aus der Luftzerlegungsanlage auszuführen und beispielsweise zur Regeneration von Adsorbern, die zur Aufreinigung der Einsatzluft dienen, einzusetzen.
  • Vielmehr wird im Rahmen der vorliegenden Erfindung entsprechender Unreinstickstoff teilweise in die Hochdrucksäule zurückgeführt. Ein entsprechender Anteil des Unreinstickstoffs wird dabei, insbesondere im Hauptwärmetauscher der Luftzerlegungsanlage, erwärmt, im warmen Teil der Luftzerlegungsanlage verdichtet, und anschließend wieder abgekühlt und in die Hochdrucksäule eingespeist. Es versteht sich, dass nicht sämtlicher Unreinstickstoff, der aus der Niederdrucksäule abgezogen wird, entsprechend behandelt werden kann. Vielmehr nutzt die vorliegende Erfindung nur einen Teil entsprechenden Unreinstickstoffs auf die erläuterte Weise, so dass weiterer Unreinstickstoff beispielsweise für die Kälteerzeugung, Regeneration von Adsorbern, als Dichtgas in Verdichtern und dergleichen eingesetzt oder schlichtweg an die Atmosphäre abgeblasen werden kann.
  • Ist hier und nachfolgend von "Unreinstickstoff' bzw. einem "Unreinstickstoffstrom" die Rede, sei hierunter ein Gasgemisch verstanden, dass überwiegend aus Stickstoff besteht, jedoch auch beträchtliche Verunreinigungen an Sauerstoff und geringeren Mengen an Edelgasen aufweisen kann. Das im Rahmen der vorliegenden Erfindung als "Unreinstickstoff' bezeichnete Gasgemisch enthält dabei erfindungsgemäß 8 bis 15 Molprozent, insbesondere 10 bis 13 Molprozent Sauerstoff. Der Argongehalt ist typischerweise mit jenem von Luft vergleichbar und beträgt je nach Prozessparametern typischerweise 0,6 bis 1,4 Molprozent, insbesondere 0,7 bis 1,3 Molprozent.
  • Insgesamt schlägt die vorliegende Erfindung zur Erzielung der erläuterten Vorteile ein Verfahren zur Tieftemperaturzerlegung von Luft vor, bei dem eine Luftzerlegungsanlage mit einem Kondensatorverdampfer und mit einem Destillationssäulensystem verwendet wird, das eine in einem ersten Druckbereich betriebene Hochdrucksäule und eine in einem zweiten Druckbereich unterhalb des ersten Druckbereichs betriebene Niederdrucksäule aufweist. Zur weiteren Erläuterungen bezüglich entsprechender Druckbereiche sei auf die obigen Ausführungen verwiesen. Der "erste Druckbereich" kann dabei insbesondere beispielsweise bei 7 bis 13 bar liegen, der "zweite Druckbereich" insbesondere bei 2 bis 4 bar (jeweils Absolutdrücke). Diese Druckbereiche liegen damit oberhalb von typischen Druckbereichen, in denen die Hoch- und die Niederdrucksäule herkömmlicher Luftzerlegungsanlagen üblicherweise betrieben werden. Dies wird durch die weiter unten erläuterten erfindungsgemäßen Maßnahmen erreicht.
  • Wie insoweit bekannt, wird in der Hochdrucksäule einer Luftzerlegungsanlage durch Tieftemperaturrektifikation eine Sumpfflüssigkeit, hier als "erste" Sumpfflüssigkeit bezeichnet, gebildet. Diese weist einen höheren Sauerstoffgehalt und einen geringeren Stickstoffgehalt als atmosphärische Luft auf. Ein typischer Gehalt an Sauerstoff einer entsprechenden ersten Sumpfflüssigkeit beträgt bei Einsatz der weiter unten erläuterten erfindungsgemäßen Maßnahmen typischerweise 25 bis 35 Molprozent. Ferner wird in der Hochdrucksäule ein Kopfgas, hier als "erstes" Kopfgas bezeichnet, gebildet, das einen geringeren Sauerstoffgehalt und einen höheren Stickstoffgehalt als atmosphärische Luft aufweist. Der Stickstoffgehalt dieses ersten Kopfgases liegt typischerweise bei mehr als 95, insbesondere mehr als 99 Molprozent.
  • In der Niederdrucksäule einer entsprechenden Luftzerlegungsanlage wird durch Tieftemperaturrektifikation ebenfalls eine Sumpfflüssigkeit gebildet, die hier als "zweite" Sumpfflüssigkeit bezeichnet wird. Diese weist einen höheren Sauerstoffgehalt und einen geringeren Stickstoffgehalt als die erste Sumpfflüssigkeit auf. Der Sauerstoffgehalt liegt typischerweise bei mehr als 90 Molprozent. In der Niederdrucksäule wird ferner ein Kopfgas gebildet, welches hier als "zweites" Kopfgas bezeichnet wird. Dieses weist einen niedrigeren Sauerstoffgehalt und einen höheren Stickstoffgehalt als die erste Sumpfflüssigkeit auf. Es enthält Sauerstoff und Stickstoff in den zuvor für "Unreinstickstoff' erläuterten Konzentrationsbereichen.
  • Der grundsätzliche Betrieb der Hochdrucksäule und der Niederdrucksäule ist bekannt. So wird verdichtete und abgekühlte Luft in Form eines oder mehrerer Einsatzluftströme in die Hochdrucksäule eingespeist und die erste Sumpfflüssigkeit oder ein Anteil hiervon wird in die Niederdrucksäule überführt und dort weiter rektifiziert. Das erste Kopfgas oder ein Anteil hiervon kann in einem die Hochdrucksäule und die Niederdrucksäule wärmetauschend verbindenden Hauptkondensator verflüssigt oder teilverflüssigt werden, wodurch ein flüssiger Rücklauf auf die Hochdrucksäule, ggf. auch auf die Niederdrucksäule, bereitgestellt werden kann. Anteile des ersten Kopfgases können auch unverflüssigt oder verflüssigt als entsprechende Produkte aus der Luftzerlegungsanlage ausgeführt werden. Die Einspeisung und der Transfer weiterer Stoffströme in bzw. zwischen Hoch- und die Niederdrucksäule ist ebenfalls bekannt, wird jedoch aus Übersichtlichkeitsgründen nicht in sämtlichen Ausgestaltungen erläutert.
  • Im Rahmen der vorliegenden Erfindung wird, wie ebenfalls noch aus dem Stand der Technik bekannt, das zweite Kopfgas teilweise oder vollständig als Unreinstickstoff aus der Niederdrucksäule entnommen. Die Niederdrucksäule ist daher derart ausgebildet und wird derart betrieben, dass sich an ihrem Kopf entsprechender Unreinstickstoff bildet. Zur weiteren Verwendung von derartigem Unreinstickstoff gemäß dem Stand der Technik sei auf die zitierte Fachliteratur verwiesen. Wie erwähnt, kann entsprechender Unreinstickstoff beispielsweise zur Regeneration von Adsorptionseinrichtungen verwendet und/oder an die Atmosphäre abgeblasen werden. Im Rahmen der vorliegenden Erfindung ist vorgesehen, einen Anteil des Unreinstickstoffs als Rückführmenge nacheinander zu erwärmen, auf einen Druck in dem ersten Druckbereich zu verdichten, abzukühlen und danach in die Hochdrucksäule einzuspeisen. Die Erwärmung der Rückführmenge erfolgt typischerweise auf eine Temperatur in einem Temperaturbereich oberhalb von 0° C, typischerweise auf eine Temperatur in einem Temperaturbereich 0° C bis 50° C. Hierzu kommt, wie auch nachfolgend noch erläutert, typischerweise der Hauptwärmetauscher einer entsprechenden Luftzerlegungsanlage zum Einsatz. Ist hiervon die Rede, dass die Rückführmenge erwärmt wird, schließt dies nicht aus, dass die Rückführmenge vor ihrer Erwärmung ggf. auch abgekühlt werden kann. Eine derartige Abkühlung kann sich insbesondere aus einer Entspannung der Rückführmenge ergeben. Nach der Verdichtung und Abkühlung erfolgt, wenn letztere im Hauptwärmetauscher durchgeführt wird, aber stromab hiervon insbesondere keine weitere Abkühlung mehr.
  • Die Verdichtung auf den Druck in dem ersten Druckbereich erfolgt typischerweise derart, dass sich die Rückführmenge nach der sich anschließenden Abkühlung direkt in die Hochdrucksäule einspeisen lässt, weshalb ein entsprechender Druck derart gewählt wird, dass er zumindest dem Druck an der Einspeisestelle in die Hochdrucksäule entspricht. Mit anderen Worten ist der Druck in dem ersten Druckbereich, auf den die Rückführmenge verdichtet wird, ein Druck, der zumindest so hoch ist wie der Druck an einer Einspeisestelle, an der die Rückführmenge in die Hochdrucksäule eingespeist wird. Der Druck liegt aber vorteilhafterweise nicht oberhalb des Druckbereichs, in dem die Hochdrucksäule betrieben wird.
  • Die entsprechende Behandlung eines Teils des Unreinstickstoffs in Form der Rückführmenge führt im Rahmen der vorliegenden Erfindung dazu, dass es gewissermaßen zu einem (Mengen-)Verstärkungskreislauf für die Hochdrucksäule kommt. Auf diese Weise ist es in einer vorteilhaften Ausführung möglich, zusätzlich zu einem Stickstoffprodukt auch ein (unreines) Sauerstoffprodukt direkt aus dem kalten Teil der Luftzerlegungsanlage unter einem relativ hohen Druck von 2 bis 12 bar ohne jegliche Nachverdichtung effizient zu liefern. Im Rahmen der vorliegenden Erfindung wird insgesamt gewissermaßen eine Kombination einer unter erhöhtem Druck betriebenen Doppelsäule mit zusätzlichen, nachfolgend erläuterten vorteilhaften Maßnahmen vorgenommen.
  • Wie erwähnt, ist in der DE 821 654 B ein Verfahren offenbart, bei dem in die Hochdrucksäule 6 gemäß Figur 1 (dortige Bezugszeichen) Stickstoff eingespeist wird. Dieser Stickstoff wird zuvor zum Aufkochen des Sumpfs der Hochdrucksäule 6 verwendet. Seine Herkunft ist nicht beschrieben. Jedenfalls wird hier aber vom Kopf der Niederdrucksäule 8, wie explizit in Zeile 35 erwähnt, Reinstickstoff entnommen. Der einzige weitere Strom, der hier der Niederdrucksäule 8 entnommen wird, ist eine Argon enthaltende Vorfraktion 16 gemäß Zeile 58. Es steht daher kein Unreinstickstoff zum Aufkochen des Sumpfs der Hochdrucksäule 6 zur Verfügung. Dass es sich bei dem Stickstoff des Stoffstroms 13 um Reinstickstoff handeln muss, wird auch dadurch deutlich, dass dieser über das Ventil 15 am Kopf der Hochdrucksäule 6 eingespeist wird, was der Fachmann dann, wenn es sich um Unreinstickstoff handeln würde, nicht in Betracht ziehen würde. Mit Reinstickstoff kann aber kein Verstärkungskreislauf im Sinne der vorliegenden Erfindung realisiert werden.
  • Die Drucksäule wird in diesem Beispiel aus dem Stand der Technik nicht mit Gas sondern mit der am Kopf der Kolonne aufzugebenden Flüssigkeit (Reinstickstoff) verstärkt. Um die Versärkung diese Art zu realisieren, muss der zu verdichtende gasförmige Stickstoff eine entsprechende Reinheit und einen entsprechenden Druck aufweisen. Der Druck muss deutlich höher als der Druck in der Drucksäule sein, um die Kondensation gegen Sumpfflüssigkeit zu ermöglichen. Im Rahmen der vorliegenden Erfindung gibt es keine externe/interne Quelle für einen derartigen Stickstoffstrom. Es existiert kein Stickstoffverdichter und in der Niederdrucksäule wird auch kein reiner Niederdruckstickstoff produziert. Um diesen zu produzieren, wird ein flüssiger Waschstickstoffstrom aus der Hochdrucksäule und mindenstens ein zuzätzlicher Rektifikationsabschnitt für die Niderdrucksäule benötigt. Die Entnahme vom Waschstickstoff für die Niederdrucksäule würde wiederum die Wirkung der Verstärkung in der Hochdrucksäule reduzieren.
  • In der DE 198 03 437 A1 ist, wie erwähnt, ein Verfahren zur Tieftemperaturzerlegung von Luft beschrieben, in der in Ausgestaltungen eine als "Verstärkungskreislauf" bezeichnete Rückführung von Stickstoff vom Kopf der Niederdrucksäule in die Hochdrucksäule erfolgt. Dieser Stickstoff wird zur Rückführung zusammen mit weiterem Stickstoff vom Kopf der Niederdrucksäule verdichetet, wobei dieser weitere Stickstoff als Druckstickstoff aus der Luftzerlegungsanlage ausgeleitet wird. Bereits aus dieser Tatsache ergibt sich, dass es sich hierbei ("PGAN") um ein stickstoffreiches Produkt, also Reinstickstoff, handelt. Unreinstickstoff ist in der DE 198 03 437 A1 beispielsweise in Figur 5 explizit als solcher bezeichnet ("N2U"). Ferner wird der im Kreislauf geführte Stickstoff, wie aus den Figuren ersichtlich, am Kopf der Hochdrucksäule aufgegeben, was nicht erfolgen würde, wenn es sich um Unreinstickstoff handeln würde. Auch hier kann daher kein Verstärkungskreislauf im Sinne der vorliegenden Erfindung mit den erläuterten Vorteilen realisiert werden. Auf die ausführlichen Erläuterungen oben wird verwiesen.
  • Wie bereits erwähnt, kann die Anwärmung der Rückführmenge insbesondere im Hauptwärmetauscher einer entsprechenden Luftzerlegungsanlage erfolgen. Daher ist in dieser Ausgestaltung vorgesehen, dass die Luftzerlegungsanlage einen Hauptwärmetauscher aufweist, in dem zumindest der überwiegende Teil einer in das Destillationssäulensystem eingespeisten Gesamtluftmenge abgekühlt wird, wobei die Erwärmung und Abkühlung der Rückführmenge, zumindest teilweise in dem Hauptwärmetauscher vorgenommen wird. Wie bereits erwähnt, wird im Rahmen der vorliegenden Erfindung nicht der gesamte Unreinstickstoff erwärmt, verdichtet und in die Hochdrucksäule eingespeist. Vielmehr kann insbesondere ein weiterer Anteil des Unreinstickstoffs aus der Luftzerlegungsanlage ausgeführt werden. Ein solcher weiterer Anteil kann insbesondere in dem Hauptwärmetauscher teilerwärmt, anschließend mittels einer Turbine bzw. Entspannungsmaschine, die typischerweise mittels eines Generators gebremst werden kann, entspannt, in dem Hauptwärmetauscher weiter erwärmt und aus der Luftzerlegungsanlage ausgeführt bzw. als Regeneriergas in der erläuterten Weise genutzt werden.
  • Im Rahmen der vorliegenden Erfindung wird die verdichtete und abgekühlte Luft zu einem Anteil durch einen Kondensatorverdampfer geführt, in diesem zumindest teilweise verflüssigt und in das Destillationssäulensystem eingespeist. Ferner wird hier die verdichtete und abgekühlte Luft zu einem weiteren Anteil in das Destillationssäulensystem eingespeist, ohne durch den Kondensatorverdampfer geführt zu werden. Dieser Kondensatorverdampfer könnte in nicht erfindungsgemäßen Ausgestaltungen in einem Flüssigkeitsbehälter angeordnet sein, dem ein Teil der zweiten Sumpfflüssigkeit oder die gesamte zweite Sumpfflüssigkeit zugeführt wird. Auf diese Weise ergäbe sich eine besonders einfache Anordnung. In einem derartigen Fall könnte aus dem Behälter verdampfendes Gas als gasförmiges Sauerstoffprodukt entnommen und im Hauptwärmetauscher angewärmt werden, hingegen könnte ein unverdampfter Anteil aus dem kalten Teil der Luftzerlegungsanlage in flüssiger Form ohne Erwärmung als Flüssigsauerstoffprodukt ausgeführt werden.
  • Die vorliegende Erfindung entfaltet jedoch besondere Vorteile, wenn sie mit einer Anordnung eingesetzt wird, in der ein entsprechender Kondensatorverdampfer mit einer weiteren Stoffaustauschsäule gekoppelt ist, wie weiter unten im Detail erläutert. In dem Kondensatorverdampfer wird erfindungsgemäß dabei eine Flüssigkeit mit einem Eintritts-Sauerstoffgehalt von 15% bis 45%, insbesondere von 20% bis 40%, verdampft, wie sie insbesondere aus einer entsprechenden Stoffaustauschsäule stammt und dort als Sumpfflüssigkeit anfällt. Ein im Rahmen der vorliegenden Erfindung eingesetzter Kondensatorverdampfer kann insbesondere als Forced-Flow-Kondensatorverdampfer, insbesondere mit Once-Through-Konfiguration wie zuvor erläutert, ausgebildet sein. In dem erfindungsgemäßen Verfahren kann der Kondensatorverdampfer also derart ausgebildet sein, dass in diesem die jeweils angegebene Flüssigkeit mittels ihres eigenen Drucks durch einen Verdampfungsraum gedrückt und dort partiell verdampft wird, wobei ein bei der partiellen Verdampfung nicht verdampfter Anteil von einem erneuten Durchströmen des Verdampfungsraums abgehalten werden kann.
  • Im Rahmen der vorliegenden Erfindung wird insbesondere der Anteil der verdichteten und abgekühlten Luft, der in das Destillationssäulensystem eingespeist wird, ohne durch den Kondensatorverdampfer geführt zu werden, zumindest zu einem Teil an einer ersten Einspeiseposition als gasförmige Druckluft in die Hochdrucksäule eingespeist, und an einer zweiten Einspeiseposition, die sich 1 bis 10 theoretische Böden oberhalb der ersten Einspeiseposition befindet, wird vorteilhafterweise die Rückführmenge eingespeist. Dies ist besonders vorteilhaft, weil die Rückführmenge einen höheren Stickstoffgehalt als atmosphärische Luft aufweist und daher die Einspeisung an der zweiten Einspeiseposition besonders günstig ist.
  • In dem erfindungsgemäßen Verfahren kann mindestens ein Teil der ersten Sumpfflüssigkeit, ggf. nach einer Unterkühlung aber ohne ihre Zusammensetzung beeinflussende Maßnahmen an einer ersten Stelle in die Niederdrucksäule eingespeist werden. Die in dem Kondensatorverdampfer verflüssigte oder teilverflüssigte Luft kann dagegen an einer zweiten Stelle in die Niederdrucksäule eingespeist werden. In diesem Fall ist die zweite Stelle oberhalb der ersten Stelle angeordnet, insbesondere am Kopf der Niederdrucksäule.
  • In einer besonders bevorzugten Ausgestaltung der Erfindung wird der Anteil der verdichteten und abgekühlten Luft, der durch den Kondensatorverdampfer geführt, in diesem zumindest teilweise verflüssigt und in das Destillationssäulensystem eingespeist wird, vollständig in die Niederdrucksäule eingespeist. Der weitere Anteil der verdichteten und abgekühlten Luft, der in das Destillationssäulensystem eingespeist wird, ohne durch den Kondensatorverdampfer geführt zu werden kann dagegen teilweise, aber vorteilhafterweise ebenfalls vollständig in die Hochdrucksäule eingespeist werden.
  • Vorteilhafterweise kann im Rahmen einer Ausgestaltung des erfindungsgemäßen Verfahrens, wie bereits erwähnt, ein erster Anteil des Unreinstickstoffstroms in Form der Rückführmenge nacheinander erwärmt, auf den Druck in dem ersten Druckbereich verdichtet, abgekühlt und in die Hochdrucksäule eingespeist werden; ein weiterer Anteil des Unreinstickstoffstroms kann jedoch nacheinander teilerwärmt, in einer Entspannungsturbine entspannt, wieder erwärmt und aus der Luftzerlegungsanlage ausgeleitet werden kann. Durch den Einsatz einer entsprechenden Entspannungsturbine lässt sich Kälte generieren.
  • In einer Ausgestaltung dieser Verfahrensvariante kann ferner sauerstoffreiches Gas aus einem unteren Bereich der Niederdrucksäule entnommen und mit dem weiteren Anteil des Unreinstickstoffs vor dessen Teilerwärmung vereinigt werden. Auch auf diese Weise kann, insbesondere wenn entsprechender Sauerstoff nicht benötigt wird, Kälte erzeugt werden.
  • Im Rahmen der vorliegenden Erfindung können kombinierte Maschinen zur Verdichtung eingesetzt werden. So können dem Destillationssäulensystem zugeführte Einsatzluft und die Rückführmenge des Unreinstickstoffs insbesondere in unterschiedlichen Verdichterstufen eines einzigen Verdichters (siehe oben) oder in miteinander mechanisch gekoppelten Verdichtern verdichtet werden.
  • Wird für industrielle Anwendungen zumindest nicht ausschließlich reiner Sauerstoff benötigt, können Luftzerlegungsanlagen hinsichtlich ihrer Erstellungs- und Betriebskosten, insbesondere ihres Energieverbrauchs, optimiert werden. Für Details sei auf Fachliteratur, z. B. F.G. Kerry, Industrial Gas Handbook: Gas Separation and Purification, CRC Press, 2006, Kapitel 3.8, "Development of Low Oxygen-Purity Processes", verwiesen. Beispielsweise können zur Gewinnung von gasförmigem Drucksauerstoff geringerer Reinheit Luftzerlegungsanlagen mit sogenannten Mischsäulen eingesetzt werden. In diesem Zusammenhang sei beispielsweise auf die EP 3 179 186 A1 und die dortigen Zitate verwiesen.
  • In eine herkömmliche Mischsäule werden herkömmlicherweise kopfnah eine sauerstoffreiche Flüssigkeit und sumpfnah gasförmige Druckluft, sogenannte Mischsäulenluft, eingespeist und einem Stoffaustausch unterworfen. Am Kopf der Mischsäule kann auf diese Weise sogenannter "unreiner" Sauerstoff abgezogen und der Luftzerlegungsanlage als Gasprodukt entnommen werden. Eine sich im Sumpf der Mischsäule abscheidende Flüssigkeit kann an energetisch und/oder trenntechnisch geeigneter Stelle in das verwendete Destillationssäulensystem eingespeist werden. Durch die Verwendung einer Mischsäule kann insbesondere die Energie, die zur Druckerhöhung eines Sauerstoffprodukts benötigt wird, auf Kosten der Reinheit des Sauerstoffprodukts reduziert werden.
  • Es kann vorteilhaft sein, anstelle einer konventionellen Mischsäule eine Stoffaustauschsäule einzusetzen, in die kein Einsatzluftstrom, sondern stattdessen ein anderer Stoffstrom eingespeist wird. Hierbei kann es sich insbesondere um eine an Sauerstoff angereicherte Flüssigkeit aus der Hochdrucksäule, insbesondere deren Sumpfflüssigkeit, handeln. Diese gegenüber atmosphärischer Luft bereits mit Sauerstoff angereicherte Flüssigkeit wird insbesondere flüssig in die Stoffaustauschsäule eingespeist und mischt sich dabei mit in der Stoffaustauschsäule herabfließender Flüssigkeit im Sumpf. Mittels des Kondensatorverdampfers wird die gebildete Mischflüssigkeit wie nachfolgend erläutert verdampft und der gebildete Dampf steigt in der Stoffaustauschsäule auf. Die Gasphase in einer entsprechenden Stoffaustauschsäule wird gemäß der vorliegenden Erfindung also nicht durch Druckluft, wie bei herkömmlichen Mischsäulen, sondern in dieser alternativen Weise gebildet.
  • Bei herkömmlichen Luftzerlegungsanlagen mit Mischsäulen ist aus den unten näher erläuterten Gründen das maximal nutzbare sogenannte Einblaseäquivalent stark beschränkt. Damit sind jedoch auch die mit einer Erhöhung des Einblaseäquivalents in einer Luftzerlegungsanlage möglichen Energieeinsparungen limitiert. Dieser Nachteil wird mit dem erläuterten Betrieb der Stoffaustauschsäule behoben.
  • Der Begriff des "Einblaseäquivalents" bezieht sich auf die mit einer typischen Lachmann-Turbine ("Einblaseturbine") entspannte und in die Niederdrucksäule eingespeiste ("eingeblasene") Druckluft. Die auf diese Weise in die Niederdrucksäule entspannte Luft stört die Rektifikation, weshalb die Menge der in der Einblaseturbine entspannbaren Luft und damit die für eine entsprechende Anlage auf diese Weise erzeugbare Kälte begrenzt sind. Auch stickstoffreiche Luftprodukte, die der Hochdrucksäule entnommen und aus der Luftzerlegungsanlage ausgeführt werden, beeinflussen die Rektifikation in entsprechender Weise. Die Menge der in der Niederdrucksäule eingespeisten Luft zuzüglich des der Hochdrucksäule entnommenen und aus der Luftzerlegungsanlage ausgeführten Stickstoffs kann im Verhältnis zur gesamten, dem Destillationssäulensystem zugeführten Luft angegeben werden. Der erhaltene Wert ist das "Einblaseäquivalent".
  • Das Einblaseäquivalent ist also definiert als die Menge der verdichteten und mittels einer Einblaseturbine in die Niederdrucksäule einer Luftzerlegungsanlage entspannten Druckluft zuzüglich der Menge des Stickstoffs, der ggf. der Hochdrucksäule entnommen und weder als flüssiger Rücklauf in die Hochdrucksäule selbst zurückgeführt noch als flüssiger Rücklauf auf die Niederdrucksäule aufgegeben wird, bezogen auf die gesamte in das Destillationssäulensystem eingespeiste Druckluft. Der Stickstoff, der der Hochdrucksäule entnommen wird, kann dabei reiner oder im Wesentlichen reiner Stickstoff vom Kopf der Hochdrucksäule, also das zuvor erwähnt erste Kopfgas sein, aber auch ein an Stickstoff angereichertes Gas, das mit geringerem Stickstoffgehalt aus einem Bereich unterhalb des Kopfs aus der Hochdrucksäule abgezogen werden kann.
  • Wird in einer entsprechenden Luftzerlegungsanlage eine Einblaseturbine eingesetzt und in dieser eine Menge M1 an Druckluft entspannt, eine Menge M2 Stickstoff der Hochdrucksäule entnommen und als flüssiges und/oder gasförmiges Stickstoffprodukt der Luftzerlegungsanlage entnommen, d.h. nicht als Rücklauf auf die Hoch- und/oder die Niederdrucksäule verwendet, und eine Menge M3 an Druckluft dem Destillationssäulensystem insgesamt zugeführt, ergibt sich das Einblaseäquivalent E in einer entsprechenden Anlage zu E = M 1 + M 2 / M 3 .
    Figure imgb0001
  • Es versteht sich, dass beispielsweise M1 auch null sein kann.
  • Der Grund für das geringere zur Verfügung stehende Einblaseäquivalent bei herkömmlichen Mischsäulenverfahren gegenüber anderen Verfahren zur Tieftemperaturzerlegung von Luft ist insbesondere die Tatsache, dass der in die Mischsäule eingespeiste Luftstrom nicht in optimaler Weise an dem Rektifikationsprozess in der Doppelsäule teilnimmt. So geht insbesondere der in diesem Luftstrom vorhandene Sauerstoff vollständig an der Hoch- und Niederdrucksäule vorbei. Dieser Sauerstoff wird in Form des Kopfprodukts der Mischsäule aus der Luftzerlegungsanlage ausgeleitet. Der in dem Luftstrom zur Mischsäule enthaltene Stickstoff bleibt dagegen (nach dem Austauschprozess in der Mischsäule) fast vollständig in der Sumpfflüssigkeit der Mischsäule. Diese Sumpfflüssigkeit besitzt typischerweise einen Sauerstoffgehalt von ca. 65% und wird in den bekannten Verfahren an einer diesem Sauerstoffgehalt entsprechenden Einspeisestelle in Niederdrucksäule eingespeist.
  • Diese Einspeisestelle befindet sich jedoch aus trenntechnischer Sicht in einem vergleichsweise weit unten liegenden Bereich der Niederdrucksäule, d.h. an einer Stelle, an der der Sauerstoffgehalt noch vergleichsweise hoch ist. Der unterhalb der Einspeisestelle liegende Rektifikations- bzw. Trennabschnitt kann bereits als Sauerstoffabschnitt angesehen werden, da unterhalb der Einspeisestelle für das Sumpfprodukt der Mischsäule keine weitere Einspeisung in die Niederdrucksäule erfolgt. Daher muss der Stickstoff aus dem Luftstrom zur Mischsäule (der in Form der Sumpfflüssigkeit der Mischsäule in die Niederdrucksäule gelangt) aus trenntechnischer Sicht von sehr weit unten abgetrennt werden. Diese Trennung ist unter gegebenen Bedingungen jedoch ausgesprochen aufwendig und erfordert eine relativ große Leistung am Hauptkondensator. Daher muss die Einblasemenge in die Niederdrucksäule bzw. das erwähnte Einblaseäquivalent entsprechend reduziert werden, um eine zufriedenstellende Trennung bewerkstelligen zu können.
  • Ein wesentlicher Vorteil des oben beschriebenen modifizierten Betriebs der Stoffaustauschsäule besteht darin, dass die Einsatzluft vollständig in das Destillationssäulensystem geleitet und dort entsprechend vorgetrennt wird. Wie erwähnt, nimmt der in die Mischsäule eingespeiste Luftstrom in herkömmlichen Verfahren nicht in optimaler Weise an dem Rektifikationsprozess in der Doppelsäule teil und insbesondere der in diesem Luftstrom vorhandene Sauerstoff geht vollständig an der Hoch- und Niederdrucksäule vorbei. Er tut dies jedoch im Rahmen des zuvor beschriebenen Betriebs der Stoffaustauschsäule. Auf diese Weise gelingt es, die Rektifikationsverhältnisse stark zu verbessern bzw. den zur Rektifikation erforderlichen Aufwand zu verringern. So gehen u.a. auch keine Sauerstoffmoleküle, wie in herkömmlichen Verfahren, an den Rektifikationskolonnen vorbei (sämtlicher Sauerstoff wird in diesen trenntechnisch behandelt) und es fällt kein überschüssiger und mit höherem Aufwand abzutrennender Stickstoff in der Niederdrucksäule an. Die Leistung des Hauptkondensators kann auf diese Weise stark reduziert werden bzw. ist in einer entsprechenden Anlage eine deutliche Erhöhung des Einblaseäquivalents mit den damit verbundenen Energieeinsparungen möglich.
  • Im Rahmen der vorliegenden Erfindung in das Destillationssäulensystem eingespeiste Luft wird teilweise durch den Kondensatorverdampfer geführt, wobei Luftanteile auch ohne Führung durch den Kondensatorverdampfer in das Destillationssäulensystem eingespeist werden, wie bereits erwähnt.
  • Der Betrieb des Kondensatorverdampfers in Verbindung mit einer Stoffaustauschsäule erfolgt insbesondere derart, dass in dem Kondensatorverdampfer eine Mischflüssigkeit teilweise verdampft wird, wobei die Mischflüssigkeit unter Verwendung von Sumpfflüssigkeit gebildet wird, die aus einer Stoffaustauschsäule ausgeführt wird, in welcher ein Anteil der ersten Sumpfflüssigkeit an einer ersten Einspeiseposition und ein Anteil der zweiten Sumpfflüssigkeit an einer zweiten Einspeiseposition oberhalb der ersten Einspeiseposition eingespeist werden. Auf diese Weise kann in der zuvor erläuterten Weise die Mischflüssigkeit im Sumpf der Stoffaustauschsäule erhalten und in den Kondensatorverdampfer teilweise verdampft werden, indem sie insbesondere in diesen Kondensatorverdampfer abgeleitet wird.
  • Im Rahmen der vorliegenden Erfindung wird insbesondere der Anteil der ersten Sumpfflüssigkeit, der an der ersten Einspeiseposition in die Stoffaustauschsäule eingespeist wird, unerwärmt in die Stoffaustauschsäule eingespeist. Unter einer "unerwärmten" Einspeisung sei dabei verstanden, dass der Anteil keinen gezielten temperaturerhöhenden Maßnahmen unterworfen wird. Dies gilt zumindest für den hier betrachteten Fall, wenn der Betriebsdruck der Stoffaustauschsäule unterhalb des Betriebsdruckes der Hochdrucksäule liegt. Auch eine Unterkühlung des Anteils der ersten Sumpfflüssigkeit kann in bestimmten Fällen vorteilhaft sein. Der Anteil der zweiten Sumpfflüssigkeit, der an der zweiten Einspeiseposition in die Stoffaustauschsäule eingespeist wird, wird hingegen gemäß der erläuterten Ausgestaltung der Erfindung vor der Einspeisung in die Stoffaustauschsäule in dem Hauptwärmetauscher erwärmt. Insbesondere wird dieser Anteil dem Hauptwärmetauscher auf einem Zwischentemperaturniveau entnommen.
  • Die Mischflüssigkeit stellt jene bereits erwähnte Flüssigkeit dar, die in dem Kondensatorverdampfer verdampft wird. Der Anteil der Mischflüssigkeit, die in dem Kondensatorverdampfer nicht verdampft wird, wird im Rahmen der vorliegenden Erfindung wie erwähnt, insbesondere teilweise oder vorzugsweise vollständig in die Niederdrucksäule eingespeist. Im Rahmen der vorliegenden Erfindung kann ferner aus der erläuterten Stoffaustauschsäule Flüssigkeit an einer Entnahmeposition zwischen der ersten und der zweiten Einspeiseposition entnommen und teilweise oder vollständig in die Niederdrucksäule eingespeist werden. Entsprechendes gilt auch für einen weiteren Anteil der ersten Sumpfflüssigkeit, die direkt, d.h. ohne der Stoffaustauschsäule zugeführt zu werden, in die Niederdrucksäule eingespeist wird.
  • In dem erfindungsgemäßen Verfahren kann insbesondere vorgesehen sein, dass ein Wärmetauscher in Form eines sogenannten Unterkühlungsgegenströmers verwendet wird, in dem eine Teilmenge oder die Gesamtmenge des Anteils der zweiten Sumpfflüssigkeit, der an der zweiten Einspeiseposition in die Stoffaustauschsäule eingespeist wird, vor der Erwärmung in dem Hauptwärmetauscher erwärmt wird, und/oder eine Teilmenge oder die Gesamtmenge der Rückführmenge vor einer weiteren Erwärmung in dem Hauptwärmetauscher erwärmt wird, und/oder eine Teilmenge oder die Gesamtmenge des Anteils der verdichteten und abgekühlten Luft, der durch den Kondensatorverdampfer geführt, in diesem zumindest teilweise verflüssigt und in das Destillationssäulensystem eingespeist wird, vor der Einspeisung in das Destillationssäulensystem abgekühlt wird, und/oder eine Teilmenge oder die Gesamtmenge des nichtverdampften Anteils der Mischflüssigkeit vor der teilweisen Einspeisung oder vollständiger Einspeisung in die Niederdrucksäule abgekühlt wird, und/oder eine Teilmenge oder die Gesamtmenge der aus der Stoffaustauschsäule an der Entnahmeposition zwischen der ersten und der zweiten Einspeiseposition entnommenen Flüssigkeit vor der teilweisen oder vollständiger Einspeisung in die Niederdrucksäule abgekühlt wird, und/oder eine Teilmenge oder die Gesamtmenge des weiteren Anteils der ersten Sumpfflüssigkeit vor der Einspeisung in die Niederdrucksäule abgekühlt wird. Wie erwähnt, können auch jeweils Anteile der genannten Stoffströme können entsprechend verwendet, d.h. abgekühlt bzw. erwärmt werden. Die genannten Stoffströme können einem entsprechenden Wärmetauscher dabei an einer Position zugeführt bzw. entnommen werden, die ihrer jeweiligen Temperatur entspricht.
  • Im Rahmen der vorliegenden Erfindung kann insbesondere vorgesehen sein, dass aus der Stoffaustauschsäule Kopfgas entnommen, erwärmt und aus der Luftzerlegungsanlage ausgeleitet wird. Dieses Kopfgas weist einen geringeren Sauerstoffgehalt auf als die zweite Sumpfflüssigkeit und kann daher auf einem entsprechenden Druck als Verfahrensprodukt bereitgestellt werden, das zusätzlich zu dem gelieferten Stickstoff zur Verfügung steht. Auch erstes Kopfgas aus der Hochdrucksäule kann in der erläuterten Weise als Produkt ausgeführt werden.
  • Wie erwähnt, könnte eine Luftzerlegungsanlage gemäß einer nicht erfindungsgemäßen Ausgestaltung auch ohne eine Stoffaustauschsäule in der zuvor erläuterten Art betrieben werden. In diesem Zusammenhang könnte insbesondere vorgesehen sein, dass in dem Kondensatorverdampfer die zweite Sumpfflüssigkeit oder ein Teil hiervon, d.h. Sumpfflüssigkeit aus der Hochdrucksäule, in unveränderter Zusammensetzung teilverdampft wird, wobei verdampfte und nicht verdampfte Anteile hiervon aus der Luftzerlegungsanlage teilweise oder vollständig als Sauerstoffprodukte ausgeführt werden.
  • Die vorliegende Erfindung erstreckt sich auch auf eine Luftzerlegungsanlage. Zu Merkmalen und Vorteilen einer derartigen Luftzerlegungsanlage sei auf den entsprechenden unabhängigen Patentanspruch verwiesen. Insbesondere ist eine derartige Luftzerlegungsanlage dafür eingerichtet, ein Verfahren in einer oder mehreren der zuvor erläuterten Ausgestaltungen durchzuführen und weist hierzu entsprechend ausgebildete Mittel auf. Zu Merkmalen und Vorteilen sei daher ausdrücklich auf die obigen Erläuterungen verwiesen.
  • Die Erfindung wird nachfolgend unter Bezugnahme auf die beigefügten Zeichnungen näher erläutert, die die bevorzugten Ausgestaltungen der vorliegenden Erfindung veranschaulichen.
  • Kurze Beschreibung der Zeichnungen
    • Figur 1 zeigt eine Luftzerlegungsanlage gemäß einer Ausführungsform der Erfindung in vereinfachter, schematischer Darstellung.
    • Figur 2 zeigt eine Luftzerlegungsanlage gemäß einer Ausführungsform der Erfindung in vereinfachter, schematischer Darstellung.
    • Figur 3 zeigt eine nicht erfindungsgemäße Luftzerlegungsanlage in vereinfachter, schematischer Darstellung.
  • In den Figuren sind einander baulich oder funktionell entsprechende Elemente mit identischen Bezugszeichen veranschaulicht und werden der Übersichtlichkeit halber nicht wiederholt erläutert. In den Figuren sind flüssige Stoffströme mit schwarzen (ausgefüllten) Flusspfeilen veranschaulicht, gasförmige Stoffströme hingegen mit weißen (nicht ausgefüllten) Flusspfeilen.
  • Ausführliche Beschreibung der Zeichnungen
  • In Figur 1 ist eine Luftzerlegungsanlage gemäß einer Ausführungsform der Erfindung in Form eines schematischen Prozessflussdiagramms veranschaulicht und insgesamt mit 100 bezeichnet.
  • In der Anlage 100 wird Einsatzluft A über einen Filter 1 mittels eines Hauptluftverdichters 2 angesaugt. Nach Vorkühlung in nicht besonders bezeichneten Wärmetauschern und einem Direktkontaktkühler wird die entsprechend verdichtete Luft einer Adsorberstation 3 zugeführt und dort von unerwünschten Komponenten wie Wasser und Kohlendioxid befreit. Die Luft wird anschließend in Form eines Einsatzluftstroms a einem Hauptwärmetauscher 4 der Luftzerlegungsanlage 100 zugeführt und diesem am kalten Ende entnommen. Der zunächst weiterhin mit a bezeichnete Einsatzluftstrom wird anschließend in zwei Teilströme b und c aufgeteilt. Der Teilstrom b wird in einem Kondensatorverdampfer 5 zumindest verflüssigt oder teilverflüssigt und, weiterhin mit b bezeichnet, durch einen Unterkühlungsgegenströmer 6 geführt und anschließend in die Niederdrucksäule 12 eines Destillationssäulensystems 10, das neben der Niederdrucksäule 12 auch eine Hochdrucksäule 11 aufweist, eingespeist. Der Teilstrom c wird hingegen direkt in die Hochdrucksäule 11 eingespeist.
  • In der Hochdrucksäule 11 werden unter Verwendung des Teilstroms c und weiterer, nachfolgend erläuterter, in die Hochdrucksäule 11 eingespeister Stoffströme, durch Tieftemperaturrektifikation eine erste Sumpfflüssigkeit, die einen höheren Sauerstoffgehalt und einen geringeren Stickstoffgehalt als atmosphärische Luft aufweist, und ein erstes Kopfgas, das einen geringeren Sauerstoffgehalt und einen höheren Stickstoffgehalt als atmosphärische Luft aufweist, gebildet. Die erste Sumpfflüssigkeit wird aus der Hochdrucksäule 11 abgezogen und in zwei Teilströme d und e aufgeteilt. Der Teilstrom d wird an einer ersten Einspeiseposition in eine Stoffaustauschsäule 7 eingespeist. Der Teilstrom e wird durch den Unterkühlungsgegenströmer 6 geführt und in die Niederdrucksäule 12 eingespeist. Das erste Kopfgas wird aus der Hochdrucksäule entnommen und zu einem ersten Anteil in Form eines Teilstroms f in einem Hauptkondensator 13, der die Hochdrucksäule 11 und die Niederdrucksäule 12 wärmetauschend verbindet, teilweise oder vollständig verflüssigt. Wiederum ein Teil hiervon (siehe Verknüpfung X) kann als Flüssigstickstoffprodukt (HPLIN) aus der Luftzerlegungsanlage 100 ausgeleitet werden, ein weiterer Anteil wird in Form eines nicht gesondert bezeichneten Rücklaufs auf die Hochdrucksäule 11 zurückgeführt. Ein nicht durch den Hauptkondensator 13 geführter Anteil des ersten Kopfgases kann in Form eines Stoffstroms g im Hauptwärmetauscher 4 erwärmt und als beispielsweise Druckstickstoffprodukt (PGAN) bzw. Dichtgas (SG) bereitgestellt werden
  • In der Niederdrucksäule 12 werden unter Verwendung von in die Niederdrucksäule 12 eingespeisten Stoffströmen durch Tieftemperaturrektifikation eine zweite Sumpfflüssigkeit, die einen höheren Sauerstoffgehalt und einen geringeren Stickstoffgehalt als die erste Sumpfflüssigkeit aufweist, und ein zweites Kopfgas, das einen geringeren Sauerstoffgehalt und einen höheren Stickstoffgehalt als die erste Sumpfflüssigkeit aufweist, gebildet. Die erste Sumpfflüssigkeit wird zumindest zu einem Teil in Form eines Stoffstroms h aus dem Sumpf der Niederdrucksäule 12 mittels einer nicht gesondert bezeichneten Pumpe ausgeführt und teilweise als Flüssigstickstoffprodukt in Form eines Stoffstroms i bereitgestellt. Ein weiterer Anteil, hier in Form eines Stoffstroms k veranschaulicht, wird durch den Unterkühlungsgegenströmer 6 geführt, in dem Hauptwärmetauscher 4 teilerwärmt und an einer zweiten Einspeiseposition in die Stoffaustauschsäule 7 eingespeist.
  • Wie zuvor erläutert, bildet sich durch die Einspeisung der Stoffströme d und k in die Stoffaustauschsäule 7 in dieser einen Mischflüssigkeit im Sumpf. Diese wird ausgeleitet und in dem Kondensatorverdampfer 5, der insbesondere als Forced-Flow-Kondensatorverdampfer ausgebildet sein kann, verdampft. Ein nicht verdampfter Anteil der Mischflüssigkeit kann in Form eines Stoffstroms I durch den Unterkühlungsgegenströmer 6 geführt und anschließend in die Niederdrucksäule 12 eingespeist werden. Aus der Stoffaustauschsäule 7 wird an einer Entnahmeposition zwischen der ersten Einspeiseposition (Stoffstrom d) und der zweiten Einspeiseposition (Stoffstrom k) eine Flüssigkeit in Form eines Stoffstroms m abgezogen, welche ebenfalls in die Niederdrucksäule 12 eingespeist werden kann, nachdem sie zuvor durch den Unterkühlungsgegenströmer 6 geführt wird.
  • Kopfgas vom Kopf der Stoffaustauschsäule 7 kann in Form eines Stoffstroms n durch den Hauptwärmetauscher 4 geführt und als gasförmiges Stickstoffdruckprodukt (GOX) bereitgestellt werden.
  • Im Rahmen der in Figur 1 veranschaulichten Ausgestaltung der vorliegenden Erfindung wird vom Kopf der Niederdrucksäule 12 zweites Kopfgas als Unreinstickstoff in Form eines Stoffstroms o abgezogen, durch den Unterkühlungsgegenströmer 6 geführt, anschließend in dem Hauptwärmetauscher 4 erwärmt, mittels eines Verdichters 8 verdichtet, mittels eines nicht gesondert bezeichneten Nachkühlers abgekühlt, in dem Hauptwärmetauscher 4 weiter abgekühlt und, nun mit p bezeichnet, in die Hochdrucksäule 11 zurückgeführt. Es handelt sich hierbei um die mehrfach erwähnte "Rückführmenge", also einen Anteil des Unreinstickstoffs. Ein Teilstrom des Stoffstroms o, hier mit q bezeichnet, also ein weiterer Anteil des Unreinstickstoffs wird jedoch von dem Stoffstrom o abgezweigt und, wie ein herkömmlicher Unreinstickstoffstrom, in dem Hauptwärmetauscher 4 teilerwärmt, mittels einer Generatorturbine 9 entspannt, in dem Hauptwärmetauscher 4 weiter erwärmt und in geeigneter Weise, beispielsweise als Regeneriergas in der Adsorberstation 3, verwendet. Auf diese Weise kann Kälte generiert werden.
  • Für Figur 1 und die nachfolgenden Figuren gilt, dass, wenngleich hier die erwähnten Stoffströme dem Unterkühlungsgegenströmer jeweils am warmen bzw. kalten Ende zugeführt bzw. entnommen werden und umgekehrt, auch eine Zuführung bzw. Entnahme an anderer Position vorgesehen sein kann, die der jeweiligen Temperatur der Stoffströme entspricht.
  • In Figur 2 ist eine Luftzerlegungsanlage gemäß einer weiteren Ausgestaltung der vorliegenden Erfindung veranschaulicht und insgesamt mit 200 bezeichnet. Während sich die Luftzerlegungsanlage 100 gemäß Figur 1 insbesondere für eine volle Produktionsmenge an Sauerstoff eignet, ist die Ausgestaltung 200 gemäß Figur 2 insbesondere dann vorteilhaft, wenn eine geringere Sauerstoffproduktion erwünscht ist. Die Luftzerlegungsanlage 200 gemäß Figur 2 unterscheidet sich von der Luftzerlegungsanlage 100 gemäß Figur 1 im Wesentlichen dadurch, dass ein sauerstoffreiches Gas aus der Niederdrucksäule in Form eines Stoffstroms r abgezogen, durch den Unterkühlungsgegenströmer 6 geführt, und mit dem zu Figur 1 erläuterten Stoffstrom q vereinigt wird.
  • In Figur 3 ist eine nicht erfindungsgemäße Luftzerlegungsanlage veranschaulicht und insgesamt mit 300 bezeichnet. Die hier veranschaulichte Ausgestaltung soll als Gegenbeispiel lediglich das Verständnis der Erfindung erleichtern. Im Gegensatz zu den zuvor erläuterten Ausgestaltungen ist hier keine Stoffaustauschsäule 7 vorgesehen. Vielmehr wird hier zweite Sumpfflüssigkeit in Form des Stoffstroms h direkt in einen Behälter 20, einen sogenannten Nebenkondensator, eingespeist, in dem ein hier mit 5a bezeichneter Kondensatorverdampfer angeordnet ist. Eine Einspeisung von erster Sumpfflüssigkeit erfolgt hingegen nicht. Die Einspeisung der zweiten Sumpfflüssigkeit erfolgt insbesondere stofflich unveränderter Zusammensetzung. Ein verdampfter Anteil der eingespeisten zweiten Sumpfflüssigkeit wird in Form eines Stoffstroms s ausgeführt, nicht verdampfte Anteile in Form eines Stoffstroms t.

Claims (15)

  1. Verfahren zur Tieftemperaturzerlegung von Luft, bei dem eine Luftzerlegungsanlage (100, 200) mit einem Kondensatorverdampfer (5) und einem Destillationssäulensystem (10) verwendet wird, das eine Hochdrucksäule (11), die in einem ersten Druckbereich betrieben wird, eine Niederdrucksäule (12), die in einem zweiten Druckbereich unterhalb des ersten Druckbereichs betrieben wird, aufweist, wobei
    - in der Hochdrucksäule (11) durch Tieftemperaturrektifikation eine erste Sumpfflüssigkeit, die einen höheren Sauerstoffgehalt und einen geringeren Stickstoffgehalt als atmosphärische Luft aufweist, und ein erstes Kopfgas, das einen geringeren Sauerstoffgehalt und einen höheren Stickstoffgehalt als atmosphärische Luft aufweist, gebildet werden,
    - in der Niederdrucksäule (12) durch Tieftemperaturrektifikation eine zweite Sumpfflüssigkeit, die einen höheren Sauerstoffgehalt und einen geringeren Stickstoffgehalt die erste Sumpfflüssigkeit aufweist, und ein zweites Kopfgas, das einen höheren Stickstoffgehalt und einen geringeren Sauerstoffgehalt als die erste Sumpfflüssigkeit aufweist, gebildet werden,
    - verdichtete und abgekühlte Luft zu einem Anteil durch den Kondensatorverdampfer (5) geführt, in diesem verflüssigt oder teilverflüssigt und in das Destillationssäulensystem (10) eingespeist wird, wobei in dem Kondensatorverdampfer (5) eine Flüssigkeit mit einem Eintritts-Sauerstoffgehalt von 15% bis 45%, insbesondere von 20% bis 40%, verdampft oder teilverdampft wird, und
    - die verdichtete und abgekühlte Luft zu einem weiteren Anteil in das Destillationssäulensystem (10) eingespeist wird, ohne durch den Kondensatorverdampfer (5) geführt zu werden,
    dadurch gekennzeichnet, dass
    - das zweite Kopfgas oder ein Anteil des zweiten Kopfgases als Unreinstickstoff mit einem Sauerstoffgehalt von 8 bis 15 Molprozent aus der Niederdrucksäule (12) entnommen wird, und
    - ein Anteil des Unreinstickstoffs als Rückführmenge nacheinander erwärmt, auf einen Druck in dem ersten Druckbereich verdichtet, abgekühlt und in die Hochdrucksäule (11) eingespeist wird.
  2. Verfahren nach Anspruch 1, bei dem der Anteil der verdichteten und abgekühlten Luft, der in das Destillationssäulensystem (10) eingespeist wird, ohne durch den Kondensatorverdampfer (5) geführt zu werden, zumindest zu einem Teil an einer ersten Einspeiseposition als gasförmige Druckluft in die Hochdrucksäule (11) eingespeist wird, und bei dem an einer zweiten Einspeiseposition, die sich 1 bis 10 theoretische oder praktische Böden oberhalb der ersten Einspeiseposition befindet, die Rückführmenge des Unreinstickstoffs eingespeist wird.
  3. Verfahren nach Anspruch 1 oder 2, bei dem
    - ein Teil der ersten Sumpfflüssigkeit an einer ersten Stelle in die Niederdrucksäule (12) eingespeist wird,
    - die in dem Kondensatorverdampfer (5) verflüssigte oder teilverflüssigte Luft an einer zweiten Stelle in die Niederdrucksäule (12) eingespeist, und
    - die zweite Stelle oberhalb der ersten Stelle angeordnet ist, insbesondere am Kopf der Niederdrucksäule (12).
  4. Verfahren nach einem der vorstehenden Ansprüche, bei dem der Anteil der verdichteten und abgekühlten Luft, der durch den Kondensatorverdampfer (5) geführt, in diesem zumindest teilweise verflüssigt und in das Destillationssäulensystem (10) eingespeist wird, vollständig in die Niederdrucksäule (12) eingespeist wird, und bei der der weitere Anteil der verdichteten und abgekühlten Luft, der in das Destillationssäulensystem (10) eingespeist wird, ohne durch den Kondensatorverdampfer (5) geführt zu werden, teilweise oder vollständig in die Hochdrucksäule (11) eingespeist wird.
  5. Verfahren nach Anspruch 3 oder 4, bei dem ein Forced-Flow-Kondensatorverdampfer als Kondensatorverdampfer (5) verwendet wird.
  6. Verfahren nach einem der Ansprüche 3 bis 5, bei dem ein erster Anteil des Unreinstickstoffs als die Rückführmenge nacheinander erwärmt, auf den Druck in dem ersten Druckbereich verdichtet, abgekühlt und in die Hochdrucksäule (11) eingespeist wird, und bei dem ein weiterer Anteil des Unreinstickstoffs nacheinander teilerwärmt, in einer Entspannungsturbine (9) entspannt, wieder erwärmt und aus der Luftzerlegungsanlage (100, 200) ausgeleitet wird.
  7. Verfahren nach Anspruch 6, bei dem sauerstoffreiches Gas aus einem unteren Bereich der Niederdrucksäule (12) entnommen und mit dem weiteren Anteil des Unreinstickstoffs vor dessen Teilerwärmung vereinigt wird.
  8. Verfahren nach einem der Ansprüche 3 bis 7, bei dem Destillationssäulensystem (10) zugeführte Einsatzluft und die Rückführmenge des Unreinstickstoffs in unterschiedlichen Verdichterstufen eines einzigen Verdichters oder in miteinander mechanisch gekoppelten Verdichtern verdichtet werden.
  9. Verfahren nach einem der Ansprüche 3 bis 5, bei dem die in dem Kondensatorverdampfer (5) teilweise verdampfte Flüssigkeit eine Mischflüssigkeit darstellt, wobei die Mischflüssigkeit unter Verwendung von Sumpfflüssigkeit gebildet wird, die aus einer Stoffaustauschsäule (7) ausgeführt wird, in welche ein Anteil der ersten Sumpfflüssigkeit an einer ersten Einspeiseposition unerwärmt und ein Anteil der zweiten Sumpfflüssigkeit an einer zweiten Einspeiseposition oberhalb der ersten Einspeiseposition erwärmt eingespeist werden.
  10. Verfahren nach Anspruch 9, wobei ein Anteil der Mischflüssigkeit, die in dem Kondensatorverdampfer (5) nicht verdampft wird, zumindest teilweise in die Niederdrucksäule (12) eingespeist wird.
  11. Verfahren nach Anspruch 9 oder 10, bei dem aus der Stoffaustauschsäule (7) Flüssigkeit an einer Entnahmeposition zwischen der ersten und der zweiten Einspeiseposition entnommen und teilweise oder vollständig in die Niederdrucksäule (12) eingespeist wird, und bei dem ein weiterer Anteil der ersten Sumpfflüssigkeit in die Niederdrucksäule (12) eingespeist wird.
  12. Verfahren nach Anspruch 11, bei dem ein Wärmetauscher (6) verwendet wird, in dem jeweils eine Teilmenge oder die Gesamtmenge
    - des Anteils der zweiten Sumpfflüssigkeit, der an der zweiten Einspeiseposition in die Stoffaustauschsäule (7) eingespeist wird, vor der Erwärmung in dem Hauptwärmetauscher (4) erwärmt wird, und/oder
    - der Rückführmenge vor einer weiteren Erwärmung in dem Hauptwärmetauscher (4) erwärmt wird, und/oder
    - des Anteils der verdichteten und abgekühlten Luft, der durch den Kondensatorverdampfer (5) geführt, in diesem zumindest teilweise verflüssigt und in das Destillationssäulensystem (10) eingespeist wird, vor der Einspeisung in das Destillationssäulensystem (10) abgekühlt wird, und/oder
    - des nichtverdampften Anteils der Mischflüssigkeit vor der teilweisen Einspeisung oder vollständiger Einspeisung in die Niederdrucksäule (12) abgekühlt wird, und/oder
    - der aus der Stoffaustauschsäule (7) an der Entnahmeposition zwischen der ersten und der zweiten Einspeiseposition entnommenen Flüssigkeit vor der teilweisen oder vollständiger Einspeisung in die Niederdrucksäule (12) abgekühlt wird, und/oder
    - des weiteren Anteils der ersten Sumpfflüssigkeit vor der Einspeisung in die Niederdrucksäule (12) abgekühlt wird.
  13. Verfahren nach einem der Ansprüche 9 bis 12, bei dem aus der Stoffaustauschsäule (7) Kopfgas entnommen, erwärmt und aus der Luftzerlegungsanlage (100, 200) ausgeleitet wird und/oder bei dem aus der Hochdrucksäule (11) erstes Kopfgas entnommen, erwärmt und aus der Luftzerlegungsanlage (100, 200) ausgeleitet wird.
  14. Verfahren nach einem der Ansprüche 1 bis 8, bei dem ein Sauerstoff unter einem Produktdruck gewonnen wird, der oberhalb des zweiten Druckbereichs liegt.
  15. Luftzerlegungsanlage (100, 200) mit einem Kondensatorverdampfer (5) und einem Destillationssäulensystem (10), das eine Hochdrucksäule (11), die für einen Betrieb in einem ersten Druckbereich eingerichtet ist, und eine Niederdrucksäule (12), die für einen Betrieb in einem zweiten Druckbereich unterhalb des ersten Druckbereichs eingerichtet ist, aufweist, wobei die Luftzerlegungsanlage (100, 200) dafür eingerichtet ist,
    - in der Hochdrucksäule (11) durch Tieftemperaturrektifikation eine erste Sumpfflüssigkeit, die einen höheren Sauerstoffgehalt und einen geringeren Stickstoffgehalt als atmosphärische Luft aufweist, und ein erstes Kopfgas, das einen geringeren Sauerstoffgehalt und einen höheren Stickstoffgehalt als atmosphärische Luft aufweist, zu bilden,
    - in der Niederdrucksäule (12) durch Tieftemperaturrektifikation eine zweite Sumpfflüssigkeit, die einen höheren Sauerstoffgehalt und einen geringeren Stickstoffgehalt die erste Sumpfflüssigkeit aufweist, und ein zweites Kopfgas, das einen geringeren Sauerstoffgehalt und einen höheren Stickstoffgehalt als die erste Sumpfflüssigkeit aufweist, zu bilden, und
    - verdichtete und abgekühlte Luft zu einem Anteil durch den Kondensatorverdampfer (5) zu führen und in diesem zu verflüssigen oder teilverflüssigen und in das Destillationssäulensystem (10) einzuspeisen, und in dem Kondensatorverdampfer (5) eine Flüssigkeit mit einem Eintritts-Sauerstoffgehalt von 15% bis 45%, insbesondere von 20% bis 40%, zu verdampfen oder teilzuverdampfen, und
    - die verdichtete und abgekühlte Luft zu einem weiteren Anteil in das Destillationssäulensystem (10) einzuspeisen, ohne diese durch den Kondensatorverdampfer (5) zu führen.
    dadurch gekennzeichnet, dass die Luftzerlegungsanlage (100, 200) ferner dafür eingerichtet ist,
    - das zweite Kopfgas oder einen Anteil des zweiten Kopfgases als Unreinstickstoff mit einem Sauerstoffgehalt von 8 bis 15 Molprozent aus der Niederdrucksäule (12) zu entnehmen, und
    - einen Anteil des Unreinstickstoffs als Rückführmenge nacheinander zu erwärmen, auf einen Druck in dem ersten Druckbereich zu verdichten, abzukühlen und in die Hochdrucksäule (11) einzuspeisen.
EP19797567.5A 2018-10-23 2019-10-22 Verfahren und anlage zur tieftemperaturzerlegung von luft Active EP3870917B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP18020545 2018-10-23
PCT/EP2019/025355 WO2020083527A1 (de) 2018-10-23 2019-10-22 Verfahren und anlage zur tieftemperaturezerlegung von luft

Publications (3)

Publication Number Publication Date
EP3870917A1 EP3870917A1 (de) 2021-09-01
EP3870917C0 EP3870917C0 (de) 2024-03-27
EP3870917B1 true EP3870917B1 (de) 2024-03-27

Family

ID=63965046

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19797567.5A Active EP3870917B1 (de) 2018-10-23 2019-10-22 Verfahren und anlage zur tieftemperaturzerlegung von luft

Country Status (4)

Country Link
EP (1) EP3870917B1 (de)
KR (1) KR20210077687A (de)
CN (1) CN112805524B (de)
WO (1) WO2020083527A1 (de)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE821654C (de) * 1950-10-07 1951-11-19 Adolf Messer G M B H Verfahren zur Gewinnung von Rein-Argon
FR2731781B1 (fr) * 1995-03-15 1997-05-23 Air Liquide Procede et appareil de vaporisation d'un debit liquide
DE19803437A1 (de) 1998-01-29 1999-03-18 Linde Ag Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
DE10013075A1 (de) * 2000-03-17 2001-09-20 Linde Ag Verfahren zur Gewinnung von gasförmigem und flüssigem Stickstoff mit variablem Anteil des Flüssigprodukts
DE10027139A1 (de) 2000-05-31 2001-12-06 Linde Ag Mehrstöckiger Badkondensator
FR2831251A1 (fr) * 2002-02-25 2003-04-25 Air Liquide Procede et installation de production d'azote et d'oxygene
EP1750074A1 (de) * 2005-08-02 2007-02-07 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP2551619A1 (de) * 2011-07-26 2013-01-30 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Druckstickstoff und Drucksauerstoff durch Tieftemperaturzerlegung von Luft
EP2789958A1 (de) 2013-04-10 2014-10-15 Linde Aktiengesellschaft Verfahren zur Tieftemperaturzerlegung von Luft und Luftzerlegungsanlage
CN105473968B (zh) * 2013-07-11 2018-06-05 林德股份公司 用于以可变的能量消耗通过空气的低温分离产生氧的方法和装置
EP3179186A1 (de) 2015-12-07 2017-06-14 Linde Aktiengesellschaft Verfahren zur gewinnung eines flüssigen und eines gasförmigen, sauerstoffreichen luftprodukts in einer luftzerlegungsanlage und luftzerlegungsanlage
CN106123489A (zh) 2016-06-29 2016-11-16 苏州制氧机股份有限公司 一种混合塔制氧方法
EP3343159A1 (de) * 2016-12-28 2018-07-04 Linde Aktiengesellschaft Verfahren und vorrichtung zur erzeugung von gasförmigem sauerstoff und gasförmigem druckstickstoff

Also Published As

Publication number Publication date
EP3870917A1 (de) 2021-09-01
EP3870917C0 (de) 2024-03-27
KR20210077687A (ko) 2021-06-25
CN112805524B (zh) 2022-12-06
WO2020083527A1 (de) 2020-04-30
CN112805524A (zh) 2021-05-14

Similar Documents

Publication Publication Date Title
EP3164654B1 (de) Verfahren und vorrichtung zur tieftemperaturzerlegung von luft mit variablem energieverbrauch
EP1067345B1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP2235460A2 (de) Verfahren und vorrichtung zur tieftemperatur-luftzerlegung
EP3410050B1 (de) Verfahren zur gewinnung eines oder mehrerer luftprodukte und luftzerlegungsanlage
EP1074805B1 (de) Verfahren und Vorrichtung zur Gewinnung von Sauerstoff unter überatmosphärischem Druck
WO2020169257A1 (de) Verfahren und anlage zur tieftemperaturzerlegung von luft
EP3019804A2 (de) Verfahren zur erzeugung zumindest eines luftprodukts, luftzerlegungsanlage, verfahren und vorrichtung zur erzeugung elektrischer energie
WO2021104668A1 (de) Verfahren und anlage zur tieftemperaturzerlegung von luft
EP3924677A1 (de) Verfahren und anlage zur bereitstellung eines oder mehrerer sauerstoffreicher, gasförmiger luftprodukte
EP3980705A1 (de) Verfahren und anlage zur tieftemperaturzerlegung von luft
EP3557166A1 (de) Verfahren zur tieftemperaturzerlegung von luft und luftzerlegungsanlage
EP2914913B1 (de) Verfahren zur tieftemperaturzerlegung von luft in einer luftzerlegungsanlage und luftzerlegungsanlage
EP1750074A1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP3870917B1 (de) Verfahren und anlage zur tieftemperaturzerlegung von luft
WO2021204424A2 (de) Verfahren zur tieftemperaturzerlegung von luft, luftzerlegungsanlage und verbund aus wenigstens zwei luftzerlegungsanlagen
EP1189001B1 (de) Verfahren und Vorrichtung zur Erzeugung hoch reinen Stickstoffs durch Tieftemperatur-Luftzerlegung
WO2020187449A1 (de) Verfahren und anlage zur tieftemperaturzerlegung von luft
EP4127583B1 (de) Verfahren und anlage zur tieftemperaturzerlegung von luft
DE202018006161U1 (de) Anlage zur Tieftemperaturzerlegung von Luft
WO2021204418A1 (de) Verfahren zur herstellung eines gasförmigem und eines flüssigen stickstoffprodukts durch tieftemperaturzerlegung von luft und luftzerlegungsanlage
WO2020083525A1 (de) Verfahren und anlage zur tieftemperaturzerlegung von luft
WO2023274574A1 (de) Verfahren und anlage zur bereitstellung eines stickstoffprodukts, eines sauerstoffprodukts und eines wasserstoffprodukts
EP4211409A1 (de) Verfahren zur gewinnung eines oder mehrerer luftprodukte und luftzerlegungsanlage
EP3757493A1 (de) Verfahren und anlage zur gewinnung eines stickstoffreichen und eines sauerstoffreichen luftprodukts unter einsatz einer tieftemperaturzerlegung von luft
WO2022179748A1 (de) Verfahren und anlage zur bereitstellung von druckstickstoff

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210324

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220513

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231019

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019010916

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

U01 Request for unitary effect filed

Effective date: 20240402

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20240516