EP3869099B1 - Method, device, and computer program product for regulating a fuel-air mixture in a heating device - Google Patents

Method, device, and computer program product for regulating a fuel-air mixture in a heating device Download PDF

Info

Publication number
EP3869099B1
EP3869099B1 EP21156455.4A EP21156455A EP3869099B1 EP 3869099 B1 EP3869099 B1 EP 3869099B1 EP 21156455 A EP21156455 A EP 21156455A EP 3869099 B1 EP3869099 B1 EP 3869099B1
Authority
EP
European Patent Office
Prior art keywords
heater
ionisation
fuel gas
signal
combustion air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21156455.4A
Other languages
German (de)
French (fr)
Other versions
EP3869099A1 (en
Inventor
Christian Fischer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vaillant GmbH
Original Assignee
Vaillant GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vaillant GmbH filed Critical Vaillant GmbH
Publication of EP3869099A1 publication Critical patent/EP3869099A1/en
Application granted granted Critical
Publication of EP3869099B1 publication Critical patent/EP3869099B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
    • F23N5/123Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/26Measuring humidity
    • F23N2225/30Measuring humidity measuring lambda
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2229/00Flame sensors
    • F23N2229/12Flame sensors with flame rectification current detecting means

Definitions

  • the invention is in the field of regulating a fuel gas/air mixture for a combustion process in a heating device, in particular for heating water or heating a building.
  • a heating device in particular for heating water or heating a building.
  • an ionization measurement is carried out in a flame area, particularly in many heaters. Such measurements should enable stable control over long periods of time. If the control fails, in most cases the heater has to be switched off, which of course should happen as seldom as possible.
  • control during operation has often been carried out by means of a separate ionization electrode.
  • the respective actual value of the ionization in the flame area is determined, which is proportional to the current lambda value, so that it can be derived from the ionization measurement.
  • an alternating voltage is applied to the ionization electrode, with the flame region ionized when flames are present having a rectifying effect, so that an ionization current mainly flows only during a half-wave of the alternating current.
  • This current or a proportional voltage signal derived from it is measured and optionally processed further as an ionization signal after digitization in an analog/digital converter.
  • the lambda value can be measured and regulated to a target value by means of a control loop.
  • the supply of air and / or Combustion gas changed by suitable actuators until the desired target value for lambda is reached.
  • a lambda value > 1 (1 corresponds to a stoichiometric ratio) is aimed for, e.g. B.
  • Lambda 1.3 to ensure that enough air is supplied for clean combustion with essentially no generation of carbon monoxide.
  • lambda must remain small enough to ensure stable combustion.
  • the regulation can take place in particular via a valve for the supply of fuel gas and/or a blower for the supply of ambient air.
  • the patent application EP1002997 A2 discloses a heater and control method.
  • a ⁇ is determined from the signal of an AC voltage at the electrode, and a further signal is applied to the electrode at time intervals to determine the burner output.
  • the WO2009/110015 A1 also discloses a heater and control method.
  • a separate consideration of a positive and a negative signal component from an ionization electrode is discussed therein.
  • the actual flame signal is detected with a positive ionization current signal, the negative part of a signal is assigned to a fault current.
  • the US5549469A in the area of flame monitoring, different behavior of positive and negative signal extremes.
  • such combustion controls are known that regulate the desired combustion quality (lambda value) via stored ionization current control curves.
  • the measured ionization signal depends not only on the lambda value, but also on the respective output of the heater, so that this must be known for precise control.
  • the power can be linked to the speed of a fan for combustion air (or a mixture of combustion air and fuel gas) if a fixed relationship between this speed and the power is assumed.
  • this does not necessarily lead to precise control if, for example, the operating and/or environmental conditions of the heater change.
  • Accurate measurement is essential possible if the flow of combustion air or combustion mixture is measured using a flow meter, which, however, requires a certain amount of additional measuring effort (intrinsically safe sensors, etc.).
  • the diode effect (rectifier effect) of the flame is not perfect (only passage in a direction referred to here as positive), but also in the opposite direction (referred to here as negative proportion) some current flows.
  • the reverse resistance is several orders of magnitude larger than the so-called forward resistance in the flow direction of the diode, which is why its influence is small. Studies have shown, however, that the Forward resistance depends not only on the lambda value, but also on the power of the heater in the sense that with increasing power and unchanged calibration data it would cause a lambda value that is too high. In terms of quality, the reverse resistance depends almost exclusively on the output of the heater, but only to a very small extent.
  • this portion can be evaluated by a sensitive measurement and used to determine the influence of the power on the positive portion of the ionization signal. So the deviation between a z. B. from the speed of a fan certain target power and z. B. Environment variables specific actual performance are compensated.
  • the portion of the ionization signal that is more dependent on the lambda value is defined and referred to as a positive portion, the other as a negative portion.
  • a positive portion the other as a negative portion.
  • the actual value of the heater output (at least in the range that is important for regulation) can be determined almost independently of the lambda value.
  • the current output of the heater can be determined using empirical values or calibration data without the need for additional sensors in the heater.
  • a frequency of the ionization AC voltage between 10 and 10,000 Hz [Hertz] is used for the method, preferably between 50 and 300 Hz, in particular about 100 Hz.
  • Known ionization measuring devices that work in these ranges can thus be used.
  • the maxima of the amplitudes of the positive portion of the ionization signal and the minima of the amplitudes of the negative portion are determined and further processed separately for different purposes.
  • This embodiment is not the only possible type of evaluation.
  • rectified mean values of the respective half-waves can also be used as a measure.
  • the regulation of the lambda value can be continuously corrected using the information about the current output of the heater from the negative portion of the ionization signal.
  • the calibration data of the regulation of the heater are corrected by means of a speed of a fan with the result of the measurement of the current output of the heater if necessary.
  • a known type of control can be used, but always adapted to changing operating conditions.
  • a heater having an air supply and a fuel gas supply, which are regulated by a control unit using an ionization signal, comprising an ionization electrode, a counter-electrode, an ionization AC voltage source for an ionization AC voltage of a definable frequency and evaluation electronics for determining a positive component of the ionization signal , which can be supplied to the control unit, with an analysis unit being present for evaluating a negative component of the ionization signal in order to determine a current output of the heating device.
  • a control unit using an ionization signal comprising an ionization electrode, a counter-electrode, an ionization AC voltage source for an ionization AC voltage of a definable frequency and evaluation electronics for determining a positive component of the ionization signal , which can be supplied to the control unit, with an analysis unit being present for evaluating a negative component of the ionization signal in order to determine a current output of the heating device.
  • the analysis unit is preferably connected to the evaluation electronics or integrated into them.
  • a computer program product comprising instructions that cause the heating device described here to carry out the proposed method.
  • figure 1 shows schematically an extended equivalent circuit diagram 10 for a flame in which an ionization current generated by an ionization voltage source 11 flows.
  • the flame acts like a diode D, i.e. it essentially only lets current through in one direction and also has a certain resistance, the forward resistance RF, which can be represented by a resistor connected in series with the diode D.
  • the diode D also lets through a certain current in its reverse direction, which can be represented by a reverse resistor RR connected in parallel with the diode D.
  • the reverse resistance RR is several orders of magnitude larger than the forward resistance RF, which is why its existence has been neglected in many equivalent circuit diagrams and circuits.
  • FIG 2 shows schematically an embodiment of a device proposed here.
  • a flame area 2 forms during operation.
  • Air enters the heater 1 via an air supply 3 and a blower 5 .
  • Combustion gas is added to the air via a fuel gas supply 4 and a fuel gas valve 6 .
  • Combustion gas supply and speed of the blower 5 can be regulated via control lines 7 .
  • An ionization signal I is measured in the flame area 2 by means of an ionization electrode 8 .
  • a measuring system is used for this purpose, by which the ionization electrode 8 is subjected to an ionization AC voltage U of a predefinable frequency f from an ionization AC voltage source 11, with a first electronic evaluation system 13 measuring the resulting ionization signal I and, according to calibration data (control curve) stored in a calibration data memory 15, converting it into a lambda value, i.e. a mixture ratio of air to fuel.
  • a target value for the ionization signal can be specified.
  • a control unit 16 can regulate the blower 5 and/or the fuel gas valve 6 in such a way that the actual value for lambda is set to the desired value.
  • a negative component of the ionization signal I can also be evaluated.
  • the ionization signal I is conducted via a data line 12 to an analysis unit 14, which obtains information about the output of the heating device 1 from the negative component or its ratio to the positive component. This can preferably be done using empirical values or calibration data.
  • the analysis unit 14 can of course be part of the evaluation electronics 13, which then evaluates the positive and the negative component of the ionization signal I separately.
  • a normal ionization signal has positive and negative half-waves, their respective maxima and minima can be determined, from which the desired information for regulation is obtained.
  • the minima to be assigned to the reverse resistance RR hardly depend on the lambda value over a wide range, but do depend heavily on the actual power (actual value) of the heater. This makes it possible to eliminate the influence of the power on the regulation of the lambda value with the maxima of the positive components of the ionization signal.
  • the present invention makes it possible to implement reliable control with variable power without any significant changes to a heating device itself, using only additional electronics, which also enables (post-)calibration of existing controls for different powers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Combustion (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Description

Die Erfindung liegt auf dem Gebiet der Regelung eines Brenngas-Luftgemisches für einen Verbrennungsprozess in einem Heizgerät, insbesondere zur Warmwasserbereitung oder Beheizung eines Gebäudes. Zur Messung einer Qualität der Verbrennung, die hauptsächlich von dem während der Verbrennung vorliegenden Verhältnis von Verbrennungsluft zu Brenngas (Lambda-Wert, auch Luftzahl genannt) abhängt, wird insbesondere bei vielen Heizgeräten eine lonisationsmessung in einem Flammenbereich durchgeführt. Solche Messungen sollen eine stabile Regelung über lange Zeiträume ermöglichen. Fällt die Regelung aus, so muss in den meisten Fällen das Heizgerät abgeschaltet werden, was natürlich möglichst selten vorkommen sollte.The invention is in the field of regulating a fuel gas/air mixture for a combustion process in a heating device, in particular for heating water or heating a building. In order to measure the quality of combustion, which mainly depends on the ratio of combustion air to fuel gas (lambda value, also called air ratio) during combustion, an ionization measurement is carried out in a flame area, particularly in many heaters. Such measurements should enable stable control over long periods of time. If the control fails, in most cases the heater has to be switched off, which of course should happen as seldom as possible.

Nach dem Stand der Technik wird bisher im Betrieb die Regelung oft mittels einer gesonderten lonisationselektrode durchgeführt. Unabhängig von der Art der Elektrode wird der jeweilige Ist-Wert der Ionisation im Flammenbereich ermittelt, der proportional dem gerade vorliegenden Lambda-Wert ist, so dass dieser aus der lonisationsmessung abgeleitet werden kann. Dabei wird an die lonisationselektrode eine Wechselspannung angelegt, wobei der bei Vorhandensein von Flammen ionisierte Flammenbereich eine gleichrichtende Wirkung hat, so dass ein lonisationsstrom hauptsächlich jeweils nur während einer Halbwelle des Wechselstromes fließt. Dieser Strom oder ein daraus abgeleitetes proportionales Spannungssignal, im Folgenden lonisationssignal genannt, werden gemessen und gegebenenfalls nach einer Digitalisierung in einem Analog/Digital-Wandler als lonisationssignal weiterverarbeitet. So kann der Lambda-Wert gemessen und mittels eines Regelkreises auf einen Sollwert geregelt werden. Dabei wird die Zufuhr von Luft und/oder Brenngas durch geeignete Stellglieder verändert, bis der gewünschte Sollwert für Lambda erreicht ist. Im Allgemeinen wird ein Lambda-Wert > 1 (1 entspricht einem stöchiometrischen Verhältnis) angestrebt, z. B. Lambda = 1,3, um sicherzustellen, dass genug Luft für eine saubere Verbrennung im Wesentlichen ohne Erzeugung von Kohlenmonoxid zugeführt wird. Dabei muss Lambda aber so klein bleiben, dass eine stabile Verbrennung gewährleistet ist. Die Regelung kann insbesondere über ein Ventil für die Zufuhr von Brenngas und/oder ein Gebläse für die Zufuhr von Umgebungsluft erfolgen.According to the state of the art, control during operation has often been carried out by means of a separate ionization electrode. Regardless of the type of electrode, the respective actual value of the ionization in the flame area is determined, which is proportional to the current lambda value, so that it can be derived from the ionization measurement. In this case, an alternating voltage is applied to the ionization electrode, with the flame region ionized when flames are present having a rectifying effect, so that an ionization current mainly flows only during a half-wave of the alternating current. This current or a proportional voltage signal derived from it, referred to below as the ionization signal, is measured and optionally processed further as an ionization signal after digitization in an analog/digital converter. In this way, the lambda value can be measured and regulated to a target value by means of a control loop. The supply of air and / or Combustion gas changed by suitable actuators until the desired target value for lambda is reached. In general, a lambda value > 1 (1 corresponds to a stoichiometric ratio) is aimed for, e.g. B. Lambda = 1.3 to ensure that enough air is supplied for clean combustion with essentially no generation of carbon monoxide. However, lambda must remain small enough to ensure stable combustion. The regulation can take place in particular via a valve for the supply of fuel gas and/or a blower for the supply of ambient air.

Die Patentanmeldeschrift EP1002997 A2 offenbart ein Heizgerät und ein Regelungsverfahren. Dabei wird aus dem Signal einer Wechselspannung an der Elektrode ein λ bestimmt, in Zeitabständen wird zur Bestimmung der Brennerleistung ein weiteres Signal an die Elektrode angelegt. Die WO2009/110015 A1 offenbart ebenfalls ein Heizgerät und ein Regelungsverfahren. Es wird darin eine gesonderte Betrachtung eines positiven und eines negativen Signalanteils von einer lonisationselektrode diskutiert. Dabei wird mit einem positiven lonisationsstromsignal das eigentliche Flammensignal erfasst, der negative Anteil eines Signals wird einem Fehlerstrom zugeordnet. Weiterhin nennt die US5549469 A im Bereich der Flammenüberwachung unterschiedliches Verhalten von positiven und von negativen Signalextrema. Auch aus der DE 196 18 573 C1 und der DE 195 02 901 C1 sind beispielsweise solche Verbrennungsregelungen bekannt, die über hinterlegte lonisationsstrom-Regelkurven die gewünschte Verbrennungsqualität (Lambda-Wert) einregeln.The patent application EP1002997 A2 discloses a heater and control method. A λ is determined from the signal of an AC voltage at the electrode, and a further signal is applied to the electrode at time intervals to determine the burner output. the WO2009/110015 A1 also discloses a heater and control method. A separate consideration of a positive and a negative signal component from an ionization electrode is discussed therein. The actual flame signal is detected with a positive ionization current signal, the negative part of a signal is assigned to a fault current. Furthermore, the US5549469A in the area of flame monitoring, different behavior of positive and negative signal extremes. Also from the DE 196 18 573 C1 and the DE 195 02 901 C1 For example, such combustion controls are known that regulate the desired combustion quality (lambda value) via stored ionization current control curves.

Der grundsätzliche Aufbau solcher Heizgeräte, von Messystemen zur lonisationsmessung und zu deren Benutzung zur Regelung sind beispielsweise auch aus der EP 0 770 824 B1 und der EP 2 466 204 B1 bekannt. Dort ist auch beschrieben, dass sich die Regelgenauigkeit im Laufe der Zeit durch verschiedene Einflüsse verändern kann, insbesondere durch Einflüsse auf den Zustand oder die Form der lonisationselektrode. Verschiedene Verfahren zu einer Nachkalibrierung bei Bedarf sind dort angegeben.The basic structure of such heaters, measuring systems for ionization measurement and their use for regulation are, for example, from EP 0 770 824 B1 and the EP 2 466 204 B1 known. It is also described there that the control accuracy can change over time due to various influences, in particular due to influences on the condition or the shape of the ionization electrode. Various procedures for recalibration if necessary are specified there.

Allerdings muss ein weiterer Parameter bei der Regelung berücksichtigt werden, nämlich die Leistung, bei der das Heizgerät arbeitet. Tatsächlich ist das gemessene lonisationssignal nicht nur vom Lambda-Wert, sondern auch von der jeweiligen Leistung des Heizgerätes abhängig, so dass diese für eine genaue Regelung bekannt sein muss. In erster Näherung kann man die Leistung mit der Drehzahl eines Gebläses für Verbrennungsluft (oder ein Gemisch aus Verbrennungsluft und Brenngas) verknüpfen, wenn man einen festen Zusammenhang zwischen dieser Drehzahl und der Leistung annimmt. Das führt aber nicht unbedingt zu einer genauen Regelung, wenn sich beispielsweise die Betriebs- und/oder Umgebungsbedingungen des Heizgerätes ändern. Eine genaue Messung ist prinzipiell möglich, wenn man den Durchfluss an Verbrennungsluft oder an Verbrennungsgemisch mittels eines Durchflussmessers misst, was jedoch einen gewissen zusätzlichen Messaufwand (eigensichere Sensorik etc.) erfordert.However, another parameter must be taken into account in the regulation, namely the power at which the heater is working. In fact, the measured ionization signal depends not only on the lambda value, but also on the respective output of the heater, so that this must be known for precise control. As a first approximation, the power can be linked to the speed of a fan for combustion air (or a mixture of combustion air and fuel gas) if a fixed relationship between this speed and the power is assumed. However, this does not necessarily lead to precise control if, for example, the operating and/or environmental conditions of the heater change. Accurate measurement is essential possible if the flow of combustion air or combustion mixture is measured using a flow meter, which, however, requires a certain amount of additional measuring effort (intrinsically safe sensors, etc.).

Hier will die vorliegende Erfindung Abhilfe schaffen, um einen sicheren und zuverlässigen Betrieb eines Heizgerätes und eine stabile und genaue Regelung bei unterschiedlichen Leistungen mit geringem Aufwand zu ermöglichen.This is where the present invention seeks to remedy the situation in order to enable safe and reliable operation of a heating device and stable and precise control at different outputs with little effort.

Zur Lösung dieser Aufgabe tragen ein Verfahren, eine Vorrichtung sowie ein Computerprogrammprodukt gemäß den unabhängigen Ansprüchen bei. Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung sind in den jeweiligen abhängigen Ansprüchen angegeben. Die Beschreibung, insbesondere im Zusammenhang mit den Figuren, veranschaulicht die Erfindung und gibt weitere Ausführungsbeispiele an.A method, a device and a computer program product according to the independent claims contribute to solving this problem. Advantageous refinements and developments of the invention are specified in the respective dependent claims. The description, in particular in connection with the figures, illustrates the invention and specifies further exemplary embodiments.

Bisher werden bei der Beschreibung des Prinzips einer lonisationsmessung für den Flammenwiderstand in einem Verbrennungsprozess als vereinfachtes Ersatzschaltbild eine Diode und ein damit in Reihe geschalteter Widerstand benutzt. Damit kann man die bisher genutzten Systeme recht gut beschreiben, bei denen der Flammenwiderstand eine gleichrichtende Funktion überlagert mit einem Widerstand hat. Tatsächlich aber gibt es noch eine weitere Eigenschaft des Flammenwiderstandes, die man durch einen zusätzlichen, zur Diode parallel geschalteten Widerstand, einen sogenannten Reverse-Widerstand, im einem erweiterten Ersatzschaltbild nachbilden kann. Die Diodenwirkung (Gleichrichterwirkung) der Flamme (jedenfalls bei einer typischen Flamme in einem Gasbrenner bzw. einer kohlenstoffhaltigen Flamme) ist nämlich nicht perfekt (nur Durchlass in einer hier als positiv bezeichneten Richtung), sondern auch in umgekehrter Richtung (hier als negativer Anteil bezeichnet) fließt ein gewisser Strom. Der Reverse-Widerstand ist allerdings mehrere Größenordnungen größer als der sogenannte Forward-Widerstand in Durchflussrichtung der Diode, weshalb sein Einfluss gering ist. Untersuchungen haben aber gezeigt, dass der Forward-Widerstand nicht nur vom Lambda-Wert, sondern auch von der Leistung des Heizgerätes in dem Sinne abhängt, dass er bei steigender Leistung und unveränderten Kalibrierdaten einen zu hohen Lambda-Wert bewirken würde. Der Reverse-Widerstand hängt qualitativ fast nur von der Leistung des Heizgerätes ab, aber eben nur in ganz geringem Anteil. Diesen Anteil kann man jedoch durch eine empfindliche Messung auswerten und zur Bestimmung des Einflusses der Leistung auf den positiven Anteil des lonisationssignals nutzen. So kann die Abweichung zwischen einer z. B. aus der Drehzahl eines Gebläses bestimmten Soll-Leistung und der durch z. B. Umgebungsvariablen bestimmten Ist-Leistung kompensiert werden.So far, in the description of the principle of an ionization measurement for the flame resistance in a combustion process, a diode and a resistor connected in series with it have been used as a simplified equivalent circuit diagram. This can be used to describe the systems used up to now quite well, in which the flame resistance has a rectifying function superimposed with a resistance. In fact, however, there is another property of flame resistance that can be simulated in an extended equivalent circuit diagram by means of an additional resistor connected in parallel with the diode, a so-called reverse resistor. The diode effect (rectifier effect) of the flame (at least with a typical flame in a gas burner or a flame containing carbon) is not perfect (only passage in a direction referred to here as positive), but also in the opposite direction (referred to here as negative proportion) some current flows. However, the reverse resistance is several orders of magnitude larger than the so-called forward resistance in the flow direction of the diode, which is why its influence is small. Studies have shown, however, that the Forward resistance depends not only on the lambda value, but also on the power of the heater in the sense that with increasing power and unchanged calibration data it would cause a lambda value that is too high. In terms of quality, the reverse resistance depends almost exclusively on the output of the heater, but only to a very small extent. However, this portion can be evaluated by a sensitive measurement and used to determine the influence of the power on the positive portion of the ionization signal. So the deviation between a z. B. from the speed of a fan certain target power and z. B. Environment variables specific actual performance are compensated.

Das hier vorgeschlagene Verfahren betrifft die Regelung einer Verbrennung in einem Heizgerät bei variabler Leistung mittels eines in einem Flammenbereich des mit Verbrennungsluft und Brenngas betriebenen Heizgerätes gemessenen lonisationssignals, welches aus einem von einer lonisationselektrode zu einer Gegenelektrode durch den Flammenbereich fließenden lonenstrom abgeleitet wird, der von einer lonisationswechselspannung mit einer vorgebbaren Frequenz erzeugt wird, wobei das Verhältnis (Lambda-Wert) von Verbrennungsluft zu Brenngas bei der Verbrennung in dem Heizgerät anhand von Kalibrierdaten aus dem lonisationssignal bestimmt und mittels Einstellung der Zufuhr an Brenngas und/oder der Zufuhr an Verbrennungsluft geregelt wird. Dabei werden zumindest folgende Schritte durchgeführt:

1.1
Das lonisationssignal enthält einen positiven und einen negativen Anteil, die separat voneinander betrachtet werden.
1.2
Der positive Anteil ist abhängig vom Verhältnis von Verbrennungsluft zu Brenngas (Lambda-Wert) und wird für die Ermittlung des lonisationssignals (11) verwendet.
1.3
Der negative Anteil und/oder sein Größenverhältnis zum positiven Anteil sind abhängig von der aktuellen Leistung des Heizgerätes, die mittels einer Analyseeinheit (14) aus Erfahrungswerten oder Kalibrierdaten ermittelt wird.
1.4
Die Information über die aktuelle Leistung des Heizgerätes wird genutzt, um geeignete Kalibrierdaten für diese Leistung zur Regelung des Verhältnisses von Verbrennungsluft zu Brenngas (Lambda-Wert) auszuwählen.
The method proposed here relates to the control of combustion in a heater with variable power by means of an ionization signal measured in a flame area of the heater operated with combustion air and fuel gas, which is derived from an ion current flowing from an ionization electrode to a counter-electrode through the flame area, which is ionization alternating voltage is generated with a definable frequency, the ratio (lambda value) of combustion air to combustion gas during combustion in the heater being determined on the basis of calibration data from the ionization signal and by adjusting the supply of combustion gas and/or the supply of combustion air. At least the following steps are carried out:
1.1
The ionization signal contains a positive and a negative part, which are considered separately from each other.
1.2
The positive portion depends on the ratio of combustion air to fuel gas (lambda value) and is used to determine the ionization signal (11).
1.3
The negative portion and/or its size ratio to the positive portion depend on the current output of the heater, which is determined using an analysis unit (14) from empirical values or calibration data.
1.4
The information about the current performance of the heater is used to select suitable calibration data for this performance to regulate the ratio of combustion air to fuel gas (lambda value).

Hier und im Folgenden wird der Anteil des lonisationssignals, der stärker vom Lambda-Wert abhängt, als positiver Anteil definiert und bezeichnet, der andere als negativer Anteil. Dies hängt aber von der Art der Signalauswertung ab, so dass es in der Praxis je nach Auswerteelektronik auch umgekehrt sein kann.Here and in the following, the portion of the ionization signal that is more dependent on the lambda value is defined and referred to as a positive portion, the other as a negative portion. However, this depends on the type of signal evaluation, so that in practice it can also be the other way around, depending on the evaluation electronics.

Durch die Analyse des negativen Anteils kann der Ist-Wert der Leistung des Heizgerätes (jedenfalls in dem für eine Regelung wichtigen Bereich) fast unabhängig vom Lambda-Wert ermittelt werden. Jedenfalls kann anhand von Erfahrungswerten oder Kalibrierdaten die aktuelle Leistung des Heizgerätes ermittelt werden, ohne dass es zusätzlicher Sensoren in dem Heizgerät bedarf.By analyzing the negative part, the actual value of the heater output (at least in the range that is important for regulation) can be determined almost independently of the lambda value. In any case, the current output of the heater can be determined using empirical values or calibration data without the need for additional sensors in the heater.

Für das Verfahren wird in einer Ausführungsform eine Frequenz der lonisationswechselspannung zwischen 10 und 10000 Hz [Hertz] benutzt, vorzugsweise zwischen 50 und 300 Hz, insbesondere etwa 100 Hz. Damit können schon bekannte lonisationsmessgeräte, die in diesen Bereichen arbeiten, eingesetzt werden.In one embodiment, a frequency of the ionization AC voltage between 10 and 10,000 Hz [Hertz] is used for the method, preferably between 50 and 300 Hz, in particular about 100 Hz. Known ionization measuring devices that work in these ranges can thus be used.

In einer bevorzugten Ausführungsform werden die Maxima der Amplituden des positiven Anteils des lonisationssignals und die Minima der Amplituden des negativen Anteils bestimmt und getrennt für verschiedene Zwecke weiterverarbeitet. Dies Ausführungsform ist allerdings nicht die einzige mögliche Art der Auswertung. So können beispielsweise auch gleichgerichtete Mittelwerte der jeweiligen Halbwellen als Maß benutzt werden.In a preferred embodiment, the maxima of the amplitudes of the positive portion of the ionization signal and the minima of the amplitudes of the negative portion are determined and further processed separately for different purposes. This embodiment is However, this is not the only possible type of evaluation. For example, rectified mean values of the respective half-waves can also be used as a measure.

Insbesondere kann die Regelung des Lambda-Wertes kontinuierlich mittels der Information über die aktuelle Leistung des Heizgerätes aus dem negativen Anteil des lonisationssignals korrigiert werden.In particular, the regulation of the lambda value can be continuously corrected using the information about the current output of the heater from the negative portion of the ionization signal.

In einer alternativen Ausführungsform werden mit dem Ergebnis der Messung der aktuellen Leistung des Heizgerätes die Kalibrierdaten der Regelung des Heizgerätes mittels einer Drehzahl eines Gebläses bei Bedarf korrigiert. So kann eine bekannte Art der Regelung genutzt, aber immer wieder an veränderte Betriebsbedingungen angepasst werden.In an alternative embodiment, the calibration data of the regulation of the heater are corrected by means of a speed of a fan with the result of the measurement of the current output of the heater if necessary. In this way, a known type of control can be used, but always adapted to changing operating conditions.

Weiter wird auch ein Heizgerät vorgeschlagen, aufweisend eine Luftzufuhr und eine Brenngaszufuhr, die von einer Regeleinheit geregelt werden unter Verwendung eines lonisationssignals, umfassend eine lonisationselektrode, eine Gegenelektrode, eine lonisationswechselspannungsquelle für eine lonisationswechselspannung einer vorgebbaren Frequenz und eine Auswertelektronik zur Ermittlung eines positiven Anteils des lonisationssignales, das der Regeleinheit zuführbar ist, wobei eine Analyseeinheit vorhanden ist zur Auswertung eines negativen Anteils des lonisationssignals zur Ermittlung einer aktuellen Leistung des Heizgerätes.Furthermore, a heater is also proposed, having an air supply and a fuel gas supply, which are regulated by a control unit using an ionization signal, comprising an ionization electrode, a counter-electrode, an ionization AC voltage source for an ionization AC voltage of a definable frequency and evaluation electronics for determining a positive component of the ionization signal , which can be supplied to the control unit, with an analysis unit being present for evaluating a negative component of the ionization signal in order to determine a current output of the heating device.

Bevorzugt ist die Analyseeinheit mit der Auswerteelektronik verbunden oder in diese integriert.The analysis unit is preferably connected to the evaluation electronics or integrated into them.

Zudem wird auch ein Computerprogrammprodukt vorgeschlagen, umfassend Befehle, die bewirken, dass das hier beschriebene Heizgerät das vorgeschlagene Verfahren ausführt.In addition, a computer program product is also proposed, comprising instructions that cause the heating device described here to carry out the proposed method.

Ein schematisches Ausführungsbeispiel der Erfindung, auf das diese jedoch nicht beschränkt ist, und die Funktionsweise des erfindungsgemäßen Verfahrens werden nun anhand der Zeichnung näher erläutert. Es stellen dar:

Fig. 1:
ein erweitertes Ersatzschaltbild für den Flammenwiderstand in einem Verbrennungsprozess und
Fig. 2:
eine schematische Darstellung eines Heizgerätes mit Regelung über ein lonisationssignal gemäß der Erfindung.
A schematic embodiment of the invention, to which it is not limited, and the functioning of the method according to the invention will now be explained in more detail with reference to the drawing. They represent:
Figure 1:
an extended equivalent circuit diagram for the flame resistance in a combustion process and
Figure 2:
a schematic representation of a heating device with control via an ionization signal according to the invention.

Figur 1 zeigt schematisch ein erweitertes Ersatzschaltbild 10 für eine Flamme, in der ein von einer lonisationsspannungsquelle 11 erzeugter lonisationsstrom fließt. Die Flamme wirkt einerseits wie eine Diode D, lässt also Strom im Wesentlichen nur in einer Richtung durch und hat außerdem einen gewissen Widerstand, den Forward-Widerstand RF, den man durch einen in Reihe mit der Diode D geschalteten Widerstand darstellen kann. Außerdem lässt aber die Diode D auch einen gewissen Strom in ihrer Sperrrichtung durch, was man durch einen parallel zur Diode D geschalteten Reverse-Widerstand RR darstellen kann. Im beschriebenen Anwendungsbeispiel ist der Reverse-Widerstand RR um mehrere Größenordnungen größer als der Forward-Widerstand RF, weshalb seine Existenz bei vielen Ersatzschaltbildern und Schaltungen vernachlässigt wurde. Für die Erfindung ist aber wichtig, dass dieser Widerstand sich mit der Leistung eines Heizgerätes weitgehend unabhängig vom vorliegenden Lambda-Wert ändert, während sich der Forward-Widerstand mit dem Lambda-Wert und der Leistung ändert, weshalb eine Regelung nur des Lambda-Wertes bei unterschiedlichen Leistungen kompliziert ist. Gelingt es jedoch, die Information über die Leistung durch Messung des Reverse-Widerstandes zu ermitteln, was messtechnisch möglich ist, so kann der Einfluss der Leistung auf den Forward-Widerstand eliminiert werden, was gerade Gegenstand der vorliegenden Erfindung ist. figure 1 shows schematically an extended equivalent circuit diagram 10 for a flame in which an ionization current generated by an ionization voltage source 11 flows. On the one hand, the flame acts like a diode D, i.e. it essentially only lets current through in one direction and also has a certain resistance, the forward resistance RF, which can be represented by a resistor connected in series with the diode D. In addition, however, the diode D also lets through a certain current in its reverse direction, which can be represented by a reverse resistor RR connected in parallel with the diode D. In the application example described, the reverse resistance RR is several orders of magnitude larger than the forward resistance RF, which is why its existence has been neglected in many equivalent circuit diagrams and circuits. However, it is important for the invention that this resistance changes with the output of a heater largely independently of the lambda value present, while the forward resistance changes with the lambda value and the output, which is why only the lambda value is regulated different services is complicated. However, if it is possible to determine the information about the power by measuring the reverse resistance, which is technically possible, then the influence of the power on the forward resistance can be eliminated, which is precisely the subject matter of the present invention.

Figur 2 zeigt schematisch ein Ausführungsbeispiel einer hier vorgeschlagenen Vorrichtung. In einem Heizgerät 1 zur Verbrennung eines Brenngases mit Luft in einem Brennraum bildet sich beim Betrieb ein Flammenbereich 2 aus. Luft gelangt über eine Luftzufuhr 3 und ein Gebläse 5 in das Heizgerät 1. Brenngas wird der Luft über eine Brenngaszufuhr 4 und ein Brenngasventil 6 beigemischt. Über Steuerleitungen 7 können Brenngaszufuhr und Drehzahl des Gebläses 5 geregelt werden. Mittels einer lonisationselektrode 8 wird ein lonisationssignal I im Flammenbereich 2 gemessen. Dazu dient ein Messsystem, von dem die lonisationselektrode 8 mit einer lonisationswechselspannung U einer vorgebbaren Frequenz f aus einer lonisationswechselspannungsquelle 11 beaufschlagt wird, wobei eine erste Auswerteelektronik 13 das entstehende lonisationssignal I misst und nach in einem Kalibrierdatenspeicher 15 gespeicherten Kalibrierdaten (Regelkurve) in einen Lambda-Wert, also ein Mischungsverhältnis von Luft zu Brennstoff umrechnet. Vereinfacht kann ein Sollwert für das lonisationssignal vorgegeben werden. Mit diesem Wert als Ist-Wert kann eine Regeleinheit 16 das Gebläse 5 und/oder das Brenngasventil 6 so regeln, dass sich der Ist-Wert für Lambda auf den gewünschten Wert einstellt. figure 2 shows schematically an embodiment of a device proposed here. In a heater 1 for burning a fuel gas with air in a combustion chamber, a flame area 2 forms during operation. Air enters the heater 1 via an air supply 3 and a blower 5 . Combustion gas is added to the air via a fuel gas supply 4 and a fuel gas valve 6 . Combustion gas supply and speed of the blower 5 can be regulated via control lines 7 . An ionization signal I is measured in the flame area 2 by means of an ionization electrode 8 . A measuring system is used for this purpose, by which the ionization electrode 8 is subjected to an ionization AC voltage U of a predefinable frequency f from an ionization AC voltage source 11, with a first electronic evaluation system 13 measuring the resulting ionization signal I and, according to calibration data (control curve) stored in a calibration data memory 15, converting it into a lambda value, i.e. a mixture ratio of air to fuel. In simplified terms, a target value for the ionization signal can be specified. With this value as the actual value, a control unit 16 can regulate the blower 5 and/or the fuel gas valve 6 in such a way that the actual value for lambda is set to the desired value.

Zusätzlich zu dieser an sich bekannten Regelung, die im Wesentlichen auf dem hier als positiv bezeichneten Anteil des lonisationssignals I beruht, kann auch ein negativer Anteil des lonisationssignals I ausgewertet werden. Über eine Datenleitung 12 wird das lonisationssignal I zu einer Analyseeinheit 14 geleitet, die aus dem negativen Anteil oder dessen Verhältnis zum positiven Anteil eine Information über die Leistung des Heizgerätes 1 gewinnt. Dies kann bevorzugt anhand von Erfahrungswerten oder Kalibrierdaten geschehen. Die Analyseeinheit 14 kann natürlich Teil der Auswerteelektronik 13 sein, die dann den positiven und den negativen Anteil des lonisationssignals I getrennt auswertet. Obwohl der Effekt des Reverse-Widerstands RR auf den lonenstrom in der Flamme klein ist, kann dieser mit heutiger Messtechnik problemlos gemessen werden. Tatsächlich hat ein übliches lonisationssignal positive und negative Halbwellen, deren jeweilige Maxima bzw. Minima bestimmt werden können, woraus dann die jeweils gewünschte Information zur Regelung gewonnen wird. Versuche haben gezeigt, dass die dem Reverse-Widerstand RR zuzuordnenden Minima über einen weiten Bereich kaum vom Lambda-Wert abhängen, aber stark von der real vorliegenden Leistung (Ist-Wert) des Heizgerätes. Dies ermöglicht es, den Einfluss der Leistung auf die Regelung des Lambda-Wertes mit den Maxima der positiven Anteile des lonisationssignals zu eliminieren.In addition to this regulation, which is known per se and is essentially based on the component of the ionization signal I that is referred to here as positive, a negative component of the ionization signal I can also be evaluated. The ionization signal I is conducted via a data line 12 to an analysis unit 14, which obtains information about the output of the heating device 1 from the negative component or its ratio to the positive component. This can preferably be done using empirical values or calibration data. The analysis unit 14 can of course be part of the evaluation electronics 13, which then evaluates the positive and the negative component of the ionization signal I separately. Although the effect of the reverse resistance RR on the ion current in the flame is small, it can be easily measured with today's measurement technology. In fact, a normal ionization signal has positive and negative half-waves, their respective maxima and minima can be determined, from which the desired information for regulation is obtained. Experiments have shown that the minima to be assigned to the reverse resistance RR hardly depend on the lambda value over a wide range, but do depend heavily on the actual power (actual value) of the heater. This makes it possible to eliminate the influence of the power on the regulation of the lambda value with the maxima of the positive components of the ionization signal.

Die vorliegende Erfindung erlaubt es, ohne wesentliche Veränderungen an einem Heizgerät selbst nur durch zusätzliche Elektronik eine zuverlässige Regelung bei variabler Leistung zu verwirklichen, was auch eine (Nach-)Kalibrierung vorhandener Regelungen für verschiedene Leistungen ermöglicht.The present invention makes it possible to implement reliable control with variable power without any significant changes to a heating device itself, using only additional electronics, which also enables (post-)calibration of existing controls for different powers.

Bezugszeichenlistereference list

11
Heizgerät mit einem BrennraumHeater with a combustion chamber
22
Flammenbereichflame area
33
Luftzufuhrair supply
44
Brenngaszufuhrfuel gas supply
55
Gebläsefan
66
Brenngasventilfuel gas valve
77
Steuerleitungencontrol lines
88th
lonisationselektrodeionization electrode
99
Brenner / GegenelektrodeTorch / counter electrode
1010
Ersatzschaltbild FlammeFlame equivalent circuit
1111
lonisationswechselspannungsquelleionization AC voltage source
1212
Signalleitungsignal line
1313
Auswerteelektronikevaluation electronics
1414
Analyseeinheitanalysis unit
1515
Kalibrierdatenspeichercalibration data storage
1616
Regeleinheitcontrol unit
Uu
lonisationswechselspannungionization alternating voltage
ff
Frequenzfrequency
II
lonisationssignalionization signal
DD
Diodediode
RFRF
Forward-Widerstandforward resistance
RRRR
Reverse-Widerstandreverse resistance

Claims (8)

  1. Method for regulating a combustion in a heater (1) in the case of variable power by means of an ionisation signal (I), measured in a flame area (2) of the heater (1) driven with combustion air and fuel gas, which is derived from an ion flow, flowing from an ionisation electrode (8) to a counter electrode (9) through the flame area (2), which is generated by an ionisation AC voltage (U) with a predeterminable frequency (f), wherein the ratio (lambda value) of combustion air to fuel gas during the combustion in the heater (1) is determined on the basis of calibration data from the ionisation signal (I) and is regulated by adjusting the supply of fuel gas and/or the supply of combustion air, having the following steps:
    1.1 The ionisation signal contains a positive and a negative component which are considered separately from one another;
    1.2 The positive component depends on the ratio of combustion air to fuel gas (lambda value) and is used for determining the ionisation signal (I);
    1.3 The negative component and/or its ratio to the positive component depend on the current power of the heater (1), which is determined by means of an analysis unit (14) from empirical values or from calibration data;
    1.4 The information regarding the current power of the heater (1) is used to select suitable calibration data for this power for regulating the ratio of combustion air to fuel gas (lambda value).
  2. Method according to claim 1, wherein the frequency (f) of the ionisation AC voltage (U) is between 10 and 10000 Hz [Hertz].
  3. Method according to claim 1 or 2, wherein the maximum values of the amplitudes of the positive component of the ionisation signal (I) and the minimum values of the amplitude of the negative moment are determined.
  4. Method according to any of the preceding claims wherein the regulation of the ratio of combustion air to fuel gas (lambda value) is corrected continuously by means of the information about the current power of the heater (1) from the negative component of the ionisation signal (I).
  5. Method according to any of claims 1 to 3, wherein with the result of the measurement of the actual power of the heater (1), the calibration data of the regulation of the heater are corrected when required by means of a speed of a fan.
  6. Heater (1) having an air feed (3) and a fuel gas feed (4), which are regulated by a regulating unit (16) using an ionisation signal (I), comprising an ionisation electrode (8), a counter electrode (9), an ionisation AC voltage source (11) for an ionisation AC voltage (U) of a frequency (f), and an evaluation electronics (13) for determining a positive component of the ionisation signal (I) which can be supplied to the regulating unit (16), wherein an analysis unit (14) is present for evaluating a negative component of the ionisation signal (I) in order to determine a current power of the heater (1).
  7. Heater (1) according to claim 6, wherein the analysis unit (14) is connected to the evaluation electronics (13).
  8. Computer program product comprising commands which cause a heater according to any of claims 6 or 7 to carry out a method according to any of claims 1 to 5.
EP21156455.4A 2020-02-18 2021-02-11 Method, device, and computer program product for regulating a fuel-air mixture in a heating device Active EP3869099B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102020104210.8A DE102020104210A1 (en) 2020-02-18 2020-02-18 Method and device for regulating a fuel gas-air mixture in a heating device with variable power

Publications (2)

Publication Number Publication Date
EP3869099A1 EP3869099A1 (en) 2021-08-25
EP3869099B1 true EP3869099B1 (en) 2022-10-26

Family

ID=74591789

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21156455.4A Active EP3869099B1 (en) 2020-02-18 2021-02-11 Method, device, and computer program product for regulating a fuel-air mixture in a heating device

Country Status (4)

Country Link
EP (1) EP3869099B1 (en)
CN (1) CN113339841A (en)
DE (1) DE102020104210A1 (en)
ES (1) ES2934238T3 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021128472A1 (en) 2021-11-02 2023-05-04 Vaillant Gmbh Method for operating a heating device, computer program, storage medium, regulation and control unit, heating device and use of a recorded ionization current and a recorded temperature

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4871307A (en) 1988-11-02 1989-10-03 Harris George W Flame ignition and monitoring system and method
US5549469A (en) * 1994-02-28 1996-08-27 Eclipse Combustion, Inc. Multiple burner control system
DE19502901C2 (en) 1995-01-31 2000-02-24 Stiebel Eltron Gmbh & Co Kg Control device for a gas burner
DE19618573C1 (en) 1996-05-09 1997-06-26 Stiebel Eltron Gmbh & Co Kg Gas burner regulating method controlled by ionisation electrode signal
EP0770824B1 (en) 1995-10-25 2000-01-26 STIEBEL ELTRON GmbH & Co. KG Method and circuit for controlling a gas burner
DE19853567A1 (en) * 1998-11-20 2000-05-25 Kromschroeder Ag G Process for controlling the air ratio of a fully premixed gas burner
EP2265867B1 (en) 2008-03-07 2018-11-14 Bertelli & Partners S.R.L. Improved method and device to detect the flame in a burner operating on a solid, liquid or gaseous combustible
ES2441226T3 (en) 2010-12-16 2014-02-03 Siemens Aktiengesellschaft Regulation device for a burner installation
DE102015222263B3 (en) 2015-11-11 2017-05-24 Viessmann Werke Gmbh & Co Kg METHOD AND DEVICE FOR FLAME SIGNAL DETECTION

Also Published As

Publication number Publication date
DE102020104210A1 (en) 2021-08-19
ES2934238T3 (en) 2023-02-20
EP3869099A1 (en) 2021-08-25
CN113339841A (en) 2021-09-03

Similar Documents

Publication Publication Date Title
EP2495496B1 (en) Burner assembly
EP1370806B1 (en) Method and device for adjusting air/fuel ratio
EP2466204B1 (en) Regulating device for a burner assembly
CH694996A5 (en) A method for evaluating an electromagnetic flowmeter and electromagnetic flowmeter assembly.
DE19539568C1 (en) Gas burner regulation system
DE3707258C2 (en) Burner device
EP3869099B1 (en) Method, device, and computer program product for regulating a fuel-air mixture in a heating device
DE3309404C2 (en)
AT510075B1 (en) METHOD FOR CALIBRATING A DEVICE FOR CONTROLLING THE COMBUSTION AIR-AIR CONDITION OF A FUEL-DRIVEN BURNER
EP3029375B1 (en) Heater appliance and method for operating a heater appliance
DE19615141A1 (en) Method and device for controlling a combustion process in a boiler
CH681912A5 (en)
DE10122039A1 (en) Method and device for determining a characteristic value representative of the nature of a gas
EP3825610B1 (en) Method and device for measuring the lambda value in a fossil-fired burner, in particular for a heating and / or water system
DE2457650A1 (en) DEVICE FOR CHECKING GASES
DE102008027585B4 (en) Calibration of the piezo parameters for an internal cylinder pressure measurement by means of piezo injectors
DE10220773A1 (en) Gas burner regulation method in which a signal from an ionization sensor is subject to spectral frequency analysis to set a fuel-air ratio for regulation of the burner
EP2154430B1 (en) Control device for a gas burner, and use of the control device
DE10322012A1 (en) Flow sensor with improved operating behavior
DE10202210B4 (en) flow sensor
DE10114901A1 (en) Method and device for adjusting the air ratio of a fuel air mixture, measures mass flows and wobbe index and adjusts to give predetermined lambda
DE102015010266A1 (en) Method for adjusting a heating system, exhaust gas measuring device and adjustment arrangement
DE10056064B4 (en) Method for controlling a gas burner
DE102019107370A1 (en) Method and arrangement for measuring a flow parameter in or on a device through which a fluid can flow
WO1999024887A1 (en) Circuit for heating a component

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220110

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220530

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1527279

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502021000210

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2934238

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20230220

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 41159

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230227

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230126

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230226

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230127

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502021000210

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

26N No opposition filed

Effective date: 20230727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230211

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240129

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240301

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240201

Year of fee payment: 4

Ref country code: CZ

Payment date: 20240122

Year of fee payment: 4

Ref country code: CH

Payment date: 20240301

Year of fee payment: 4

Ref country code: SK

Payment date: 20240119

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240131

Year of fee payment: 4

Ref country code: IT

Payment date: 20240229

Year of fee payment: 4

Ref country code: FR

Payment date: 20240227

Year of fee payment: 4

Ref country code: BE

Payment date: 20240129

Year of fee payment: 4