EP3857262A1 - Procédé pour faire fonctionner un capteur à ultrasons d'un véhicule avec diagnostic réduit en mode mesure du capteur à ultrasons et dispositif de capteur à ultrasons - Google Patents

Procédé pour faire fonctionner un capteur à ultrasons d'un véhicule avec diagnostic réduit en mode mesure du capteur à ultrasons et dispositif de capteur à ultrasons

Info

Publication number
EP3857262A1
EP3857262A1 EP19731623.5A EP19731623A EP3857262A1 EP 3857262 A1 EP3857262 A1 EP 3857262A1 EP 19731623 A EP19731623 A EP 19731623A EP 3857262 A1 EP3857262 A1 EP 3857262A1
Authority
EP
European Patent Office
Prior art keywords
ultrasonic sensor
diagnostic
reduced
signal
test voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19731623.5A
Other languages
German (de)
English (en)
Inventor
Fabian Haag
Michael Hallek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Schalter und Sensoren GmbH
Original Assignee
Valeo Schalter und Sensoren GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Schalter und Sensoren GmbH filed Critical Valeo Schalter und Sensoren GmbH
Publication of EP3857262A1 publication Critical patent/EP3857262A1/fr
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/87Combinations of sonar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52004Means for monitoring or calibrating
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/08Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
    • G07C5/0808Diagnosing performance data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/54Audio sensitive means, e.g. ultrasound
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52004Means for monitoring or calibrating
    • G01S2007/52009Means for monitoring or calibrating of sensor obstruction, e.g. dirt- or ice-coating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52004Means for monitoring or calibrating
    • G01S7/52006Means for monitoring or calibrating with provision for compensating the effects of temperature

Definitions

  • the present invention relates to a method for operating an ultrasonic sensor of a vehicle, in which a sound transducer element of the ultrasonic sensor is excited with a predetermined excitation signal, the excitation signal having a predetermined current intensity, an electrical test voltage at the
  • the present invention relates to an ultrasonic sensor device for a vehicle.
  • the present invention relates to a computer program product and a computer-readable medium.
  • ultrasonic sensor devices for vehicles.
  • Such ultrasonic sensor devices can be used, for example, to detect an object or obstacle in a surrounding area of the vehicle.
  • Such an ultrasonic sensor device usually has an ultrasonic sensor or ultrasonic transducer, with which a distance to the object can be determined.
  • the ultrasonic sensor usually comprises a membrane, which can be excited to emit an ultrasonic signal with a corresponding sound transducer element to mechanical vibrations.
  • the ultrasound signal emitted by the ultrasound sensor is then reflected by the object and hits the membrane of the ultrasound sensor again. Based on the time between sending the
  • Ultrasonic signal can then be determined taking into account the speed of propagation of the ultrasonic signal in the air or the speed of sound, the distance between the ultrasonic sensor and the object.
  • ultrasonic sensors in particular of the sound transducer element, are usually not detected at all.
  • the former requires either a complete implementation of the evaluation algorithm in the sensor electronics and thus increased costs in the ultrasonic sensor, or else a transfer of the data to a higher-level system and thus an occupancy of communication bandwidth and possibly a cost-intensive intermediate storage of the sensor electronics.
  • the latter reduces the performance of the system, since the ultrasound sensor cannot carry out a distance measurement during the dedicated diagnostic operation.
  • DE 10 2014 213 122 A1 describes a method for sound-based
  • the method also includes determining a start of one
  • Swing-out dominance range based on the stored variables assigned to the sound transducer from a data store. Furthermore, a first electrical signal of the
  • the swing-out dominance range is the time range in the converter signal which is between the end of the impressing of an electrical measurement signal to be transmitted and the end of the
  • a method according to the invention serves to operate an ultrasonic sensor of a vehicle.
  • a sound transducer element of the ultrasonic sensor is excited with a predetermined excitation signal.
  • the excitation signal has a predetermined current.
  • an electrical test voltage is measured on the sound transducer element as a result of the excitation signal and a diagnosis of the ultrasonic sensor is carried out on the basis of the test voltage. It is provided here that the ultrasonic sensor is excited in a measuring operation to emit an ultrasonic signal with the excitation signal.
  • the electrical test voltage is measured during transmission.
  • a reduced diagnosis is carried out on the basis of the electrical test voltage, the ultrasound sensor depending on a result of the reduced diagnosis either being operated further in the measuring mode or being operated in a diagnostic mode for a complete diagnosis.
  • the method is intended to operate the vehicle's ultrasonic sensor.
  • the method can be carried out with an ultrasonic sensor device that has an electronic control unit.
  • This electronic control unit can be used
  • Data transmission can be connected to a computing device of the ultrasonic sensor.
  • This computing device can be provided, for example, by an internal sensor electronics of the ultrasonic sensor.
  • This ultrasonic sensor can be used in one
  • the ultrasonic signal can be sent out with the ultrasonic sensor.
  • the sound transducer element of the ultrasonic sensor can be excited with a corresponding excitation signal.
  • Sound transducer element can be, for example, a piezoelectric element.
  • the sound transducer element and a membrane of the ultrasonic sensor connected to the sound transducer element are excited to vibrate, as a result of which the ultrasonic signal is emitted.
  • that reflected by an object or obstacle in the surrounding area can also be used Ultrasound signal can be received again. Due to the reflected ultrasound signal or the echo of the ultrasound signal, the membrane and the
  • the distance between the ultrasound sensor and the object can then be determined.
  • a reduced diagnosis is also carried out in the measuring operation of the ultrasonic sensor.
  • the ultrasonic signals are emitted during the measuring operation of the ultrasonic sensor.
  • ultrasound signals reflected in the surrounding area are also received in the measuring mode.
  • a distance measurement is therefore carried out in the measuring operation of the ultrasonic sensor.
  • successive measuring cycles can be carried out, in each of which an ultrasonic signal is emitted.
  • the sound transducer element of the ultrasound signal is excited with the excitation signal.
  • the current strength of the excitation signal is known.
  • the current strength of the excitation signal can have a constant frequency. It can also be provided that the frequency of the current strength of the excitation signal changes as a function of time. In addition, during the transmission of the ultrasound signal, the one applied to the sound transducer element
  • the test voltage can also be referred to as the transmit voltage.
  • the reduced diagnosis of the ultrasonic sensor is then carried out. In particular, the functionality of the ultrasonic sensor can be checked.
  • a decision is made as to whether the ultrasonic sensor is either still operated in the measuring mode or whether the ultrasonic sensor is switched to the diagnostic mode in which a complete diagnosis is carried out.
  • a decision can be made as to whether the ultrasonic sensor is functional or not. If the ultrasonic sensor is functional, it can continue to be operated in the measuring mode. If it is recognized that the functionality of the ultrasonic sensor
  • Diagnostics in the diagnostic mode is only carried out if an error of the ultrasonic sensor can be present.
  • This invention is based on the finding that the state of the ultrasound sensor or the sound transducer element can be operated by the voltage curve or the test voltage during the transmission process if the excitation signal is constant or known.
  • Reduced diagnostic parameters are preferably determined by means of a computing device of the ultrasonic sensor on the basis of the test voltage, and the reduced diagnosis is carried out on the basis of the reduced diagnostic parameters.
  • Test voltage can be determined.
  • the measuring operation of the ultrasonic sensor is therefore not influenced or only influenced to a small extent.
  • it can be ensured that objects in the area surrounding the vehicle are recognized with the aid of the ultrasound sensor.
  • An ultrasonic sensor for distance measurement can thus be expanded with an internal computing device or electronics in order to carry out a complete online diagnosis in an optimal manner with regard to the costs and / or benefits or a blindness and / or accuracy with a high degree of flexibility.
  • a difference between the reduced diagnostic parameters and the predetermined reference diagnostic parameters is determined, the ultrasonic sensor being operated in the diagnostic mode if the difference exceeds a predetermined threshold value.
  • the reduced diagnostic parameters are compared with the reference diagnostic parameters that were determined, for example, in the diagnostic mode or during the complete diagnosis. If the deviation of these two parameter sets exceeds the predetermined one Threshold or a limit, the state of the
  • Sound transducer element changed beyond the set limit.
  • a new comprehensive diagnosis or the complete diagnosis may thus be necessary and can finally be carried out.
  • this can ensure that the condition of the sound transducer element is monitored in every measurement cycle, which is essential for safety-critical applications.
  • the number of complete diagnoses is reduced to a minimum and the average measurement rate of the ultrasonic sensor is kept at a high level.
  • a gradient of the test voltage, an integral of the test voltage and / or a weighted sum of the gradient and the integral of the pulse voltage are determined to determine the reduced diagnostic parameters.
  • Excitation signal with which the sound transducer element is excited can have a frequency that changes as a function of time.
  • the current strength of the excitation signal can have a time-dependent frequency. The greater the variance of the excitation signal, in particular with regard to the frequency, the more information can be obtained about the state of the sound transducer element. To determine the reduced diagnostic parameters, the time course of the
  • Test voltage are taken into account.
  • the gradient and / or the integral of the time course of the test voltage can be determined.
  • the gradient and / or the integral can be weighted with a predetermined weighting factor and then summed in order to determine the reduced diagnostic parameters.
  • the gradient, the integral and / or their weighted sum are particularly suitable for determining the reduced diagnostic parameters, since these variables are robust against disturbances.
  • Control unit of the vehicle is transmitted.
  • the result signal describes whether the difference between the reduced diagnostic parameters and the predetermined reference diagnostic parameters exceeds the threshold value.
  • the result signal can have an information content of one bit.
  • the two states can be described that the difference exceeds the threshold or that the difference falls below the threshold. It can also be provided that to provide the
  • Result signal a flag is set, which has either the value 0 or the value 1. There is thus between the sensor-internal computing device and the electronic control unit a derivative with a low data transfer rate is sufficient. In this way, costs and computing power can be saved.
  • the result signal describes a state of the ultrasonic sensor, which is determined on the basis of the reduced diagnostic parameters, and / or the result signal describes previously determined states of the
  • the degree of the reduced diagnosis can be selected in an application-specific manner by varying the calculation rule and the dimension of the reduced diagnostic parameters. For example, the type of change or state of the ultrasound sensor can already be estimated in the reduced diagnosis. For example, it can be derived whether the temperature has changed or whether there is contamination on the ultrasonic sensor or its membrane. Alternatively or additionally, a history of this change can be determined. Additional information is thus made available to the higher-level system or the electronic control unit, as a result of which the scope for decision can be increased.
  • the reference diagnostic parameters are determined in the diagnostic mode of the ultrasonic sensor on the basis of complete diagnostic parameters. These complete diagnostic parameters can determine the state of the
  • the ultrasonic sensor Describe the ultrasonic sensor, the transducer element and / or the external influences for the current period. For example, the complete
  • Diagnostic parameters describe aging of the transducer element.
  • the complete diagnostic parameters can also describe whether there is dirt, ice, snow or the like on the membrane.
  • the complete diagnostic parameters can also be external influences that act on the ultrasonic sensor, such as
  • Diagnostic parameters can then determine reference diagnostic parameters
  • the full diagnostic parameters can be an electrical model or
  • the equivalent circuit diagram of the ultrasonic sensor Describe the equivalent circuit diagram of the ultrasonic sensor.
  • the electrical model of the ultrasonic sensor by a first capacitor, one for a first capacitor separate second capacitor, a first inductor, a second inductor separate from the first inductor, a first ohmic resistor and a second ohmic resistor separate from the first ohmic resistor, the first capacitor, the first inductor and the first ohmic resistor being connected in series are connected and the second capacitor, the second
  • Inductance and the second ohmic resistor can be connected in parallel to the series circuit.
  • the second capacitor, the second inductance and the second ohmic resistance map the electrical, in particular parasitic, properties of the components of the ultrasonic sensor. These properties are taken into account in the electrical model.
  • the first capacitor for example, a mechanical flexibility which corresponds to the reciprocal value of the
  • Stiffness corresponds to the membrane of the ultrasonic sensor.
  • a moving mass of the membrane can in particular be described by means of the first inductance.
  • Attenuation of the ultrasound signal can in particular be described by means of the first ohmic resistance.
  • the functional state of the ultrasonic sensor can be determined by means of the physical capacity, the mechanical flexibility of the moving mass and the damping.
  • the complete diagnostic parameters and / or the reduced diagnostic parameters are determined as a function of an operating mode of the ultrasonic sensor in the measuring mode.
  • the ultrasonic sensor can be used in different measuring operations or for distance measurement
  • An operating mode can be, for example
  • an operating mode may be a normal operating mode, a long-range mode or the like.
  • the operating modes can differ with regard to the excitation signal.
  • the operating modes can differ from one another with regard to a temporal duration of the excitation signal, a frequency, a voltage, a current intensity or the like. If the reduced diagnostic parameters and / or the complete diagnostic parameters are determined as a function of the current operating mode of the ultrasonic sensor, this enables a more reliable diagnosis overall.
  • Diagnostic voltage is determined as a result of the diagnostic signal.
  • a current strength of the diagnostic signal is frequency modulated.
  • the frequency of the current strength of the diagnostic signal preferably has a linear positive increase followed by a linear negative increase.
  • the diagnostic signal comprises a linear chrip-up and a subsequent linear chirp-down.
  • the comprehensive or the complete diagnosis is based on an excitation of the sound transducer element with a current-controlled one
  • the duration of the diagnostic signal can be several milliseconds.
  • the duration of the diagnostic signal can be several milliseconds.
  • Diagnostic voltage measured on the transducer element The complete diagnostic parameters are then determined from the course of this diagnostic voltage. This can be done, for example, using a look-up table or by parameterizing models. For the latter, it is due to the short stimulus duration in the
  • additional swing-out parameters which are determined during swing-out of a membrane of the ultrasonic sensor, are taken into account.
  • the ultrasound sensor is excited with the excitation signal.
  • the membrane of the ultrasound sensor vibrates for one
  • Swinging-out parameters can be determined during this swing-out or during the swing-out period.
  • the swing-out parameters can be the swing-out frequency, for example
  • swing-out parameters can be used to reliably detect, for example, whether there is dirt, snow, ice or the like on the membrane of the ultrasonic sensor.
  • An ultrasonic sensor device comprises an electronic control unit and at least one ultrasonic sensor, which is an electronic one
  • the ultrasonic sensor device is designed to carry out a method according to the invention and the advantageous refinements thereof. It can also be provided that the ultrasonic sensor device has a plurality of ultrasonic sensors. These can then be distributed on the vehicle. If it is recognized on the basis of the reduced diagnosis and / or the complete diagnosis that the functionality of the ultrasonic sensor is impaired, a corresponding warning signal can be output with the ultrasonic sensor device will. Depending on the warning signal, the user of the vehicle can be warned accordingly or be advised that the
  • Ultrasonic sensor is not functional.
  • a driver assistance system comprises one according to the invention
  • the driver assistance system can be designed, for example, as a parking aid system and can be used to support the driver when parking in a parking space and / or when parking out of a parking space. It can also be provided that the driver assistance system is designed as a brake assistant.
  • a vehicle according to the invention comprises one according to the invention
  • the vehicle can be designed in particular as a passenger car. It can also be provided that the vehicle is designed as a commercial vehicle.
  • the invention also includes a computer program product with program code means which are stored in a computer-readable medium in order to carry out the method according to the invention and the advantageous refinements thereof when the computer program product is processed on a processor of an electronic computing device and / or an electronic control device.
  • Another aspect of the invention relates to a computer-readable medium, in particular in the form of a computer-readable floppy disk, CD, DVD, memory card, USB memory unit, or the like, in which program code means are stored in order to carry out the method according to the invention and the advantageous refinements thereof, if the
  • Program code means are loaded into a memory of an electronic computing device and / or an electronic control device and are processed on a processor of the electronic computing device and / or the electronic control device.
  • Embodiments and their advantages apply accordingly to the ultrasonic sensor device according to the invention, for the driver assistance system according to the invention, for the vehicle according to the invention for the computer program product according to the invention and for the computer-readable medium according to the invention.
  • Fig. 1 is a schematic representation of a vehicle which a
  • Ultrasonic sensor device having a plurality of ultrasonic sensors
  • FIG. 2 shows a schematic illustration of an ultrasonic sensor device which has an ultrasonic sensor with an internal computing device and an electronic control unit;
  • Fig. 3 graphs showing a test voltage of the ultrasonic sensor
  • the vehicle 1 shows a top view of a vehicle 1, which in the present case is designed as a passenger car.
  • the vehicle 1 comprises a driver assistance system 2, which serves to assist a driver in driving the vehicle 1.
  • the driver assistance system 2 serves to assist a driver in driving the vehicle 1.
  • Driver assistance system 2 can be designed, for example, as a parking assistance system, by means of which a driver can be assisted when parking vehicle 1 in a parking space and / or when parking out of the parking space.
  • the driver assistance system 2 has an ultrasonic sensor device 3.
  • This ultrasonic sensor device 3 comprises at least one ultrasonic sensor 4.
  • the ultrasonic sensor device 3 comprises twelve ultrasonic sensors 4, six of which are arranged in a front region 6 of the vehicle 1 and six in a rear region 7 of the vehicle 1.
  • the ultrasonic sensors 4 can in particular be mounted on the bumpers of the vehicle 1.
  • the ultrasonic sensors 4 can at least in certain areas
  • Recesses or through openings of the bumpers can be arranged. It can also be provided that the ultrasonic sensors 4 are arranged behind the bumpers. In principle, the ultrasonic sensors 4 can also be arranged in further trim parts or components of the vehicle 1.
  • the ultrasonic sensors 4 can be arranged on or hidden behind the doors of the vehicle 1.
  • an object 8 can be detected in a surrounding area 9 of the vehicle 1.
  • an object 8 is shown schematically in the
  • the ultrasonic sensor device 3 comprises an electronic control unit 5, which is connected to the respective ultrasonic sensors 4 for data transmission.
  • the respective ultrasonic sensors 4 can be excited with the electronic control device 5 to emit an ultrasonic signal.
  • sensor data provided by the ultrasonic sensors 4 can be transmitted to the control device 5.
  • Based on the sensor data objects 8 in surrounding area 9 can then be recognized with control device 5.
  • This information can then be used by the driver assistance system 2 to output an output to the driver of the vehicle 1.
  • the driver assistance system 2 intervenes in a steering, a braking system and / or a drive motor of the vehicle 1 in order to move the vehicle 1 in
  • FIG. 2 shows a schematic illustration of an ultrasonic sensor device 3 which has the electronic control unit 5.
  • the ultrasound sensor device 3 comprises an ultrasound sensor 4.
  • the ultrasound sensor 4 comprises a membrane 10, which can be made of a metal, for example, and can be cup-shaped.
  • the membrane 10 can be made of a metal, for example, and can be cup-shaped.
  • Ultrasonic sensor 4 a sound transducer element 1 1, which is connected to the membrane 10 for vibration transmission. Furthermore, the ultrasonic sensor 4 comprises an internal, electronic computing device 12 which is connected to the electronic control unit 5 for data transmission.
  • the ultrasonic sensor 4 can be operated in a measuring mode.
  • Objects 8 can be detected in the surrounding area 9 during measurement operation.
  • an ultrasonic signal is emitted with the ultrasonic sensor 4.
  • an excitation signal is applied to the sound transducer element 11, a time course of the current strength of the excitation signal being known or predetermined.
  • a test voltage U applied to the sound transducer element 11 is determined.
  • a reduced diagnosis can then be carried out on the basis of this test voltage U.
  • the sound transducer element 1 1 can by means of the
  • Computing device 12 of the ultrasonic sensor 4 can be excited with a diagnostic signal.
  • This diagnostic signal can be a frequency-modulated current signal.
  • the current strength of the diagnostic signal can have a linear positive increase followed by a linear negative increase.
  • the current strength of the diagnostic signal can have a linear positive increase followed by a linear negative increase.
  • a diagnostic voltage can be measured as a result of the diagnostic signal.
  • This diagnostic voltage can be compressed accordingly and transmitted to the control unit 5.
  • This compressed diagnostic voltage can be received by the control unit 5 and decompressed accordingly.
  • transient effects can be compensated for.
  • complete diagnostic parameters can be determined, which describe, for example, an electrical equivalent circuit diagram of the sound transducer element 11.
  • Reference diagnostic parameters can then be determined on the basis of the complete diagnostic parameters. In particular, these reference diagnostic parameters can be determined for different operating modes of the ultrasonic sensor 4.
  • the ultrasonic sensor 4 can be operated in the different operating modes. These operating modes can, for example, describe a short-range mode, a normal operating mode, a long-range mode or the like.
  • the reduced diagnostic parameters Pr can be determined with the computing device 12 on the basis of the test voltage U. For this purpose, a gradient of the test voltage grad and / or an integral of the test voltage int can first be determined. This is illustrated in connection with FIG. 3. Here is the middle
  • Test voltage U is shown as a function of time t.
  • Curves 13, 14 and 15 describe different states of sound transducer element 11.
  • curves 13, 14, 15 can describe different temperatures of sound transducer element 11.
  • the integral of the test voltage int is shown as a function of the time t.
  • Curves 16, 17 and 18 describe the integral of the test voltage int for the different states.
  • the gradient of the test voltage grad as a function of time t is shown in the lower region of FIG. 3.
  • Curves 19, 20, 21 describe the gradient of the test voltage grad for the different states. 4 shows, analogously to FIG. 3, the time profile of the test voltage U, the time profile of the integral of the test voltage int and the time profile of the gradient of the test voltage grad for another
  • the integral of the test voltage int and the gradient of the test voltage int can, for example, be weighted. 5 shows the course of different reduced ones
  • Diagnostic parameters Pr as a function of the state of the sound transducer element 11.
  • the state relates to the temperature T of the sound transducer element 11.
  • Curves 22, 23 and 24 describe reduced diagnostic parameters Pr that were determined or calculated in different ways. It can be seen here that curves 23 and 24 in particular describe the state or the temperature T are only suitable to a limited extent, since they are not continuous or not unique. In comparison to this, FIG. 6 shows curves 22, 23 and 24, which describe the differently determined reduced diagnostic parameters Pr, for another operating mode of the ultrasonic sensor 4. Here it can be seen that the state of the acoustic transducer element 11 is determined on the basis of these reduced diagnostic parameters Pr can be. For example, are suitable
  • the ultrasonic sensor 4 is then operated in the diagnostic mode.
  • Ultrasonic sensor 4 through the optimal combination of a computing and
  • Diagnostic parameters At least the following points can be varied: The division of the processes in the control unit 5 and the computing device 12, the calculation rule for the complete diagnostic parameters and the calculation rule for the reduced diagnostic parameters. In addition, the phase position between the exciting current or the excitation signal and the measured test voltage in the
  • the dimension of the reduced diagnostic parameters Pr the dimension of the complete diagnostic parameters and / or the type of excitation in the diagnostic mode can be varied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Acoustics & Sound (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

L'invention concerne un procédé pour faire fonctionner un capteur à ultrasons (4) d'un véhicule (1), procédé selon lequel un élément transducteur acoustique (11) du capteur à ultrasons (4) est excité au moyen d'un signal d'excitation prédéfini, le signal d'excitation présentant une intensité de courant prédéfinie, une tension d'essai électrique (U) est mesurée au niveau de l'élément transducteur acoustique (11) à la suite du signal d'excitation et un diagnostic du capteur à ultrasons (4) est effectué sur la base de la tension d'essai (U). Selon l'invention, le capteur à ultrasons (4) est excité au moyen du signal d'excitation dans un mode mesure en vue de l'émission d'un signal ultrasonore, la tension d'essai électrique (U) est mesurée pendant l'émission, un diagnostic réduit est effectué sur la base de la tension d'essai électrique (U) et, en fonction d'un résultat du diagnostic réduit, le capteur à ultrasons (4) est soit maintenu en mode mesure soit passé en mode diagnostic pour un diagnostic complet.
EP19731623.5A 2018-09-28 2019-06-06 Procédé pour faire fonctionner un capteur à ultrasons d'un véhicule avec diagnostic réduit en mode mesure du capteur à ultrasons et dispositif de capteur à ultrasons Pending EP3857262A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018124024.4A DE102018124024A1 (de) 2018-09-28 2018-09-28 Verfahren zum Betreiben eines Ultraschallsensors eines Fahrzeugs mit reduzierter Diagnose in einem Messbetrieb des Ultraschallsensors sowie Ultraschallsensorvorrichtung
PCT/EP2019/064749 WO2020064153A1 (fr) 2018-09-28 2019-06-06 Procédé pour faire fonctionner un capteur à ultrasons d'un véhicule avec diagnostic réduit en mode mesure du capteur à ultrasons et dispositif de capteur à ultrasons

Publications (1)

Publication Number Publication Date
EP3857262A1 true EP3857262A1 (fr) 2021-08-04

Family

ID=66951891

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19731623.5A Pending EP3857262A1 (fr) 2018-09-28 2019-06-06 Procédé pour faire fonctionner un capteur à ultrasons d'un véhicule avec diagnostic réduit en mode mesure du capteur à ultrasons et dispositif de capteur à ultrasons

Country Status (7)

Country Link
US (1) US11573319B2 (fr)
EP (1) EP3857262A1 (fr)
JP (1) JP2022501606A (fr)
KR (1) KR102645272B1 (fr)
CN (1) CN112955779B (fr)
DE (1) DE102018124024A1 (fr)
WO (1) WO2020064153A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018129044A1 (de) * 2018-11-19 2020-05-20 Valeo Schalter Und Sensoren Gmbh Verfahren und Analysesystem zum Bestimmen eines Zustands einer Membran eines Ultraschallsensors
DE102020132634A1 (de) * 2020-12-08 2022-06-09 Valeo Schalter Und Sensoren Gmbh Ultraschallsensorsystem für ein kraftfahrzeug und verfahren zum betreiben des ultraschallsensorsystems
DE102021112996A1 (de) * 2021-05-19 2022-11-24 Valeo Schalter Und Sensoren Gmbh Verfahren zum Bestimmen eines Funktionszustands eines Ultraschallsensors für ein Fahrzeug

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58158380U (ja) * 1982-04-16 1983-10-22 黒田 俊彦 超音波移動体感知器
DE3429409C2 (de) * 1984-08-09 1986-09-11 Karl Deutsch Prüf- und Meßgerätebau GmbH + Co KG, 5600 Wuppertal Verfahren und Vorrichtung zur Dickenmessung an Prüflingen mittels Ultraschalles
JP2903872B2 (ja) * 1992-06-24 1999-06-14 株式会社デンソー 障害物検出装置
JP3010591B2 (ja) * 1993-06-01 2000-02-21 松下電器産業株式会社 超音波送信器
KR0164482B1 (ko) * 1996-09-16 1999-10-01 만도기계주식회사 자동차의 측방충돌 경보시스템의 이상동작 감지방법
KR200178384Y1 (ko) * 1996-12-13 2000-05-01 정몽규 초음파 센서 고장 감지 회로
US5991234A (en) * 1998-06-11 1999-11-23 Trw Inc. Ultrasonic sensor system and method having automatic excitation frequency adjustment
DE10106142A1 (de) 2001-02-10 2002-08-14 Valeo Schalter & Sensoren Gmbh Verfahren zum Betrieb eines Ultraschall-Multisensor-Arrays
DE10247971A1 (de) * 2002-10-15 2004-05-06 Valeo Schalter Und Sensoren Gmbh System zur Überwachung des Nahbereichs eines Kraftfahrzeuges mit Störungserkennung und Verfahren zur Ermittlung der Störungsfreiheit eines derartigen Systems
JP4020084B2 (ja) * 2004-02-19 2007-12-12 日産自動車株式会社 衝突予測装置
DE602005004338T2 (de) * 2004-08-31 2009-01-15 Kabushiki Kaisha Toshiba Ultraschallsondediagnosegerät, Ultraschalldiagnosegerät und Ultraschallsondediagnosemethode
DE102005057973B4 (de) * 2005-12-05 2017-02-23 Robert Bosch Gmbh Verfahren zur Funktionsprüfung eines Ultraschallsensors und Abstandsmessvorrichtung
JP4860798B2 (ja) * 2007-04-04 2012-01-25 株式会社日本自動車部品総合研究所 超音波センサ装置
DE102008042820A1 (de) 2008-10-14 2010-04-15 Robert Bosch Gmbh Sensorvorrichtung sowie Verfahren für den Betrieb einer Sensorvorrichtung
CN101509942B (zh) * 2009-02-20 2011-04-27 华南理工大学 一种超声波换能器频率响应特性的检测方法
DE102011016946A1 (de) * 2011-04-13 2012-10-18 Volkswagen Ag Verfahren zum Festlegen einer Frequenz für ein Anregungssignal eines Ultraschallsensors, Fahrerassistenzeinrichtung und Kraftfahrzeug
DE102012002979A1 (de) 2012-02-15 2013-08-22 Valeo Schalter Und Sensoren Gmbh Fahrerassistenzeinrichtung mit einem Ultraschallsensor, Kraftfahrzeug und Verfahren zum Betreiben eines Ultraschallsensors
DE102013015410A1 (de) * 2013-09-17 2015-03-19 Valeo Schalter Und Sensoren Gmbh Verfahren zum Erkennen eines blockierten Zustands eines Ultraschallsensors Ultraschallsensorvorrichtung und Kraftfahrzeug
DE102013021328A1 (de) * 2013-12-17 2015-06-18 Valeo Schalter Und Sensoren Gmbh Ultraschallsensoreinrichtung für ein Kraftfahrzeug, Kraftfahrzeug und entsprechendes Verfahren
DE102014201482A1 (de) * 2014-01-28 2015-07-30 Robert Bosch Gmbh Verfahren und Vorrichtung zur Erkennung einer Fehlfunktion eines Ultraschallwandlers durch Auswerten einer Impedanz-Hüllkurve
DE102014207129A1 (de) * 2014-04-14 2015-10-15 Robert Bosch Gmbh Verfahren zum Erkennen eines Objektes in einem Nahbereich eines Ultraschallsensors
DE102014213122A1 (de) 2014-07-07 2016-01-07 Robert Bosch Gmbh Vorrichtung und Verfahren zur schallbasierten Umfelddetektion
DE102014110187A1 (de) 2014-07-18 2016-01-21 Fraunhofer-Gesellschaft Rauschrobuste Objektortung mit Ultraschall
DE102014115000B4 (de) * 2014-10-15 2022-05-05 Valeo Schalter Und Sensoren Gmbh Verfahren zum Betreiben einer Ultraschallsensorvorrichtung eines Kraftfahrzeugs, Ultraschallsensorvorrichtung, Fahrerassistenzsystem sowie Kraftfahrzeug
JP2017167096A (ja) * 2016-03-18 2017-09-21 パナソニックIpマネジメント株式会社 取り付け状態判定装置および取り付け状態判定方法
DE102016117879B4 (de) * 2016-09-22 2019-06-13 Valeo Schalter Und Sensoren Gmbh Sensorsystem, Kraftfahrzeug und Verfahren zum Reinigen eines Ultraschallsensors
JP6715456B2 (ja) * 2016-09-30 2020-07-01 パナソニックIpマネジメント株式会社 検出装置、検出方法、および検出プログラム
KR102653265B1 (ko) * 2016-10-11 2024-04-02 주식회사 에이치엘클레무브 초음파센서 시스템, 초음파센서의 고장을 판단하는 방법 및 초음파센서의 물체감지방법
KR101939383B1 (ko) * 2016-10-18 2019-04-10 현대오트론 주식회사 초음파 센서 장치 및 초음파 센서 장치의 센싱 방법
US10311655B2 (en) * 2017-01-18 2019-06-04 BlueOwl, LLC Technology for assessing accident events
DE102017105043A1 (de) * 2017-03-09 2018-09-13 Valeo Schalter Und Sensoren Gmbh Verfahren zum Bestimmen eines Funktionszustands eines Ultraschallsensors mittels einer Übertragungsfunktion des Ultraschallsensors, Ultraschallsensorvorrichtung sowie Kraftfahrzeug
JP6784236B2 (ja) * 2017-07-10 2020-11-11 株式会社Soken 超音波式の物体検出装置
DE102017122383B4 (de) 2017-09-27 2023-10-12 Valeo Schalter Und Sensoren Gmbh Verfahren zum Betreiben einer Ultraschallsensorvorrichtung für ein Kraftfahrzeug mit Bestimmung eines Zustands eines Schallwandlerelements, Ultraschallsensorvorrichtung, Fahrerassistenzsystem sowie Kraftfahrzeug
JP6888506B2 (ja) * 2017-09-28 2021-06-16 株式会社Soken 物体検知装置
DE102017128837A1 (de) 2017-12-05 2019-06-06 Valeo Schalter Und Sensoren Gmbh Verfahren zum Bestimmen eines Funktionszustands eines Ultraschallsensors, wobei eine Spannung erfasst wird sowie Ultraschallsensorvorrichtung mit einem Ultraschallsensor
CN108226910B (zh) * 2018-01-19 2021-10-29 常州市鼎兴电子有限公司 单体超声传感器探测***

Also Published As

Publication number Publication date
US11573319B2 (en) 2023-02-07
DE102018124024A1 (de) 2020-04-02
KR20210064352A (ko) 2021-06-02
CN112955779A (zh) 2021-06-11
JP2022501606A (ja) 2022-01-06
US20210396873A1 (en) 2021-12-23
CN112955779B (zh) 2024-05-07
KR102645272B1 (ko) 2024-03-07
WO2020064153A1 (fr) 2020-04-02

Similar Documents

Publication Publication Date Title
EP3593165B1 (fr) Procédé de détermination d'un état fonctionnel d'un capteur à ultrasons au moyen d'une fonction de transfert du capteur à ultrasons, dispositif à capteur à ultrasons et véhicule automobile
EP2917761B1 (fr) Procédés de détection de la dégradation de capteurs de distance
WO2020064153A1 (fr) Procédé pour faire fonctionner un capteur à ultrasons d'un véhicule avec diagnostic réduit en mode mesure du capteur à ultrasons et dispositif de capteur à ultrasons
DE102018109318A1 (de) Verfahren zum Betreiben einer Ultraschallsensorvorrichtung für ein Kraftfahrzeug mit Wechsel zwischen codierten und uncodierten Messungen, Ultraschallsensorvorrichtung sowie Fahrerassistenzsystem
DE102014115000B4 (de) Verfahren zum Betreiben einer Ultraschallsensorvorrichtung eines Kraftfahrzeugs, Ultraschallsensorvorrichtung, Fahrerassistenzsystem sowie Kraftfahrzeug
EP3226028A1 (fr) Procédé de fonctionnement d'un capteur ultrasonique d'un véhicule automobile consistant à déterminer l'humidité de l'air, système d'assistance au conducteur et véhicule automobile
DE102018121962B3 (de) Verfahren zum Erfassen eines Objekts in einem Umgebungsbereich eines Fahrzeugs durch Bestimmung einer Doppler-Verschiebung mittels eines künstlichen neuronalen Netzes, Recheneinrichtung sowie Ultraschallsensorvorrichtung
WO2013120706A1 (fr) Système d'aide à la conduite équipé d'un capteur d'ultrasons, véhicule automobile et procédé d'utilisation d'un capteur d'ultrasons
DE102017118883A1 (de) Verfahren zum Betreiben einer Ultraschallsensorvorrichtung für ein Kraftfahrzeug mit Anpassung eines zeitlichen Verlaufs einer Amplitude bei frequenzmodulierten Anregungssignalen
DE102016004204B4 (de) Verfahren zum automatisierten Manövrieren eines Kraftfahrzeugs während einer Produktion
DE102009027231B4 (de) Vorrichtung zur Ortung von Objekten im Umfeld eines Fahrzeuges, insbesondere eines Kraftfahrzeuges, und Verfahren zum Betrieb einer derartigen Vorrichtung
DE102018103551A1 (de) Verfahren zum Charakterisieren eines Objekts in einem Umgebungsbereich eines Kraftfahrzeugs anhand von zuvor gelernten Kurvenparametern, Sensorvorrichtung sowie Fahrerassistenzsystem
DE102005042853A1 (de) Verfahren und Vorrichtung zur Ermittlung der Geometrie und Position einer Parklücke
DE102017122383B4 (de) Verfahren zum Betreiben einer Ultraschallsensorvorrichtung für ein Kraftfahrzeug mit Bestimmung eines Zustands eines Schallwandlerelements, Ultraschallsensorvorrichtung, Fahrerassistenzsystem sowie Kraftfahrzeug
WO2019110541A1 (fr) Procédé permettant d'estimer une hauteur d'un objet dans une zone environnant un véhicule automobile au moyen d'un capteur ultrasonore par évaluation statistique d'un signal de réception, appareil de commande ainsi que système d'aide à la conduite
DE102014113601B4 (de) Verfahren zum Erkennen eines blockierten Zustands eines Ultraschallsensors, Ultraschallsensorvorrichtung sowie Kraftfahrzeug
DE102018103414A1 (de) Verfahren zur Charakterisierung eines Objekts in einem Umgebungsbereich eines Kraftfahrzeugs mit Höhenschätzung anhand einer seitlichen Ableitung eines Empfangssignals eines Ultraschallsensors, Recheneinrichtung sowie Ultraschallsensorvorrichtung
DE102017122477A1 (de) Verfahren zum Betreiben eines Ultraschallsensors für ein Kraftfahrzeug mit Objekterkennung im Nahbereich und im Fernbereich, Ultraschallsensorvorrichtung, Fahrerassistenzsystem sowie Kraftfahrzeug
DE102016115391A1 (de) Verfahren zum Einstellen einer Ultraschallsensorvorrichtung für ein Kraftfahrzeug mithilfe eines mobilen Endgeräts, Ultraschallsensorvorrichtung, mobiles Endgerät sowie System
EP2279431B1 (fr) Dispositif pour commander des capteurs à ultrasons
DE102019120350B4 (de) Verfahren zum Betreiben eines Ultraschallsensors eines Fahrzeugs mit dynamischer Bestimmung von Schwellwerten, Recheneinrichtung sowie Ultraschallsensorvorrichtung
DE102017126828A1 (de) Verfahren zum Betreiben eines Ultraschallsensors für ein Kraftfahrzeug mit Unterdrückung von Störungen in einem zweiten Empfangspfad, Ultraschallsensor sowie Fahrerassistenzsystem
DE102017129734B4 (de) Verfahren zum Betreiben eines Ultraschallsensors eines Kraftfahrzeugs mit Trennung eines detektierten Echos, Ultraschallsensorvorrichtung sowie Fahrerassistenzsystem
DE102018103560A1 (de) Verfahren zur Charakterisierung eines Objekts in einem Umgebungsbereich eines Kraftfahrzeugs durch Vergleich eines Empfangssignals eines Abstandssensors mit einer vorbestimmten Kurve, Sensorvorrichtung sowie Fahrerassistenzsystem
DE102018119369B4 (de) Verfahren zum Erkennen von Objekten in einem Umgebungsbereich eines Kraftfahrzeugs mithilfe eines ersten Ultraschallsensors unter Verwendung von mit einem zweiten Ultraschallsensor erkannten Objekten

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210317

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20240102