EP3853389A1 - Stahl zum oberflächenhärten mit hoher randhärte und mit einem feinen duktilen kerngefüge - Google Patents

Stahl zum oberflächenhärten mit hoher randhärte und mit einem feinen duktilen kerngefüge

Info

Publication number
EP3853389A1
EP3853389A1 EP19773026.0A EP19773026A EP3853389A1 EP 3853389 A1 EP3853389 A1 EP 3853389A1 EP 19773026 A EP19773026 A EP 19773026A EP 3853389 A1 EP3853389 A1 EP 3853389A1
Authority
EP
European Patent Office
Prior art keywords
steel
weight
steel according
content
hardening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19773026.0A
Other languages
English (en)
French (fr)
Inventor
Serosh Engineer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ezm Edelstahlzieherei Mark GmbH
Original Assignee
Ezm Edelstahlzieherei Mark GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ezm Edelstahlzieherei Mark GmbH filed Critical Ezm Edelstahlzieherei Mark GmbH
Publication of EP3853389A1 publication Critical patent/EP3853389A1/de
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • C23C8/30Carbo-nitriding
    • C23C8/32Carbo-nitriding of ferrous surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G13/00Chains
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening

Definitions

  • the invention relates to a steel which is suitable for surface hardening and has a high hardness on the surface and a high
  • Depth of hardening enables.
  • the invention relates to a steel that has the potential to
  • Composition of the material also have sufficient hardenability.
  • case-hardened components are manufactured, for example, from the steel known under the name "14CrNiMo5", which according to the directional analysis consists of (in% by weight) 0.12% C, 1.40% Cr, 0.30% Mo and 1 , 6% Ni, balance iron and unavoidable impurities.
  • this steel does not achieve the required high surface hardness with the necessary certainty after direct hardening.
  • German standard DIN 17115 (current edition 2012 - 07) deals with the technical delivery conditions for steels for welded
  • Ni: 1.35-1.65, N: ⁇ 0.012, Cu: ⁇ 0.020; Rest Fe) is a material that is used for the production of case-hardened round steel chains can be used. But even this steel does not achieve the minimum surface hardness of> 820 HV1 after direct hardening.
  • the materials listed in the delivery conditions such as 20MnCrMo3-2 (1.6522: (content in% by weight) C: 0.17 - 0.23, Si: ⁇ 0.40, Mn: 0.60 - 0.95, P ⁇ 0.025, S: ⁇ 0.015, Cr: 0.35-0.65, Mo: 0.15-0.25, No: 0.40-0.70, AI: ⁇ 0.050, Cu: ⁇ 0.30 , Rest Fe), 23MnNiCrMo5-3 (1.6540:
  • EP 1 905 857 B1 is another high-strength steel with (in% by weight) C: 0.15 - 0.3%, Si: 0.1 - 0.5%, Mn: 0.6 - 1, 8%, Cr: 1, 0 - 1, 8%, Mo: 0.10 - 0.50%, Ni: up to 0.50%, Nb: 0.030 - 0.150%, Ti: 0.020 - 0.060%, AI: 0.010 - 0.060%, N: 0.008 - 0.030%, P: ⁇ 0.030%, S: ⁇ 0.030%, balance iron and unavoidable impurities known.
  • This steel also does not achieve the required high surface hardness of more than 820 HV1 during direct hardening from the case heat.
  • the tests show that the hardness of the core structure at 425 HV is too high and, as a result, the toughness of the core structure is too low to withstand high sudden break stresses.
  • Relaxation annealing not only has the potential to develop a hardened surface layer with a high surface hardness, in particular more than 820 HV1, but also has a tough, fine-grained core structure and at the same time is easy to weld. Its properties are intended to make a steel according to the invention particularly suitable for the production of chains and individual chain parts for areas of application of the type described in DIN 17115.
  • the invention has achieved this object by means of a steel having the composition specified in claim 1.
  • a steel according to the invention which meets the above-mentioned requirements accordingly consists of (in% by weight)
  • the steel according to the invention is composed such that it
  • the steel according to the invention typically has a structure in the core that essentially consists of
  • fine-grained, ductile martensite and bainite is characterized by a grain size of 6 and finer, determined according to the ASTM E112 standard.
  • a steel according to the invention has good weldability.
  • it can be used for the manufacture of chain links
  • Presence of C in the steel according to the invention if the C content is at least 0.12% by weight. If the C content is above 0.19% by weight, there is a risk that the core hardness of the steel will increase too much and the ductility or toughness of the core structure is impaired. Furthermore, the limitation to at most 0.19% by weight of C, in particular less than 0.19% by weight of C, contributes to the good weldability of the steel.
  • An optimized embodiment of the invention provides that the C content is limited to at most 0.16% by weight, in particular at most 0.13% by weight, in order to minimize any negative influence of C on the properties of the steel.
  • the silicon (“Si”) content of a steel according to the invention should be as low as possible, since silicon leads to a solidification of the structure. Such an increase in hardening proves to be particularly harmful if no stress relief annealing is carried out after the surface hardening.
  • Manganese can be added to the steel according to the invention to increase its hardenability. Since Mn lowers the transition temperatures into the ferrite / pearlite and martensite stage, the Mn content is
  • Mn content can be increased to at least 0.7% by weight of Mn.
  • the content of phosphorus ("P") is kept as low as possible in a steel according to the invention, since P causes a strong hardening of the structure after cooling from the case hardening heat in the case of the surface layer hardening. To prevent this, the P content of the steel according to the invention is limited to at most 0.015% by weight, in particular less than 0.015% by weight.
  • the sulfur (“S”) content of a steel according to the invention should also be set as low as possible, since S reduces the ductility or toughness of the structure. To prevent this, the S content of the Steel according to the invention is limited to at most 0.015% by weight, in particular less than 0.015% by weight.
  • the chromium (“Cr”) content in the steel according to the invention is limited to a maximum of 1.0% by weight in order to ensure a low residual austenite content in the hardened outer layer after hardening the outer layer. This effect can be achieved particularly reliably if the Cr content of the steel is limited to at most 0.6% by weight, in particular 0.5% by weight.
  • the loss of hardenability of the steel to be expected as a result of the low Cr content is compensated for in the steel according to the invention by adjusting the contents of the other alloying elements.
  • at least 0.2% by weight, in particular at least 0.3% by weight or at least 0.4% by weight, of Cr is provided in the steel in order to make use of the contribution to hardness that Cr can make.
  • Nickel in the contents of 0.7-2.0% by weight provided according to the invention contributes to increasing the hardenability and increasing the ductility or toughness.
  • a martensitic structure with a slight distortion of the hardening structure is sometimes achieved in the steels according to the invention.
  • the Ni contents like the Mn contents, must be within certain limits, since Ni and Mn shift the transition points to lower temperatures.
  • the martensite start temperature can be adjusted according to that of Dr. Helmut Brandis in Thyssen Brass -Technischeberichte 1, volume 1975, issue 1, page 8 -10, specified formula. In the case of steel according to the invention, it is approximately 440 ° C.
  • Steel according to the invention is particularly suitable for the components which, after cooling from the heat of hardening, are not subjected to stress relief annealing.
  • the Ni content By increasing the Ni content to at least 0.9% by weight, in particular at least 1.5% by weight, the advantageous effects of Ni can be used particularly safely.
  • Molybdenum hardly changes the transition temperatures, but increases the conversion to the bainite stage after cooling from the heat of the heat treatment carried out for surface hardening.
  • a fine-grained hardening structure made of bainite increases ductility and toughness in the
  • Molybdenum also improves the wear behavior of the hardened surface layer.
  • the positive effects of Mo on the steel according to the invention can be exploited by Mo contents of at least 0.5% by weight. In contrast, negative influences of the presence of Mo in the steel according to the invention are excluded by the fact that the Mo content is at most 1.0% by weight,
  • N Nitrogen
  • the N content of a steel according to the invention is therefore limited to at most 0.015% by weight, in particular at most 0.010% by weight.
  • the N content can be achieved by alloying
  • Micro alloy elements such as Al and Ti are bound.
  • Aluminum (“AI") is used in steel production for deoxidation.
  • Al contents of 0.010-0.060% by weight, in particular at least 0.015% by weight or at most 0.040% by weight, are required and can simultaneously be used to set excess nitrogen and to increase the fine grain size.
  • Copper is an undesirable accompanying element that occurs in the
  • the Cu content is limited to a maximum of 0.20% by weight.
  • the boron (“B”) content optionally provided according to the invention also serves to increase the hardenability.
  • the N content must be as low as possible and the nitrogen present in the steel must be bound by aluminum or other elements, such as, for example, the optionally added titanium, niobium or vanadium.
  • the positive influences of B can be used particularly safely if the B content is at least 0.001% by weight, in particular at least 0.002% by weight.
  • the B content is limited to a maximum of 0.005% by weight in order to prevent the formation of boron-containing precipitates
  • Toughness of a component formed from a steel according to the invention is of great importance, elements such as niobium (“Nb”), tantalum (“Ta”), vanadium (“V”), titanium (“Ti”) or tungsten (“W. ”) - alone or in combination. If a particularly fine-grained structure is to be secured, at least one of the elements W, Ti, Nb, Ta or V is accordingly present in the steel according to the invention in accordance with the invention, a combination of those in Elements W, Nb and V added according to the invention have proven to be particularly practical.
  • the optionally added Nb contents are 0.015-0.05% by weight, in particular 0.015-0.03% by weight.
  • the optionally added Ti contents are 0.01-0.04% by weight, in particular 0.015-0.035% by weight.
  • V contents are 0.04-0.12% by weight, in particular 0.05-0.12% by weight or 0.08-0.12% by weight.
  • Nb and V are added at the same time, their contents are optimally 0.015-0.03% by weight of Nb and 0.08-0.12% by weight of V in order to use the combined effect of their presence particularly effectively.
  • the optionally added contents of Ta are 0.01-0.04 weight percent.
  • the optionally added W contents can be 0.15-0.65% by weight, in particular 0.15-0.35% by weight.
  • the addition of W not only has a refining effect, but also a higher wear resistance and a greater hardening depth after carburizing.
  • Carburizing processes such as those mentioned above are particularly suitable for the surface hardening of a steel according to the invention
  • Leaflet 452 are explained.
  • the steel according to the invention can be used in particular for the production of case-hardened gear parts and other case-hardened parts
  • Components e.g. of high-strength, weldable round steel chains. No subsequent stress relief annealing is required to ensure the required ductility of the material in the respective component.
  • Steel according to the invention is particularly suitable for the production of case-hardened components which require a high surface hardness and high ductility in the core area of the components. Examples of this are the already mentioned round steel chains and their individual parts, if these are particularly suitable for use as conveyor chains in cement production, in mining or in the processing of coal, especially in the case of
  • Nitrocarburizing can be produced from the steel according to the invention, with no relaxation annealing after the
  • the invention is particularly suitable for the production of heavy
  • Highly wear-resistant and resilient drive chains for vehicles, in particular motor vehicles, for motorcycles and bicycles can also be produced from steel according to the invention.
  • the surface hardness of the steel can be brought to values of more than 820 HV1 by cooling the component formed from the steel according to the invention and hardened by case hardening in oil or helium after hardening.
  • the core structure consisting of bainite and martensite such a surface layer hardened from existing steel sample rod with a
  • Diameters of up to 45 mm typically have a hardness of 200-350 HV in this case.
  • the hardening depth for bars up to 45 mm in diameter is 0.30 - 0.45 mm.
  • a steel according to the invention has a hardness of over 820 HV1, for example, in the carburized surface layer without subsequent relaxation. With a hardening depth of 0.12% of the diameter of the particular rod-shaped component, there is still a hardness of at least 550 HV.
  • chain links formed from steel according to the invention which are surface hardened by case hardening and have been cooled in oil or helium after surface hardening in a vacuum, a breaking stress of at least 440 MPa can be achieved in a chain test carried out in accordance with DIN 22252.
  • a steel according to the invention after blind hardening, i.e. case hardening, in which the steel is heated to the hardening temperature without carburizing, one determined according to the standard DIN EN ISO 148-1
  • the rod After direct case hardening at 950 ° C followed by cooling in oil, the rod has a fine-grained structure of at least ASTM 6 in the case-hardened surface layer with a surface hardness of 840 HV1.
  • a hardness of 30HRc is achieved in the core of the sample, whereas a hardness of 560 HV is present at a hardening depth of 0.38 mm.
  • composition of the steel examined here ensures such high ductility of the material that it is not necessary to subsequently relax it to adjust the mechanical properties. This results in impact energy values with an ISO-V notch of 110 to 130 joules for the steel bars examined.
  • the steel according to the invention achieves a tensile strength of 985 MPa determined in accordance with DIN EN ISO 17022-3 in the “blind-hardened state” (ie hardening of 950 ° C. with subsequent cooling in oil, no carburization). These determined properties make the steel according to the invention particularly suitable for the production of round steel chains, the one

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

Die Erfindung stellt einen Stahl zur Verfügung, der beim Randschichthärten ohne ein nachfolgendes Entspannungsglühen nicht nur das Potenzial zur Entwicklung einer gehärteten Randschicht mit einer hohen, insbesondere mehr als 820 HV1 betragenden Oberflächenhärte hat, sondern der auch ein zähes, feinkörniges Kerngefüge besitzt und gleichzeitig gut schweißbar ist. Hierzu besteht ein erfindungsgemäßer Stahl aus (in Gewichts-%) C: 0,10 - 0,19 %, Si: ≤ 0,15 %, Mn: ≤ 1,0 %, P: ≤ 0,015 %, S: ≤ 0,015 %, Cr: 0,2 - 1,0 %, Ni: 0,7 - 2,0 %, Mo: 0,5 - 1,0 %, N: ≤ 0,015 %, AI: 0,010 - 0,060 %, Cu: ≤ 0,20 %, B: ≤ 0,005 %, sowie jeweils optional einem oder mehreren Elementen aus der Gruppe "W, Ti, Nb, V, Ta" in Gehalten gemäß den folgenden Maßgaben W: 0,15 - 0,65 %, Ti: 0,01 - 0,04 %, Nb: 0,015 - 0,05 %, Ta: 0,01 - 0,04 %, V: 0,04 - 0,12 %, und als Rest aus Eisen und unvermeidbaren Verunreinigungen.

Description

Stahl zum Oberflächenhärten mit hoher Randhärte und mit einem
feinen duktilen Kerngefüge
Die Erfindung betrifft einen Stahl, der für eine Randschichthärtung geeignet ist und dabei eine hohe Härte an der Oberfläche und eine hohe
Einhärtetiefe ermöglicht.
Insbesondere betrifft die Erfindung einen Stahl, der das Potenzial zur
Entwicklung einer gehärteten Randschicht mit einer gemäß DIN EN ISO 2639 Oberflächenhärte von mehr als 820 HV1 hat und gleichzeitig ein die gehärtete Randschicht tragendes feines Kerngefüge aufweist, das durch eine hohe Zähigkeit gekennzeichnet ist und den Stahl somit in die Lage versetzt, hohen schlagartigen Spannungen standzuhalten.
Verfahren zum Einsatzhärten sind im vom Stahl-Informations-Zentrum herausgegebenen Merkblatt 452,„Einsatzhärten“, Ausgabe 2008, ISSN 0175- 2006, erläutert. Beim so genannten„Direkthärten“ wird der Stahl auf eine Aufkohlungstemperatur, die in der Regel zwischen 900 und 1050 °C liegt, erwärmt und dann direkt schnell abgekühlt. Bei einem Gasaufkohlen unter Vakuum wird der Werkstoff durch das Einblasen von Helium mit hohem Druck abgekühlt. Oft schließt sich ein Entspannungsglühen an, das der Verringerung von Eigenspannungen und der Erhöhung der Duktilität dient.
Ein anderes Verfahren zum Randschichthärten, bei dem die Härte der Randschicht ebenfalls durch Aufkohlung erhöht wird, ist das so genannte „Einfachhärten“. Bei diesem Verfahren wird der Werkstoff nach dem Abkühlen aus der Einsatzhitze erneut auf eine Temperatur erwärmt, die auf den Randkohlenstoffgehalt abgestimmt ist, um anschließend schnell abgekühlt zu werden.
In der Praxis wird das„Direkthärten“ zunehmend eingesetzt, da es das wirtschaftlichere Verfahren ist. Dabei wird angestrebt, das im Anschluss an das Härten üblicherweise absolvierte Entspannungsglühen einzusparen.
Ein Direkthärten ohne nachträgliches Entspannungsglühen stellt jedoch höhere Anforderungen an den Werkstoff als das Einfachhärten. Um eine möglichst hohe Härte zu erhalten, muss die chemische Zusammensetzung des Werkstoffes für das ohne anschließendes Entspannungsglühen durchgeführte Direkthärten so abgestimmt sein, dass der in der gehärteten Zone verbleibende Restaustenitgehalt möglichst gering ist. Gleichzeitig muss das Kerngefüge des Stahles sehr duktil bzw. zäh bleiben, um schlagartigen Beanspruchungen standzuhalten. Ferner muss die chemische
Zusammensetzung des Werkstoffes auch eine ausreichende Härtbarkeit aufweisen.
In der heutigen Praxis werden einsatzgehärtete Bauteile beispielsweise aus dem unter der Bezeichnung "14CrNiMo5" bekannten Stahl hergestellt, der gemäß Richtanalyse aus (in Gew.-%) 0,12 % C, 1 ,40 % Cr, 0,30 % Mo und 1 ,6 % Ni, Rest Eisen und unvermeidbare Verunreinigungen besteht. Allerdings werden bei diesem Stahl nach dem Direkthärten die geforderten hohen Oberflächenhärten nicht mit der notwendigen Sicherheit erreicht.
Die deutsche Norm DIN 17115 (aktuelle Ausgabe 2012 - 07) befasst sich mit den technischen Lieferbedingungen für Stähle für geschweißte
Rundstahlketten und Ketten-Einzelteile. In dieser Norm sind unter anderem auch Edelstähle für eine Vergütungsbehandlung aufgeführt. Der Stahl 15CrNi6 (Werkstoff-Nr. 1.5919: (Gehaltsangaben in Gew.-%) C: 0,12 - 0,18, Si: < 0,25, Mn: 0,40 - 0,70, P: < 0,020, S: < 0,015, Cr: 1 ,35 - 1 ,65,
Ni: 1 ,35 - 1 ,65, N: < 0,012, Cu: < 0,020; Rest Fe) ist ein Werkstoff, der für die Herstellung von einsatzgehärteten Rundstahlketten verwendet werden kann. Doch auch dieser Stahl erreicht nach einem Direkthärten nicht die mindestens geforderte Oberflächenhärte von > 820 HV1. Die in den Lieferbedingungen aufgeführten Werkstoffe, wie z.B. 20MnCrMo3-2 (1.6522: (Gehaltsangaben in Gew.-%) C: 0,17 - 0,23, Si: < 0,40, Mn: 0,60 - 0,95, P < 0,025, S: < 0,015, Cr: 0,35 - 0,65, Mo: 0,15 - 0,25, No: 0,40 - 0,70, AI: < 0,050, Cu: < 0,30, Rest Fe), 23MnNiCrMo5-3 (1.6540:
(Gehaltsangaben in Gew.-%) C: 0,20 - 0,26, Si: < 0,25, Mn: 1 ,1 - 1 ,40, P: < 0,020, S: < 0,015, Cr: 0,4 - 0,6, Mo: 0,20 - 0,30, Ni: 0,70 - 0,90, N: < 0,012, AI: 0,025 - 0,50, Cu: < 0,20, Rest Fe) oder 23MnNiCrMo5-4
(1.6758: (Gehaltsangaben in Gew.-%) C: 0,20 - 0,26, Si: 0,25, Mn: 1 ,10 - 1 ,40, P: < 0,020, S: < 0,015, Cr: 0,40 - 0,60, Ni: 0,90 - 1 ,10, N: < 0,012, AI: 0,025 - 0,050, Cu: 0,20, Rest Fe) sind eher für Ketten geeignet, die im vergüteten Zustand eingesetzt werden.
Aus der EP 1 905 857 B1 ist ein weiterer hochfester Stahl mit (in Gew.-%) C: 0,15 - 0,3 %, Si: 0,1 - 0,5 %, Mn: 0,6 - 1 ,8 %, Cr: 1 ,0 - 1 ,8 %, Mo: 0,10 - 0,50 %, Ni: bis zu 0,50 %, Nb: 0,030 - 0,150 %, Ti: 0,020 - 0,060 %, AI: 0,010 - 0,060 %, N: 0,008 - 0,030 %, P: < 0,030 %, S: < 0,030 %, Rest Eisen und unvermeidbare Verunreinigungen bekannt. Auch dieser Stahl erreicht beim Direkthärten aus der Einsatzhitze nicht die geforderte hohe Oberflächenhärte von mehr als 820 HV1. Darüber hinaus zeigen die Versuche, dass die Härte des Kerngefüges mit 425 HV zu hoch und damit einhergehend die Zähigkeit des Kerngefüges zu niedrig ist, um hohen schlagartigen Bruchspannungen standzuhalten.
Vor diesem Hintergrund hat sich die Aufgabe ergeben, einen Stahl zu entwickeln, der beim Randschichthärten ohne ein nachfolgendes
Entspannungsglühen nicht nur das Potenzial zur Entwicklung einer gehärteten Randschicht mit einer hohen, insbesondere mehr als 820 HV1 betragenden Oberflächenhärte hat, sondern der auch ein zähes, feinkörniges Kerngefüge besitzt und gleichzeitig gut schweißbar ist. Seine Eigenschaften sollen einen erfindungsgemäßen Stahl insbesondere zur Herstellung von Ketten und Ketten-Einzelteilen für Einsatzgebiete der in der DIN 17115 beschriebenen Art geeignet machen.
Die Erfindung hat diese Aufgabe durch einen Stahl mit der in Anspruch 1 angegebenen Zusammensetzung gelöst.
Ein erfindungsgemäßer, die voranstehend genannten Anforderungen erfüllender Stahl besteht demnach aus (in Gewichts-%)
C: 0,10 - 0,19 %
Si: < 0,15 %
Mn: < 1 ,0 %
P: < 0,015 %
S: < 0,015 %
Cr: 0,2 - 1 ,0 %
Ni: 0,7 - 2,0 %
Mo: 0,5 - 1 ,0 %
N: < 0,015 %
AI: 0,010 - 0,060 %
Cu: < 0,20 %
B: < 0,005 %
sowie jeweils optional eines oder mehrere Elemente aus der Gruppe "W, Ti, Nb, V, Ta" in Gehalten gemäß den folgenden Maßgaben
W: 0,15 - 0,65 %
Ti: 0,01 - 0,04 %
Nb: 0,015 - 0,05 %
Ta: 0,01 - 0,04 %
V: 0,04 - 0,12 %
Rest Eisen und unvermeidbaren Verunreinigungen.
Der erfindungsgemäße Stahl ist derart zusammengesetzt, dass er die
geforderte hohe Härte von mehr als 820 HV1 an der Oberfläche durch ein Randschichthärten, das beispielsweise als Einsatzhärten, Nitrieren oder Nitrocarburieren durchgeführt wird, erreicht.
Gleichzeitig liegt auch in einer großen Einhärttiefe noch eine hohe Härte vor, wie sie bei der Verarbeitung des erfindungsgemäßen Stahls zu schweren Ketten und Einzelteilen von Ketten regelmäßig gefordert wird, die
beispielsweise als Förder- oder T ransportketten im Bergbau, im
Maschinenbau oder desgleichen eingesetzt werden sollen.
So wird beim Randschichthärten eines aus einem erfindungsgemäßen Stahl geformten Probenstabs eine Einhärttiefe von 0,30 - 0,45 mm bei
Stababmessungen bis zu 45 mm Durchmesser bei einer Härte von 550 HV erreicht.
Dabei weist erfindungsgemäßer Stahl nach dem Randschichthärten typsicherweise im Kern ein Gefüge auf, das im Wesentlichen aus
feinkörnigem, duktilem Martensit und Bainit besteht und durch eine gemäß der Norm ASTM E112 bestimmte Korngröße von typischer Weise 6 und feiner gekennzeichnet ist.
Ein erfindungsgemäßer Stahl weist eine gute Schweißeignung auf. So lässt er sich beispielsweise bei der Herstellung von Kettengliedern gut durch
Abbrennstumpfschweißen oder Preßstumpfschweißen verschweißen.
Um die geforderte Härte an der Oberfläche der gehärteten Randschicht zu entwickeln, sind mindestens 0,10 Gew.-% Kohlenstoff ("C") erforderlich. Hier hat es sich bei Versuchen ergeben, dass niedrige C-Gehalte von bis zu 0,13 Gew.-% für viele Verwendungen des erfindungsgemäßen Stahls günstig sind. Bei anderen Anwendungen ergeben sich optimale Wirkungen der
Anwesenheit von C im erfindungsgemäßen Stahl, wenn der C-Gehalt mindestens 0,12 Gew.-% beträgt. Bei oberhalb von 0,19 Gew.-% liegenden C- Gehalten besteht die Gefahr, dass die Kernhärte des Stahles zu stark ansteigt und die Duktilität bzw. Zähigkeit des Kerngefüges beeinträchtigt wird. Darüber hinaus trägt die Beschränkung auf höchstens 0,19 Gew.-% C, insbesondere weniger als 0,19 Gew.-% C, zur guten Schweißbarkeit des Stahls bei. Eine optimierte Ausgestaltung der Erfindung sieht vor, dass der C-Gehalt auf höchstens 0,16 Gew.-%, insbesondere höchstens 0,13 Gew.-%, beschränkt ist, um jeden negativen Einfluss von C auf die Eigenschaften des Stahls zu minimieren.
Der Gehalt an Silizium ("Si") eines erfindungsgemäßen Stahls sollte so niedrig wie möglich sein, da Silizium zu einer Verfestigung des Gefüges führt. Eine solche Verfestigungserhöhung erweist sich insbesondere dann als schädlich, wenn nach dem Randschichthärten kein Entspannungsglühen vorgenommen wird.
Mangan ("Mn") kann dem erfindungsgemäßen Stahl zur Erhöhung seiner Härtbarkeit zugegeben werden. Da Mn die Umwandlungstemperaturen in die Ferrit/ Perlit- und Martensitstufe herabsetzt, ist der Mn-Gehalt
erfindungsgemäß auf höchstens 1 ,0 Gew.-% beschränkt. Um die vorteilhaften Wirkungen von Mn bei einem erfindungsgemäßen Stahl sicher zu nutzen, kann sein Mn-Gehalt auf mindestens 0,7 Gew.-% Mn angehoben werden.
Der Gehalt an Phosphor ("P") ist bei einem erfindungsgemäßen Stahl möglichst niedrig gehalten, da P bei der Randschichthärtung eine starke Verfestigung des Gefüges nach dem Abkühlen aus der Einsatzhärtehitze bewirkt. Um dies zu verhindern, ist der P-Gehalt des erfindungsgemäßen Stahls auf höchstens 0,015 Gew.-%, insbesondere weniger als 0,015 Gew.-%, beschränkt.
Der Gehalt an Schwefel ("S") ist bei einem erfindungsgemäßen Stahl ebenfalls so niedrig wie möglich einzustellen, da S die Duktilität bzw. Zähigkeit des Gefüges herabsetzt. Um dies zu verhindern, ist auch der S-Gehalt des erfindungsgemäßen Stahls auf höchstens 0,015 Gew.-%, insbesondere weniger als 0,015 Gew.-%, beschränkt.
Der Gehalt an Chrom ("Cr") ist beim erfindungsgemäßen Stahl auf höchstens 1 ,0 Gew.-% begrenzt, um nach dem Randschichthärten einen niedrigen Restaustenitgehalt in der gehärteten Randschicht zu gewährleisten. Dieser Effekt kann besonders sicher dann erreicht werden, wenn der Cr-Gehalt des Stahls auf höchstens 0,6 Gew.-%, insbesondere 0,5 Gew.-%, begrenzt wird. Der in Folge des niedrigen Cr-Gehalts zu erwartende Verlust an Härtbarkeit des Stahles wird beim erfindungsgemäßen Stahl durch die Einstellung der Gehalte an den anderen Legierungselementen ausgeglichen. Gleichzeitig sind mindestens 0,2 Gew.-%, insbesondere mindestens 0,3 Gew.-% oder mindestens 0,4 Gew.-%, Cr im Stahl vorgesehen, um den Beitrag zur Härte, den Cr leisten kann, zu nutzen.
Nickel ("Ni") in den erfindungsgemäß vorgesehenen Gehalten von 0,7 - 2,0 Gew.-% trägt zur Steigerung der Härtbarkeit und zur Erhöhung der Duktilität bzw. Zähigkeit bei. In Verbindung mit ihren geringeren Kohlenstoffgehalten wird bei erfindungsgemäßen Stählen teilweise ein martensitisches Gefüge mit einer geringen Verzerrung des Härtungsgefüges erreicht. Die Ni-Gehalte müssen dabei allerdings, wie auch die Mn-Gehalte, innerhalb bestimmter Grenzen liegen, da Ni und Mn die Umwandlungspunkte zu niedrigeren Temperaturen verschieben. Die Martensit-Start-Temperatur (Ms-Temperatur) kann nach der von Dr. Helmut Brandis in Thyssen Edelstahl -Technische Berichte 1 , Band 1975 Heft 1 , Seite 8 -10, angegebenen Formel bestimmt werden. Sie liegt bei erfindungsgemäßem Stahl bei etwa 440 °C und ist damit noch so hoch, dass ein Selbstanlassen des umgewandelten Martensits / Bainits bei der Abkühlung aus der Aufkohlungshitze erfolgen kann. Dieser Effekt erhöht die Duktilität oder Zähigkeit sowie auch die Dauerfestigkeit des umgewandelten Härtungsgefüges und verringert die Verzüge am Bauteil. Gleichzeitig ist bei den erfindungsgemäß vorgegebenen Gehalten an Ni sichergestellt, dass die Härte des Kerngefüges niedrig bleibt, so dass der Stahl auch im randschichtgehärteten Zustand hohe schlagartige
Beanspruchungen aushalten kann. Diese Eigenschaft macht den
erfindungsgemäßen Stahl besonders geeignet für die Bauteile, die nach dem Abkühlen aus der Härtehitze keiner Entspannungsglühung unterzogen werden. Indem der Ni-Gehalt auf mindestens 0,9 Gew.-%, insbesondere mindestens 1 ,5 Gew.-%, angehoben wird, können die vorteilhaften Wirkungen von Ni besonders sicher genutzt werden. Eine Beschränkung des Ni-Gehalts auf höchstens 1 ,8 Gew.-% verhindert dagegen besonders sicher negative Einflüsse der Anwesenheit von Ni.
Molybdän ("Mo") verändert die Umwandlungstemperaturen kaum, verstärkt aber die Umwandlung in die Bainitstufe nach dem Abkühlen aus der Hitze der zur Randschichthärtung durchgeführten Wärmebehandlung. Ein feinkörniges Härtungsgefüges aus Bainit erhöht die Duktilität bzw. Zähigkeit im
Kernbereich des aus erfindungsgemäßem Stahl geformten Bauteils infolge der geringeren Verzerrung des Gefüges. Zudem wird durch Molybdän das Verschleißverhalten der gehärteten Randschicht verbessert. Die positiven Wirkungen von Mo auf den erfindungsgemäßen Stahl können durch Mo- Gehalte von mindestens 0,5 Gew genutzt werden. Negative Einflüsse der Anwesenheit von Mo im erfindungsgemäßen Stahl werden dagegen dadurch ausgeschlossen, dass der Mo-Gehalt auf höchstens 1 ,0 Gew.-%,
insbesondere höchstens 0,9 Gew.-% oder höchstens 0,65 Gew.-%, beschränkt ist.
Stickstoff ("N") sollte im erfindungsgemäßen Stahl so gering wie möglich sein, um die härtesteigernde Wirkung des erfindungsgemäß vorgesehenen Bor- Gehalts im erfind ungsgemäßen Stahl optimal nutzen zu können. Deshalb ist der N-Gehalt eines erfindungsgemäßen Stahls auf höchstens 0,015 Gew.-%, insbesondere höchstens 0,010 Gew.-% begrenzt. Um im Fall seiner
Anwesenheit im erfindungsgemäßen Stahl die volle härtbarkeitssteigernde Wirkung von Bor zu sichern, kann der N-Gehalt durch Zulegieren von
Mikrolegierungselementen wie z.B. AI und Ti abgebunden werden. Aluminium ("AI") wird bei der Stahlerzeugung zur Desoxidation eingesetzt. Hierzu werden Al-Gehalte von 0,010 - 0,060 Gew.-%, insbesondere mindestens 0,015 Gew.-% oder höchstens 0,040 Gew.-%, benötigt und können gleichzeitig zum Abbinden von überschüssigem Stickstoff und zur Erhöhung der Feinkörnigkeit genutzt werden.
Kupfer ("Cu") ist ein unerwünschtes Begleitelement, das bei der
Erschmelzung des Stahls über den dabei eingesetzten Schrott in die
Schmelze gelangt. Um negative Einflüsse von Cu auf die Eigenschaften des erfindungsgemäßen Stahls zu vermeiden, ist der Cu-Gehalt auf höchstens 0,20 Gew.-% begrenzt.
Auch der erfindungsgemäß optional vorgesehene Gehalt an Bor ("B") dient der Erhöhung der Härtbarkeit. Damit der B-Gehalt wirksam sein kann, muss der Gehalt an N möglichst gering und der im Stahl vorhandene Stickstoff durch Aluminium oder andere Elemente, wie beispielsweise das jeweils optional zugegebene Titan, Niob oder Vanadium, abgebunden sein. Die positiven Einflüsse von B können dann besonders sicher genutzt werden, wenn der B-Gehalt mindestens 0,001 Gew.-%, insbesondere mindestens 0,002 Gew -%, beträgt. Dabei ist der B-Gehalt auf höchstens 0,005 Gew.-% beschränkt, um die Bildung von borhaltigen Ausscheidungen an den
Korngrenzen zu vermeiden.
Zur Erhöhung der Feinkörnigkeit des Gefüges, die für die Duktilität bzw.
Zähigkeit eines aus einem erfindungsgemäßen Stahl geformten Bauteiles von großer Bedeutung ist, können wahlweise Elemente wie Niob ("Nb"), Tantal ("Ta"), Vanadium ("V"), Titan ("Ti") oder auch Wolfram ("W") - alleine oder in Kombination - zugesetzt werden. Soll ein besonders feinkörniges Gefüge gesichert werden, ist dementsprechend vorzugsweise mindestens eines der Elemente W, Ti, Nb, Ta oder V im erfindungsgemäßen Stahl nach Maßgabe der Erfindung vorhanden, wobei sich eine Kombination aus den in erfindungsgemäßer Weise zugegebenen Elementen W, Nb und V als besonders praxisgerecht erwiesen hat.
Die optional zugegebenen Gehalte an Nb liegen dabei bei 0,015 - 0,05 Gew.- %, insbesondere 0,015 - 0,03 Gew.-%.
Die optional zugegebenen Gehalte an Ti betragen 0,01 - 0,04 Gew.-%, insbesondere 0,015 - 0,035 Gew.-%.
Die optional zugegebenen Gehalte an V betragen 0,04 - 0,12 Gew.-%, insbesondere 0,05 - 0,12 Gew.-% oder 0,08 - 0,12 Gew.-%.
Sofern Nb und V gleichzeitig zugegeben werden, liegen deren Gehalte optimalerweise bei 0,015 - 0,03 Gew.-% Nb und 0,08 - 0,12 Gew.-% V, um die kombinierte Wirkung ihrer Anwesenheit besonders effektiv zu nutzen.
Die optional zugegebenen Gehalte an Ta betragen 0,01 - 0,04 Gew.-%.
Die optional zugegebenen Gehalte an W können 0,15 - 0,65 Gew.-%, insbesondere 0,15 - 0,35 Gew.-% betragen. Durch die Zugabe von W wird neben einer komfeinenden Wirkung auch ein höherer Verschleißwiderstand und eine größere Einhärttiefe nach dem Aufkohlen erreicht.
Der Gehalt aller anderen hier nicht genannten Elemente, die in einem erfindungsgemäßen Stahl auftreten können, sind den Verunreinigungen zuzurechnen und in ihrem Gehalt so begrenzt, dass sie keinen Einfluss auf die Eigenschaften des erfindungsgemäßen Stahls haben. Typischerweise sind dazu bei einem erfindungsgemäßen Stahl die Gehalte an den
Verunreinigungen entsprechend DIN 17 115 (Ausgabe 2012 - 07) begrenzt.
Besonders geeignet für die Randschichthärtung eines erfindungsgemäßen Stahls sind aufkohlende Verfahren, wie sie im oben bereits genannten
Merkblatt 452 erläutert sind. Der erfindungsgemäße Stahl lässt sich insbesondere für die Herstellung von einsatzgehärteten Getriebeteilen sowie sonstigen einsatzgehärteten
Bauteilen, wie z.B. von hochfesten, schweißbaren Rundstahlketten, verwenden. Dabei ist jeweils kein nachträgliches Entspannungsglühen erforderlich, um die nötige Duktilität des Werkstoffs beim jeweiligen Bauteil zu gewährleisten. So eignet sich erfindungsgemäßer Stahl insbesondere zur Herstellung von einsatzgehärteten Bauteilen, die eine hohe Randschichthärte und hohe Duktilität im Kembereich der Bauteile erfordern. Beispiele hierfür sind die schon erwähnten Rundstahlketten und deren Einzelteile, wenn diese insbesondere für den Einsatz als Förderketten bei der Zementherstellung, im Bergbau oder bei der Verarbeitung von Kohle, insbesondere bei der
Kohlevergasung, vorgesehen sind.
Auch Bauteile, die anderen Oberflächenbehandlungen zur
Randschichthärtung unterworfen werden, wie z.B. dem Nitrieren oder
Nitrocarburieren, können aus dem erfindungsgemäßen Stahl hergestellt werden, wobei auch hier keine Entspannungsglühung nach der
Randschichthärtung durchgeführt werden muss.
Besonders geeignet ist die Erfindung zur Herstellung von schweren
einsatzgehärteten Rundstahlketten für den Einsatz im Bergbau, in der Zementindustrie oder bei der Kohlevergasung.
Ebenso lassen sich aus erfindungsgemäßem Stahl hoch verschleißfeste und belastbare Antriebsketten für Fahrzeuge, insbesondere Kraftfahrzeuge, für Motorräder und Fahrräder herstellen.
Dabei lässt sich die Oberflächenhärte des Stahls dadurch sicher auf Werte von mehr als 820 HV1 bringen, dass das jeweils aus dem erfindungsgemäßen Stahl geformte, durch Einsatzhärten randschichtgehärtete Bauteil nach dem Randschichthärten in Öl oder Helium abgekühlt wird. Im aus Bainit und Martensit bestehenden Kerngefüge eines derart randschichtgehärteten, aus dem erfindungsgemäßen Stahl bestehenden Probenstabs mit einem
Durchmesser von bis zu 45 mm typischerweise liegt in diesem Fall typischerweise eine Härte von 200 - 350 HV vor. Die Einhärttiefe beträgt bei Stäben bis zu 45 mm Durchmesser 0,30 - 0,45 mm.
Dementsprechend weist ein erfindungsgemäßer Stahl beispielsweise in der aufgekohlten Randschicht ohne eine nachträgliche Entspannung eine Härte von über 820 HV1 auf. Bei einer Einhärttiefe von 0,12 % des Durchmessers des jeweiligen insbesondere stabförmigen Bauteils liegt dabei immer noch eine Härte mindestens 550 HV vor.
Bei aus erfindungsgemäßen Stahl geformten Kettengliedern, die durch Einsatzhärten randschichtgehärtet sind und nach einem im Vakuum erfolgten Randschichthärten in Öl oder Helium abgekühlt worden sind, lässt sich eine Bruchspannung von mindestens 440 MPa bei einer nach DIN 22252 durchgeführten Kettenprüfung erreichen.
Ein erfindungsgemäßer Stahl weist nach einem Blindhärten, d.h. einem Einsatzhärten, bei dem der Stahl ohne Aufkohlung auf die Härtetemperatur erwärmt wird, eine gemäß der Norm DIN EN ISO 148-1 ermittelte
Kerbschlagarbeit von mindestens 50 Joule, insbesondere mindestens 90 Joule, auf, wobei Kerbschlagarbeitswerte von 110 - 130 Joule regelmäßig erreicht werden.
Nachfolgend wird die Erfindung anhand eines Ausführungsbeispiels erläutert.
Zur Überprüfung der Eigenschaften eines erfindungsgemäßen Stahls ist in konventioneller Weise ein warmgewalzter Stabstahl mit einem kreisrunden Durchmesser von 30 mm, also einem Durchmesser, der repräsentativ für Kettenglieder oder desgleichen ist, erzeugt worden, der die in Tabelle 1 angegebene, den Maßgaben der Erfindung genügende Zusammensetzung aufwies (Angaben in Gewichts-%, Rest Eisen und unvermeidbare
Verunreinigungen):
Tabelle 1.
An dem Stabstahl stellen sich folgende Eigenschaften ein:
Nach einem Direkteinsatzhärten bei 950 °C mit anschließendem Abkühlen in Öl liegt in dem Stab ein feinkörniges Gefüge von mindestens ASTM 6 in der einsatzgehärteten Randschicht vor, mit einer Oberflächenhärte 840 HV1.
Im Kern der Probe wird eine Härte von 30HRc erreicht, wogegen in einer Einhärttiefe von 0,38 mm eine Härte von 560 HV vorliegt.
Die Zusammensetzung des hier untersuchten Stahls gewährleistet eine so hohe Duktilität des Werkstoffs, dass ein nachträgliches Entspannen zur Einstellung der mechanischen Eigenschaften nicht notwendig ist. So ergeben sich bei dem untersuchten Stabstahl Kerbschlagarbeitswerte mit einem ISO- V-Kerb von 110 bis 130 Joule.
Dabei erreicht der erfindungsgemäße Stahl bei dem untersuchten Stab im „blindgehärteten Zustand" (d.h. Härten von 950 °C mit anschließendem Abkühlen in Öl, keine Aufkohlung) eine gemäß DIN EN ISO 17022-3 bestimmte Zugfestigkeit von 985 MPa. Diese festgestellten Eigenschaften machen den erfindungsgemäßen Stahl besonders zur Herstellung von Rundstahlketten geeignet, die eine
Bruchspannung von mehr als 440 MPa bei der Kettenprüfung nach DIN 22252 erreichen.

Claims

PATENTANSPRÜCHE
1. Stahl mit (in Gewichts-%)
C: 0,10 - 0,19 %,
Si: < 0,15 %,
Mn: < 1 ,0 %,
P: < 0,015%,
S: < 0,015 %,
Cr: 0,2 - 1,0 %,
Ni: 0,7 - 2,0 %,
Mo: 0,5 - 1,0%,
N: < 0,015 %,
AI: 0,010 - 0,060 %,
Cu: < 0,20 %,
B: < 0,005 %
sowie jeweils optional eines oder mehrere Elemente aus der Gruppe "W, Ti, Nb, V, Ta" in Gehalten gemäß den folgenden Maßgaben W: 0,15 - 0,65 %,
Ti: 0,01 - 0,04 %,
Nb: 0,015 - 0,05 %,
Ta: 0,01 - 0,04 %,
V: 0,04 - 0,12%,
Rest Eisen und unvermeidbaren Verunreinigungen.
2. Stahl nach Anspruch 1, dadurch gekennzeichnet, dass sein C-Gehalt höchstens 0,13 Gew.-% beträgt.
3. Stahl nach einem der voranstehenden Ansprüche, dadurch
gekennzeichnet, dass sein Cr-Gehalt mindestens 0,3 Gew.-% beträgt.
4. Stahl nach einem der voranstehenden Ansprüche, dadurch
gekennzeichnet, dass sein Cr-Gehalt höchstens 0,5 Gew.-% beträgt.
5. Stahl nach einem der voranstehenden Ansprüche, dadurch
gekennzeichnet, dass sein Ni-Gehalt mindenstens 1 ,5 Gew.-% beträgt.
6. Stahl nach einem der voranstehenden Ansprüche, dadurch
gekennzeichnet, dass sein Mo-Gehalt höchstens 0,65 Gew.-% beträgt.
7. Stahl nach einem der voranstehenden Ansprüche, dadurch
gekennzeichnet, dass sein W-Gehalt höchstens 0,35 Gew.-% beträgt.
8. Stahl nach einem der voranstehenden Ansprüche, dadurch
gekennzeichnet, dass sein Nb-Gehalt höchstens 0,03 Gew.-% beträgt.
9. Stahl nach einem der voranstehenden Ansprüche, dadurch
gekennzeichnet, dass sein V-Gehalt mindestens 0,08 Gew.-% beträgt.
10. Stahl nach einem der voranstehenden Ansprüche, dadurch
gekennzeichnet, dass sein V-Gehalt höchstens 0,12 Gew,-% beträgt.
11. Stahl nach einem der voranstehenden Ansprüche, dadurch
gekennzeichnet, dass er im einsatzgehärteten Zustand in einer aufgekohlten Randschicht ohne eine nachträgliche Entspannung eine Oberflächenhärte von mindestens 820 HV1 und in einer Einhärttiefe, die 0,12 % des Durchmessers des jeweiligen Bauteils beträgt, eine Härte von mindestens 550 HV aufweist.
12. Stahl nach einem der voranstehenden Ansprüche, dadurch
gekennzeichnet, dass er im blindgehärteten Zustand eine Zugfestigkeit von mindestens 950 MPa aufweist.
13. Stahl nach einem der voranstehenden Ansprüche, dadurch
gekennzeichnet, dass im blindgehärteten Zustand eine Kerbschlagarbeit mit einem ISO-V-Kerb von über 90 Joule erreicht.
14. Stahl nach einem der voranstehenden Ansprüche, dadurch
gekennzeichnet, dass er bei der Kettenprüfung von
einsatzgehärteten Rundstahlketten nach DIN 22252 eine Bruchspannung von mindestens 440 MPa erreicht.
15. Verwendung eines gemäß einem der voranstehenden Ansprüche
ausgebildeten Stahls für die Herstellung von einsatzgehärteten
Rundstahlketten und deren Einzelteilen.
EP19773026.0A 2018-09-18 2019-09-17 Stahl zum oberflächenhärten mit hoher randhärte und mit einem feinen duktilen kerngefüge Pending EP3853389A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018122858 2018-09-18
PCT/EP2019/074872 WO2020058269A1 (de) 2018-09-18 2019-09-17 Stahl zum oberflächenhärten mit hoher randhärte und mit einem feinen duktilen kerngefüge

Publications (1)

Publication Number Publication Date
EP3853389A1 true EP3853389A1 (de) 2021-07-28

Family

ID=67999631

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19773026.0A Pending EP3853389A1 (de) 2018-09-18 2019-09-17 Stahl zum oberflächenhärten mit hoher randhärte und mit einem feinen duktilen kerngefüge

Country Status (4)

Country Link
US (1) US20220074034A1 (de)
EP (1) EP3853389A1 (de)
CN (1) CN112714799A (de)
WO (1) WO2020058269A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115704074B (zh) * 2021-08-11 2024-01-09 宝山钢铁股份有限公司 一种矿用链条钢、链条及其制造方法
CN115725894B (zh) * 2021-08-25 2023-12-12 宝山钢铁股份有限公司 一种具有优良冲击性能的高温渗碳NiMo系齿轮钢及其制造方法
CN114645182B (zh) * 2022-03-23 2022-10-14 承德建龙特殊钢有限公司 一种齿轮钢及其制备方法与应用

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03115542A (ja) * 1989-09-27 1991-05-16 Aichi Steel Works Ltd 高強度肌焼鋼
JPH05148535A (ja) * 1991-06-07 1993-06-15 Kobe Steel Ltd 熱処理歪が少なく曲げ疲労強度の優れた表面硬化部品の製造方法
JPH07179989A (ja) * 1993-12-24 1995-07-18 Aichi Steel Works Ltd 被削性に優れた高強度肌焼鋼
KR950018576A (ko) * 1993-12-30 1995-07-22 전성원 자동차 변속기 기어용 합금조성물
GB9526079D0 (en) * 1995-12-20 1996-02-21 Parsons Chain Co Ltd Alloy steel composition and chain products fabricated in such alloy steel
JP3037891B2 (ja) * 1996-02-09 2000-05-08 三菱製鋼室蘭特殊鋼株式会社 浸炭部の高周波焼きなましを容易にした高強度肌焼鋼及びその製造方法
JP3395642B2 (ja) * 1997-12-15 2003-04-14 住友金属工業株式会社 耐粗粒化肌焼鋼材並びに強度と靭性に優れた表面硬化部品及びその製造方法
FR2780418B1 (fr) * 1998-06-29 2000-09-08 Aubert & Duval Sa Acier de cementation a temperature de revenu eleve, procede pour son obtention et pieces formees avec cet acier
DE202004021326U1 (de) * 2004-02-05 2007-07-26 Deutsche Edelstahlwerke Gmbh Stahl zur Herstellung von hochfesten Bauteilen mit herausragender Tieftemperaturzähigkeit und Verwendungen eines solchen Stahls
US8430974B2 (en) * 2005-04-28 2013-04-30 Aisin Aw Co., Ltd. Carburized and induction-hardened component
DE102005034140A1 (de) * 2005-07-19 2007-01-25 Rud-Kettenfabrik Rieger & Dietz Gmbh U. Co. Hochfeste Stahlkette für den Tieftemperaturbereich
EP1905857B1 (de) 2006-09-29 2013-08-14 EZM Edelstahlzieherei Mark GmbH Hochfester Stahl und Verwendungen eines solchen Stahls
JP5649886B2 (ja) * 2010-03-26 2015-01-07 Jfeスチール株式会社 肌焼鋼およびその製造方法
CN102226253B (zh) * 2011-06-10 2013-03-20 钢铁研究总院 一种高速铁路用渗碳轴承钢及其制备方法
JP5783101B2 (ja) * 2012-03-22 2015-09-24 新日鐵住金株式会社 窒化用鋼材
JP5876864B2 (ja) * 2013-12-16 2016-03-02 株式会社神戸製鋼所 舶用鍛鋼品
JP6780932B2 (ja) * 2015-12-16 2020-11-04 株式会社エフ.イー.シーチェーン チェーン製造装置およびチェーンの製造方法

Also Published As

Publication number Publication date
CN112714799A (zh) 2021-04-27
US20220074034A1 (en) 2022-03-10
WO2020058269A1 (de) 2020-03-26

Similar Documents

Publication Publication Date Title
EP3083239B1 (de) Stahlflachprodukt für bauteile für eine fahrzeugkarosserie
DE69003202T2 (de) Hochfeste, hitzebeständige, niedrig legierte Stähle.
EP3168312B1 (de) Edelbaustahl mit bainitischem gefüge, daraus hergestelltes schmiedeteil und verfahren zur herstellung eines schmiedeteils
EP1780293B1 (de) Verfahren zum Herstellen von Vormaterial aus Stahl durch Warmverformen
DE60033772T2 (de) Martensitaushärtender Stahl mit hoher Dauerfestigkeit und Band aus dem martensitaushärtenden Stahl
EP2905348B1 (de) Hochfestes Stahlflachprodukt mit bainitisch-martensitischem Gefüge und Verfahren zur Herstellung eines solchen Stahlflachprodukts
WO2020058269A1 (de) Stahl zum oberflächenhärten mit hoher randhärte und mit einem feinen duktilen kerngefüge
DE60300561T3 (de) Verfahren zur Herstellung eines warmgewalzten Stahlbandes
DE2800444C2 (de) Verwendung eines Cr-Mo-Stahls
DE112018003750T5 (de) Gasturbinenscheibennmaterial und Wärmebehandlungsverfahren dafür
EP3323902A1 (de) Pulvermetallurgisch hergestellter, hartstoffpartikel enthaltender stahlwerkstoff, verfahren zur herstellung eines bauteils aus einem solchen stahlwerkstoff und aus dem stahlwerkstoff hergestelltes bauteil
DE19960235B4 (de) Wälzlager
DE60037575T2 (de) Grosse lagerteile aus stahl
EP3591081B1 (de) Verfahren zur herstellung eines einsatzgehärteten stahlbauteils
DE3522115A1 (de) Hitzebestaendiger 12-cr-stahl und daraus gefertigte turbinenteile
EP2255021B1 (de) Stahllegierung für einen niedrig legierten stahl zur herstellung hochfester nahtloser stahlrohre
DE202009017752U1 (de) Einsatzstahl
DE3522114A1 (de) Hitzbestaendiger 12-cr-stahl und daraus gefertigte turbinenteile
DE102018122901A1 (de) Verfahren zur Herstellung ultrahochfester Stahlbleche und Stahlblech hierfür
EP2396440A1 (de) Stahllegierung
WO2021063746A1 (de) Verfahren zur herstellung eines stahlproduktes sowie ein entsprechendes stahlprodukt
EP1445339B1 (de) Legierung und Gegenstand mit hoher Warmfestigkeit und hoher thermischer Stabilität
AT414341B (de) Stahl für chemie - anlagen - komponenten
WO2020187419A1 (de) Verfahren zur herstellung eines warmgewalzten stahlflachproduktes mit unterschiedlichen eigenschaften, ein entsprechend warmgewalztes stahlflachprodukt sowie eine entsprechende verwendung
DE102020210764B3 (de) Bauteil aus Stahl mit verbesserter Kerbschlagzähigkeit bei tiefen Temperaturen

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210318

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20240319