EP3824110A1 - Procede de fabrication de toles minces en alliage d'aluminium 7xxx aptes a la mise en forme et a l'assemblage - Google Patents

Procede de fabrication de toles minces en alliage d'aluminium 7xxx aptes a la mise en forme et a l'assemblage

Info

Publication number
EP3824110A1
EP3824110A1 EP19758427.9A EP19758427A EP3824110A1 EP 3824110 A1 EP3824110 A1 EP 3824110A1 EP 19758427 A EP19758427 A EP 19758427A EP 3824110 A1 EP3824110 A1 EP 3824110A1
Authority
EP
European Patent Office
Prior art keywords
weight
sheet
temperature
carried out
mpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19758427.9A
Other languages
German (de)
English (en)
Inventor
David BARBIER
Jean-Philippe MASSE
Olivier Rebuffet
Laurent Cervi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Constellium Neuf Brisach SAS
Original Assignee
Constellium Neuf Brisach SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Constellium Neuf Brisach SAS filed Critical Constellium Neuf Brisach SAS
Publication of EP3824110A1 publication Critical patent/EP3824110A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/46Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • B21D22/022Stamping using rigid devices or tools by heating the blank or stamping associated with heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent

Definitions

  • the present invention relates to a process for manufacturing thin sheets of aluminum alloy 7XXX, which are particularly useful for the automotive industry.
  • AA7XXX series aluminum alloys such as the AA7075 alloy, combine interesting chemical and mechanical characteristics such as hardness and corrosion resistance.
  • AA7XXX alloys have not yet found wide use in the automotive industry due to the difficulty encountered in shaping and assembling them, while retaining an economical manufacturing process.
  • Patent application AT 1 1744 describes for example a process for producing a shaped part from an aluminum alloy sheet of the 7000 series, in which the aluminum sheet is heated and formed in this heated state, then cooled.
  • Patent application EP3265595 describes an alloy comprising in% by weight 4 - 15 Zn, 0.1 - 3.5 Cu, 1.0 - 4.0 Mg, 0.05 - 0.50 Fe, 0.05 - 0.30 Si, 0.05 - 0.25 Zr, up to 0.25 Mn, up to 0.20 Cr , up to 0.15 Ti, up to 0.15% of impurities, aluminum residue, which can be used in particular in the automotive industry.
  • Patent application WO2016094464 describes a method for achieving the desired strength and elongation with a sheet of aluminum alloy 7xxx having the steps of a) rapidly heating the sheet to a temperature of 450 ° C to 5 lO ° C; b) maintaining the sheet at the temperature of 450 ° C to 5 l O ° C for 20 minutes; c) rapid cooling of the sheet to room temperature above 50 ° C per second; d) heating the sheet to a temperature between about 50 ° C and 150 ° C; e) maintaining the sheet at a temperature between about 50 ° C and 150 ° C for a period of about 0.5 hours to 6 hours.
  • Patent application WO2014040939 relates to a method for manufacturing a part of a motor vehicle comprising at least the steps consisting in: (a) providing a bare or composite aluminum alloy produced in sheet metal having a thickness within a range from about 0.5 mm to 4 mm, in which the sheet product comprises at least one layer of an aluminum alloy of the AA7xxx-series, the sheet product having been subjected to a heat treatment in solution and quenching followed by a natural aging period of at least 1 day; (b) subjecting the naturally aged sheet metal product to a reversion annealing treatment, namely a heat treatment at a temperature between 100 ° C and 350 ° C for 0.1 to 60 seconds; (c) optionally subjecting the product of the heated sheet to a forced cooling operation; (d) within 2 hours, preferably within 30 minutes, from the reversion annealing treatment, form the sheet product to obtain a three-dimensional part.
  • Patent application WO2012059505 describes a method of manufacturing an aluminum alloy formed part for a motor vehicle, the method comprising: (a) providing a product made of laminated aluminum sheet, in which the aluminum alloy is an AA7000 having a thickness in the range of 0.5 to 4 mm and being subjected to a solution heat treatment and having been cooled, (b) forming the aluminum alloy sheet to obtain a formed part three dimensions, (c) heating said formed part in three dimensions for at least one pre-aging temperature between 50-250 ° C, and (d) subjecting said formed part and the pre-aged motor vehicle component to a cycle of baking paint.
  • Patent application EP2514537 describes a method of manufacturing a seal in at least two metal parts which overlap by self-piercing riveting. At least one of the first part and the second part is a sheet material made of an aluminum alloy of the AA7000-series, and a heat treatment is applied to at least the part of said sheet material 7000 of the series within 120 minutes before assembly production and / or at least part of the time during assembly production so as to reduce the tensile strength in the junction zone of at least the part of said sheet material of the 7000 series.
  • Patent application EP2479305 relates to a method of manufacturing an aluminum alloy structural part comprising: (a) providing a product made of laminated aluminum sheet, in which the aluminum alloy is of the AA7000 series and has a thickness in the range of 0.5 to 4 mm and being subjected to a heat treatment in solution and having been cooled,
  • Patent application EP2440680 describes a method of manufacturing a part of a motor vehicle, having an elastic limit greater than 500 MPa after having been subjected to a paint curing cycle, the method comprising: (a) supplying a product made of laminated aluminum sheet of an AIZnMgCu alloy and having a thickness in the range of 0.5 to 4 mm and being subjected to a heat treatment in solution, and having been quenched and in the microstructure is substantially recrystallized, (b) forming the aluminum alloy sheet to obtain a formed part, (c) assembling the formed part with one or more other metal parts to form an assembly forming a motor vehicle component; (d) subjecting said motor vehicle component to a paint curing cycle and in which the aluminum alloy sheet in the formed part has an elastic limit greater than 500 MPa.
  • Patent application WO2009130175 relates to a manufacturing process consisting in forming a structural part from a sheet of aluminum alloy of the 7xxx- series, the process comprising the following steps: (i) cutting the sheet of alloy d aluminum to obtain a blank; (ii) heating the blank to a temperature above 450 ° C; (iii) shaping the blank thus heated; (iv) cool (v) heat treat the structural part that has been cooled and shaped.
  • Patent application WO2015132932 relates to a structural aluminum alloy sheet and a method of manufacturing the aluminum alloy sheet, the aluminum alloy sheet containing 7.0 to 12.0% by mass of Zn, 1.5 to 4.5% by mass of Mg, 1.0 to 3.0% by mass of Cu, 0.05-0.30 mass% of Zr, and 0.005-0.5% by mass of Ti and having an Si content reduced to 0.5% by mass or less, an Fe content reduced to 0 , 5% by mass or less, an Mn content reduced to 0.3% by mass or less, and a Cr content reduced to 0.3% by mass or less, the remainder comprising unavoidable impurities and aluminum.
  • Patent application WO2017075319 relates to aluminum alloys of the 7xxx series having a high resistance, intended in particular for automotive applications, these alloys comprising, in% by weight, 4 - 15 Zn, 0.1 - 3.5 Cu, 1.0 - 4.0 Mg, 0.05 - 0.50 Fe, 0.05 - 0.30 Si, 0.05 - 0.25 Zr, up to 0.25 Mn, up to 0.20 Cr, up to 0.15 Ti, and up to 0.15 of impurities, aluminum residue.
  • laminated products typically 0.5 to 4 mm thick, made of aluminum-zinc-copper-magnesium alloy having improved properties compared to those of known products, in particular in terms of ability to shaping and assembly, while having high mechanical strength and resistance to stress corrosion after curing paints, for the automotive industry. Furthermore, there is a need for a simple and economical process for obtaining these laminated products.
  • An object of the invention is a process for manufacturing a laminated product based on aluminum alloy, in particular for the automotive industry in which, successively,
  • an aluminum-based liquid metal bath comprising 4 to 7% by weight of Zn, 1.0 to 3.0% by weight of Cu, 1.5 to 3.5% by weight of Mg, at most 0.50% by weight of Fe, at most 0.40% by weight of Si, at least one element chosen from Zr, Mn, Cr, Se, Hf and Ti, the amount of said element, if is chosen, being 0.05 to 0.18% by weight for Zr, 0.1 to 0.6% by weight for Mn, 0.05 to 0.3% by weight for Cr, 0.02 to 0.2 % by weight for Se, 0.05 to 0.5% by weight for Hf and from 0.005 to 0.15% by weight for Ti, the other elements at most 0.05% by weight each and 0.15% by weight in total, the rest of the aluminum;
  • said rolling plate is homogenized
  • said rolling plate is hot rolled and optionally cold to a sheet, e) said sheet is dissolved and quenched; f) optionally, a leveling is carried out and / or said sheet is pulled in a controlled manner with a cumulative deformation of at least 0.5% and less than 3%,
  • Another subject of the invention is a laminated product obtained by the process according to the invention having a combination of RpO, 2 (TL) and A% (TL) properties such as A% (TL)> - 0.05 RpO, 2 (TL) + 40, and A% (TL) is at least 17%.
  • Yet another object of the invention is the use of a laminated product capable of being obtained by the process according to the invention or according to the invention for the manufacture of an automobile.
  • Figure 1 Relationship between the elongation and the elastic limit Rp02 in the direction TL for sheets obtained by the process according to the invention after 30 days of aging.
  • Figure 2 Cross section of the assembly by riveting 1.2 mm thick sheets of AA5182 alloy with a 1.5 mm thick sheet of Example 2 according to the invention.
  • Figure 3 Cross section of the assembly by riveting 1.2 mm thick sheets of AA5182 alloy with a 1.5 mm thick sheet of reference example 2. Description of the invention
  • the static mechanical characteristics in tension in other words the tensile strength R m , the conventional elastic limit at 0.2% elongation R P o, 2 , and the elongation at break A%, are determined by a tensile test according to standard NF EN ISO 6892-1 (2016), the sampling and the direction of the test being defined by standard EN 485-1 (2016).
  • the direction of traction is indicated by the letter L (longitudinal direction) or TL (long through direction).
  • the test pieces used have a width of 20 mm and a length of 80 mm, i.e. type 2 according to Table Bl of standard EN ISO 6892-1.
  • the mechanical characteristics are measured in full thickness.
  • the bendability is quantified using a "ratio r / 1", which is the ratio between the radius of curvature (r) to the sheet thickness (t) , both expressed in mm.
  • ratio r / 1 is the ratio between the radius of curvature (r) to the sheet thickness (t) , both expressed in mm.
  • the equipment used for the measurement is described for example in Figure 2 of US patent application 2016/0168676.
  • the measurements are carried out according to standards ASTM E290-97a and the “Ford Method Laboratory Test” (FLTM) BB1 14-02.
  • a granular structure is essentially called recrystallized granular structure such that the recrystallization rate is greater than 70% and preferably greater than 90%.
  • the recrystallization rate is defined as the surface fraction on a metallographic section occupied by recrystallized grains.
  • the present inventors have obtained sheets having an advantageous compromise between mechanical strength, resistance to stress corrosion, formability and suitability for assembly using the process according to the invention which notably comprises the combination of a 7XXX alloy containing copper and a heat treatment in which said sheet reaches a temperature between 60 and 120 ° C and preferably between 80 and 100 ° C for 8 to 16 hours and preferably from 10 to 14 hours.
  • a liquid metal bath comprising 4 to 7% by weight of Zn, 1.0 to 3.0% by weight of Cu, 1.5 to 3.5% by weight of Mg is prepared. , at most 0.50% by weight of Fe, at most 0.40% by weight of Si, at least one element chosen from Zr, Mn, Cr, Se, Hf and Ti, the amount of said element, if it is chosen, being 0.05 to 0.18% by weight for Zr, 0.1 to 0.6% by weight for Mn, 0.05 to 0.3% by weight for Cr, 0.02 to 0.2% by weight for Se, 0.05 to 0.5% by weight for Hf and from 0.005 to 0.15% by weight for Ti, the other elements at most 0.05% by weight each and 0.15% by weight at total, the rest aluminum.
  • the zinc content of the products according to the invention is between 4 and 7% by weight. In an advantageous embodiment of the invention the zinc content is at least 5% by weight, preferably at least 5.5% by weight and preferably at least 5.6% by weight. In an advantageous embodiment of the invention, the zinc content is between 5.5 and 6.2% by weight and preferably between 5.6 and 6.1% by weight. In an advantageous embodiment of the invention the zinc content is at most s 6.5% by weight. In one embodiment of the invention the zinc content is at most 6.1% by weight. When the zinc content is too high, the formability and assembly ability may be deteriorated. When the zinc content is too low, the minimum static mechanical characteristics may not be reached.
  • the copper content of the products according to the invention is between 1.0 and 3.0% by weight. In an advantageous embodiment of the invention the copper content is at least 1.1% by weight, preferably at least 1.2% by weight and preferably at least 1.3% by weight. In an advantageous embodiment of the invention, the copper content is between 1.2 and 2.0% by weight and preferably between 1.4 and 1.6% by weight. In an advantageous embodiment of the invention, the copper content is at most 2.5% by weight and preferably at most 2.0% by weight. In one embodiment of the invention, the copper content is at most 1.8% by weight. When the copper content is too high, the formability and assembly ability may be deteriorated. When the copper content is too low, the minimum static mechanical characteristics are not reached and the corrosion resistance is insufficient.
  • the magnesium content of the products according to the invention is between 1.5 and 3.5% by weight. In an advantageous embodiment of the invention the magnesium content is at least 1.8% by weight, preferably at least 2.0% by weight and preferably at least 2.2% by weight. In an advantageous embodiment of the invention, the magnesium content is between 2.2 and 3.0% by weight and preferably between 2.4 and 2.8% by weight. In an advantageous embodiment of the invention the magnesium content is at most 3.2% by weight and preferably at most 3.0% by weight. In one embodiment of the invention the magnesium content is at most 2.8% by weight. When the magnesium content is too high, the formatting and assembly skills can be deteriorated. When the magnesium content is too low, the minimum static mechanical characteristics are not reached and the corrosion resistance is insufficient.
  • the iron and silicon contents are each at most 0.5% by weight and 0.4% by weight, respectively. In an advantageous embodiment of the invention, the iron and silicon contents are at most 0.2% and preferably at most 0.15% by weight. In an advantageous embodiment of the invention, the iron content is between 0.05 and 0.25% by weight and preferably between 0.15 and 0.20% by weight. In an advantageous embodiment of the invention, the silicon content is between 0.03 and 0.15% by weight and preferably between 0.06 and 0.12% by weight An iron and silicon content controlled and limited contributes to the improvement of the property compromise.
  • the alloy of the products according to the invention contains at least one element chosen from Zr, Mn, Cr, Se, Hf and Ti, the amount of said element, if it is chosen, being 0.05 to 0.18% by weight for Zr, 0.1 to 0.6% by weight for Mn, 0.05 to 0.3% by weight for Cr, 0.02 to 0.2% by weight for Se, 0.05 to 0.5% by weight for Hf and from 0.005 to 0.15% by weight for Ti.
  • the elements chosen are chromium and titanium, the chromium content being between 0.15 and 0.25% by weight, preferably between 0.17 and 0.23% by weight and preferably between 0.18 and 0.22% by weight and the titanium content being between 0.01 and 0.10% by weight, preferably between 0.02 and 0.06% by weight.
  • the addition of titanium, possibly combined with boron and / or carbon, contributes to controlling the granular structure, in particular during casting.
  • the elements chosen are zirconium and titanium, the zirconium content being between 0.07 and 0.15% by weight, preferably between 0.08 and 0.13% by weight and preferably between 0.09 and 0.12% by weight and the titanium content being between 0.01 and 0.10% by weight, preferably between 0.02 and 0.06% by weight.
  • the other elements are unavoidable impurities which are maintained at a content less than or equal to 0.05% by weight each and 0.15% by weight in total.
  • the alloy is chosen from AA7010, AA7012, AA7022, AA7122, AA7023, AA7032, AA7033, AA7040, AA7140, AA7050, AA7050A, AA7150, AA7250, AA7075, AA7175, AA7475, and preferably AA7010, AA7050, AA7075, AA7175 and AA7475.
  • the method of manufacturing thin sheets according to the invention then comprises stages of casting, optionally homogenization, hot rolling and optionally cold, dissolution, quenching, optionally leveling and / or controlled traction, heat treatment and aging.
  • the bath of liquid metal produced is poured in the form of a rolling plate.
  • the laminating plate is then optionally homogenized at a temperature between 450 ° C and 500 ° C.
  • the homogenization time is between 5 and 60 hours.
  • the homogenization temperature is at least 460 ° C. In one embodiment, the homogenization temperature is less than 490 ° C.
  • the rolling plate After homogenization, the rolling plate is generally cooled to room temperature before being preheated to be deformed when hot.
  • the purpose of preheating is to reach a hot rolling inlet temperature preferably between 350 and 450 ° C. allowing deformation by hot rolling. Hot rolling is carried out so as to obtain a sheet typically 3 to 8 mm thick.
  • the sheet obtained After hot rolling, it is optionally possible to cold roll the sheet obtained in particular to obtain a final thickness of between 0.4 and 4 mm.
  • the final thickness is at most 3.0 mm and preferably at most 2.5 mm.
  • the final thickness is at least 0.5 mm and preferably at least 0.8 mm.
  • the sheet thus obtained is then placed in solution between 450 and 515 ° C.
  • the dissolution can be carried out sheet to sheet in an oven, the duration of dissolution in this embodiment is advantageously between 1 minute to 1 hour.
  • the dissolution is carried out on a continuous treatment line, the duration of dissolution in this embodiment is advantageously between 5 seconds and one minute.
  • the sheet thus dissolved is then quenched.
  • the quenching is carried out with water whose temperature is between 20 and 60 ° C and preferably between 30 and 50 ° C.
  • the sheet can then undergo cold deformation by leveling and / or controlled traction with a permanent deformation of at least 0.5% and less than 3%.
  • a heat treatment in which said sheet reaches a temperature between 60 and 120 ° C for 8 to 16 hours and preferably between 80 and 100 ° C for 10 to 14 hours is then carried out; the temperatures of 120 ° C and 100 ° C mentioned being the maximum temperatures which can be reached by the sheet during the heat treatment.
  • the maximum temperature reached by the sheet is 110 ° C or 105 ° C or 95 ° C or 90 ° C.
  • the heat treatment is carried out at the outlet of a solution treatment line and continuous quenching.
  • the sheet after quenching, the sheet is heated to a sufficient temperature so that after winding, the sheet reaches a temperature between 60 and 120 ° C for 8 to 16 hours and preferably between 80 and 100 ° C for 10 to 14 h, advantageously, the sheet is cooled after quenching to a temperature between 20 and 40 ° C and reheated to a temperature between 70 and 90 ° C and then cooled slowly so that the temperature is maintained at a temperature of at least 60 ° C for at least 10 hours. Finally, the product thus heat treated is aged for at least 30 days at room temperature. The present inventors have found that if the heat treatment is too short and / or if its temperature is insufficient, the mechanical properties of the sheet are too unstable.
  • the evolution of RpO, 2 (TL) during the aging step is less than 15 MPa, preferably less than 10 MPa and preferably less than 7 MPa.
  • the present inventors have found that if the heat treatment is too short and / or if its temperature is insufficient, the mechanical properties of the sheet do not allow satisfactory shaping, especially when cold. If the heat treatment is too long and / or if its temperature is too high, the mechanical properties of the sheet are stable, but the mechanical strength is too high and / or the formability too low to allow satisfactorily to carry out the operations of shaping and assembly.
  • the sheet metal thus formed is assembled on a white automobile body, preferably by welding or riveting,
  • baking is carried out in which said sheet reaches a temperature between 160 and 200 ° C and preferably between 170 and 190 ° C for 15 minutes to 1 hour.
  • the shaping operation is carried out by stamping at a temperature between 150 and 250 ° C. This embodiment is particularly advantageous with regard to shaping in which the deformation is significant, typically reaching locally at least 5%.
  • the shaping operation is carried out by rolling or folding or stamping at ambient temperature, which is advantageous in particular when the deformation is smaller, typically reaching locally less than 5%.
  • the products obtained by the process according to the invention are particularly suitable for riveting operations with other products, in particular aluminum.
  • the rolled products capable of being obtained by the process according to the invention have a combination of properties R p o , 2 (TL) and A% (TL) such that A% (TL)> - 0.05 R p o , 2 (TL) + 40 and A% (TL) is at least 17% and preferably at least 18%.
  • the test pieces used have a width of 20 mm and a length of 80 mm, ie type 2 according to Table B. l of standard EN ISO 6892-1, the elongation can also be noted A80% (TL).
  • the ratio r / t in the direction TL which is the ratio between the radius of curvature (r) determined according to the standards ASTM E290-97a and FLTM BB1 14-02 and the sheet thickness (t), expressed in mm, is at most 2.25 and preferably at most 2.0 for the rolled products according to the invention.
  • the laminated products according to the invention have an elastic limit R p o, 2 (TL) of at least 370 MPa and preferably at least 380 MPa, and an elongation at break A% (TL) of at least 19% and preferably at least 20%.
  • the laminated products according to the invention have an elastic limit R p o, 2 (TL) of at least 430 MPa and preferably at least 440 MPa, and an elongation at break A % (TL) of at least 18% and preferably at least 19%.
  • the mechanical characteristics of the laminated products according to the invention are obtained following an aging of 30 days at room temperature after the heat treatment.
  • the mechanical properties of the products according to the invention after the firing step are particularly advantageous.
  • the products according to the invention have, after baking, an elastic limit Rpo, 2 (TL) of at least 450 MPa, preferably of at least 470 MPa and preferably of at least 490 MPa, and a resistance at break R m (TL) of at least 510 MPa, preferably of at least 530 MPa and preferably of at least 540 MPa.
  • Rpo, 2 TL
  • TL resistance at break R m
  • the resistance to stress corrosion after curing of the laminated products according to the invention is high. Corrosion under stress is typically evaluated with a test in which the stress is obtained by 4-point bending at 75% of the elastic limit and the conditions are defined by ASTM G85.
  • the products according to the invention after curing do not exhibit any stress corrosion breakage before 15 days and preferably before 30 days.
  • laminated products capable of being obtained by the method according to the invention or according to the invention for the manufacture of an automobile is advantageous, in particular for structural parts, typically anti-intrusion structural parts.
  • an alloy liquid metal bath was prepared, the composition of which is given in table 1.
  • a rolling plate was cast from this liquid metal bath.
  • Said rolling plate was hot and cold rolled into a sheet of thickness 1.5 mm.
  • the sheet thus obtained was dissolved at 480 ° C for 10 minutes and then quenched.
  • the static mechanical properties were characterized in the TL direction (long beam) and are given in Table 2.
  • the test pieces used were 20 mm wide and 80 mm long, ie type 2 according to Table Bl of the standard. EN ISO 6892-1.
  • a liquid metal alloy bath was prepared, the composition of which is given in table 4.
  • a rolling plate was cast from this liquid metal bath. The rolling plate was homogenized for 19 hours at 475 ° C.
  • a heat treatment was then carried out by heating the sheet to a temperature of 80 ° C before rolling it up in the form of a coil and maintaining a temperature above 60 ° C for 10 hours, then measuring the mechanical properties after waiting from 4 to 62 days. After this wait, a baking treatment of 20 minutes at 185 ° C., simulating the baking of paint, was carried out and the mechanical properties were also measured.
  • the static mechanical properties have been characterized in the TL direction and are given in Table 5.
  • the test specimens used had a width of 20 mm and a length of 80 mm, that is to say type 2 according to Table Bl of standard EN ISO 6892- 1.
  • the assembly by riveting of 1.2 mm thick sheets of AA5182 alloy was tested with a 1.5 mm thick sheet of Example 2.
  • the sheet was subjected to a treatment of 1 minute at 200 ° C. to simulate a shaping operation by stamping.
  • the assembly was also tested with a sheet of AA7075 alloy having undergone a 24 hour heat treatment at 120 ° C.
  • the configuration 5182 0 1.2 mm / Invention 1.5 mm with the rivet described above has no cracks and has good static strength, in particular greater than 150 daN during cross tests.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)
  • Laminated Bodies (AREA)
  • Continuous Casting (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

L'invention concerne le procédé de fabrication d'un produit laminé à base d'alliage d'aluminium notamment pour l'industrie automobile dans lequel, successivement, on élabore un bain de métal liquide en alliage à base d'aluminium comprenant 4 à 7% en poids de Zn,,0 à 3,0 % en poids de Cu,1,5 à 3,5 % en poids de Mg, au plus 0,50 % en poids de Fe, au plus 0,40 % en poids de Si, au moins un élément choisi parmi Zr, Mn, Cr, Sc, Hf et Ti, la quantité dudit élément, s'il est choisi, étant 0,05 à 0,18 % en poids pour Zr, 0,1 à 0,6% en poids pour Mn, 0,05 à 0,3 % en poids pour Cr, 0,02 à 0,2 % en poids pour Sc, 0,05 à 0,5 % en poids pour Hf et de 0,005 à 0,15 % en poids pour Ti, les autres éléments au plus 0,05% en poids chacun et 0,15% en poids au total, le reste aluminium; on coule une plaque de laminage à partir dudit bain de métal liquide; on lamine à chaud et optionnellement à froid ladite plaque de laminage en une tôle, on met en solution ladite tôle et on la trempe; on réalise un traitement thermique dans lequel ladite tôle atteint une température comprise entre 60 et 20°C pendant 8 à 16 heures et de préférence entre 80 et 100°C pendant 10 à 14 h, on fait vieillir le produit ainsi traité thermiquement au moins 30 jours à température ambiante. L'invention concerne également les produits obtenus par ce procédé et leur utilisation pour la fabrication d'une automobile.

Description

Procédé de fabrication de tôles minces en alliage d’aluminium 7xxx aptes à la mise en forme et à l’assemblage
Domaine de l’invention
La présente invention concerne un procédé de fabrication de tôles minces en alliage d'aluminium 7XXX, particulièrement utiles pour l'industrie automobile.
Etat de la technique
Différents alliages d'aluminium sont utilisés sous la forme de tôles ou de flans pour des applications dans le domaine automobile. Parmi ces alliages, les alliages d'aluminium de série AA7XXX, tel que l'alliage AA7075, associent des caractéristiques chimiques et mécaniques intéressantes telles que la dureté et la résistance à la corrosion. Les alliages AA7XXX n’ont cependant pas encore trouvé une large utilisation dans l’industrie automobile en raison de la difficulté rencontrée pour les mettre en forme et les assembler, tout en conservant un procédé de fabrication économique.
Pour améliorer la mise en forme, on peut réaliser le traitement de mise en forme à haute température. La demande de brevet AT 1 1744 décrit par exemple un procédé de production d’une pièce mise en forme à partir d’une tôle en alliage d'aluminium de la série 7000, dans lequel la tôle d'aluminium est chauffée et formée dans cet état chauffé, puis refroidie.
La demande de brevet EP3265595 décrit un alliage comprenant en % en poids 4 - 15 Zn, 0.1 - 3.5 Cu, 1.0 - 4.0 Mg, 0.05 - 0.50 Fe, 0.05 - 0.30 Si, 0.05 - 0.25 Zr, jusque 0.25 Mn, jusque 0.20 Cr, jusque 0.15 Ti, jusque 0.15 % d’impuretés, reste aluminium, qui peut être utilisé notamment dans l’industrie automobile.
La demande de brevet WO2016094464 décrit un procédé pour la réalisation de la résistance et de l’allongement souhaités avec une tôle d'alliage d'aluminium 7xxx ayant les étapes de a) chauffer rapidement la tôle à une température de 450 ° C à 5 lO ° C; b) le maintien de la feuille à la température de 450 ° C à 5 l O ° C pendant 20 minutes; c) refroidissement rapide de la feuille à la température ambiante à plus de 50 ° C par seconde; d) chauffer la feuille à une température comprise entre environ 50 ° C et 150 ° C; e) le maintien de la feuille à une température comprise entre environ 50 ° C et 150 ° C pendant une durée d'environ 0,5 heures à 6 heures.
La demande de brevet W02014040939 concerne un procédé de fabrication d'une partie d'un véhicule à moteur comprenant au moins les étapes consistant à: (a) fournir un alliage d'aluminium laminé nu ou composite produit en tôle ayant une épaisseur dans une plage d'environ 0,5 mm à 4 mm, dans lequel le produit en tôle comprend au moins une couche en un alliage d'aluminium de la AA7xxx-série, le produit en feuille ayant été soumis à un traitement thermique en solution et la trempe suivie par une période de vieillissement naturel d'au moins 1 jour; (b) soumettre le produit de tôle vieilli naturellement à un traitement de recuit de réversion, à savoir un traitement thermique à une température comprise entre 100 ° C et 350 ° C pendant 0,1 à 60 secondes; (c) soumettre éventuellement le produit de la feuille chauffée à une opération de refroidissement forcé; (d) dans les 2 heures, de préférence dans les 30 minutes, à partir du traitement de recuit de réversion, former le produit en feuille pour obtenir une pièce en trois dimensions.
La demande de brevet W02012059505 décrit un procédé de fabrication d’une pièce formée en alliage d’aluminium pour un véhicule automobile, le procédé comprenant: (a) fournir un produit en tôle d'aluminium laminé, dans lequel l'alliage d'aluminium est un AA7000 ayant une épaisseur dans la plage de 0,5 à 4 mm et étant soumis à un traitement thermique de mise en solution et ayant été refroidie, (b) former la feuille d'alliage d'aluminium pour obtenir une pièce formée en trois dimensions, (c) chauffer ladite partie formée en trois dimensions pour au moins une température de pré -vieillissement entre 50-250 ° C, et (d) soumettre ladite formé et le composant de véhicule à moteur pré -vieilli à un cycle de cuisson de peinture.
La demande de brevet EP2514537 décrit un procédé de fabrication d’un joint dans au moins deux pièces métalliques qui se chevauchent par rivetage auto-perceur. Au moins une de la première pièce et la seconde pièce est un matériau en tôle constituée d'un alliage d'aluminium de la AA7000-série, et un traitement thermique est appliqué à au moins la pièce de ladite matière en feuille 7000 de la série dans les 120 minutes avant la production de l’assemblage et / ou au moins une partie du temps pendant la production de l’assemblage de façon à réduire la résistance à la traction dans la zone de jonction d'au moins de la pièce dudit matériau en tôle de la série 7000.
La demande de brevet EP2479305 concerne un procédé de fabrication d'une pièce de structure en alliage d'aluminium comprenant: (a)fournir un produit en tôle d'aluminium laminé, dans lequel l'alliage d'aluminium est de la série AA7000 et a une épaisseur dans la plage de 0,5 à 4 mm et étant soumis à un traitement thermique en solution et ayant été refroidi,
(b) former la tôle d'alliage d'aluminium pour obtenir une pièce formée en trois dimensions,
(c) refroidir la tôle formée à une température inférieure à zéro (Tl) par immersion dans un liquide de refroidissement, et permettant à la partie formée d’atteindre l'équilibre à cette température, (d) chauffer à partir de la température inférieure à zéro ( Tl) jusqu’à une température T2 supérieure à 40 ° C, suivi d'un refroidissement à température ambiante, et (e) soumettre ledit composant de véhicule à moteur à un cycle de cuisson de peinture.
La demande de brevet EP2440680 décrit un procédé de fabrication d’une partie d'un véhicule à moteur, ayant une limite d'élasticité supérieure à 500 MPa après avoir été soumis à un cycle de cuisson de peinture, le procédé comprenant: (a) fournir un produit en tôle d'aluminium laminée d'un alliage AIZnMgCu et ayant une épaisseur dans la plage de 0,5 à 4 mm et étant soumis à un traitement thermique en solution, et ayant été trempée et dans la microstructure est sensiblement recristallisée, (b) former la tôle d'alliage d'aluminium pour obtenir une pièce formée, (c) assembler la partie formée avec une ou plusieurs autres pièces en métal pour former un ensemble formant un composant de véhicule à moteur; (d) soumettre ledit composant de véhicule à moteur à un cycle de cuisson de peinture et dans lequel la feuille d'alliage d'aluminium dans la partie formée a une limite d'élasticité supérieure à 500 MPa. La demande de brevet W02009130175 concerne un procédé de fabrication consistant à former une pièce structurelle à partir d’une tôle d'alliage d'aluminium de la série 7xxx-, le procédé comprenant les étapes suivantes: (i) découper la tôle en alliage d'aluminium pour obtenir un flan; (ii) chauffer le flan à une température supérieure à 450 ° C; (iii) mettre en forme le flan ainsi chauffé; (iv) refroidir (v) traiter thermiquement la pièce de structure refroidie et mise en forme.
La demande de brevet WO2015132932 concerne une tôle d'alliage d'aluminium de structure et un procédé de fabrication de la tôle d'alliage d'aluminium, la tôle d'alliage d'aluminium contenant 7,0 à 12,0% en masse de Zn, 1,5 à 4,5% en masse de Mg, 1 ,0 à 3,0% en masse de Cu, 0,05-0,30 masse % de Zr, et de 0,005 à 0,5% en masse de Ti et ayant une teneur en Si réduite à 0,5% en masse ou moins, une teneur en Fe réduite à 0,5% en masse ou moins, une teneur en Mn réduit à 0,3% en masse ou moins, et une teneur en Cr réduits à 0,3% en masse ou moins, le reste comprenant des impuretés inévitables et d'aluminium.
La demande de brevet WO2017075319 concerne des alliages d'aluminium de série 7xxx présentant une résistance élevée, destinés notamment à des applications automobiles, ces alliages comprenant, en % en poids, 4 - 15 Zn, 0.1 - 3.5 Cu, 1.0 - 4.0 Mg, 0.05 - 0.50 Fe, 0.05 - 0.30 Si, 0.05 - 0.25 Zr, jusqu’à 0.25 Mn, jusqu’à 0.20 Cr, jusqu’à 0.15 Ti, et jusqu’à 0.15 d’impuretés, reste aluminium.
Il existe un besoin pour des produits laminés, typiquement d’épaisseur 0,5 à 4 mm, en alliage aluminium-zinc-cuivre -magnésium présentant des propriétés améliorées par rapport à celles des produits connus, en particulier en termes d’aptitude à la mise en forme et à l’assemblage, tout en ayant une résistance mécanique élevée et résistant à la corrosion sous contrainte après cuisson des peintures, pour l’industrie automobile. Par ailleurs il existe un besoin pour un procédé simple et économique d’obtention de ces produits laminés.
Objet de Pinveiitioii
Un objet de l’invention est un procédé de fabrication d’un produit laminé à base d’alliage d’aluminium notamment pour l’industrie automobile dans lequel, successivement,
a) on élabore un bain de métal liquide en alliage à base d’aluminium comprenant 4 à 7 % en poids de Zn, 1 ,0 à 3,0 % en poids de Cu, 1,5 à 3,5 % en poids de Mg, au plus 0,50 % en poids de Fe, au plus 0,40 % en poids de Si, au moins un élément choisi parmi Zr, Mn, Cr, Se, Hf et Ti, la quantité dudit élément, s’il est choisi, étant 0,05 à 0,18 % en poids pour Zr, 0,1 à 0,6% en poids pour Mn, 0,05 à 0,3 % en poids pour Cr, 0,02 à 0,2 % en poids pour Se, 0,05 à 0,5 % en poids pour Hf et de 0,005 à 0,15 % en poids pour Ti, les autres éléments au plus 0,05% en poids chacun et 0,15% en poids au total, le reste aluminium ;
b) on coule une plaque de laminage à partir dudit bain de métal liquide ;
c) optionnellement, on homogénéise ladite plaque de laminage ;
d) on lamine à chaud et optionnellement à froid ladite plaque de laminage en une tôle, e) on met en solution ladite tôle et on la trempe; f) optionnellement on réalise un planage et/ou on tractionne de façon contrôlée ladite tôle avec une déformation cumulée d’au moins 0,5% et inférieure à 3%,
g) on réalise un traitement thermique dans lequel ladite tôle ainsi trempée atteint une température comprise entre 60 et l20°C pendant 8 à 16 heures,
h) on fait vieillir ladite tôle ainsi traité thermiquement au moins 30 jours à température ambiante.
Un autre objet de l’invention est un produit laminé obtenu par le procédé selon l’invention présentant une combinaison de propriétés RpO,2(TL) et A%(TL) telles que A%(TL) > - 0,05 RpO,2(TL) + 40, et A%(TL) est égal à au moins 17%.
Encore un autre objet de l’invention est l’utilisation d’un produit laminé susceptible d’être obtenu par le procédé selon l’invention ou selon l’invention pour la fabrication d’une automobile.
Description des figures
Figure 1 : Relation entre l’allongement et la limite d’élasticité Rp02 dans la direction TL pour des tôles obtenues par le procédé selon l’invention après 30 jours de vieillissement.
Figure 2 : Coupe transversale de l’assemblage par rivetage de tôles d’épaisseur 1 ,2 mm en alliage AA5182 avec une tôle d’épaisseur 1.5 mm de l’exemple 2 selon l’invention. Figure 3 : Coupe transversale de l’assemblage par rivetage de tôles d’épaisseur 1 ,2 mm en alliage AA5182 avec une tôle d’épaisseur 1.5 mm de l’exemple 2 de référence. Description de l’invention
Sauf mention contraire, toutes les indications concernant la composition chimique des alliages sont exprimées comme un pourcentage en poids basé sur le poids total de l’alliage. L’expression 1 ,4 Cu signifie que la teneur en cuivre exprimée en % en poids est multipliée par 1 ,4. La désignation des alliages se fait en conformité avec les règlements de The Aluminium Association, connus de l’homme du métier. Sauf mention contraire les définitions des états métallurgiques indiquées dans la norme européenne EN 515 (1993) s’appliquent.
Les caractéristiques mécaniques statiques en traction, en d’autres termes la résistance à la rupture Rm, la limite d’élasticité conventionnelle à 0,2% d’allongement RPo,2, et l’allongement à la rupture A%, sont déterminés par un essai de traction selon la norme NF EN ISO 6892-1 (2016), le prélèvement et le sens de l’essai étant définis par la norme EN 485-1 (2016). La direction de traction est indiquée par la lettre L (direction longitudinale) ou TL (direction travers long). Les éprouvettes utilisées ont une largeur de 20 mm et une longueur de 80 mm, soit le type 2 selon le Tableau B.l de la norme EN ISO 6892-1.
Dans le cadre de l’invention, les caractéristiques mécaniques sont mesurées en pleine épaisseur.
Sauf mention contraire, les définitions de la norme EN 12258 (2012) s’appliquent.
L’aptitude au pliage, telle qu'elle est utilisée dans la présente invention, est quantifiée en utilisant un « rapport r / 1 », qui est le rapport entre le rayon de courbure (r) à l'épaisseur de tôle (t), tous deux exprimés en mm. Plus le rapport r / 1, est faible plus la tôle est pliable. L'équipement utilisé pour la mesure est décrit par exemple à la Figure 2 de la demande de brevet US 2016/0168676. Les mesures sont effectuées selon les normes ASTM E290-97a et la « Ford Méthode Essai Laboratoire » (FLTM) BB1 14-02.
Dans le cadre de la présente invention, on appelle structure granulaire essentiellement recristallisée une structure granulaire telle que le taux de recristallisation est supérieur à 70% et de préférence supérieur à 90%. Le taux de recristallisation est défini comme la fraction de surface sur une coupe métallographique occupée par des grains recristallisés. Les présents inventeurs ont obtenus des tôles présentant un compromis avantageux entre la résistance mécanique, la résistance à la corrosion sous contrainte, la formabilité et l’aptitude à l’assemblage en utilisant le procédé selon l’invention qui comprend notamment la combinaison d’un alliage 7XXX contenant du cuivre et un traitement thermique dans lequel ladite tôle atteint une température comprise entre 60 et l20°C et de préférence entre 80 et l00°C pendant 8 à 16 heures et de préférence de 10 à 14 h.
Dans le procédé selon l’invention, on élabore un bain de métal liquide comprenant 4 à 7 % en poids de Zn, 1 ,0 à 3,0 % en poids de Cu, 1,5 à 3,5 % en poids de Mg, au plus 0,50 % en poids de Fe, au plus 0,40 % en poids de Si, au moins un élément choisi parmi Zr, Mn, Cr, Se, Hf et Ti, la quantité dudit élément, s’il est choisi, étant 0,05 à 0,18 % en poids pour Zr, 0,1 à 0,6% en poids pour Mn, 0,05 à 0,3 % en poids pour Cr, 0,02 à 0,2 % en poids pour Se, 0,05 à 0,5 % en poids pour Hf et de 0,005 à 0,15 % en poids pour Ti, les autres éléments au plus 0,05% en poids chacun et 0,15% en poids au total, le reste aluminium.
La teneur en zinc des produits selon l’invention est comprise entre 4 et 7 % en poids. Dans un mode de réalisation avantageux de l’invention la teneur en zinc est au moins de 5 % en poids, de préférence au moins 5,5% en poids et préférentiellement au moins 5,6 % en poids. Dans une réalisation avantageuse de l’invention, la teneur en zinc est comprise entre 5,5 et 6,2 % en poids et de préférence entre 5,6 et 6,1 % en poids. Dans un mode de réalisation avantageux de l’invention la teneur en zinc est au plus de s 6,5% en poids. Dans un mode de réalisation de l’invention la teneur en zinc est au plus de 6,1 % en poids. Lorsque la teneur en zinc est trop élevée, les aptitudes à la mise en forme et à l’assemblage peuvent être détériorées. Lorsque la teneur en zinc est trop faible, les caractéristiques mécaniques statiques minimales peuvent ne pas être atteintes.
La teneur en cuivre des produits selon l’invention est comprise entre 1 ,0 et 3,0 % en poids. Dans un mode de réalisation avantageux de l’invention la teneur en cuivre est au moins de 1,1 % en poids, de préférence au moins 1 ,2% en poids et préférentiellement au moins 1,3% en poids. Dans une réalisation avantageuse de l’invention, la teneur en cuivre est comprise entre 1 ,2 et 2,0 % en poids et de préférence entre 1,4 et 1 ,6 % en poids. Dans un mode de réalisation avantageux de l’invention la teneur en cuivre est au plus de 2,5 % en poids et préférentiellement au plus 2,0% en poids. Dans un mode de réalisation de l’invention la teneur en cuivre est au plus de 1 ,8 % en poids. Lorsque la teneur en cuivre est trop élevée, les aptitudes à la mise en forme et à l’assemblage peuvent être détériorées. Lorsque la teneur en cuivre est trop faible, les caractéristiques mécaniques statiques minimales ne sont pas atteintes et la résistance à la corrosion est insuffisante.
La teneur en magnésium des produits selon l’invention est comprise entre 1 ,5 et 3,5 % en poids. Dans un mode de réalisation avantageux de l’invention la teneur en magnésium est au moins de 1 ,8 % en poids, de préférence au moins 2,0% en poids et préférentiellement au moins 2,2 % en poids. Dans une réalisation avantageuse de l’invention, la teneur en magnésium est comprise entre 2,2 et 3,0 % en poids et de préférence entre 2,4 et 2,8 % en poids. Dans un mode de réalisation avantageux de l’invention la teneur en magnésium est au plus de 3,2 % en poids et préférentiellement au plus 3,0% en poids. Dans un mode de réalisation de l’invention la teneur en magnésium est au plus de 2,8 % en poids. Lorsque la teneur en magnésium est trop élevée, les aptitudes à la mise en forme et à l’assemblage peuvent être détériorées. Lorsque la teneur en magnésium est trop faible, les caractéristiques mécaniques statiques minimales ne sont pas atteintes et la résistance à la corrosion est insuffisante.
Les teneurs en fer et en silicium sont chacune au plus de 0,5 % en poids et 0,4 % en poids, respectivement. Dans une réalisation avantageuse de l’invention les teneurs en fer et en silicium sont au plus de 0,2 % et préférentiellement au plus de 0,15 % en poids. Dans une réalisation avantageuse de l’invention, la teneur en fer est comprise entre 0,05 et 0,25 % en poids et de préférence entre 0,15 et 0,20 % en poids. Dans une réalisation avantageuse de l’invention, la teneur en silicium est comprise entre 0,03 et 0,15 % en poids et de préférence entre 0,06 et 0,12 % en poids Une teneur en fer et en silicium contrôlée et limitée contribue à l’amélioration du compromis de propriétés.
L’alliage des produits selon l’invention contient au moins un élément choisi parmi Zr, Mn, Cr, Se, Hf et Ti, la quantité dudit élément, s’il est choisi, étant 0,05 à 0,18 % en poids pour Zr, 0,1 à 0,6% en poids pour Mn, 0,05 à 0,3 % en poids pour Cr, 0,02 à 0,2 % en poids pour Se, 0,05 à 0,5 % en poids pour Hf et de 0,005 à 0,15 % en poids pour Ti. Avantageusement, les éléments choisis sont le chrome et le titane, la teneur en chrome étant comprise entre 0,15 et 0,25 % en poids, de préférence entre 0,17 et 0,23% en poids et préférentiellement entre 0,18 et 0,22 % en poids et la teneur en titane étant comprise entre 0,01 et 0,10 % en poids, de préférence entre 0,02 et 0,06% en poids. L’addition de titane, éventuellement combiné avec du bore et/ou du carbone, contribue à contrôler la structure granulaire, notamment lors de la coulée.
Dans un autre mode de réalisation, les éléments choisis sont le zirconium et le titane, la teneur en zirconium étant comprise entre 0,07 et 0,15 % en poids, de préférence entre 0,08 et 0,13% en poids et préférentiellement entre 0,09 et 0,12 % en poids et la teneur en titane étant comprise entre 0,01 et 0,10 % en poids, de préférence entre 0,02 et 0,06% en poids.
Les autres éléments sont des impuretés inévitables qui sont maintenues à une teneur inférieure ou égale à 0,05% en poids chacune et 0,15% en poids au total.
Avantageusement, l’alliage est choisi parmi AA7010, AA7012, AA7022, AA7122, AA7023, AA7032, AA7033, AA7040, AA7140, AA7050, AA7050A, AA7150, AA7250, AA7075, AA7175, AA7475, et de préférence AA7010, AA7050, AA7075, AA7175 et AA7475.
Le procédé de fabrication des tôles minces selon l’invention comprend ensuite des étapes de coulée, optionnellement homogénéisation, laminage à chaud et optionnellement à froid, mise en solution, trempe, optionnellement planage et/ou traction contrôlée, traitement thermique et vieillissement.
Le bain de métal liquide élaboré est coulé sous une forme de plaque de laminage.
La plaque de laminage est ensuite optionnellement homogénéisée à une température comprise entre 450°C et 500°C. De préférence, la durée d’homogénéisation est comprise entre 5 et 60 heures. Avantageusement, la température d’homogénéisation est au moins 460 °C. Dans un mode de réalisation, la température d’homogénéisation est inférieure à 490 °C.
Après homogénéisation, la plaque de laminage est en général refroidie jusqu’à température ambiante avant d’être préchauffée en vue d’être déformée à chaud. Le préchauffage a pour objectif d’atteindre une température d’entrée de laminage à chaud préférentiellement comprise entre 350 et 450 °C permettant la déformation par laminage à chaud. Le laminage à chaud est effectué de manière à obtenir une tôle d’épaisseur typiquement 3 à 8 mm.
Après laminage à chaud, on peut optionnellement laminer à froid la tôle obtenue notamment pour obtenir une épaisseur finale comprise entre 0,4 et 4 mm. Préférentiellement, l’épaisseur finale est au plus de 3,0 mm et de manière préférée au plus de 2,5 mm. Avantageusement l’épaisseur finale est au moins de 0,5 mm et de manière préférée au moins de 0,8 mm.
La tôle ainsi obtenue est ensuite mise en solution entre 450 et 515 °C. La mise en solution peut être effectuée tôle à tôle dans un four, la durée de mise en solution dans ce mode de réalisation est avantageusement comprise entre 1 minute à 1 heure. Dans un autre mode de réalisation, la mise en solution est effectuée sur une ligne de traitement en continu, la durée de mise en solution dans ce mode de réalisation est avantageusement comprise entre 5 secondes et une minute. La tôle ainsi mise en solution est ensuite trempée. Avantageusement, la trempe est réalisée avec de l’eau dont la température est comprise entre 20 et 60 °C et de préférence entre 30 et 50 °C.
Il est connu de l’homme du métier que les conditions précises de mise en solution doivent être choisies en fonction de l’épaisseur et de la composition de façon à mettre en solution solide les éléments durcissants.
La tôle peut ensuite subir une déformation à froid par planage et/ou traction contrôlée avec une déformation permanente d’au moins 0,5% et inférieure à 3 %.
Un traitement thermique dans lequel ladite tôle atteint une température comprise entre 60 et l20°C pendant 8 à 16 heures et de préférence entre 80 et l00°C pendant 10 à 14 h est ensuite réalisé ; les températures de 120 °C et 100 °C mentionnées étant les températures maximales pouvant être atteintes par la tôle pendant le traitement thermique. Dans d’autres modes de réalisation de l’invention, la température maximale atteinte par la tôle est 1 l0°C ou 105 °C ou 95 °C ou 90°C. Dans un mode de réalisation le traitement thermique est réalisé en sortie d’une ligne de traitement de mise en solution et trempe en continu. Dans ce mode de réalisation, après la trempe, la tôle est réchauffée à une température suffisante pour que après bobinage, la tôle atteigne une température comprise entre 60 et l20°C pendant 8 à 16 heures et de préférence entre 80 et l00°C pendant 10 à 14 h, avantageusement, la tôle est refroidie après trempe à une température comprise entre 20 et 40 °C et réchauffée à une température comprise entre 70 et 90 °C puis refroidie lentement de façon à ce que la température soit maintenue à une température d’au moins 60 °C pendant au moins 10 heures. Finalement, on fait vieillir le produit ainsi traité thermiquement au moins 30 jours à température ambiante. Les présents inventeurs ont constaté que si le traitement thermique est trop court et/ou si sa température est insuffisante, les propriétés mécaniques de la tôle sont trop instables. De manière préférée, l’évolution de RpO,2(TL) lors de l’étape de vieillissement est inférieure à 15 MPa, préférentiellement inférieure à 10 MPa et de préférence inférieure à 7 MPa. De plus les présents inventeurs ont constaté que si le traitement thermique est trop court et/ou si sa température est insuffisante, les propriétés mécaniques de la tôle ne permettent pas une mise en forme satisfaisante, notamment à froid. Si le traitement thermique est trop long et/ou si sa température est trop élevée, les propriétés mécaniques de la tôle sont stables, mais la résistance mécanique est trop élevée et/ou la formabilité trop faible pour permettre de réaliser de façon satisfaisante les opérations de mise en forme et d’assemblage.
Dans un mode avantageux de l’invention, après l’étape de vieillissement,
h) on réalise une opération de mise en forme de ladite tôle avec une déformation atteignant localement au moins 2 %,
i) on assemble la tôle ainsi formée sur une caisse en blanc d’automobile, de préférence par soudage ou rivetage,
j) on réalise une cuisson dans lequel ladite tôle atteint une température comprise entre 160 et 200°C et de préférence entre 170 et l90°C pendant 15 minutes à 1 heure.
Dans un mode de réalisation, l’opération de mise en forme est effectuée par emboutissage à une température comprise entre 150 et 250 °C. Ce mode de réalisation est particulièrement avantageux pour ce qui concerne les mises en forme dans lesquelles la déformation est importante, atteignant localement typiquement au moins 5 %.
Dans un autre mode de réalisation l’opération de mise en forme est effectuée par roulage ou pliage ou emboutissage à température ambiante ce qui est avantageux notamment lorsque la déformation est plus faible, atteignant localement typiquement moins de 5 %. Les produits obtenus par le procédé selon l’invention sont particulièrement adaptés aux opérations de rivetage avec d’autres produits, notamment en aluminium. Avantageusement, il est possible de riveter un produit selon l’invention avec un alliage AA5182 à l’état O sans fissurer le produit et obtenir une tenue statique élevée, en particulier supérieure à 150 daN, lors d’essais en croix.
Les produits laminés susceptible d’être obtenus par le procédé selon l’invention présentent une combinaison de propriétés Rpo,2(TL) et A%(TL) telles que A%(TL) > - 0,05 Rpo,2(TL) + 40 et A%(TL) est égal à au moins 17% et de préférence au moins 18%. Les éprouvettes utilisées ayant une largeur de 20 mm et une longueur de 80 mm, soit le type 2 selon le Tableau B. l de la norme EN ISO 6892-1 , l’allongement peut également être noté A8o%(TL).
Avantageusement, le rapport r / t dans la direction TL, qui est le rapport entre le rayon de courbure (r) déterminé selon les normes ASTM E290-97a et FLTM BB1 14-02 et l'épaisseur de tôle (t), exprimés en mm, est au plus 2,25 et de préférence au plus 2,0 pour les produits laminés selon l’invention. Dans un mode de réalisation, les produits laminés selon l’invention présentent une limite d’élasticité Rpo,2(TL) d’au moins 370 MPa et de préférence d’au moins 380 MPa, et un allongement à rupture A%(TL) d’au moins 19% et de préférence d’au moins 20%. Dans un autre mode de réalisation, les produits laminés selon l’invention présentent une limite d’élasticité Rpo,2(TL) d’au moins 430 MPa et de préférence d’au moins 440 MPa, et un allongement à rupture A%(TL) d’au moins 18% et de préférence d’au moins 19%. Avantageusement, les caractéristiques mécaniques des produits laminés selon l’invention sont obtenues suite à un vieillissement de 30 jours à température ambiante après le traitement thermique.
Les propriétés mécaniques des produits selon l’invention après l’étape de cuisson, qui peut typiquement être réalisée lors de la cuisson des peintures, sont particulièrement avantageuses. Avantageusement, les produits selon l’invention présentent après cuisson une limite d’élasticité Rpo,2(TL) d’au moins 450 MPa, préférentiellement d’au moins 470 MPa et de manière préférée d’au moins 490 MPa, et une résistance à rupture Rm(TL) d’au moins 510 MPa, préférentiellement d’au moins 530 MPa et de manière préférée d’au moins 540 MPa. La résistance à la corrosion sous contrainte après cuisson des produits laminés selon l’invention est élevée. La corrosion sous contrainte est typiquement évaluée avec un test dans lequel la contrainte est obtenue par flexion 4 points à 75 % de la limite d’élasticité et les conditions sont définies par la ASTM G85. Avantageusement les produits selon l’invention après cuisson ne présentent pas de rupture de corrosion sous contrainte avant 15 jours et de préférence avant 30 jours.
L’utilisation des produits laminés susceptibles d’être obtenu par le procédé selon l’invention ou selon l’invention pour la fabrication d’une automobile est avantageuse, en particulier pour des pièces de structure, typiquement des pièces de structure anti-intrusion.
Exemples
Exemple 1
Dans cet exemple, on a élaboré un bain de métal liquide en alliage dont la composition est donnée dans le tableau 1. On a coulé une plaque de laminage à partir de ce bain de métal liquide.
On a laminé à chaud et à froid ladite plaque de laminage en une tôle d’épaisseur 1,5 mm. La tôle ainsi obtenue a été mise en solution à 480 °C pendant 10 minutes puis trempée.
Tableau 1. Composition de l’alliage coulé en % en poids
On a ensuite réalisé différents traitements thermiques listés dans le Tableau 2 puis mesuré les propriétés mécaniques après une attente de 0 à 90 jours. Après cette attente un traitement de cuisson de 20 minutes à 185 °C, simulant la cuisson de peinture, a été effectué et les propriétés mécaniques ont également été mesurées.
Les propriétés mécaniques statiques ont été caractérisées dans le sens TL (travers long) et sont données dans le Tableau 2. Les éprouvettes utilisées avaient une largeur de 20 mm et une longueur de 80 mm, soit le type 2 selon le Tableau B.l de la norme EN ISO 6892-1. Tableau 2 - Propriétés mécaniques statiques
On a également mesuré les rayons de pliage dans la direction L et la direction TL et les rapports r/t correspondants selon la norme ASTM E290-97a et la « Ford Méthode Essai Laboratoire » (FLTM) BB1 14-02. Les résultats sont présentés dans le Tableau 3.
Tableau 3 - Résultats des tests de pliage
Exemple 2
Dans cet exemple, on a élaboré un bain de métal liquide en alliage dont la composition est donnée dans le tableau 4. On a coulé une plaque de laminage à partir de ce bain de métal liquide. La plaque de laminage a été homogénéisée 19 heures à 475 °C.
On a laminé à chaud et à froid ladite plaque de laminage en une tôle d’épaisseur 1,5 mm. La tôle ainsi obtenue a été mise en solution dans un four à passage à 500°C pendant 25 secondes puis trempée avec de l’eau à 20 °C jusque température ambiante, puis planée avec un allongement de 0,2 %. Tableau 4. Composition de l’alliage coulé en % en poids
On a ensuite réalisé un traitement thermique en réchauffant la tôle à une température de 80°C avant de l’enrouler sous la forme de bobine et de maintenir une température supérieure à 60 °C pendant 10 heures, puis mesuré les propriétés mécaniques après une attente de 4 à 62 jours. Après cette attente un traitement de cuisson de 20 minutes à 185 °C, simulant la cuisson de peinture, a été effectué et les propriétés mécaniques ont également été mesurées.
Les propriétés mécaniques statiques ont été caractérisées dans le sens TL et sont données dans le Tableau 5. Les éprouvettes utilisées avaient une largeur de 20 mm et une longueur de 80 mm, soit le type 2 selon le Tableau B.l de la norme EN ISO 6892-1.
Tableau 5 - Propriétés mécaniques statiques
Exemple 3
Dans cet exemple on a testé l’assemblage par rivetage de tôles d’épaisseur 1 ,2 mm en alliage AA5182 avec une tôle d’épaisseur 1.5 mm de l’exemple 2. La tôle a subi un traitement de 1 minute à 200 ° C pour simuler une opération de mise en forme par emboutissage. Pour comparaison on a également testé l’assemblage avec une tôle en alliage AA7075 ayant subi un traitement thermique de 24 heures à 120 °C. On a réalisé un assemblage dans la configuration 5182 O 1.2 mm / 7XXX 1.5 mm avec un rivet de référence K50E46AM de longueur 4,5 mm et une matrice de référence EHG14032 de la marque Henrob, en appliquant un effort compris entre 65 et 85 kN pour obtenir un affleurement de sensiblement 0 mm de la tête du rivet avec la tôle en partie supérieure de l’assemblage (le 5182 0 1.2 mm)..
Avec la tôle selon l’invention, aucune fissure n’a été détectée, comme illustré par la Figure 2. Avec la tôle en alliage 7075 ayant subi un traitement thermique de 24 heures à 120 °C, des fissures ont été observées, comme illustré dans la figure 3. De plus les propriétés mécaniques de l’assemblage avec la tôle selon l’invention ont été testées par un essai en cisaillement ou un essai en croix.
Les résultats sont présentés dans le tableau 6.
Tableau 6 - Propriétés mécaniques de l’assemblage riveté.
La configuration 5182 0 1.2 mm / Invention 1.5 mm avec le rivet décrit ci-dessus ne présente aucune fissure et a une bonne tenue statique, en particulier supérieure à 150 daN lors des essais en croix.

Claims

Revendications
1. Procédé de fabrication d’un produit laminé à base d’alliage d’aluminium notamment pour l’industrie automobile dans lequel, successivement,
a) on élabore un bain de métal liquide en alliage à base d’aluminium comprenant 4 à 7 % en poids de Zn, 1 ,0 à 3,0 % en poids de Cu, 1 ,5 à 3,5 % en poids de Mg, au plus 0,50 % en poids de Fe, au plus 0,40 % en poids de Si, au moins un élément choisi parmi Zr, Mn, Cr, Sc, Hf et Ti, la quantité dudit élément, s’il est choisi, étant 0,05 à 0,18 % en poids pour Zr, 0,1 à 0,6% en poids pour Mn, 0,05 à 0,3 % en poids pour Cr, 0,02 à 0,2 % en poids pour Sc, 0,05 à 0,5 % en poids pour Hf et de 0,005 à 0, 15 % en poids pour T i, les autres éléments au plus 0,05% en poids chacun et 0,15% en poids au total, le reste aluminium ;
b) on coule une plaque de laminage à partir dudit bain de métal liquide ;
c) optionnellement, on homogénéise ladite plaque de laminage ;
d) on lamine à chaud et optionnellement à froid ladite plaque de laminage en une tôle,
e) on met en solution ladite tôle et on la trempe;
f) optionnellement on réalise un planage et/ou on tractionne de façon contrôlée ladite tôle ainsi trempée avec une déformation cumulée d’au moins 0,5% et inférieure à 3%,
g) on réalise un traitement thermique dans lequel ladite tôle atteint une température comprise entre 60 et l20°C pendant 8 à 16 heures,
h) on fait vieillir ladite tôle ainsi traité thermiquement au moins 30 jours à température ambiante.
2. Procédé selon la revendication 1 dans lequel l’épaisseur de ladite tôle est comprise entre
0,4 et 4 mm et de préférence entre 0,8 et 3 mm.
3. Procédé selon la revendication 1 ou la revendication 2 dans lequel dans le traitement thermique de l’étape g) ladite tôle atteint une température comprise entre 80 et l00°C pendant 10 à l4h.
4. Procédé selon une quelconque des revendications 1 à 3 dans lequel le traitement thermique de l’étape g) est réalisé en sortie d’une ligne de traitement de mise en solution et trempe en continu, la tôle étant réchauffée à une température suffisante pour que après bobinage, la tôle atteigne une température comprise entre 60 et l20°C pendant 8 à 16 heures et de préférence entre 80 et l00°C pendant 10 à 14 h.
5. Procédé selon la revendication 4 dans lequel la tôle est refroidie après trempe à une température comprise entre 20 et 40 °C et réchauffée à une température comprise entre 70 et 90 °C puis refroidie lentement de façon à ce que la température soit maintenue à une température d’au moins 60 °C pendant au moins 10 heures.
6. Procédé selon une quelconque des revendications 1 à 5 dans lequel la trempe est réalisée avec de l’eau dont la température est comprise entre 20 et 60 °C et de préférence entre 30 et 50 °C.
7. Procédé selon une quelconque des revendications 1 à 6 dans lequel ledit alliage est choisi parmi AA7010, AA7012, AA7022, AA7122, AA7023, AA7032, AA7033, AA7040, AA7140, AA7050, AA7050A, AA7150, AA7250, AA7075, AA7175, AA7475.
8. Procédé selon une quelconque des revendications 1 à 7 dans lequel l’évolution de Rpo,2(TL) lors de l’étape h est inférieure à 15 MPa, préférentiellement inférieure à 10 MPa et de préférence inférieure à 7 MPa.
9. Procédé selon une quelconque des revendications 1 à 8 dans lequel après l’étape h, i) on réalise une opération de mise en forme de ladite tôle avec une déformation atteignant localement au moins 2 %,
j) on assemble la tôle ainsi formée sur une caisse en blanc d’automobile, de préférence par soudage ou rivetage,
k) on réalise une cuisson dans lequel ladite tôle atteint une température comprise entre 160 et 200°C et de préférence entre 170 et l90°C pendant 15 minutes à 1 heure.
10. Procédé selon la revendication 9 dans lequel ladite opération de mise en forme est effectuée par emboutissage à une température comprise entre 150 et 250 °C.
1 1. Procédé selon la revendication 9 dans lequel ladite opération de mise en forme est effectuée par pro filage ou pliage ou emboutissage à température ambiante.
12. Produit laminé susceptible d’être obtenu par le procédé selon une quelconque des revendications 1 à 8, présentant une combinaison de propriétés Rpo,2(TL) et A%(TL) telles que A%(TL) > - 0,05 Rpo,2(TL) + 40 et A%(TL) est égal à au moins 17%.
13. Produit laminé selon la revendication 12 tel que le rapport r / 1 dans la direction TL, qui est le rapport entre le rayon de courbure r déterminé selon les normes ASTM E290-97a et FLTM BB114-02 et l'épaisseur de tôle t, exprimés en mm, est au plus 2,25 et de préférence au plus 2,0.
14. Produit laminé selon la revendication 12 ou la revendication 13 présentant une combinaison de propriétés Rpo,2(TL) et A%(TL) choisie parmi Rpo,2(TL) d’au moins 370 MPa et A%(TL) d’au moins 19%, ou Rpo,2(TL) d’au moins 430 MPa et A%(TL) d’au moins 18%.
15. Utilisation d’un produit laminé susceptible d’être obtenu par le procédé selon une quelconque des revendications 1 à 1 1 ou selon une quelconque des revendications 12 à 14 pour la fabrication d’une automobile.
EP19758427.9A 2018-07-17 2019-07-11 Procede de fabrication de toles minces en alliage d'aluminium 7xxx aptes a la mise en forme et a l'assemblage Pending EP3824110A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1856613A FR3084087B1 (fr) 2018-07-17 2018-07-17 Procede de fabrication de toles minces en alliage d'aluminium 7xxx aptes a la mise en forme et a l'assemblage
PCT/FR2019/051739 WO2020016506A1 (fr) 2018-07-17 2019-07-11 Procede de fabrication de toles minces en alliage d'aluminium 7xxx aptes a la mise en forme et a l'assemblage

Publications (1)

Publication Number Publication Date
EP3824110A1 true EP3824110A1 (fr) 2021-05-26

Family

ID=65031452

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19758427.9A Pending EP3824110A1 (fr) 2018-07-17 2019-07-11 Procede de fabrication de toles minces en alliage d'aluminium 7xxx aptes a la mise en forme et a l'assemblage

Country Status (8)

Country Link
US (1) US20210292861A1 (fr)
EP (1) EP3824110A1 (fr)
JP (1) JP2021529882A (fr)
KR (1) KR20210032429A (fr)
CN (1) CN112424387A (fr)
CA (1) CA3105902A1 (fr)
FR (1) FR3084087B1 (fr)
WO (1) WO2020016506A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112111680A (zh) * 2020-09-17 2020-12-22 湖南恒佳新材料科技有限公司 一种铝合金及其板材的制备方法
CN113684404A (zh) * 2021-09-07 2021-11-23 玉林师范学院 一种原位生成氧化铝陶瓷强化铝合金复合材料及其制备方法
KR102682879B1 (ko) * 2021-11-29 2024-07-09 한국자동차연구원 고강도 및 고연성 알루미늄 합금
CN114892052B (zh) * 2022-05-10 2023-04-14 上海工程技术大学 一种高表面张力7xxx系铝合金焊丝及其制备方法和应用
KR102566987B1 (ko) * 2023-04-24 2023-08-14 한국재료연구원 고강도 알루미늄-아연-마그네슘-구리 합금 후판 및 그 제조방법

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112009000981T5 (de) 2008-04-25 2011-03-24 Aleris Aluminium Duffel Bvba Verfahren zur Herstellung eines Bauteils aus einer Aluminiumlegierung
EP2440680B1 (fr) 2009-06-12 2013-10-23 Aleris Rolled Products Germany GmbH Partie automobile structurale fabriquée à partir d'un produit d'alliage de AlZnMgCu et son procédé de fabrication
DE112011103669T5 (de) 2010-11-05 2013-08-01 Aleris Aluminum Duffel Bvba Verfahren zur Herstellung eines Automobil-Strukturteils aus einer gewalzten AIZn-Legierung
EP2479305A1 (fr) 2011-01-21 2012-07-25 Aleris Aluminum Duffel BVBA Procédé de fabrication d'une pièce automobile de structure à partir d'un alliage Al-Zn laminé
EP2514537B1 (fr) 2011-09-20 2018-08-08 Aleris Aluminum Duffel BVBA Procédé de rivetage de tôles en alliage d'aluminium
EP2581218B2 (fr) 2012-09-12 2018-06-06 Aleris Aluminum Duffel BVBA Procédé de fabrication d'un composant structurel d'automobile de tôle d'alliage d'aluminium AA7xxx-série
US9249487B2 (en) * 2013-03-14 2016-02-02 Alcoa Inc. Methods for artificially aging aluminum-zinc-magnesium alloys, and products based on the same
WO2015132932A1 (fr) 2014-03-06 2015-09-11 株式会社Uacj Alliage d'aluminium structural et son procédé de production
MX2017007043A (es) 2014-12-09 2017-11-08 Novelis Inc Tiempo de envejecimiento reducido de las aleaciones de la serie 7xxx.
US10428411B2 (en) 2014-12-10 2019-10-01 Ford Global Technologies, Llc Air quenched heat treatment for aluminum alloys
SI3265595T1 (sl) * 2015-10-30 2019-05-31 Novelis, Inc. Močne 7XXX aluminijeve zlitine in metode za njihovo izdelavo

Also Published As

Publication number Publication date
FR3084087A1 (fr) 2020-01-24
US20210292861A1 (en) 2021-09-23
KR20210032429A (ko) 2021-03-24
FR3084087B1 (fr) 2021-10-01
CN112424387A (zh) 2021-02-26
JP2021529882A (ja) 2021-11-04
CA3105902A1 (fr) 2020-01-23
WO2020016506A1 (fr) 2020-01-23

Similar Documents

Publication Publication Date Title
EP3824110A1 (fr) Procede de fabrication de toles minces en alliage d'aluminium 7xxx aptes a la mise en forme et a l'assemblage
EP1472380B1 (fr) Tole en alliage al-si-mg pour peau de carrosserie automobile
EP1170118B1 (fr) Tôles en alliage d'aluminium plaquées pour éléments de structure d'aéronefs
FR2926564A1 (fr) Tole a habillage
FR2900662A1 (fr) Materiau pour tole composite en aluminium
CA2961712C (fr) Toles isotropes en alliage d'aluminium-cuivre-lithium pour la fabrication de fuselages d'avion
CA3006346C (fr) Tole mince a haute rigidite pour carrosserie automobile
FR2855834A1 (fr) Produit ouvre en alliage a grande tolerance aux dommages, en particulier pour des applications dans le domaine aerospatial
EP1114877A1 (fr) Element de structure d'avion en alliage Al-Cu-Mg
EP3303646B1 (fr) Tole pour carrosserie automobile a résistance mécanique élevée
FR2902442A1 (fr) Alliage de la serie aa6xxx, a grande tolerance aux dommages pour l'industrie aerospatiale
FR2853666A1 (fr) ALLIAGE Al-Zn A HAUTE RESISTANCE,PROCEDE DE PRODUCTION DE PRODUITS EN UN TEL ALLIAGE, ET PRODUITS OBTENUS SELON CE PROCEDE
EP2981632B1 (fr) Tôles minces en alliage d'aluminium-cuivre-lithium pour la fabrication de fuselages d'avion
EP3362282B1 (fr) Composant de structure de caisse automobile presentant un excellent compromis entre resistance mecanique et comportement au crash
EP1143027B1 (fr) Procédé de fabrication d'éléments de structure d'avions en alliage d'aluminium Al-Si-Mg
WO2018185425A1 (fr) Procede ameliore de fabrication de composant de structure de caisse automobile
WO2023094773A1 (fr) Bande en alliage 6xxx et procédé de fabrication
WO2022263782A1 (fr) Bande en alliage 6xxx et procede de fabrication

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210211

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)