EP3807986A1 - Procédé de commande en fréquence de la tension d'entrée d'un convertisseur courant continu-courant continu - Google Patents

Procédé de commande en fréquence de la tension d'entrée d'un convertisseur courant continu-courant continu

Info

Publication number
EP3807986A1
EP3807986A1 EP19726693.5A EP19726693A EP3807986A1 EP 3807986 A1 EP3807986 A1 EP 3807986A1 EP 19726693 A EP19726693 A EP 19726693A EP 3807986 A1 EP3807986 A1 EP 3807986A1
Authority
EP
European Patent Office
Prior art keywords
voltage
eps
frequency
value
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19726693.5A
Other languages
German (de)
English (en)
Inventor
Miassa TALEB
Abdelmalek Maloum
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ampere SAS
Original Assignee
Renault SAS
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS, Nissan Motor Co Ltd filed Critical Renault SAS
Publication of EP3807986A1 publication Critical patent/EP3807986A1/fr
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0016Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters
    • H02M1/0022Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters the disturbance parameters being input voltage fluctuations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4241Arrangements for improving power factor of AC input using a resonant converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to the field of electric accumulator chargers, in particular for electric or hybrid motor vehicles.
  • the invention relates to a method for frequency control of the input voltage of a DC-DC converter for an electric storage battery charger.
  • Chargers for electric accumulators, more commonly known as chargers, for electric motor vehicles require large recharging powers, for example up to 22kW in three-phase, or 7kW in single-phase.
  • These chargers generally include two stages of power conversion: a first stage of correction of the power factor, better known by its English name Power Factor Correction, generally abbreviated in PFC, ensuring the AC / DC conversion (AC / DC) of the network voltages to a DC bus (DC bus) and a second DC-DC conversion stage, called DCDC, ensuring control of the output current necessary for charging the battery as well as galvanic isolation of the charger thanks to a transformer.
  • PFC Power Factor Correction
  • DCDC DC-DC conversion stage
  • two DC output voltage bus at the terminals of the output capacitors, are coupled to a DCDC converter each.
  • the DCDC can in particular be of the LLC type, as shown in FIG. 2, comprising a transformer 22 ensuring galvanic isolation of the charger.
  • FIG. 3 represents a simplified diagram of the assembly of the DCDC converter of FIG. 2, comprising a capacitance Cr and two inductances Lr and Lm.
  • the input voltage corresponds to the DC direct bus and the output voltage is the battery voltage.
  • the gain then corresponds to the ratio of the two voltages.
  • the first DCDC mosfet 120 bridge type LLC operates with a duty cycle of 50% and is frequency controlled.
  • a frequency command makes it possible to adapt the gain of the DCDC and to adjust the voltage of the DC buses at the charger input to a determined setpoint.
  • the frequency can fluctuate for example between 60kHz and 200kHz.
  • the transfer function can also be obtained by the so-called “small signal” method which consists in deducing a transfer function from an excitation around a function point, and from the measurement of the DCDC response, such as described in the doctoral thesis of YANG, Bo. Topology investigation of front end DC / DC converter for distributed power System. 2003. Nevertheless, this transfer function is only valid at the operating point considered and becomes obsolete with each change of operating point. It is therefore necessary to recalculate it each time. Also such a solution is relatively complex to implement and costly in computation time.
  • the output voltage is imposed by the battery.
  • this output voltage varies over a wide range of values, for example between 250V and 430V.
  • regulation of the DC voltage at the input is desirable, because it makes it possible to impose a DC voltage across the capacitors, at the output of the PFC.
  • the method further comprising:
  • control frequency corresponds to said minimum control frequency
  • control frequency corresponds to said maximum control frequency
  • control frequency corresponds to an average frequency calculated as a function of the difference between the setpoint voltage value and the measured voltage, values of upper and lower error and maximum and minimum command frequency values.
  • the control frequency is calculated by applying the following equation: in which the error value corresponds to the difference VDCR-VDCM between the setpoint voltage value and the measured voltage.
  • control is at least partially regulated by an open loop regulator.
  • open loop regulator e.g., one can refine the calculation of control frequency.
  • the command is frequency-regulated by proportional-integral regulation only when the measured voltage is between said upper limit voltage and said lower limit voltage.
  • the control can be improved by selectively refining the control frequency calculation when the measured voltage is close to the setpoint voltage.
  • the invention also relates to a device for controlling the frequency of a direct current - direct current converter comprising means for implementing the method as described above.
  • the invention also relates to a battery charger for electric accumulators comprising:
  • FIG. 1 is a schematic view of an electric accumulator charger known from the prior art
  • FIG. 2 is a detail view of a DC-DC converter of a charger according to Figure 1;
  • FIG. 3 is a simplified diagram of an LLC circuit of a DC-DC converter according to Figure 2;
  • FIG. 4a is a schematic representation of the method according to an embodiment of the invention.
  • FIG. 4b is a detailed view of a step of calculating the method according to the embodiment of Figure 4a;
  • FIG. 5 is a diagrammatic representation of the applied frequency control of the method, with the time on the abscissa and the volts on the ordinate, as a function of the limit voltages, the reference voltage and the measured voltage, of the step of calculation of the method according to the embodiment of FIG. 4a;
  • FIG. 6 is a flow diagram of the method implemented according to the embodiment of Figure 4a.
  • a charger 1 for electric accumulators 13 connected to a three-phase electric network 10 includes a power factor correction stage 11, also called PFC stage 11, and converters direct current-direct current DCDC 12a and 12b each comprising an inverter 212.
  • the three-phase electrical network 10 is mounted to an input filter 14 transmitting filtered input currents to the PFC stage 11.
  • two DC voltage buses connected to the terminals of the output capacitors of step PFC 11, are each coupled to a DCDC converter 12a, 12b, connected in output in parallel to a storage battery 13.
  • Each DCDC 12a, 12b of which a single copy is shown in Figure 2, includes an input mosfet bridge 120, an LLC circuit 121, of which a simplified equivalent representation is shown in Figure 3, a transformer 22 and an output diode bridge 122.
  • the charger 1 further comprises control means 15 of the direct current / direct current converters 12 suitable for implementing a control method 60 according to the invention.
  • the control method 60 aims to frequency control the input voltages of the DC-DC converters 12.
  • the method for controlling a DC-DC converter comprises a plurality of preliminary steps 61, 62, 63. These preliminary steps 61 -63 are independent of each other.
  • the preliminary steps 61 -63 aim to define operating parameters of the process; they can be carried out prior to the implementation of the process, for example during a calibration phase, or dynamically at the start of the process.
  • a step 61 is implemented of defining a maximum control frequency value FRMAX and a minimum control frequency value FRMIN, for example here a maximum frequency FRMAX of 200 KHz, and a frequency minimum FRMIN of 60 KHz.
  • a step 62 of implementing a set voltage value VDCR is implemented towards which the input voltage must converge.
  • VDCR 450V.
  • an error zone 51 is defined 63, defined by two error values, a higher error value eps and a lower error value -eps, these two error values making it possible to define a limit voltage value upper VDRC + eps and a lower limit voltage value VDCR - eps.
  • the upper eps and lower -eps error values have an equal absolute value, so as to define an error zone around the symmetrical setpoint VDCR voltage value.
  • the invention is not limited to this equality of absolute value, and it is possible to provide error values greater eps and lower -eps having a different absolute value.
  • the method then implements a step 64 of obtaining a measured value of the input voltage VDCM.
  • a step 65 of calculating a control frequency value of the DC-DC converter is then implemented.
  • the measured input voltage VDCM is compared with the values of upper limit voltages VDCR + eps and lower limit VDCR - eps.
  • control frequency F corresponds to an average frequency FMOY calculated as a function of the difference between the measured voltage and the reference voltage, the values of the upper and lower limit errors and the values of maximum and minimum control frequency.
  • This average frequency FMOY is calculated according to the following equation:
  • the pair of error parameters -eps, eps makes it possible to define a zone of error close to the VDCR setpoint, in which the control means calculate a frequency FMOY which makes it possible to precisely converge to the VDCR setpoint value.
  • VDRC - VDRM error reaches one of the -eps, eps thresholds, a command frequency is calculated to precisely reach the setpoint and cancel the static error.
  • the minimum frequency FRMIN OR maximum FRMAX is applied as described by the following logic, to ensure efficient convergence.
  • an Integral Proportional Regulator 42 is activated when the measured voltage VDCM is strictly between said upper limit voltage VDCR + eps and said lower limit voltage VDCR - eps. This makes it possible to refine the frequency calculation F to be applied and improves the convergence of the voltage measured over a few volts.
  • the output of the first control stage 41 therefore arrives as an open-loop control command called feed-forward e t is added 43 to the results obtained by the PI regulator 42.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

L'invention concerne un procédé de commande (30) en fréquence de la tension d'entrée d'un convertisseur courant continu-courant continu (12) comprenant une étape de calcul (65) d'une valeur de fréquence de commande (F) dudit convertisseur courant continu-courant continu (12), dans laquelle : - si la tension mesurée (VDCM) est supérieure à ladite tension limite supérieure (VDCR+eps), la fréquence de commande (F) correspond à ladite fréquence de commande minimale (FRMIN); - si la tension mesurée (VDCM) est inférieure à la dite tension limite inférieure (VDCR-eps), la fréquence de commande correspond à ladite fréquence de commande maximale (FRMAX); et - si la tension mesurée (VDCM) est comprise entre ladite tension limite supérieure (VDCR+eps) et ladite tension limite inférieure (VDCR-eps), la fréquence de commande (F) correspond à une fréquence moyenne (FMOY) calculée en fonction de l'écart entre la valeur de tension de consigne (VDCR) et la tension mesurée (VDCM), des valeurs d'erreur supérieure (eps) et inférieure (-eps) et des valeurs de fréquence de commande maximale (FRMAX) et minimale (FRMIN).

Description

Procédé de commande en fréquence de la tension d’entrée d’un convertisseur courant continu-courant continu
La présente invention concerne le domaine des chargeurs d’accumulateurs électriques, en particulier pour les véhicules automobiles électriques ou hybrides.
Plus précisément l’invention concerne un procédé de commande en fréquence de la tension d’entrée d’un convertisseur courant continu-courant continu pour un chargeur d’accumulateurs électriques.
Les chargeurs d’accumulateurs électriques, plus communément appelés chargeurs, de véhicule automobile électriques nécessitent d’importantes puissances de recharges, par exemple pouvant aller jusqu’à 22kW en triphasé, ou 7kW en monophasé.
Ces chargeurs comprennent généralement deux étages de conversion de puissance : un premier étage de correction du facteur de puissance, plus connu sous son nom anglophone Power Factor Correction, généralement abrégé en PFC, assurant la conversion alternatif/continu (AC/DC) des tensions réseaux vers un bus continu (bus DC) et un deuxième étage de conversion continu- continu, dit DCDC, assurant le contrôle du courant de sortie nécessaire à la charge de la batterie ainsi qu’une isolation galvanique du chargeur grâce à un transformateur.
En référence à la figure 1 d’art antérieur, deux bus de tension continue DC de sortie, aux bornes des capacités de sortie, sont couplés à un convertisseur DCDC chacun.
Le DCDC peut notamment être du type LLC, tel que représenté figure 2, comprenant un transformateur 22 assurant une isolation galvanique du chargeur.
La figure 3 représente un schéma simplifié du montage du convertisseur DCDC de la figure 2, comprenant une capacité Cr et deux inductances Lr et Lm. La tension d’entrée correspond au bus continu DC et la tension de sortie est la tension de la batterie. Le gain correspond alors au rapport des deux tensions.
Le premier pont de mosfet 120 du DCDC de type LLC fonctionne avec un rapport cyclique de 50% et est commandé en fréquence. En effet, une commande en fréquence permet d’adapter le gain du DCDC et de régler la tension des bus DC en entrée du chargeur à une consigne déterminée. Selon la tension de la batterie et la puissance demandée, la fréquence peut fluctuer par exemple entre 60kHz et 200kHz.
Les solutions proposées dans l’art antérieur pour la commande de ce type de convertisseurs DCDC présentent généralement des régulations de la tension de sortie tel que celle divulguée dans la publication DRGONA, Peter, FRIVALDSKŸ, Michal, et SIMONOVÂ, Anna. A New Approach of Control System Design for LLC Résonant Converter. In : MATLAB for Engineers-Applications in Control, Electrical Engineering, IT and Robotics. InTech, 2011, dans lequel la tension de sortie du DCDC est commandée en utilisant la fréquence de découpage. Une fonction de transfert entre rapport cyclique et tension de sortie est déduite à partir de méthodes d’identification en utilisant un modèle hardware PSPICE simulant des dynamiques des réponses de tension de sortie à un échelon de fréquence. Un régulateur est ensuite conçu en se basant sur la fonction de transfert déduite précédemment.
La fonction de transfert peut aussi être obtenue par la méthode dite « petit signal » qui consiste à déduire une fonction de transfert à partir d’une excitation autour d’un point de fonction, et de la mesure de la réponse du DCDC, tel que décrit dans la thèse de doctorat de YANG, Bo. Topology investigation of front end DC/DC converter for distributed power System. 2003. Néanmoins, cette fonction de transfert n’est valable qu’au point de fonctionnement considéré et devient obsolète à chaque changement de point de fonctionnement. Il est donc nécessaire de la recalculer à chaque fois. Aussi une telle solution est relativement complexe à mettre en œuvre et coûteuse en temps de calcul.
On connaît aussi des commandes en régulation de courant continu si la tension en sortie varie sur une plage réduite.
Enfin on connaît aussi de la publication FANG, Zhijian, WANG, Junhua, DUAN, Shanxu, et al. Control of an LLC Résonant Converter Using Load Feedback Linearization. IEEE Transactions on Power Electronics, 2018, vol. 33, no 1, p. 887-898 dans laquelle une régulation est construite par commande linéarisante (aussi appelée en anglais feedback linearization) pour commander la tension de sortie d’un DCDC LLC. Cette publication décrit un modèle non linéaire à 7 états, réduit par la suite à 2 états et propose une commande par boucle PI. Toutefois une telle solution impose des adaptations matérielles et logicielles complexes et coûteuses.
Il arrive que la tension de sortie soit imposée par la batterie. En outre, il arrive, en particulier dans les applications de véhicules automobiles électriques que cette tension de sortie varie sur une large plage de valeurs, par exemple entre 250V et 430V.
Aussi, une régulation de la tension DC en entrée est souhaitable, car elle permet d’imposer une tension DC aux bornes des capacités, en sortie du PFC.
Toutefois, la régulation de la tension DC en entrée du convertisseur LLC DCDC est un sujet pour lequel l’art antérieur n’apporte aucune solution satisfaisante.
Il existe dès lors le besoin d’une solution pour commander la tension continue DC en entrée du convertisseur LLC DCDC de manière rapide et fiable.
On propose un procédé de commande en fréquence de la tension d’entrée d’un convertisseur courant continu - courant continu comprenant des étapes préalables de :
- définition d’une valeur de fréquence de commande maximale et d’une valeur de fréquence de commande minimale ;
- définition d’une valeur de tension de consigne ;
- définition d’une valeur d’erreur supérieure et d’une valeur de tension limite supérieure associée ; d’une valeur d’erreur inférieure et d’une valeur de tension limite inférieure associée, lesdites valeurs de tension limites supérieure et inférieure définissant une amplitude d’erreur autour de ladite valeur de tension de consigne ;
le procédé comprenant en outre :
- un étape d’obtention d’une valeur mesurée de la tension d’entrée ;
- une étape de calcul d’une valeur de fréquence de commande dudit convertisseur courant continu - courant continu, dans laquelle :
- si la tension mesurée est supérieure à ladite tension limite supérieure, la fréquence de commande correspond à ladite fréquence de commande minimale ; - si la tension mesurée est inférieure à la dite tension limite inférieure, la fréquence de commande correspond à ladite fréquence de commande maximale; et
- si la tension mesurée est comprise entre ladite tension limite supérieure et ladite tension limite inférieure, la fréquence de commande correspond à une fréquence moyenne calculée en fonction de l’écart entre la valeur de tension de consigne et la tension mesurée, des valeurs d’erreur supérieure et inférieure et des valeurs de fréquence de commande maximale et minimale.
Ainsi, on peut obtenir un procédé de commande de la tension d’entrée d’un convertisseur courant continu - courant continu rapide et robuste.
Avantageusement et de manière non limitative, lorsque la tension mesurée est comprise entre ladite tension limite supérieure et ladite tension limite inférieure, la fréquence de commande est calculée par l’application de l’équation suivante : dans laquelle la valeur erreur correspond à la différence VDCR-VDCM entre la valeur de tension de consigne et la tension mesurée. Ainsi, on peut assurer une convergence précise vers la valeur de consigne lorsque la tension mesurée est proche de la tension de consigne, et annuler l’erreur statique.
Avantageusement et de manière non limitative, la commande est au moins en partie régulée par un régulateur à boucle ouverte. Ainsi, on peut affiner le calcul de fréquence de commande.
En particulier, la commande est régulée en fréquence par une régulation proportionnel-intégral seulement lorsque la tension mesurée est comprise entre ladite tension limite supérieure et ladite tension limite inférieure. Ainsi, on peut améliorer la commande en affinant de manière sélective le calcul de fréquence de commande lorsque la tension mesurée est proche de la tension de consigne.
L’invention concerne aussi un dispositif de commande en fréquence d’un convertisseur courant continu - courant continu comprenant des moyens pour mettre en œuvre le procédé tel que décrit précédemment. L’invention concerne aussi un chargeur de batterie d’accumulateurs électriques comprenant :
- un étage de correction du facteur de puissance ;
- un convertisseur courant continu-courant continu résonant de type LLC ; et
- un dispositif de commande en fréquence dudit convertisseur courant continu-courant continu tel que décrit précédemment.
D’autres particularités et avantages de l’invention ressortiront à la lecture de la description faite ci-après d’un mode de réalisation particulier de l’invention, donné à titre indicatif mais non limitatif, en référence aux dessins annexés sur lesquels :
- la figure 1 est une vue schématique d’un chargeur d’accumulateurs électrique connu de l’art antérieur ;
- la figure 2 est une vue de détail d’un convertisseur courant continu-courant continu d’un chargeur selon la figure 1 ;
- la figure 3 est un schéma simplifié d’un circuit LLC d’un convertisseur courant continu-courant continu selon la figure 2 ;
- la figure 4a est une représentation schématique du procédé selon un mode de réalisation de l’invention ;
- la figure 4b est une vue de détail d’une étape de calcul du procédé selon le mode de réalisation de la figure 4a ;
- la figure 5 est une représentation schématique de la commande en fréquence appliquée du procédé, avec en abscisse le temps et en ordonnée des Volts, en fonction des tensions limites, de la tension de consigne et de la tension mesurée, de l’étape de calcul du procédé selon le mode de réalisation de la figure 4a ; et
- la figure 6 est un organigramme du procédé mis en œuvre selon le mode de réalisation de la figure 4a.
Les figures 1 à 6 se rapportant à un même mode de réalisation, elles seront commentées simultanément.
En référence à la figure 1 , un chargeur 1 d’accumulateurs électriques 13 connecté à un réseau électrique triphasé 10 comprend un étage de correction du facteur de puissance 11 , aussi appelé étage PFC 11 , et des convertisseurs courant continu-courant continu DCDC 12a et 12b comportant chacun un onduleur 212.
Le réseau électrique triphasé 10 est monté à un filtre d’entrée 14 transmettant des courants d’entrée filtrés à l’étage PFC 11.
En sortie du PFC 11 deux bus de tension continue DC, connectés au bornes des capacités de sortie de l’étape PFC 11 , sont couplées chacun à un convertisseur DCDC 12a, 12b, reliés en sortie en parallèle à une batterie d’accumulateurs 13.
Chaque DCDC 12a, 12b, dont un seul exemplaire est représenté figure 2, comprend un pont de mosfet d’entrée 120, un circuit LLC 121 , dont une représentation équivalente simplifiée est représentée figure 3, un transformateur 22 et un pont de diodes de sortie 122.
Le chargeur 1 comprend en outre des moyens de commande 15 des convertisseurs courant continu-courant continu 12 aptes à mettre en œuvre un procédé de commande 60 selon l’invention.
Le procédé de commande 60 selon l’invention vise à commander en fréquence les tensions d’entrée des convertisseurs courant continu-courant continu 12.
En référence aux figures 4, 5 et 6, le procédé de commande d’un convertisseur courant continu-courant continu comprend une pluralité d’étapes préliminaires 61 , 62, 63. Ces étapes préliminaires 61 -63 sont indépendantes les unes des autres. Les étapes préliminaires 61 -63 visent à définir des paramètres de fonctionnement du procédé ; elles peuvent être réalisées préalablement à la mise en œuvre du procédé, par exemple lors d’une phase d’étalonnage, ou dynamiquement au début du procédé.
Ces étapes préliminaires 61-63 peuvent en outre être reproduites durant le fonctionnement du procédé 60, afin de modifier dynamiquement les paramètres de fonctionnement du procédé.
Tout d’abord, on met en œuvre une étape de définition 61 d’une valeur de fréquence de commande maximale FRMAX et d’une valeur de fréquence de commande minimale FRMIN, par exemple ici une fréquence maximale FRMAX de 200 KHz, et une fréquence minimale FRMIN de 60 KHz. Ensuite on met en œuvre une étape de définition 62 d’une valeur de tension de consigne VDCR vers laquelle la tension d’entrée doit converger. Dans l’exemple de réalisation de la figure 5, VDCR = 450V.
Ensuite on définit 63 une zone d’erreur 51 , définie par deux valeurs d’erreur, une valeur d’erreur supérieure eps et une valeur d’erreur inférieure -eps, ces deux valeurs d’erreur permettant de définir une valeur de tension limite supérieure VDRC + eps et une valeur de tension limite inférieure VDCR - eps.
Dans cet exemple de réalisation on définit une tension d’erreur +eps=100V et -eps=-100V.
Ces valeurs de tensions limite supérieure VDRC + eps et inférieure VüCR-eps encadrant la tension de consigne VDCR, définissent ainsi une amplitude d’erreur autour de la tension de consigne VDCR.
Dans ce mode de réalisation, les valeurs d’erreur supérieure eps et inférieure -eps présentent une valeur absolue égale, de sorte à définir une zone d’erreur autour de la valeur de tension de consigne VDCR symétrique. Toutefois l’invention n’est pas limitée à cette égalité de valeur absolue, et on peut prévoir des valeurs d’erreur supérieure eps et inférieure -eps ayant une valeur absolue différente.
Ensuite le procédé met en œuvre une étape d’obtention 64 d’une valeur mesurée de la tension d’entrée VDCM.
Une étape de calcul 65 d’une valeur de fréquence de commande du convertisseur courant continu-courant continu est alors mise en œuvre.
Au cours de cette étape de calcul 65, on compare la tension d’entrée mesurée VDCM avec les valeurs de tensions limite supérieure VDCR + eps et inférieure VDCR - eps.
Si la tension mesurée VDCM est supérieure ou égale à ladite tension limite supérieure VDCR + eps, alors on applique une fréquence de commande F égale à ladite fréquence de commande minimale FRMIN.
Si la tension mesurée VDCM est inférieure ou égale à la tension limite inférieure VDCR - eps, alors on applique une fréquence de commande F égale à la fréquence de commande maximale FRMAX.
Enfin, si la tension mesurée VDCM est strictement comprise entre ladite tension limite supérieure VDCR + eps et ladite tension limite inférieure VDCR - eps, la fréquence de commande F correspond à une fréquence moyenne FMOY calculée en fonction de l’écart entre la tension mesurée et la tension de consigne, des valeurs des erreurs limites supérieure et inférieure et des valeurs de fréquence de commande maximale et minimale.
Cette fréquence moyenne FMOY est calculée selon l’équation suivante :
dans laquelle :
- la valeur erreur correspond à la différence entre la valeur de tension de consigne VDCR et la tension mesurée VDCM, soit erreur=VDCR-VDCM Autrement dit, le couple de paramètres d’erreur -eps, eps, permet de définir une zone d’erreur proche de la consigne VDCR, dans laquelle les moyens de commande calculent une fréquence FMOY qui permet de converger précisément à la valeur de consigne VDCR.
En effet, lorsque l’erreur VDRC - VDRM atteint l’un des seuils -eps, eps une fréquence de commande est calculée pour atteindre précisément la consigne et annuler l’erreur statique.
Au-delà ou en deçà de cette zone d’erreur, respectivement, la fréquence minimale FRMIN OU maximale FRMAX est appliquée comme décrit par logique suivante, pour assurer une convergence efficace.
En référence à la figure 4a, un régulateur Proportionnel Intégral 42, appelé plus communément régulateur PI, est activé lorsque la tension mesurée VDCM est strictement comprise entre ladite tension limite supérieure VDCR + eps et ladite tension limite inférieure VDCR - eps. Ceci permet d’affiner le calcul de fréquence F à appliquer et améliore la convergence de la tension mesurée sur quelques volts.
La sortie du premier étage de commande 41 arrive par conséquent comme commande à régulation à boucle ouverte dite feed-forward e t est additionnée 43 aux résultats obtenus par le régulateur PI 42.

Claims

REVENDICATIONS
1. Procédé de commande (60) en fréquence de la tension d’entrée d’un convertisseur courant continu-courant continu (12) de type LLC fonctionnant avec un rapport cyclique de 50% et commandé en fréquence, comprenant des étapes préalables de :
- définition (61 ) d’une valeur de fréquence de commande maximale (FRMAX) et d’une valeur de fréquence de commande minimale (FRMIN);
- définition (62) d’une valeur de tension de consigne (VDCR);
- définition (63) d’une valeur d’erreur supérieure (eps) et d’une valeur de tension limite supérieure (VDCR+eps) associée ; d’une valeur d’erreur inférieure (- eps) et d’une valeur de tension limite inférieure (VDCR-eps) associée, lesdites valeurs de tension limites supérieure (VüCR+eps) et inférieure (VDCR-eps) définissant une amplitude d’erreur (51 ) autour de ladite valeur de tension de consigne (VDCR);
le procédé comprenant en outre :
- un étape d’obtention (64) d’une valeur mesurée de la tension d’entrée (VDCM) ;
- une étape de calcul (65) d’une valeur de fréquence de commande (F) dudit convertisseur courant continu-courant continu (12), dans laquelle :
- si la tension mesurée (VDCM) est supérieure à ladite tension limite supérieure (VüCR+eps), la fréquence de commande (F) correspond à ladite fréquence de commande minimale (FRMIN);
- si la tension mesurée (VDCM) est inférieure à la dite tension limite inférieure (VDCR-eps), la fréquence de commande correspond à ladite fréquence de commande maximale (FRMAX); et
- si la tension mesurée (VDCM) est comprise entre ladite tension limite supérieure (VüCR+eps) et ladite tension limite inférieure (VüCR-eps), la fréquence de commande (F) correspond à une fréquence moyenne (FMOY) calculée en fonction de l’écart entre la valeur de tension de consigne (VDCR) et la tension mesurée (VDCM), des valeurs d’erreur supérieure (eps) et inférieure (-eps) et des valeurs de fréquence de commande maximale (FRMAX) et minimale (FRMIN).
2. Procédé selon la revendication 1 caractérisé en ce que lorsque la tension mesurée est comprise entre ladite tension limite supérieure et ladite tension limite inférieure, la fréquence de commande est calculée par l’application de l’équation suivante :
dans laquelle la valeur erreur correspond à la différence (VDCR-VDCM) entre la valeur de tension de consigne (VDCR) et la tension mesurée (VDCM).
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que la commande est au moins en partie régulée par un régulateur à boucle ouverte.
4. Procédé selon la revendication 3, caractérisé en ce que la commande est régulée en fréquence par une régulation proportionnel-intégral seulement lorsque la tension mesurée est comprise entre ladite tension limite supérieure et ladite tension limite inférieure.
5. Dispositif de commande en fréquence d’un convertisseur courant continu- courant continu comprenant des moyens pour mettre en œuvre le procédé selon l’une quelconque des revendications 1 à 4.
6. Chargeur (1 ) de batterie d’accumulateurs électriques (13) comprenant :
- un étage de correction du facteur de puissance (1 1 ) ;
- un convertisseur courant continu-courant continu résonant de type LLC (12);
- un dispositif de commande en fréquence dudit convertisseur courant continu- courant continu (12) selon la revendication 5.
EP19726693.5A 2018-06-15 2019-05-27 Procédé de commande en fréquence de la tension d'entrée d'un convertisseur courant continu-courant continu Pending EP3807986A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1855259A FR3082680B1 (fr) 2018-06-15 2018-06-15 Procede de commande en frequence de la tension d'entree d'un convertisseur courant continu-courant continu
PCT/EP2019/063690 WO2019238405A1 (fr) 2018-06-15 2019-05-27 Procédé de commande en fréquence de la tension d'entrée d'un convertisseur courant continu-courant continu

Publications (1)

Publication Number Publication Date
EP3807986A1 true EP3807986A1 (fr) 2021-04-21

Family

ID=63491687

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19726693.5A Pending EP3807986A1 (fr) 2018-06-15 2019-05-27 Procédé de commande en fréquence de la tension d'entrée d'un convertisseur courant continu-courant continu

Country Status (6)

Country Link
US (1) US11518257B2 (fr)
EP (1) EP3807986A1 (fr)
JP (1) JP7258054B2 (fr)
CN (1) CN112449741A (fr)
FR (1) FR3082680B1 (fr)
WO (1) WO2019238405A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116039418B (zh) * 2023-03-31 2023-08-25 宁德时代新能源科技股份有限公司 车载充电机控制方法、装置、车载充电机及存储介质

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6487093B1 (en) * 2000-06-26 2002-11-26 Intel Corporation Voltage regulator
JP3548826B2 (ja) * 2001-09-07 2004-07-28 株式会社村田製作所 Dc−dcコンバータ
CN101056061B (zh) * 2006-04-14 2012-12-05 艾默生网络能源***北美公司 一种谐振电路调制控制方法和***
US8289732B2 (en) * 2008-12-23 2012-10-16 Iwatt Inc. Controller for switching power converter driving BJT based on primary side adaptive digital control
US8934267B2 (en) * 2010-11-09 2015-01-13 Tdk-Lambda Corporation Loosely regulated feedback control for high efficiency isolated DC-DC converters
US9520772B2 (en) * 2010-11-09 2016-12-13 Tdk-Lambda Corporation Multi-level voltage regulator system
JP6017804B2 (ja) * 2012-03-09 2016-11-02 シャープ株式会社 Dc/dcコンバータおよびシステム
US9368961B2 (en) * 2013-01-08 2016-06-14 Power Integrations, Inc. Overvoltage protection circuit
US9712063B2 (en) * 2013-04-15 2017-07-18 Futurewei Technologies, Inc. Apparatus and method for loosely regulated power converters
CN103326587B (zh) * 2013-07-17 2015-09-30 潘海铭 Llc谐振变换器轻负载控制方法及装置
US9509225B2 (en) * 2014-09-16 2016-11-29 Continental Automotive Systems, Inc. Efficient LLC resonant converter having variable frequency control and fixed frequency phase-shift PWM
JP6367738B2 (ja) * 2015-02-27 2018-08-01 株式会社日立製作所 電力変換装置
US9590615B1 (en) * 2015-09-18 2017-03-07 Sanken Electric Co., Ltd. Integrated circuit and switching power-supply device performing output control through switching operation
JP2019041427A (ja) * 2015-12-10 2019-03-14 株式会社日立製作所 電力変換装置、電源装置およびその制御方法
JP6868031B2 (ja) * 2016-02-12 2021-05-12 シグニファイ ホールディング ビー ヴィSignify Holding B.V. Dc/dc共振コンバータ及び共振コンバータを用いた力率補正、並びに対応する制御方法
JP6801708B2 (ja) * 2016-03-28 2020-12-16 ソニー株式会社 電源装置、充電装置、制御方法、電子機器および電動車両
JP6790583B2 (ja) * 2016-04-06 2020-11-25 富士電機株式会社 スイッチング電源装置
CN106026619B (zh) * 2016-06-24 2019-03-22 成都芯源***有限公司 限流峰值调整电路、限流单元、控制电路及功率变换器
FR3083929B1 (fr) * 2018-07-16 2020-06-19 Renault S.A.S Procede de commande en frequence de la tension d'entree d'un convertisseur courant continu-courant continu

Also Published As

Publication number Publication date
WO2019238405A1 (fr) 2019-12-19
FR3082680B1 (fr) 2020-05-29
JP2021527386A (ja) 2021-10-11
FR3082680A1 (fr) 2019-12-20
JP7258054B2 (ja) 2023-04-14
CN112449741A (zh) 2021-03-05
US11518257B2 (en) 2022-12-06
US20210257921A1 (en) 2021-08-19

Similar Documents

Publication Publication Date Title
FR3083929A1 (fr) Procede de commande en frequence de la tension d'entree d'un convertisseur courant continu-courant continu
EP2697886B1 (fr) Dispositif de charge d'une batterie d'un véhicule automobile à partir d' un réseau d' alimentation monophasé, et procédé de commande du dispositif
FR3060230A1 (fr) Procede de commande d'un dispositif de charge embarque sur un vehicule electrique ou hybride.
EP2864150B1 (fr) Procédé de contrôle de charge d'une batterie d'un véhicule électrique dans un système de charge sans contact
EP2823554B1 (fr) Dispositif de charge externe pour la batterie d'un véhicule comprenant un convertisseur ac-dc avec un étage isolé résonant
EP3977608A1 (fr) Procédé de commande d'un convertisseur continu-continu pour un chargeur de batterie d'accumulateurs électriques bidirectionnel
FR3064848A1 (fr) Procede de commande d'un dispositif de charge embarque sur un vehicule electrique ou hybride.
EP3520210B1 (fr) Procede de commande d'un redresseur triphase pour un dispositif de charge embarque sur un vehicule electrique ou hybride
FR3124906A1 (fr) Procédé de commande d’un convertisseur DC-DC réversible.
EP3807986A1 (fr) Procédé de commande en fréquence de la tension d'entrée d'un convertisseur courant continu-courant continu
EP3685485B1 (fr) Procédé de commande d'un système de charge d'une batterie de traction
EP3707815B1 (fr) Procédé de commande d'un redresseur de vienne triphasé lorsqu'un interrupteur de puissance est défaillant
WO2022207571A1 (fr) Titre : convertisseur de tension isolé
FR2996698A1 (fr) Convertisseur elevateur de tension pour un vehicule
EP3707800B1 (fr) Procédé de commande d'un chargeur de batterie d'accumulateurs électriques
EP3539203B1 (fr) Procédé de commande d'un redresseur triphasé pour un dispositif de charge embarqué sur un véhicule électrique ou hybride
FR3001843A1 (fr) Dispositif et procede correspondant de gestion de batteries de vehicule automobile, en particulier une batterie basse tension et une batterie haute tension
WO2023041482A1 (fr) Système électrique pour véhicule automobile
FR3125370A1 (fr) Procédé de commande d’un convertisseur DC-DC réversible.
EP3918703A1 (fr) Procédé de commande d'un convertisseur boost à n cellules de commutation
EP4099532A1 (fr) Système d'alimentation électrique d'au moins une machine électrique de traction d'un véhicule automobile alimentée par au moins deux sources de puissance
WO2019238404A1 (fr) Procédé de commande d'un redresseur de vienne
FR2996699A1 (fr) Convertisseur abaisseur de tension pour un vehicule
FR3078212A1 (fr) Convertisseur dc-dc pour chargeur bidirectionnel.
FR3026580A1 (fr) Procede de commande d'un etage redresseur d'un systeme de charge et systeme de charge correspondant

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201210

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RENAULT S.A.S.

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RENAULT S.A.S

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RENAULT S.A.S

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220830

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230608

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AMPERE SAS