EP3802889A1 - Anlagenverbund zur stahlerzeugung sowie ein verfahren zum betreiben des anlagenverbundes - Google Patents

Anlagenverbund zur stahlerzeugung sowie ein verfahren zum betreiben des anlagenverbundes

Info

Publication number
EP3802889A1
EP3802889A1 EP19728055.5A EP19728055A EP3802889A1 EP 3802889 A1 EP3802889 A1 EP 3802889A1 EP 19728055 A EP19728055 A EP 19728055A EP 3802889 A1 EP3802889 A1 EP 3802889A1
Authority
EP
European Patent Office
Prior art keywords
plant
gas
production
subset
blast furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19728055.5A
Other languages
English (en)
French (fr)
Inventor
Stefan Gehrmann
Nils Tenhumberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp AG
ThyssenKrupp Industrial Solutions AG
Original Assignee
ThyssenKrupp AG
ThyssenKrupp Industrial Solutions AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp AG, ThyssenKrupp Industrial Solutions AG filed Critical ThyssenKrupp AG
Publication of EP3802889A1 publication Critical patent/EP3802889A1/de
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/06Making pig-iron in the blast furnace using top gas in the blast furnace process
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/14Multi-stage processes processes carried out in different vessels or furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/002Evacuating and treating of exhaust gases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/38Removal of waste gases or dust
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/20Increasing the gas reduction potential of recycled exhaust gases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/60Process control or energy utilisation in the manufacture of iron or steel
    • C21B2100/62Energy conversion other than by heat exchange, e.g. by use of exhaust gas in energy production
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2200/00Recycling of non-gaseous waste material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention relates to a plant network for steel production and a method for operating the plant network.
  • the plant grouping for steelmaking includes a blast furnace for the production of pig iron, a converter steelworks for the production of crude steel, a gas pipeline system for gases that are produced in the production of pig iron and / or crude steel, and a chemical plant and / or biotechnology plant connected to the gas pipeline system.
  • chemical plant chemical products can be generated from the supplied gas flow rates, which each contain the components of the final product.
  • biotechnology plant biochemical products can be generated from the supplied gas flow rates, which each contain the components of the final product.
  • blast furnace iron ores, aggregates, coke and other reducing agents such as coal, oil, gas, biomass, recycled waste plastics or other carbon and / or hydrogen-containing materials are used to produce pig iron.
  • the products of the reduction reactions inevitably arise CO, C0 2 , and in particular hydrogen and water vapor.
  • a blast furnace top gas withdrawn from the blast furnace process which is also referred to as blast furnace gas and / or blast furnace gas, frequently has a high content of nitrogen in addition to the abovementioned constituents and may also contain impurities.
  • the amount of gas and the composition of blast furnace top gas depend on the feedstock and the mode of operation and are subject to fluctuations.
  • blast furnace top gas typically contains 35 to 60% by volume of N 2 , 20 to 30% by volume of CO, 20 to 30% by volume of CO 2 and 2 to 15% by volume of H 2 .
  • Around 30 to 40% of the blast-furnace top gas produced during the production of pig iron is generally used to heat the hot blast for the blast furnace process in blast furnaces; The remaining top gas can be used for example in other areas of the plant also externally for heating purposes or for power generation.
  • pig iron is converted to crude steel. Inflating oxygen to molten pig iron removes interfering contaminants such as carbon, silicon, sulfur and phosphorus.
  • a converter gas is withdrawn, which has a high content of CO and also contains nitrogen, hydrogen and C0 2 .
  • a typical converter gas composition has 50 to 70% by volume CO, 10 to 20% by volume N 2 , about 15% by volume C0 2 and about 2% by volume H 2 .
  • the converter gas is either flared or collected in modern steelworks and fed to an energetic use.
  • the plant network can optionally be operated in conjunction with a coking plant.
  • the plant network described above additionally comprises a coke oven plant, in which coal is converted into coke by a coking process.
  • the coking of coal to coke produces a coke oven gas which contains a high hydrogen content and considerable amounts of CH 4 .
  • coke oven gas contains 55 to 70 vol.% H 2 , 20 to 30 vol.% CH 4 , 5 to 10 vol.% N 2, and 5 to 10 vol.% CO.
  • the coke oven gas shares in C0 2 , NH 3 and H 2 S.
  • coke oven gas is used, for example, in various plant areas for heating purposes and in the power plant process for generating electricity.
  • coke oven gas together with blast furnace gas or with converter gas for the production of synthesis gas.
  • coke oven gas is separated into a hydrogen-rich gas stream and a residual gas stream containing CH 4 and CO, the residual gas stream being fed to the blast furnace process and the hydrogen-rich gas stream being mixed with blast-furnace top gas and further processed to a synthesis gas.
  • EP 0 200 880 A2 it is known to mix converter gas and coke oven gas and to use it as synthesis gas for a methanol synthesis.
  • the object of the invention is to improve the stability, process control and sustainability of the overall process, in particular the ecological conditions of the overall process and, in particular, to specify a plant network for steelmaking with which it is possible to ensure continuous and sustainable operation of plants ,
  • the subject of the invention is a plant for steel production with a blast furnace for pig iron production, a converter steelworks for crude steel production, a gas line system for gases produced in the production of pig iron and / or crude steel, connected to the gas line system chemical plant and / or biotechnology plant, the plant network additionally includes a connected to the gas line system biogas plant.
  • Another object of the invention is a method for operating a plant network comprising a blast furnace for pig iron production, a converter steelworks for crude steel production, a biogas plant for biogas production, a gas line system for gases resulting from pig iron production and / or crude steel production and / or biogas production and a chemical plant and / or a biotechnology plant, wherein at least a partial amount of biogas produced in the biogas plant and a subset of the costs incurred in the production of pig iron blast furnace blast furnace gas and / or a subset of the costs incurred in crude steel production converter gas as the working gas for the operation of Chemical plant and / or the biotechnology plant and / or the blast furnace for pig iron production and / or converter steelworks for crude steel production is used.
  • the present invention can be implemented in a plant network for steelmaking and in a method for operating a plant network.
  • the devices of the plant network can be present in a simple and / or multiple design.
  • the plant combination according to the invention for steel production has the advantages over conventional plant networks that by the connected to the gas line system fluctuations, in particular gas flows and / or gas compositions in the gas line system, in particular the gas supply can be compensated and the continuous operation of the system network can be stabilized.
  • biogas in particular also referred to as biomethane, a biologically produced from biomass gas, which in particular comprises a composition of methane and carbon dioxide and which enables sustainable operation of the plant network and in particular improves the ecological conditions of the overall process.
  • a biogas plant in the plant network according to the invention for example, the use of renewable energy from the power grid can be completely or partially reduced.
  • biogas provided by a biogas plant on the use of natural gas can be completely or partially omitted, which is no further burden of so-called green house gas emissions.
  • the method according to the invention for operating a plant network has the advantages that variations, in particular of gas flows and / or gas compositions, in the process can be better compensated for and a continuous operation of the method can be stabilized.
  • the inventive method allows the use of biogas, in particular also referred to as biomethane, a biologically produced from biomass gas, which in particular comprises a composition of methane and carbon dioxide and allows sustainable operation of the system network and improves in particular the ecological conditions of the overall process.
  • biogas in particular also referred to as biomethane
  • biomass gas which in particular comprises a composition of methane and carbon dioxide
  • the use of renewable energies from the power grid can be wholly or partly reduced.
  • biogas on the Use of natural gas to be omitted in whole or in part, which is no further burden of so-called green house gas emissions.
  • chemical products can be generated from the supplied gas flow rates, which each contain the components of the final product.
  • Chemical products may be, for example, ammonia or methanol or higher alcohols or else other hydrocarbon compounds.
  • the output, in particular the output of the chemical plant is regulated as a function of the gas quantities supplied to these plants.
  • a major challenge for the chemical plant is the dynamic driving with changing plant loads, the system of the invention / the inventive method for operating the system network allows stabilization of the driving style.
  • the mode of operation with changing plant loads can be realized, in particular, by the fact that the chemical plant has a plurality of small units connected in parallel, which are switched on or off individually depending on the available useful gas flow rate. For example, different chemical products can be produced in one or more units.
  • a gas mixture which contains nitrogen and hydrogen in the correct ratio.
  • the nitrogen can be obtained from blast furnace gas.
  • other sources of hydrogen in particular water electrolysis come into consideration.
  • hydrocarbon compounds for example methanol or higher alcohols
  • a gas mixture consisting essentially of CO and / or CO 2 and H 2 must be provided, which contains the components carbon monoxide and / or carbon dioxide and hydrogen in the correct ratio.
  • Blast furnace gas and / or converter gas and / or coke oven gas can be used as the hydrogen source, wherein additional hydrogen can be generated by conversion of the CO fraction through a water-gas shift reaction.
  • additional hydrogen can be generated by conversion of the CO fraction through a water-gas shift reaction.
  • other sources of hydrogen in particular water electrolysis come into consideration.
  • converter gas can be used.
  • blast furnace gas and / or converter gas can serve as C0 2 source.
  • biotechnology plant biochemical products can be generated from the supplied gas flow rates, which each contain the components of the final product.
  • Organic products may be, for example, alcohols (ethanol, butanol), acetone or organic acids.
  • a biotechnology plant is a fermentation plant, possibly also a photobiological plant.
  • a biogas plant is understood as meaning a plant which provides biogas from biomass.
  • biogas is produced by microbial degradation of organic matter, especially biomass under anoxic conditions.
  • Microorganisms convert the carbohydrates, proteins and fats contained in the biomass into the main products methane and carbon dioxide.
  • biomass are waste as well as renewable raw materials of any kind.
  • the biogas plant may additionally be preceded by a device for gas purification.
  • a plant for the production of hydrogen is understood to mean a plant which provides hydrogen.
  • a plant for hydrogen production may be a pyrolysis plant, a steam reforming plant, a partial oxidation plant, an autothermal reformer, a gasification plant, a water gas shift plant, or a combination thereof.
  • the biogas of a biogas plant can be used for hydrogen production.
  • the production of hydrogen can be carried out by electrolysis, preferably by electrolysis of water, wherein the electrolysis of water is expediently operated with electric power generated from renewable energy.
  • a plant for biosynthesis gas production is understood in the present invention, a plant which produces a synthesis gas from biogas.
  • a plant for biosynthesis gas production may be a steam reformer, a partial oxidation plant, an autothermal reformer, or a combination thereof.
  • a biosynthesis gas has a composition comprising hydrogen and CO and / or CO 2.
  • the plant network additionally comprises a coke oven plant connected to the gas line system.
  • the plant network additionally comprises at least one plant connected to the gas line system for the production of hydrogen.
  • the plant network additionally comprises a plant for biosynthesis gas production.
  • the plant network additionally comprises a power plant for power generation, wherein the power plant is designed as a gas turbine power plant or gas turbine and steam turbine power plant and is operated with a gas which is a subset of the resulting in pig iron production in the blast furnace blast furnace gas and / or a subset the converter gas obtained in the converter steelworks and / or a subset of the biogas produced in the biogas plant and / or a subset of the resulting in the coke oven coke oven gas and / or a subset of the biosynthetic gas production in the plant biosynthesis gas and / or a subset of the plant hydrogen produced to produce hydrogen.
  • the power plant is designed as a gas turbine power plant or gas turbine and steam turbine power plant and is operated with a gas which is a subset of the resulting in pig iron production in the blast furnace blast furnace gas and / or a subset the converter gas obtained in the converter steelworks and / or a subset of the biogas produced in the biogas plant and / or a subset
  • the power generated in the power plant can be supplied to individual and / or multiple devices of the plant network.
  • the distribution of the power generated can be done via power lines.
  • the gas line system comprises at least one operationally controllable gas distribution device for dividing the chemical plant and / or the biotechnology plant and / or the plant for hydrogen production and / or the power plant and / or coke oven plant and / or blast furnace and / or Converter steel plant and / or the plant for biosynthesis gas generation supplied gas flow rates.
  • an operationally controllable gas distribution device is an operationally controllable gas switch for the distribution of gas flow rates.
  • the gas line system in the flow direction in front of the at least one controllable gas distribution device at least one mixing device for producing a blast furnace gas and / or converter gas and / or biogas and / or coke oven gas and / or hydrogen and / or oxygen and / or biosynthesis gas existing mixed gas and are by means of the operationally controllable gas distribution device that of the chemical plant and / or the biotechnology plant and / or the plant for hydrogen production and / or the power plant and / or the coke oven plant and / or the blast furnace and / or the converter steelworks and / or the plant Controlled for the production of biosynthetic gas gas flow rates.
  • a mixing device in the context of the present invention is understood to mean a device which mixes gases and / or fluids with one another.
  • a mixing device may be selected from a group of a venturi nozzle, a mixing vessel, a mixing station, a static mixer, an ejector, a pipe tee, or a combination thereof.
  • the system network additionally has an energy store to cover at least part of the power requirement of the system network.
  • the energy store can also be designed as a gas store, in particular with a device for converting stored gas into electricity.
  • the plant network additionally has a plant for gas purification and / or gas conditioning.
  • a plant for gas purification is understood to mean a plant which at least partially separates off those constituents of a gas which could have unfavorable effects, in particular on the efficiency, in downstream process steps.
  • gas cleaning is understood as meaning a one-stage or multi-stage purification, in particular by mechanical sorting methods such as a separation selected from a group of density, particle size, particle inertness, surface wettability, magnetizability, electrical mobility, absorptive processes, catalytic processes or a combination thereof ,
  • Gas conditioning in the context of the present invention is understood to be the setting of gas compositions and / or physical gas properties.
  • the gas conditioning for example, a pressure swing adsorption for the separation and enrichment of H 2 and / or a water-gas shift reaction for converting CO and H 2 0 in H 2 and C0 2 and / or a steam reformer for conversion of CH 4 Share in CO and hydrogen, especially in coke oven gas.
  • the setting of a preferred gas pressure can be done with a compressor.
  • a temperature setting can be carried out, for example, in a thermal step.
  • the plant network additionally comprises a coke oven plant connected to the gas line system, wherein at least a subset of the blast furnace top gas produced in the blast furnace in the blast furnace and / or a subset of the in the crude steel production accumulating converter gas and / or a subset of biogas produced in the biogas plant and / or a subset of the resulting in the coke in the coke oven coke oven gas as a useful gas for operating the chemical plant and / or the biotechnology plant and / or the blast furnace for hot metal production and / or the converter steelworks for crude steel production and / or the coke oven plant is used.
  • the plant network additionally comprises a system for producing hydrogen connected to the gas line system, wherein at least a subset of the blast furnace gas produced in the blast furnace in the blast furnace and / or a subset of the converter gas resulting from the crude steel production and / or a subset of the biogas produced at the biogas plant and / or a subset of the resulting coke in the coke oven coke oven gas and / or a subset of the resulting hydrogen in the plant hydrogen production as a useful gas for operating the chemical plant and / or the biotechnology plant and / or Blast furnace for pig iron production and / or the converter steelworks for crude steel production and / or coke oven plant and / or the plant is used for hydrogen production.
  • the plant network additionally comprises a system for biosynthesis gas production connected to the gas line system, wherein at least a subset of the blast furnace gas produced in the blast furnace in the blast furnace and / or a subset of the converter gas resulting from the crude steel production and / or a subset of the biogas produced at the biogas plant and / or a subset of the resulting coke in the coke oven coke oven gas and / or a subset of the resulting hydrogen in the plant hydrogen production and / or a subset of the resulting biosynthesis gas biosynthesis plant as a useful gas for the operation of the chemical plant and / or the biotechnology plant and / or the blast furnace for the production of pig iron and / or the converter steelworks for crude steel production and / or the coke oven plant and / or the plant r hydrogen production and / or the plant is used for biosynthesis gas production.
  • the plant network additionally comprises a power plant connected to the gas line system, wherein at least a subset of the blast furnace gas produced in the blast furnace in the blast furnace and / or a subset of the converter gas and / or a subset of crude steel production of biogas produced at the biogas plant and / or a subset of the coke in the Koksofengases resulting coke oven plant and / or a subset of the resulting in the plant for hydrogen production hydrogen and / or a subset of the biosynthesis gas generation plant biosynthesis gas as a useful gas for operating the chemical plant and / or the biotechnology plant and / or blast furnace for pig iron production and / or the converter steelworks for crude steel production and / or the coke oven plant and / or the plant for hydrogen production and / or the plant for biosynthesis gas production and / or the power plant is used.
  • the plant network additionally comprises a system for gas purification and / or gas conditioning connected to the gas line system, wherein at least a subset of the blast furnace top gas produced during the production of pig iron in the blast furnace and / or a subset of that resulting from crude steel production Converter gas and / or a partial amount of biogas produced in the biogas plant and / or a subset of the coke in the coke oven coke oven gas and / or a subset of the resulting hydrogen in the plant hydrogen production and / or a subset of the plant for biosynthesis gas production purified biosynthesis gas is purified and / or conditioned.
  • a system for gas purification and / or gas conditioning connected to the gas line system, wherein at least a subset of the blast furnace top gas produced during the production of pig iron in the blast furnace and / or a subset of that resulting from crude steel production Converter gas and / or a partial amount of biogas produced in the biogas plant and / or a subset of the coke in the co
  • Fig. 1 is a highly simplified block diagram of a plant network according to the invention for steel production.
  • a biogas plant 6 and a chemical plant 4 and / or a biotechnology plant 5 is connected.
  • a coke oven plant 7 and / or a plant for hydrogen production 8 and / or a plant for biosynthesis gas production 9 are connected to the gas line system 3.
  • the plant network additionally has a power plant 10, which is designed as a gas turbine power plant or gas turbine and steam turbine power plant.
  • the electrical power generated by the power plant 10 may be via a dotted line represented power line network 16 are distributed to individual and / or multiple devices of the system network.
  • the gas line system 3 comprises an operationally controllable gas distribution device 11 for dividing the chemical plant 4 and / or the biotechnology plant 5 and / or the plant for hydrogen production 8 and / or the power plant 10 and / or the coke oven plant 7 and / or the plant for biosynthetic gas production 9 supplied gas flow rates.
  • At least one mixing device 12 for producing a blast furnace gas and / or converter gas and / or biogas and / or coke oven gas and / or hydrogen and / or oxygen and / or biosynthesis gas existing mixed gas is arranged and by means of Operationally controllable gas distribution device 11 of the chemical plant 4 and / or the biotechnology plant 5 and / or the plant for hydrogen production 8 and / or the power plant 10 and / or the coke oven plant 7 and / or the plant for biosynthesis gas generation 9 supplied gas flow rates are controllable.
  • the system network additionally has an energy store 13 to cover at least part of the power requirement of the system network.
  • a plant for gas conditioning 15 and / or gas cleaning 14 is arranged in the plant network.
  • the optional devices of the system network are shown in dashed lines.
  • Plant composite for steelmaking and a method for operating a plant network of the type described above can be used in the production of steel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Manufacture Of Iron (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

Die vorliegende Erfindung betrifft einen Anlagenverbund zur Stahlerzeugung mit einem Hochofen (1) zur Roheisenerzeugung, einem Konverterstahlwerk (2) zur Rohstahlerzeugung, einem Gasleitungssystem (3) für Gase, die bei der Roheisenerzeugung und/oder der Rohstahlerzeugung anfallen, eine an das Gasleitungssystem angeschlossene Chemieanlage (4) und/oder Biotechnologieanlage (5), wobei der Anlagenverbund zusätzlich eine an das Gasleitungssystem angeschlossene Biogasanlage (6) umfasst.

Description

Anlagenverbund zur Stahlerzeugung sowie ein Verfahren zum Betreiben des
Anlagenverbundes
Die Erfindung betrifft einen Anlagenverbund zur Stahlerzeugung sowie ein Verfahren zum Betreiben des Anlagenverbundes.
Stand der Technik
Der Anlagenverbund zur Stahlerzeugung umfasst einen Hochofen zur Roheisenerzeugung, ein Konverterstahlwerk zur Rohstahlerzeugung, ein Gasleitungssystem für Gase, die bei der Roheisenerzeugung und/oder der Rohstahlerzeugung anfallen, sowie eine an das Gasleitungssystem angeschlossene Chemieanlage und/oder Biotechnologieanlage.
In der Chemieanlage können chemische Produkte aus den zugeführten Gasmengenströmen erzeugt werden, welche jeweils die Komponenten des Endproduktes enthalten. In der Biotechnologieanlage können biochemische Produkte aus den zugeführten Gasmengenströmen erzeugt werden, welche jeweils die Komponenten des Endproduktes enthalten.
Im Hochofen wird aus Eisenerzen, Zuschlägen sowie Koks und anderen Reduktionsmitteln wie Kohle, Öl, Gas, Biomassen, aufbereiteten Altkunststoffen oder sonstigen Kohlenstoff und/oder Wasserstoff enthaltenden Stoffen Roheisen gewonnen. Als Produkte der Reduktionsreaktionen entstehen zwangsläufig CO, C02, und insbesondere Wasserstoff und Wasserdampf. Ein aus dem Hochofenprozess abgezogenes Hochofengichtgas, welches auch als Gichtgas und/oder Hochofengas bezeichnet wird, weist neben den vorgenannten Bestandteilen häufig einen hohen Gehalt an Stickstoff auf und kann auch Verunreinigungen enthalten. Die Gasmenge und die Zusammensetzung des Hochofengichtgases sind abhängig von den Einsatzstoffen und der Betriebsweise und unterliegen Schwankungen. Typischerweise enthält Hochofengichtgas jedoch 35 bis 60 Vol.-% N2, 20 bis 30 Vol.-% CO, 20 bis 30 Vol.-% C02 und 2 bis 15 Vol.-% H2. Rund 30 bis 40% des bei der Roheisenerzeugung entstehenden Hochofengichtgases werden im Regelfall zum Aufheizen des Heißwindes für den Hochofenprozess in Winderhitzern eingesetzt; die verbleibende Gichtgasmenge kann beispielsweise in anderen Werksbereichen auch extern zu Heizzwecken oder zur Stromerzeugung genutzt werden. Im Konverterstahlwerk, das dem Hochofenprozess nachgeschaltet ist, wird Roheisen zu Rohstahl umgewandelt. Durch Aufblasen von Sauerstoff auf flüssiges Roheisen werden störende Verunreinigungen wie Kohlenstoff, Silizium, Schwefel und Phosphor entfernt. Da die Oxidationsprozesse eine starke Wärmeentwicklung verursachen, wird häufig Schrott in Mengen bis zu 25% bezogen auf das Roheisen als Kühlmittel zugesetzt. Ferner werden Kalk zur Schlackenbildung und Legierungsmittel zugegeben. Aus dem Stahlkonverter wird ein Konvertergas abgezogen, welches einen hohen Gehalt an CO aufweist und ferner Stickstoff, Wasserstoff und C02 enthält. Eine typische Konvertergaszusammensetzung weist 50 bis 70 Vol.- % CO, 10 bis 20 Vol.-% N2, ca. 15 Vol.-% C02 und ca. 2 Vol.-% H2 auf. Das Konvertergas wird entweder abgefackelt oder bei modernen Stahlwerken aufgefangen und einer energetischen Nutzung zugeführt.
Der Anlagenverbund kann optional im Verbund mit einer Kokerei betrieben werden. In diesem Fall umfasst der eingangs beschriebene Anlagenverbund zusätzlich eine Koksofenanlage, in der Kohle durch einen Verkokungsprozess in Koks umgewandelt wird. Bei der Verkokung von Kohle zu Koks fällt ein Koksofengas an, welches einen hohen Wasserstoffgehalt und beachtliche Mengen an CH4 enthält. Typischerweise enthält Koksofengas 55 bis 70 Vol.-% H2, 20 bis 30 Vol.-% CH4, 5 bis 10 Vol.-% N2 und 5 bis 10 Vol.-% CO. Zusätzlich weist das Koksofengas Anteile von C02, NH3 und H2S auf. In der Praxis wird das Koksofengas beispielsweise in verschiedenen Werksbereichen zu Heizzwecken und im Kraftwerksprozess zur Stromerzeugung genutzt. Darüber hinaus ist es bekannt, Koksofengas zusammen mit Hochofengichtgas oder mit Konvertergas zur Erzeugung von Synthesegasen zu verwenden. Gemäß einem aus WO 2010/136313 Al bekannten Verfahren wird Koksofengas aufgetrennt in einen wasserstoffreichen Gasstrom und einen CH4 und CO enthaltenen Restgasstrom, wobei der Restgasstrom dem Hochofenprozess zugeführt wird und der wasserstoffreiche Gasstrom mit Hochofengichtgas gemischt und zu einem Synthesegas weiterverarbeitet wird. Aus EP 0 200 880 A2 ist es bekannt, Konvertergas und Koksofengas zu mischen und als Synthesegas für eine Methanolsynthese zu nutzen.
In einem integrierten Hüttenwerk, welches im Verbund mit einer Kokerei betrieben wird, werden etwa 40 bis 50% der als Hochofengichtgas, Konvertergas und Koksofengas anfallenden Rohgase für verfahrenstechnische Prozesse eingesetzt. Etwa 50 bis 60 % der entstehenden Gase werden dem Kraftwerk zugeführt und zur Stromerzeugung genutzt. Der im Kraftwerk erzeugte Strom deckt den Strombedarf für die Roheisen- und Rohstahlerzeugung. Im Idealfall ist die Energiebilanz geschlossen, so dass abgesehen von Eisenerzen und Kohlenstoff in Form von Kohle und Koks als Energieträger kein weiterer Eintrag von Energie notwendig ist und außer Rohstahl und Schlacke kein Produkt den Anlagenverbund verlässt.
Problematisch im Stand der Technik sind Schwankungen in dem Gasleitungssystem, insbesondere der Gasversorgung, was den Betrieb von an das Gasleitungssystem angeschlossenen Chemieanlagen und/oder Biotechnologieanlagen beeinflusst.
Vor diesem Hintergrund liegt der Erfindung die Aufgabe zugrunde, die Stabilität, Prozessführung und Nachhaltigkeit des Gesamtprozesses, insbesondere die ökologischen Bedingungen des Gesamtprozesses zu verbessern und insbesondere einen Anlagenverbund zur Stahlerzeugung anzugeben, mit dem es möglich ist, einen kontinuierlichen und nachhaltigen Betrieb von Anlagen zu gewährleisten.
Offenbarung der Erfindung
Diese Aufgabe wird mit einem Anlagenverbund zur Stahlerzeugung nach Anspruch 1 und einem Verfahren zum Betreiben eines Anlagenverbundes nach Anspruch 10 gelöst.
Der Gegenstand der Erfindung ist ein Anlagenverbund zur Stahlerzeugung mit einem Hochofen zur Roheisenerzeugung, einem Konverterstahlwerk zur Rohstahlerzeugung, einem Gasleitungssystem für Gase, die bei der Roheisenerzeugung und/oder der Rohstahlerzeugung anfallen, eine an das Gasleitungssystem angeschlossene Chemieanlage und/oder Biotechnologieanlage, wobei der Anlagenverbund zusätzlich eine an das Gasleitungssystem angeschlossene Biogasanlage umfasst.
Ein weiterer Gegenstand der Erfindung ist ein Verfahren zum Betreiben eines Anlagenverbundes, der einen Hochofen zur Roheisenerzeugung, ein Konverterstahlwerk zur Rohstahlerzeugung, eine Biogasanlage zur Biogaserzeugung, ein Gasleitungssystem für Gase, die bei der Roheisenerzeugung und/oder der Rohstahlerzeugung und/oder der Biogaserzeugung anfallen und eine Chemieanlage und/oder eine Biotechnologieanlage aufweist, wobei zumindest eine Teilmenge des bei der Biogasanlage anfallenden Biogases und eine Teilmenge des bei der Roheisenerzeugung im Hochofen anfallenden Hochofengichtgases und/oder eine Teilmenge des bei der Rohstahlerzeugung anfallenden Konvertergases als Nutzgas zum Betrieb der Chemieanlage und/oder der Biotechnologieanlage und/oder des Hochofens zur Roheisenerzeugung und/oder des Konverterstahlwerks zur Rohstahlerzeugung verwendet wird.
Die vorliegende Erfindung kann in einem Anlagenverbund zur Stahlerzeugung sowie in einem Verfahren zum Betreiben eines Anlagenverbundes verwirklicht sein. Die Vorrichtungen des Anlagenverbundes können in einfacher und/oder mehrfacher Ausführung vorhanden sein.
Der erfindungsgemäße Anlagenverbund zur Stahlerzeugung weist gegenüber konventionellen Anlagenverbunden die Vorteile auf, dass durch die an das Gasleitungssystem angeschlossene Biogasanlage Schwankungen, insbesondere von Gasdurchflüssen und/oder Gaszusammensetzungen im Gasleitungssystem, insbesondere der Gasversorgung ausgeglichen werden können und der kontinuierliche Betrieb des Anlagenverbundes stabilisiert werden kann. Zudem ist Biogas, insbesondere auch als Biomethan bezeichnet, ein auf biologische Weise aus Biomasse hergestelltes Gas, welches insbesondere eine Zusammensetzung aus Methan und Kohlenstoffdioxid umfasst und welches einen nachhaltigen Betrieb des Anlagenverbundes ermöglicht und insbesondere die ökologischen Bedingungen des Gesamtprozesses verbessert. Mit einer Biogasanlage in dem erfindungsgemäßen Anlagenverbund kann beispielsweise der Einsatz von erneuerbaren Energien aus dem Stromnetz ganz oder teilweise reduziert werden. Auch kann das in durch eine Biogasanlage bereitgestellte Biogas auf den Einsatz von Erdgas ganz oder teilweise verzichtet werden, womit keine weitere Belastung mit sogenannten Green House Gas-Emissionen erfolgt.
Das erfindungsgemäße Verfahren zum Betreiben eines Anlagenverbundes weist gegenüber konventionellen Verfahren die Vorteile auf, dass Schwankungen, insbesondere von Gasdurchflüssen und/oder Gaszusammensetzungen im Verfahren besser ausgeglichen werden können und ein kontinuierlicher Betrieb des Verfahrens stabilisiert werden kann. Zudem ermöglicht das erfindungsgemäße Verfahren den Einsatz von Biogas, insbesondere auch als Biomethan bezeichnet, ein auf biologische Weise aus Biomasse hergestelltes Gas, welches insbesondere eine Zusammensetzung aus Methan und Kohlenstoffdioxid umfasst und einen nachhaltigen Betrieb des Anlagenverbundes ermöglicht und verbessert insbesondere die ökologischen Bedingungen des Gesamtprozesses. Beispielsweise kann mit dem erfindungsgemäßen Verfahren zum Betreiben eines Anlagenverbundes mit einer Biogasanlage der Einsatz von erneuerbaren Energien aus dem Stromnetz ganz oder teilweise reduziert werden. Auch kann durch das in dem erfindungsgemäßen Verfahren bereitgestellte Biogas auf den Einsatz von Erdgas ganz oder teilweise verzichtet werden, womit keine weitere Belastung mit sogenannten Green House Gas-Emissionen erfolgt.
Detaillierte Beschreibung der Erfindung
In der Chemieanlage können chemische Produkte aus den zugeführten Gasmengenströmen erzeugt werden, welche jeweils die Komponenten des Endproduktes enthalten. Chemische Produkte können beispielsweise Ammoniak oder Methanol oder höhere Alkohole oder auch andere Kohlenwasserstoffverbindungen sein. Die Leistung, insbesondere der Output der Chemieanlage wird in Abhängigkeit der diesen Anlagen zugeführten Gasmengen geregelt. Eine wesentliche Herausforderung für die Chemieanlage ist die dynamische Fahrweise bei wechselnden Anlagenlasten, wobei der erfindungsgemäße Anlagenverbund/das erfindungsgemäße Verfahren zum Betreiben des Anlagenverbundes eine Stabilisierung der Fahrweise ermöglicht. Die Betriebsweise bei wechselnden Anlagenlasten kann insbesondere dadurch realisiert werden, dass die Chemieanlage eine Mehrzahl parallel geschalteter kleiner Einheiten aufweist, die je nach zur Verfügung stehenden Nutzgasmengenstrom einzeln zu- oder abgeschaltet werden. Beispielsweise können in einer oder mehreren Einheiten auch unterschiedliche chemische Produkte hergestellt werden.
Zur Herstellung von Ammoniak muss ein Gasgemisch bereitgestellt werden, welches Stickstoff und Wasserstoff im richtigen Verhältnis enthält. Der Stickstoff kann aus Hochofengichtgas gewonnen werden. Als Wasserstoffquelle kann Hochofengichtgas und/oder Konvertergas und/oder Koksofengas verwendet werden, wobei zusätzlicher Wasserstoff durch Konvertierung des CO-Anteils durch eine Wasser-Gas-Shift-Reaktion (CO + H20 <=> C02 + H2) erzeugt, insbesondere erhöht werden kann. Beispielsweise kommen auch weitere Wasserstoffquellen, insbesondere Wasserelektrolyse in Betracht. Zur Herstellung von Kohlenwasserstoffverbindungen, beispielsweise Methanol oder höheren Alkoholen, muss ein im Wesentlichen aus CO und/oder C02 und H2 bestehendes Gasgemisch bereitgestellt werden, welches die Komponenten Kohlenmonoxid und/oder Kohlenstoffdioxid und Wasserstoff im richtigen Verhältnis enthält. Als Wasserstoffquelle kann Hochofengichtgas und/oder Konvertergas und/oder Koksofengas verwendet werden, wobei zusätzlicher Wasserstoff durch Konvertierung des CO-Anteils durch eine Wasser-Gas-Shift-Reaktion erzeugt werden kann. Beispielsweise kommen auch weitere Wasserstoffquellen, insbesondere die Wasserelektrolyse in Betracht. Zur Bereitstellung von CO kann beispielsweise Konvertergas herangezogen werden. Als C02-Quelle kann beispielsweise Hochofengichtgas und/oder Konvertergas dienen. In der Biotechnologieanlage können biochemische Produkte aus den zugeführten Gasmengenströmen erzeugt werden, welche jeweils die Komponenten des Endproduktes enthalten. Biologische Produkte können beispielsweise Alkohole (Ethanol, Butanol), Aceton oder organische Säuren sein. Insbesondere ist eine Biotechnologieanlage eine Fermentationsanlage ggf. auch ein Photobiologische Anlage.
Unter einer Biogasanlage wird im Rahmen der vorliegenden Erfindung eine Anlage verstanden, welche aus Biomasse Biogas bereitstellt. Beispielsweise wird Biogas durch mikrobiellen Abbau organischer Stoffe, insbesondere von Biomasse unter anoxischen Bedingungen hergestellt. Hierbei setzen Mikroorganismen die in der Biomasse enthaltenen Kohlenhydrate, Eiweiße und Fette in die Hauptprodukte Methan und Kohlenstoffdioxid um. Beispiele für Biomasse sind Abfälle als auch nachwachsende Rohstoffe jeder Art. Beispielsweise kann eine Biogasanlage auch eine Speichervorrichtung, insbesondere Transportleitung für Biogas sein. Insbesondere kann der Biogasanlage zusätzlich auch eine Vorrichtung zur Gasreinigung vorgeschaltet sein.
Im Rahmen der vorliegenden Erfindung wird unter einer Anlage zur Wasserstofferzeugung eine Anlage verstanden, welche Wasserstoff bereitstellt. Beispielsweise kann eine Anlage zur Wasserstofferzeugung eine Pyrolyseanlage, eine Dampfreformierungsanlage, eine Anlage zur Partiellen Oxidation, ein Autothermer Reformer, eine Vergasungsanlage, eine Wassergas-Shift- Anlage, oder einer Kombination hiervon sein. Beispielsweise kann auch das Biogas einer Biogasanlage zur Wasserstofferzeugung eingesetzt werden. Insbesondere kann die Wasserstofferzeugung durch Elektrolyse, vorzugsweise durch Wasserelektrolyse erfolgen, wobei die Wasserelektrolyse zweckmäßig mit elektrischem Strom betrieben wird, der aus erneuerbarer Energie erzeugt wurde.
Unter einer Anlage zur Biosynthesegaserzeugung wird in der vorliegenden Erfindung eine Anlage verstanden, welche aus Biogas ein Synthesegas herstellt. Beispielsweise kann eine Anlage zur Biosynthesegaserzeugung eine Dampfreformierungsanlage, eine Anlage zur Partiellen Oxidation ein Autothermer Reformer oder eine Kombination hiervon sein. Insbesondere weist ein Biosynthesegas eine Zusammensetzung auf, welche Wasserstoff und CO und/oder C02 umfasst. Insbesondere besteht die Möglichkeit zur Stabilisierung der Biosynthesegasanlage durch Zuführung von aus Koksofengas erhaltenen Methan unter der Voraussetzung, dass Koksofengas und erneuerbare Energie in ausreichender Menge bereitgestellt sind.
Nach einer weiteren Ausführungsform der Erfindung umfasst der Anlagenverbund zusätzlich eine an das Gasleitungssystem angeschlossene Koksofenanlage. In einer weiteren Ausführungsform der Erfindung umfasst der Anlagenverbund zusätzlich mindestens eine an das Gasleitungssystem angeschlossene Anlage zur Wasserstofferzeugung.
Gemäß einer weiteren Ausführungsform der Erfindung umfasst der Anlagenverbund zusätzlich eine Anlage zur Biosynthesegaserzeugung.
Nach einer weiteren Ausführungsform der Erfindung umfasst der Anlagenverbund zusätzlich ein Kraftwerk zur Stromerzeugung, wobei das Kraftwerk als Gasturbinenkraftwerk oder Gasturbinen- und Dampfturbinenkraftwerk ausgelegt ist und mit einem Gas betrieben wird, welches eine Teilmenge des bei der Roheisenerzeugung im Hochofen anfallenden Hochofengichtgases und/oder eine Teilmenge des in dem Konverterstahlwerk anfallenden Konvertergases und/oder eine Teilmenge des in der Biogasanlage anfallenden Biogases und/oder eine Teilmenge des in der Koksofenanlage anfallenden Koksofengases und/oder eine Teilmenge des in der Anlage zur Biosynthesegaserzeugung anfallenden Biosynthesegases und/oder eine Teilmenge des in der Anlage zur Wasserstofferzeugung anfallenden Wasserstoffs umfasst.
Beispielsweise kann der in dem Kraftwerk erzeugte Strom einzelnen und/oder mehreren Vorrichtungen des Anlagenverbundes zugeführt werden. Insbesondere kann die Verteilung des erzeugten Stromes über Stromleitungen erfolgen.
In einer weiteren Ausführungsform der Erfindung umfasst das Gasleitungssystem mindestens eine betrieblich steuerbare Gasverteilungsvorrichtung zur Aufteilung der der Chemieanlage und/oder der Biotechnologieanlage und/oder der Anlage zur Wasserstofferzeugung und/oder dem Kraftwerk und/oder der Koksofenanlage und/oder dem Hochofen und/oder dem Konverterstahlwerk und/oder der Anlage zur Biosynthesegaserzeugung zugeführten Gasmengenströme. Insbesondere ist eine betrieblich steuerbare Gasverteilungsvorrichtung eine betrieblich steuerbare Gasweiche zur Aufteilung von Gasmengenströmen.
Gemäß einer weiteren Ausführungsform der Erfindung weist das Gasleitungssystem in Strömungsrichtung vor der mindestens einen betrieblich steuerbaren Gasverteilungsvorrichtung mindestens eine Mischvorrichtung zur Herstellung eines aus Hochofengichtgas und/oder Konvertergas und/oder Biogas und/oder Koksofengas und/oder Wasserstoff und/oder Sauerstoff und/oder Biosynthesegas bestehenden Mischgases auf und sind mittels der betrieblich steuerbaren Gasverteilungsvorrichtung die der Chemieanlage und/oder der Biotechnologieanlage und/oder der Anlage zur Wasserstofferzeugung und/oder dem Kraftwerk und/oder der Koksofenanlage und/oder dem Hochofen und/oder dem Konverterstahlwerk und/oder der Anlage zur Biosynthesegaserzeugung zugeführten Gasmengenströme steuerbar. Im Rahmen der vorliegenden Erfindung wird unter einer Mischvorrichtung im Rahmen der vorliegenden Erfindung eine Vorrichtung verstanden, welche Gase und/oder Fluide miteinander mischt. Insbesondere kann eine Mischvorrichtung ausgewählt sein aus einer Gruppe von einer Venturidüse, einem Mischbehälter, einer Mixing Station, einem statischen Mischer, einem Ejektor, einem Rohrleitungs-T-Stück oder einer Kombination hiervon.
In einer weiteren Ausführungsform der Erfindung weist der Anlagenverbund zusätzlich einen Energiespeicher zur Deckung zumindest eines Teils des Strombedarfs des Anlagenverbundes auf. Beispielsweise kann der Energiespeicher auch als ein Gasspeicher ausgebildet, insbesondere mit einer Vorrichtung zur Umwandlung von gespeichertem Gas in Strom, sein.
Nach einer weiteren Ausführungsform der Erfindung weist der Anlagenverbund zusätzlich eine Anlage zur Gasreinigung und/oder Gaskonditionierung auf.
Im Rahmen der vorliegenden Erfindung wird unter einer Anlage zur Gasreinigung eine Anlage verstanden, welche diejenigen Bestandteile eines Gases wenigstens teilweise abtrennt, welche sich unvorteilhaft, insbesondere den Wirkungsgrad betreffend in nachgeordneten Prozessschritten auswirken könnten. Insbesondere wird unter einer Gasreinigung eine ein- oder mehrstufige Reinigung, insbesondere durch mechanische Sortierverfahren wie beispielsweise einer Trennung ausgewählt aus einer Gruppe von Dichte, Partikelgröße, Partikelträgheit, Oberflächenbenetzbarkeit, Magnetisierbarkeit, elektrischer Beweglichkeit, durch absorptive Verfahren, durch katalytische Prozesse oder einer Kombination hiervon verstanden.
Unter einer Gaskonditionierung im Rahmen der vorliegenden Erfindung wird die Einstellung von Gaszusammensetzungen und/oder von physikalischen Gaseigenschaften verstanden. Beispielsweise wird im Rahmen der Gaskonditionierung der Anteil der Komponenten CO, C02, H2 innerhalb der Gasströme verändert. Die Gaskonditionierung umfasst beispielsweise eine Druckwechseladsorption zur Abtrennung und Anreicherung von H2 und/oder eine Wasser-Gas- Shift-Reaktion zur Umwandlung von CO und H20 in H2 und C02 und/oder einen Steam-Reformer zur Umwandlung des CH4-Anteils in CO und Wasserstoff, insbesondere im Koksofengas. Insbesondere kann die Einstellung eines bevorzugten Gasdruckes mit einem Kompressor erfolgen. Eine Temperatureinstellung kann beispielsweise in einen thermischen Schritt durchgeführt werden.
Gemäß einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens zum Betreiben eines Anlagenverbundes umfasst der Anlagenverbund zusätzlich eine an das Gasleitungssystem angeschlossene Koksofenanlage, wobei zumindest eine Teilmenge des bei der Roheisenerzeugung im Hochofen anfallenden Hochofengichtgases und/oder eine Teilmenge des bei der Rohstahlerzeugung anfallenden Konvertergases und/oder eine Teilmenge des bei der Biogasanlage anfallenden Biogases und/oder eine Teilmenge des bei der Kokserzeugung in der Koksofenanlage anfallenden Koksofengases als Nutzgas zum Betrieb der Chemieanlage und/oder der Biotechnologieanlage und/oder des Hochofens zur Roheisenerzeugung und/oder des Konverterstahlwerks zur Rohstahlerzeugung und/oder der Koksofenanlage verwendet wird.
In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens zum Betreiben eines Anlagenverbundes umfasst der Anlagenverbund zusätzlich eine an das Gasleitungssystem angeschlossene Anlage zur Wasserstofferzeugung, wobei zumindest eine Teilmenge des bei der Roheisenerzeugung im Hochofen anfallenden Hochofengichtgases und/oder eine Teilmenge des bei der Rohstahlerzeugung anfallenden Konvertergases und/oder eine Teilmenge des bei der Biogasanlage anfallenden Biogases und/oder eine Teilmenge des bei der Kokserzeugung in der Koksofenanlage anfallenden Koksofengases und/oder eine Teilmenge des bei der Anlage zur Wasserstofferzeugung anfallenden Wasserstoffs als Nutzgas zum Betrieb der Chemieanlage und/oder der Biotechnologieanlage und/oder des Hochofens zur Roheisenerzeugung und/oder des Konverterstahlwerks zur Rohstahlerzeugung und/oder der Koksofenanlage und/oder der Anlage zur Wasserstofferzeugung verwendet wird.
Nach einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens zum Betreiben eines Anlagenverbundes umfasst der Anlagenverbund zusätzlich eine an das Gasleitungssystem angeschlossene Anlage zur Biosynthesegaserzeugung, wobei zumindest eine Teilmenge des bei der Roheisenerzeugung im Hochofen anfallenden Hochofengichtgases und/oder eine Teilmenge des bei der Rohstahlerzeugung anfallenden Konvertergases und/oder eine Teilmenge des bei der Biogasanlage anfallenden Biogases und/oder eine Teilmenge des bei der Kokserzeugung in der Koksofenanlage anfallenden Koksofengases und/oder eine Teilmenge des bei der Anlage zur Wasserstofferzeugung anfallenden Wasserstoffs und/oder eine Teilmenge des bei der Anlage zur Biosynthesegaserzeugung anfallenden Biosynthesegases als Nutzgas zum Betrieb der Chemieanlage und/oder der Biotechnologieanlage und/oder des Hochofens zur Roheisenerzeugung und/oder des Konverterstahlwerks zur Rohstahlerzeugung und/oder der Koksofenanlage und/oder der Anlage zur Wasserstofferzeugung und/oder der Anlage zur Biosynthesegaserzeugung verwendet wird.
Nach einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens zum Betreiben eines Anlagenverbundes umfasst der Anlagenverbund zusätzlich ein an das Gasleitungssystem angeschlossenes Kraftwerk, wobei zumindest eine Teilmenge des bei der Roheisenerzeugung im Hochofen anfallenden Hochofengichtgases und/oder eine Teilmenge des bei der Rohstahlerzeugung anfallenden Konvertergases und/oder eine Teilmenge des bei der Biogasanlage anfallenden Biogases und/oder eine Teilmenge des bei der Kokserzeugung in der Koksofenanlage anfallenden Koksofengases und/oder eine Teilmenge des bei der Anlage zur Wasserstofferzeugung anfallenden Wasserstoffs und/oder eine Teilmenge des bei der Anlage zur Biosynthesegaserzeugung anfallenden Biosynthesegases als Nutzgas zum Betrieb der Chemieanlage und/oder der Biotechnologieanlage und/oder des Hochofens zur Roheisenerzeugung und/oder des Konverterstahlwerks zur Rohstahlerzeugung und/oder der Koksofenanlage und/oder der Anlage zur Wasserstofferzeugung und/oder der Anlage zur Biosynthesegaserzeugung und/oder dem Kraftwerk verwendet wird.
In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens zum Betreiben eines Anlagenverbundes umfasst der Anlagenverbund zusätzlich eine an das Gasleitungssystem angeschlossene Anlage zur Gasreinigung und/oder Gaskonditionierung, wobei zumindest eine Teilmenge des bei der Roheisenerzeugung im Hochofen anfallenden Hochofengichtgases und/oder eine Teilmenge des bei der Rohstahlerzeugung anfallenden Konvertergases und/oder eine Teilmenge des bei der Biogasanlage anfallenden Biogases und/oder eine Teilmenge des bei der Kokserzeugung in der Koksofenanlage anfallenden Koksofengases und/oder eine Teilmenge des bei der Anlage zur Wasserstofferzeugung anfallenden Wasserstoffs und/oder eine Teilmenge des bei der Anlage zur Biosynthesegaserzeugung anfallenden Biosynthesegases gereinigt und/oder konditioniert wird.
Kurze Beschreibung der Zeichnungen
Im Folgenden wird die Erfindung anhand einer lediglich ein Ausführungsbeispiel darstellenden Zeichnung erläutert. Es zeigen schematisch
Fig. 1 ein stark vereinfachtes Blockschaltbild eines erfindungsgemäßen Anlagenverbundes zur Stahlerzeugung.
In der Fig. 1 ist gemäß einer Ausführungsform der Erfindung ein Anlagenverbund zur Stahlerzeugung mit einem Hochofen 1 zur Roheisenerzeugung, einem Konverterstahlwerk 2 zur Rohstahlerzeugung und einem mit durchgezogenen Linien dargestelltes Gasleitungssystem 3 für Gase, die bei der Roheisenerzeugung und/oder der Rohstahlerzeugung anfallen, dargestellt. An dem Gasleitungssystem 3 ist eine Biogasanlage 6 und eine Chemieanlage 4 und/oder ein Biotechnologieanlage 5 angeschlossen. Zusätzlich ist eine Koksofenanlage 7 und/oder eine Anlage zur Wasserstofferzeugung 8 und/oder eine Anlage zur Biosynthesegaserzeugung 9 an das Gasleitungssystem 3 angeschlossen. Der Anlagenverbund hat zusätzlich ein Kraftwerk 10, welches als Gasturbinenkraftwerk oder Gasturbinen- und Dampfturbinenkraftwerk ausgelegt ist. Der von dem Kraftwerk 10 erzeugte elektrische Strom kann über ein mit gepunkteten Linien dargestelltes Stromleitungsnetz 16 an einzelne und/oder mehrere Vorrichtungen des Anlagenverbundes verteilt werden. Das Gasleitungssystem 3 umfasst eine betrieblich steuerbare Gasverteilungsvorrichtung 11 zur Aufteilung der der Chemieanlage 4 und/oder der Biotechnologieanlage 5 und/oder der Anlage zur Wasserstofferzeugung 8 und/oder dem Kraftwerk 10 und/oder der Koksofenanlage 7 und/oder der Anlage zur Biosynthesegaserzeugung 9 zugeführten Gasmengenströme. In Strömungsrichtung vor der mindestens einen betrieblich steuerbaren Gasverteilungsvorrichtung 11 ist mindestens eine Mischvorrichtung 12 zur Herstellung eines aus Hochofengichtgas und/oder Konvertergas und/oder Biogas und/oder Koksofengas und/oder Wasserstoff und/oder Sauerstoff und/oder Biosynthesegas bestehenden Mischgases angeordnet und mittels der betrieblich steuerbaren Gasverteilungsvorrichtung 11 die der Chemieanlage 4 und/oder der Biotechnologieanlage 5 und/oder der Anlage zur Wasserstofferzeugung 8 und/oder dem Kraftwerk 10 und/oder der Koksofenanlage 7 und/oder der Anlage zur Biosynthesegaserzeugung 9 zugeführten Gasmengenströme steuerbar sind. Der Anlagenverbund weist zusätzlich einen Energiespeicher 13 zur Deckung zumindest eines Teils des Strombedarfs des Anlagenverbundes auf. Zusätzlich ist in dem Anlagenverbund eine Anlage zur Gaskonditionierung 15 und/oder Gasreinigung 14 angeordnet. Die optionalen Vorrichtungen des Anlagenverbundes sind gestrichelt dargestellt.
Gewerbliche Anwendbarkeit
Anlagenverbund zur Stahlerzeugung und ein Verfahren zum Betreiben eines Anlagenverbundes der vorbeschriebenen Art können in der Produktion von Stahl eingesetzt werden.
Bezugszeichenliste
1 Hochofen
2 Konverterstahlwerk
3 Gasleitungssystem
4 Chemieanlage
5 Biotechnologieanlage
6 Biogasanlage
7 Koksofenanlage
8 Anlage zur Wasserstofferzeugung
9 Anlage zur Biosynthesegaserzeugung
10 Kraftwerk
11 betrieblich steuerbare Gasverteilungsvorrichtung 12 Mischvorrichtung
13 Energiespeicher
14 Anlage zur Gasreinigung
15 Anlage zur Gaskonditionierung
16 Stromleitungsnetz

Claims

Patentansprüche
1. Anlagenverbund zur Stahlerzeugung mit
einem Hochofen (1) zur Roheisenerzeugung,
einem Konverterstahlwerk (2) zur Rohstahlerzeugung,
einem Gasleitungssystem (3) für Gase, die bei der Roheisenerzeugung und/oder der Rohstahlerzeugung anfallen,
eine an das Gasleitungssystem (3) angeschlossene Chemieanlage (4) und/oder Biotechnologieanlage (5),
dadurch gekennzeichnet, dass
der Anlagenverbund zusätzlich eine an das Gasleitungssystem (3) angeschlossene Biogasanlage (6) umfasst.
2. Anlagenverbund nach Anspruch 1, dadurch gekennzeichnet, dass der Anlagenverbund zusätzlich eine an das Gasleitungssystem (3) angeschlossene Koksofenanlage (7) umfasst.
3. Anlagenverbund nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Anlagenverbund zusätzlich mindestens eine an das Gasleitungssystem (3) angeschlossene Anlage zur Wasserstofferzeugung (8) umfasst.
4. Anlagenverbund nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Anlagenverbund zusätzlich eine Anlage zur Biosynthesegaserzeugung (9) umfasst.
5. Anlagenverbund nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Anlagenverbund zusätzlich ein Kraftwerk (10) zur Stromerzeugung umfasst, wobei das Kraftwerk (10) als Gasturbinenkraftwerk oder Gasturbinen- und Dampfturbinenkraftwerk ausgelegt ist und mit einem Gas betrieben wird, welches eine Teilmenge des bei der Roheisenerzeugung im Hochofen (1) anfallenden Hochofengichtgases und/oder eine Teilmenge des in dem Konverterstahlwerk (2) anfallenden Konvertergases und/oder eine Teilmenge des in der Biogasanlage (6) anfallenden Biogases und/oder eine Teilmenge des in der Koksofenanlage (7) anfallenden Koksofengases und/oder eine Teilmenge des in der Anlage zur Biosynthesegaserzeugung (9) anfallenden Biosynthesegases und/oder eine Teilmenge des in der Anlage zur Wasserstofferzeugung (8) anfallenden Wasserstoffs umfasst.
6. Anlagenverbund nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Gasleitungssystem (3) mindestens eine betrieblich steuerbare Gasverteilungsvorrichtung (11) zur Aufteilung der der Chemieanlage (4) und/oder der Biotechnologieanlage (5) und/oder der Anlage zur Wasserstofferzeugung (8) und/oder dem Kraftwerk (10) und/oder der Koksofenanlage (7) und/oder dem Hochofen (1) und/oder dem Konverterstahlwerk (2) und/oder der Anlage zur Biosynthesegaserzeugung (9) zugeführten Gasmengenströme umfasst.
7. Anlagenverbund nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Gasleitungssystem (3) in Strömungsrichtung vor der mindestens einen betrieblich steuerbaren Gasverteilungsvorrichtung (11) mindestens eine Mischvorrichtung (12) zur Herstellung eines aus Hochofengichtgas und/oder Konvertergas und/oder Biogas und/oder Koksofengas und/oder Wasserstoff und/oder Sauerstoff und/oder Biosynthesegas bestehenden Mischgases aufweist und dass mittels der betrieblich steuerbaren Gasverteilungsvorrichtung (11) die der Chemieanlage (4) und/oder der Biotechnologieanlage (5) und/oder der Anlage zur Wasserstofferzeugung (8) und/oder dem Kraftwerk (10) und/oder der Koksofenanlage (7) und/oder dem Hochofen (1) und/oder dem Konverterstahlwerk (2) und/oder der Anlage zur Biosynthesegaserzeugung (9) zugeführten Gasmengenströme steuerbar sind.
8. Anlagenverbund nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Anlagenverbund zusätzlich einen Energiespeicher (13) zur Deckung zumindest eines Teils des Strombedarfs des Anlagenverbundes aufweist.
9. Anlagenverbund nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der Anlagenverbund zusätzlich eine Anlage zur Gasreinigung (14) und/oder Gaskonditionierung (15) aufweist.
10. Verfahren zum Betreiben eines Anlagenverbundes, der einen Hochofen (1) zur Roheisenerzeugung, ein Konverterstahlwerk (2) zur Rohstahlerzeugung, eine Biogasanlage (6) zur Biogaserzeugung, ein Gasleitungssystem (3) für Gase, die bei der Roheisenerzeugung und/oder der Rohstahlerzeugung und/oder der Biogaserzeugung anfallen und eine Chemieanlage (4) und/oder eine Biotechnologieanlage (5) aufweist, wobei zumindest eine Teilmenge des bei der Biogasanlage (6) anfallenden Biogases und eine Teilmenge des bei der Roheisenerzeugung im Hochofen (1) anfallenden Hochofengichtgases und/oder eine Teilmenge des bei der Rohstahlerzeugung anfallenden Konvertergases als Nutzgas zum Betrieb der Chemieanlage (4) und/oder der Biotechnologieanlage (5) und/oder des Hochofens (1) zur Roheisenerzeugung und/oder des Konverterstahlwerks (2) zur Rohstahlerzeugung verwendet wird.
11. Verfahren zum Betreiben eines Anlagenverbundes nach Anspruch 10, dadurch gekennzeichnet, dass der Anlagenverbund nach dem vorherigen einem der Anspruch 1 zusätzlich eine an das Gasleitungssystem (3) angeschlossene Koksofenanlage (7) umfasst, wobei zumindest eine Teilmenge des bei der Roheisenerzeugung im Hochofen (1) anfallenden Hochofengichtgases und/oder eine Teilmenge des bei der Rohstahlerzeugung anfallenden Konvertergases und/oder eine Teilmenge des bei der Biogasanlage (6) anfallenden Biogases und/oder eine Teilmenge des bei der Kokserzeugung in der Koksofenanlage (7) anfallenden Koksofengases als Nutzgas zum Betrieb der Chemieanlage (4) und/oder der Biotechnologieanlage (5) und/oder des Hochofens (1) zur Roheisenerzeugung und/oder des Konverterstahlwerks (2) zur Rohstahlerzeugung und/oder der Koksofenanlage (7) verwendet wird.
12. Verfahren zum Betreiben eines Anlagenverbundes nach einem der Ansprüche 10 bis 11, dadurch gekennzeichnet, dass der Anlagenverbund nach einem der Ansprüche 1 bis 2 zusätzlich eine an das Gasleitungssystem (3) angeschlossene Anlage zur Wasserstofferzeugung (8) umfasst, wobei zumindest eine Teilmenge des bei der Roheisenerzeugung im Hochofen (1) anfallenden Hochofengichtgases und/oder eine Teilmenge des bei der Rohstahlerzeugung anfallenden Konvertergases und/oder eine Teilmenge des bei der Biogasanlage (6) anfallenden Biogases und/oder eine Teilmenge des bei der Kokserzeugung in der Koksofenanlage (7) anfallenden Koksofengases und/oder eine Teilmenge des bei der Anlage zur Wasserstofferzeugung (8) anfallenden Wasserstoffs als Nutzgas zum Betrieb der Chemieanlage (4) und/oder der Biotechnologieanlage (5) und/oder des Hochofens (1) zur Roheisenerzeugung und/oder des Konverterstahlwerks (2) zur Rohstahlerzeugung und/oder der Koksofenanlage (7) und/oder der Anlage zur Wasserstofferzeugung (8) verwendet wird.
13. Verfahren zum Betreiben eines Anlagenverbundes nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, dass der Anlagenverbund nach einem der Ansprüche 1 bis 3 zusätzlich eine an das Gasleitungssystem (3) angeschlossene Anlage zur Biosynthesegaserzeugung (9) umfasst, wobei zumindest eine Teilmenge des bei der Roheisenerzeugung im Hochofen (1) anfallenden Hochofengichtgases und/oder eine Teilmenge des bei der Rohstahlerzeugung anfallenden Konvertergases und/oder eine Teilmenge des bei der Biogasanlage (6) anfallenden Biogases und/oder eine Teilmenge des bei der Kokserzeugung in der Koksofenanlage (7) anfallenden Koksofengases und/oder eine Teilmenge des bei der Anlage zur Wasserstofferzeugung (8) anfallenden Wasserstoffs und/oder eine Teilmenge des bei der Anlage zur Biosynthesegaserzeugung (9) anfallenden Biosynthesegases als Nutzgas zum Betrieb der Chemieanlage (4) und/oder der Biotechnologieanlage (5) und/oder des Hochofens (1) zur Roheisenerzeugung und/oder des Konverterstahlwerks (2) zur Rohstahlerzeugung und/oder der Koksofenanlage (7) und/oder der Anlage zur Wasserstofferzeugung (8) und/oder der Anlage zur Biosynthesegaserzeugung (9) verwendet wird.
14. Verfahren zum Betreiben eines Anlagenverbundes nach einem der Ansprüche 10 bis 13, dadurch gekennzeichnet, dass der Anlagenverbund nach einem der Ansprüche 1 bis 4 zusätzlich ein an das Gasleitungssystem (3) angeschlossenes Kraftwerk (10) umfasst, wobei zumindest eine Teilmenge des bei der Roheisenerzeugung im Hochofen (1) anfallenden Hochofengichtgases und/oder eine Teilmenge des bei der Rohstahlerzeugung anfallenden Konvertergases und/oder eine Teilmenge des bei der Biogasanlage (6) anfallenden Biogases und/oder eine Teilmenge des bei der Kokserzeugung in der Koksofenanlage (7) anfallenden Koksofengases und/oder eine Teilmenge des bei der Anlage zur Wasserstofferzeugung (8) anfallenden Wasserstoffs und/oder eine Teilmenge des bei der Anlage zur Biosynthesegaserzeugung (9) anfallenden Biosynthesegases als Nutzgas zum Betrieb der Chemieanlage (4) und/oder der Biotechnologieanlage (5) und/oder des Hochofens (1) zur Roheisenerzeugung und/oder des Konverterstahlwerks (2) zur Rohstahlerzeugung und/oder der Koksofenanlage (7) verwendet wird.
15. Verfahren zum Betreiben eines Anlagenverbundes nach einem der Ansprüche 10 bis 14, dadurch gekennzeichnet, dass der Anlagenverbund nach einem der Ansprüche 1 bis 8 zusätzlich eine an das Gasleitungssystem (3) angeschlossene Anlage zur Gasreinigung (14) und/oder Gaskonditionierung (15) umfasst, wobei zumindest eine Teilmenge des bei der Roheisenerzeugung im Hochofen (1) anfallenden Hochofengichtgases und/oder eine Teilmenge des bei der Rohstahlerzeugung anfallenden Konvertergases und/oder eine Teilmenge des bei der Biogasanlage (6) anfallenden Biogases und/oder eine Teilmenge des bei der Kokserzeugung in der Koksofenanlage (7) anfallenden Koksofengases und/oder eine Teilmenge des bei der Anlage zur Wasserstofferzeugung (8) anfallenden Wasserstoffs und/oder eine Teilmenge des bei der Anlage zur Biosynthesegaserzeugung (9) anfallenden Biosynthesegases gereinigt und/oder konditioniert wird.
EP19728055.5A 2018-06-07 2019-06-03 Anlagenverbund zur stahlerzeugung sowie ein verfahren zum betreiben des anlagenverbundes Pending EP3802889A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018209042.4A DE102018209042A1 (de) 2018-06-07 2018-06-07 Anlagenverbund zur Stahlerzeugung sowie ein Verfahren zum Betreiben des Anlagenverbundes.
PCT/EP2019/064310 WO2019233934A1 (de) 2018-06-07 2019-06-03 Anlagenverbund zur stahlerzeugung sowie ein verfahren zum betreiben des anlagenverbundes

Publications (1)

Publication Number Publication Date
EP3802889A1 true EP3802889A1 (de) 2021-04-14

Family

ID=66690386

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19728055.5A Pending EP3802889A1 (de) 2018-06-07 2019-06-03 Anlagenverbund zur stahlerzeugung sowie ein verfahren zum betreiben des anlagenverbundes

Country Status (6)

Country Link
US (1) US20210238700A1 (de)
EP (1) EP3802889A1 (de)
KR (1) KR20210015926A (de)
CN (1) CN112313347A (de)
DE (1) DE102018209042A1 (de)
WO (1) WO2019233934A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE2050508A1 (en) * 2020-05-04 2021-11-05 Hybrit Dev Ab Process for the production of carburized sponge iron
DE102020208458A1 (de) * 2020-07-07 2022-01-13 Thyssenkrupp Ag Anlagenverbund sowie Verfahren zum Betrieb eines solchen Anlagenverbundes zur Herstellung höherer Alkohole
US11967745B2 (en) 2022-04-27 2024-04-23 Saudi Arabian Oil Company Co-production of hydrogen, carbon, and electricity with carbon dioxide capture
US20230349015A1 (en) * 2022-04-27 2023-11-02 Saudi Arabian Oil Company Co-production of hydrogen, carbon, electricity, and steel with carbon dioxide capture

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3515250A1 (de) 1985-04-27 1986-10-30 Hoesch Ag, 4600 Dortmund Verfahren zur herstellung von chemierohstoffen aus koksofengas und huettengasen
DE3805397A1 (de) * 1988-02-20 1989-08-24 Ruhrkohle Ag Verfahren zur herstellung von fuel-methanol (treibstoff) aus koksofengas und huettengas
DE102009022509B4 (de) 2009-05-25 2015-03-12 Thyssenkrupp Industrial Solutions Ag Verfahren zur Herstellung von Synthesegas
EP2543743B1 (de) * 2010-03-02 2017-11-29 JFE Steel Corporation Betriebsverfahren für einen verbrennungsofen, betriebsverfahren für eine eisenaufbereitungsanlage und verfahren zur verwendung eines kohlenoxidhaltigen gases
DE102010049639A1 (de) * 2010-10-28 2012-05-03 Maria Rogmans Verfahren zum Betrieb eines Hüttenbetriebes, insbesondere eines Stahlwerkes
WO2013084067A2 (en) * 2011-12-05 2013-06-13 Active Land International Corporation A sustainable process for the co-generation of pig iron and electric energy using wood as fuel
DE102011121507A1 (de) * 2011-12-16 2013-06-20 Ecoloop Gmbh Verfahren zur carbothermischen oder elektrothermischen Herstellung von Roheisen oder Basisprodukten
DE102012109284A1 (de) * 2012-09-14 2014-03-20 Voestalpine Stahl Gmbh Verfahren zum Erzeugen von Stahl und Verfahren zum Speichern diskontinuierlich anfallender Energie
CN105073952B (zh) * 2012-12-18 2017-05-24 巴斯夫欧洲公司 用于利用高炉气、缔合气体和/或生物气体的方法
DE102013018074B3 (de) * 2013-11-28 2015-04-02 CCP Technology GmbH Hochofen und verfahren zum betrieb eines hochofens
DE102013113921A1 (de) * 2013-12-12 2015-06-18 Thyssenkrupp Ag Anlagenverbund zur Stahlerzeugung und Verfahren zum Betreiben des Anlagenverbundes
DE102013113913A1 (de) * 2013-12-12 2015-06-18 Thyssenkrupp Ag Anlagenverbund zur Stahlerzeugung und Verfahren zum Betreiben des Anlagenverbundes
DE102013113958A1 (de) * 2013-12-12 2015-06-18 Thyssenkrupp Ag Anlagenverbund zur Stahlerzeugung und Verfahren zum Betreiben des Anlagenverbundes
EP3124626B1 (de) * 2014-03-26 2018-06-06 JFE Steel Corporation Verfahren zum betrieb eines sauerstoffhochofens

Also Published As

Publication number Publication date
DE102018209042A1 (de) 2019-12-12
WO2019233934A1 (de) 2019-12-12
US20210238700A1 (en) 2021-08-05
KR20210015926A (ko) 2021-02-10
CN112313347A (zh) 2021-02-02

Similar Documents

Publication Publication Date Title
EP3080310B1 (de) Anlagenverbund zur stahlerzeugung und verfahren zum betreiben des anlagenverbundes
EP3080309B1 (de) Anlagenverbund zur stahlerzeugung und verfahren zum betreiben des anlagenverbundes
EP3080308B1 (de) Anlagenverbund zur stahlerzeugung und verfahren zum betreiben des anlagenverbundes
EP3080307B1 (de) Verfahren zur erzeugung von synthesegas im verbund mit einem hüttenwerk
EP3802889A1 (de) Anlagenverbund zur stahlerzeugung sowie ein verfahren zum betreiben des anlagenverbundes
EP3080306B1 (de) Anlagenverbund zur stahlerzeugung und verfahren zum betreiben des anlagenverbundes
EP3008218B1 (de) Hochofen und verfahren zum betrieb eines hochofens
EP3080305A1 (de) Verfahren zur reduzierung von co2-emissionen beim betrieb eines huttenwerks
DE102009022510B4 (de) Verfahren zur gleichzeitigen Herstellung von Eisen und eines CO und H2 enthaltenden Rohsynthesegases
WO2019037885A1 (de) Anlagenverbund zur roheisenerzeugung sowie ein verfahren zum betreiben des anlagenverbundes
DE102016209027A1 (de) Anlagenverbund zur Herstellung mineralischer Baustoffe sowie ein Verfahren zum Betreiben des Anlagenverbundes
DE102018212015A1 (de) Anlagenverbund zur Stahlerzeugung sowie ein Verfahren zum Betreiben des Anlagenverbundes
DE102016209028A1 (de) Anlagenverbund zur Herstellung mineralischer Baustoffe sowie ein Verfahren zum Betreiben des Anlagenverbundes
DE102016209037A1 (de) Anlagenverbund zur Herstellung mineralischer Baustoffe sowie ein Verfahren zum Betreiben des Anlagenverbundes
DE102016209026A1 (de) Anlagenverbund zur Herstellung mineralischer Baustoffe sowie ein Verfahren zum Betreiben des Anlagenverbundes
DE102016209029A1 (de) Anlagenverbund zur Herstellung mineralischer Baustoffe sowie ein Verfahren zum Betreiben des Anlagenverbundes

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210111

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220224

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THYSSENKRUPP UHDE GMBH

Owner name: THYSSENKRUPP AG