EP3798513B1 - Heating device - Google Patents

Heating device Download PDF

Info

Publication number
EP3798513B1
EP3798513B1 EP20198099.2A EP20198099A EP3798513B1 EP 3798513 B1 EP3798513 B1 EP 3798513B1 EP 20198099 A EP20198099 A EP 20198099A EP 3798513 B1 EP3798513 B1 EP 3798513B1
Authority
EP
European Patent Office
Prior art keywords
flame tube
fresh air
gases
combustion
flue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20198099.2A
Other languages
German (de)
French (fr)
Other versions
EP3798513A1 (en
Inventor
Stefan Ortner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oekofen Forschungs und Entwicklungs GmbH
Original Assignee
Oekofen Forschungs und Entwicklungs GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oekofen Forschungs und Entwicklungs GmbH filed Critical Oekofen Forschungs und Entwicklungs GmbH
Priority to RS20220787A priority Critical patent/RS63512B1/en
Publication of EP3798513A1 publication Critical patent/EP3798513A1/en
Application granted granted Critical
Publication of EP3798513B1 publication Critical patent/EP3798513B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B10/00Combustion apparatus characterised by the combination of two or more combustion chambers
    • F23B10/02Combustion apparatus characterised by the combination of two or more combustion chambers including separate secondary combustion chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B60/00Combustion apparatus in which the fuel burns essentially without moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B80/00Combustion apparatus characterised by means creating a distinct flow path for flue gases or for non-combusted gases given off by the fuel
    • F23B80/02Combustion apparatus characterised by means creating a distinct flow path for flue gases or for non-combusted gases given off by the fuel by means for returning flue gases to the combustion chamber or to the combustion zone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L9/00Passages or apertures for delivering secondary air for completing combustion of fuel 
    • F23L9/04Passages or apertures for delivering secondary air for completing combustion of fuel  by discharging the air beyond the fire, i.e. nearer the smoke outlet

Definitions

  • the invention relates to a method for reducing emissions from heating devices, in particular heating boilers, in which solid fuel, in particular biomass, is burned in a combustion chamber with the supply of fresh air, combustion gases formed in the combustion chamber being fed to a flame tube via an inflow area facing the combustion chamber. and flue gases formed from the combustion gases are fed via an outflow area of the flame tube to a subsequent flue gas discharge line, via which the emission-causing flue gases are discharged, according to the preamble of claim 1.
  • the invention also relates to a heating device, in particular a heating boiler, with a combustion chamber connected to a fresh air line for the combustion of solid fuel, in particular biomass, and a flame tube with an inflow area facing the combustion chamber for combustion gases formed in the combustion chamber and an outflow area for combustion gases formed from the combustion gases Flue gases facing a subsequent flue gas outlet connected to a fan for evacuation of the flue gases, according to the preamble of claim 7.
  • a heating device in particular a heating boiler, with a combustion chamber connected to a fresh air line for the combustion of solid fuel, in particular biomass, and a flame tube with an inflow area facing the combustion chamber for combustion gases formed in the combustion chamber and an outflow area for combustion gases formed from the combustion gases Flue gases facing a subsequent flue gas outlet connected to a fan for evacuation of the flue gases, according to the preamble of claim 7.
  • Such methods and heating devices 2- are made, for example EP 0 798 510 A2 and U.S. 4,565,184 known and are used to heat a heat transfer medium for use as hot water or for heating purposes using the combustion of a solid fuel.
  • Emissions here are the discharge of harmful or environmentally hazardous pollutants such as carbon monoxide (CO), higher-molecular, volatile, organic Carbon compounds (VOC), nitrogen oxides (NOx) and particles (PM), in particular fine dust particles, understood via the flue gases that arise during the combustion of the solid fuel in the combustion chamber of the heating device.
  • the combustion basically takes place in two different phases, namely in a first phase of the heterogeneous conversion of the solids into fuel gases and in a subsequent phase of the homogeneous gas-phase oxidation of the fuel gases.
  • the first phase of combustion takes place exclusively in the combustion chamber with the supply of fresh air, with which the oxygen required for combustion is introduced into the embers of the combustion chamber, and which is sometimes also referred to as primary air.
  • the subsequent gas-phase oxidation begins in the combustion chamber and continues in the flame tube, with complex chemical reactions taking place during which the combustion gases are oxidized and converted into carbon dioxide and water, but also into the pollutants mentioned above such as carbon monoxide, VOC, nitrogen oxides and fine dust particles.
  • the second phase of combustion is also completed and the combustion residues are discharged as flue gas via the flue gas discharge.
  • Combustion gas is therefore referred to below as the entirety of the gases entering the inflow area of the flame tube from the combustion chamber, in which oxidized and non-oxidized gas components of the gas-phase oxidation can be present, and as flue gas all of the gases flowing via the outflow area of the flame tube into the flue gas discharge line, in which the chemical processes directly attributable to the combustion, in particular oxidation, have largely been completed.
  • the course of combustion and the extent of the combustion residues that cause emissions depend on the chemical and physical framework conditions of combustion, which are partly controlled by control parameters of the heating device can be set.
  • this includes the amount of fuel, which in the case of a pellet heating system can be adjusted via the conveying speed of the screw conveyor for the pellets, and the amount of oxygen available for combustion, which can be adjusted via the speed of a fan, which is usually designed as an induced draft fan and draws in fresh air from an intake opening and feeds it to the combustion chamber via the fresh air line.
  • the combustion process can be controlled well, with electronic control devices usually being provided, which are based on a required heat output of the heating device and an actual state, which is measured using a temperature sensor. which is arranged, for example, in the combustion chamber or in the flame tube, regulate the amount of fuel and the speed of the fan accordingly.
  • Well-controlled combustion is characterized by a low level of combustion residues and therefore low emissions.
  • This secondary air is used for the targeted introduction of additional oxygen into an area of the combustion chamber characterized by gas-phase oxidation.
  • a stoichiometric excess of oxygen promotes the desired oxidation of carbon compounds to form carbon dioxide, it also promotes the undesired formation of nitrogen oxides.
  • filter devices to filter combustion residues from the flue gas in order to reduce emissions in this way. Nonetheless In particular, the reduction of particulate matter emissions from the combustion of solid fuels in appropriate heating systems poses a challenge.
  • the aim of the present invention is therefore to provide a heating device with which the emissions, in particular of fine dust, can be reduced.
  • Claim 1 relates to a method for reducing emissions from heating devices, in particular heating boilers, in which solid fuel, in particular biomass, is burned in a combustion chamber with the supply of fresh air, combustion gases formed in the combustion chamber being fed to a flame tube via an inflow area facing the combustion chamber , and flue gases formed from the combustion gases are fed via an outflow area of the flame tube to a subsequent flue gas discharge line, via which the emission-causing flue gases are discharged.
  • a gaseous medium is supplied to the flow of smoke and combustion gases occurring in the flame tube against the flow direction of this flow of smoke and combustion gases.
  • the gaseous medium is preheated by the flow of flue and combustion gases occurring in the flame tube.
  • the preheating prevents the flue gas from cooling too much, which would impair the complete oxidation of the carbon compounds.
  • a drop in temperature cannot be prevented even by preheating the supplied gaseous medium, this drop in temperature does not appear to be disadvantageous.
  • the Applicant suspects that the drop in temperature caused by the countercurrent supply of the gaseous medium has no appreciable effect on the oxidation of the carbon compounds, but prevents the formation of nitrogen oxides.
  • the gaseous medium can be a partial flow of the fresh air supplied to the combustion chamber, so that it is proposed that the gaseous medium be derived from the fresh air supplied to the combustion chamber.
  • a particularly effective reduction in emissions has been shown for embodiments in which a partial recirculation of flue gases into the combustion chamber is provided, in that some of the discharged flue gases are fed to the fresh air supplied to the combustion chamber.
  • a partial recirculation according to the invention, it can be into the flame tube introduced gaseous medium, a partial flow of the fresh air mixed with flue gases can be used, so that it is proposed that the gaseous medium is derived from the fresh air mixed with flue gases.
  • the gaseous medium upon entering the smoke and combustion gas flow of the flame tube, performs a rotational movement about this direction of movement superimposed on its movement against the flow direction of the smoke and combustion gas flow. This measure increases the residence time and the turbulence and thus promotes the complete oxidation of the carbon compounds.
  • a heating device for the implementation of the method according to the invention, in particular a heating boiler, with a combustion chamber connected to a fresh air line for the combustion of solid fuel, in particular biomass, and a flame tube with an inflow area facing the combustion chamber for combustion gases formed in the combustion chamber and an outflow area for flue gases formed from the combustion gases, which faces a subsequent flue gas outlet connected to a blower for discharging the flue gases.
  • a over the outflow area in the flame tube projecting supply line is provided with an outflow opening directed in the direction of the inflow area for a gaseous medium.
  • the outflow opening for the gaseous medium directed in the direction of the inflow area ensures that the gaseous medium is supplied to the flow of flue and combustion gases occurring in the flame tube against the flow direction of this flue and combustion gas flow, as provided according to the method according to the invention.
  • the gaseous medium is preheated with the help of the supply line projecting over the outflow area into the flame tube, which prevents the flue gas from cooling down too much.
  • preheating the gaseous medium cannot prevent a temperature drop, this temperature drop does not seem to be disadvantageous, since the temperature drop caused by the countercurrent supply of the gaseous medium has no significant effects on the oxidation of the carbon compounds , but prevents the formation of nitrogen oxides.
  • a simple embodiment of the apparatus provides, for example, that the feed line is designed as a feed tube running parallel to the axis of the flame tube.
  • This feed tube is preferably arranged deviating from the axis of the flame tube in the regions of the flame tube close to the axis.
  • a region close to the axis is understood to mean the inner half of the flame tube radius.
  • the supply line for the gaseous medium be connected to the fresh air line and the gaseous medium be a fresh air partial flow derived from the fresh air supplied to the combustion chamber.
  • the fresh air line for the partial recirculation of flue gases into the combustion chamber is connected to the flue gas discharge line and the supply line is connected to a section of the fresh air line that carries fresh air and flue gases, with the gaseous medium being a fresh air partial flow containing flue gases.
  • the fresh air line is conventionally connected to a blower in order to suck the fresh air into the combustion chamber and subsequently to suck out the smoke gases
  • the latter two designs have the advantage that the introduction of the gaseous medium is also regulated with the electronic control of the heating device , since the amount of fresh air is controlled by the blower, and thus more of the gaseous medium is blown countercurrently into the flame tube when the amount of fuel and the amount of fresh air and thus also the amount of substance in the combustion gases increase.
  • the supply line have a helically running gas guide section for the gaseous medium.
  • This helical gas flow section can either a supply pipe for the gaseous medium that is helically bent at least in its end section, or by a correspondingly helically shaped inner jacket of the supply pipe.
  • FIG. 1 a schematic representation of the structure of a heating device according to the invention for implementing the method according to the invention.
  • the 1 a boiler for heating a heat transfer medium by burning solid fuel, in particular biomass.
  • a combustion plate 2 is arranged in a combustion chamber 1, to which the solid fuel is supplied, for example in the form of free-flowing or pourable combustion material (eg pellets).
  • the ash collects below the burner plate 2 and is conveyed into the ash container by an ash screw.
  • the combustion chamber 1 has one in the 1 Lateral opening, not visible, through which pourable material to be burned can be conveyed from a storage container by means of a conveyor to the burner plate 2.
  • the conveying device can, for example, be a conveying screw that is automatically regulated with the aid of an electronic control device.
  • a flame tube 3 is arranged vertically above the combustion plate 2 , the inflow area 3a of which faces the combustion chamber 1 and opens into the combustion chamber 1 .
  • the flame tube 3 is of a suitable thickness and made of a thermally insulating material, preferably ceramic material or (refractory) concrete.
  • the flue gases R exit in an outflow region 3b of the flame tube 3 in an approximately laminar flow and enter a subsequent flue gas discharge line 4 water-filled spaces.
  • the heat transfer medium to be heated for heating purposes or for use as hot water is located in these rooms.
  • the flue gas discharge line 4 is connected to a fan 5 arranged on the exhaust gas side, which is designed as an induced draft fan and has a discharge opening 6 which can be connected to a chimney running outside the heating device, for example, in order to be able to discharge the flue gases R.
  • the fan 5 sucks the combustion gases V and the flue gases R from the combustion chamber 1 via the flame tube 3 and the flue gas outlet 4 in the direction of the chimney. Furthermore, fresh air F is sucked into the fresh air line 7 and into the combustion chamber 1 by the blower 5 .
  • the fresh air line 7 is also connected to the flue gas discharge line 4 for the partial recirculation of flue gases R into the combustion chamber 1 .
  • the fresh air line 7 thus has a section 7a which carries fresh air F mixed with flue gases R.
  • a projecting over the outflow area 3b in the flame tube 3 supply line 8 is arranged with an outflow opening directed in the direction of the inflow area for a gaseous medium G.
  • This supply line 8 is connected to the fresh air line 7 so that the gaseous medium G is a partial flow of fresh air which is derived from the fresh air F supplied to the combustion chamber 1 .
  • the fresh air line 7 in the embodiment shown is also connected to the flue gas discharge line 4 for returning flue gases R to the combustion chamber 1, the supply line 8 is connected to that section 7a of the fresh air line 7 that carries fresh air F mixed with flue gases R, which is 1 is indicated with an arrow labeled "F+R".
  • the gaseous medium G is therefore a fresh air partial flow containing flue gases R.
  • the feed line 8 is designed as a feed pipe running parallel to the axis of the flame tube and is arranged in the regions of the flame tube 3 close to the axis. Since the supply line 8 crosses the outflow area 3b of the flame tube 3, the gaseous medium G is already preheated before it is introduced into the flame tube 3. This preheating prevents the flue gas R from cooling down too much, which would impair the complete oxidation of the carbon compounds.
  • a temperature sensor 9 can also be seen, which measures the flue gas temperature in the flame tube 3 and is connected to the electronic control device mentioned above.
  • the introduction of the gaseous medium G is also regulated with the electronic control device of the heating device, so that more gaseous medium G is blown countercurrently into the flame tube 3 if the fuel quantity and the fresh air quantity and thus the amount of substance in the combustion gases V will also increase.
  • combustion gas V formed in the combustion chamber 1 is fed to the flame tube 3 via the inflow area 3a.
  • Combustion gas V refers to all of the gases entering the inflow area 3a of the flame tube from combustion chamber 1, in which oxidized and non-oxidized gas components of the gas-phase oxidation may be present
  • flue gas R refers to all of the gases flowing through outflow area 3b of flame tube 3 into the Flue gas discharge 4 flowing gases, in which the chemical processes directly attributable to the combustion, in particular oxidation, are largely completed.
  • Within the flame tube 3 is thus a flow of flue gases R and combustion gases V, which in the 1 is indicated with an upward pointing arrow "V+R".
  • This flow of flue gases R and combustion gases V is supplied in the flame tube 3 with the gaseous medium G against the direction of flow of this flue and combustion gas flow.
  • an increased residence time of the flue gases R and the combustion gases V in the flame tube 3 is brought about, as well as improved contact between the chemical reactants due to the turbulence caused by the countercurrent introduction.
  • the increased dwell time under the high temperatures of the flame tube 3 and the turbulence due to the countercurrent supply favor the complete oxidation of the carbon compounds and prevent the persistent formation of fine dust.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Control And Other Processes For Unpacking Of Materials (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

Die Erfindung bezieht sich auf ein Verfahren zur Emissionsreduktion von Heizeinrichtungen, insbesondere Heizkessel, in denen unter Zufuhr von Frischluft fester Brennstoff, insbesondere Biomasse, in einem Brennraum zur Verbrennung gelangt, wobei im Brennraum gebildete Verbrennungsgase über einem dem Brennraum zugewandten Einströmbereich einem Flammrohr zugeführt werden, und aus den Verbrennungsgasen gebildete Rauchgase über einen Ausströmbereich des Flammrohres einer anschließenden Rauchgasableitung zugeführt werden, über die die emissionsverursachenden Rauchgase abgeleitet werden, gemäß dem Oberbegriff von Anspruch 1.The invention relates to a method for reducing emissions from heating devices, in particular heating boilers, in which solid fuel, in particular biomass, is burned in a combustion chamber with the supply of fresh air, combustion gases formed in the combustion chamber being fed to a flame tube via an inflow area facing the combustion chamber. and flue gases formed from the combustion gases are fed via an outflow area of the flame tube to a subsequent flue gas discharge line, via which the emission-causing flue gases are discharged, according to the preamble of claim 1.

Die Erfindung bezieht sich ferner auf eine Heizeinrichtung, insbesondere Heizkessel, mit einem mit einer Frischluftleitung verbundenen Brennraum zur Verbrennung von festem Brennstoff, insbesondere Biomasse, sowie einem Flammrohr mit einem dem Brennraum zugewandten Einströmbereich für im Brennraum gebildete Verbrennungsgase und einem Ausströmbereich für aus den Verbrennungsgasen gebildete Rauchgase, der einer anschließenden und mit einem Gebläse verbundenen Rauchgasableitung zur Abfuhr der Rauchgase zugewandt ist, gemäß dem Oberbegriff von Anspruch 7.The invention also relates to a heating device, in particular a heating boiler, with a combustion chamber connected to a fresh air line for the combustion of solid fuel, in particular biomass, and a flame tube with an inflow area facing the combustion chamber for combustion gases formed in the combustion chamber and an outflow area for combustion gases formed from the combustion gases Flue gases facing a subsequent flue gas outlet connected to a fan for evacuation of the flue gases, according to the preamble of claim 7.

Derartige Verfahren und Heizeinrichtungen 2-sind z.B. aus EP 0 798 510 A2 und US 4 565 184 bekannt und dienen der Erwärmung eines Wärmeträgermediums zur Nutzung als Warmwasser oder zu Heizzwecken mithilfe der Verbrennung eines festen Brennstoffes. In der praktischen Anwendung ist dabei einerseits entscheidend, dass der Wirkungsgrad der Heizeinrichtung optimiert wird, also dass ein größtmöglicher Anteil der Verbrennungswärme auf das Wärmeträgermedium übertragen wird, und dass andererseits die Emissionen einer solchen Anlage möglichst gering gehalten werden. Unter Emissionen wird hierbei der Austrag von gesundheitsschädigenden oder umweltgefährdenden Schadstoffen wie Kohlenmonoxid (CO), höhermolekulare flüchtige, organische Kohlenstoffverbindungen (VOC), Stickoxide (NOx) sowie Partikel (PM), insbesondere Feinstaubpartikel, über die Rauchgase verstanden, die im Zuge der Verbrennung des festen Brennstoffes im Brennraum der Heizeinrichtung entstehen. Die Verbrennung vollzieht sich dabei grundsätzlich in zwei unterschiedlichen Phasen, nämlich in einer ersten Phase der heterogenen Umwandlung der Feststoffe in Brenngase und in einer anschließenden Phase der homogenen Gasphasenoxidation der Brenngase. Die erste Phase der Verbrennung vollzieht sich ausschließlich im Brennraum unter der Zufuhr von Frischluft, mit der der für die Verbrennung erforderliche Sauerstoff in den Glutbereich des Brennraums eingebracht wird, und die mitunter auch als Primärluft bezeichnet wird. Die anschließende Gasphasenoxidation beginnt im Brennraum und setzt sich im Flammrohr fort, wobei komplexe chemische Reaktionen vollzogen werden, in deren Verlauf die Brenngase oxidiert und in Kohlendioxid und Wasser, aber auch in die oben genannten Schadstoffe wie Kohlenmonoxid, VOC, Stickoxide sowie Feinstaubpartikel umgewandelt werden. Mit zunehmender Abkühlung der Rauchgase wird auch die zweite Phase der Verbrennung abgeschlossen, und die Verbrennungsrückstände als Rauchgas über die Rauchgasableitung abgeführt. Als Verbrennungsgas wird im Folgenden somit die Gesamtheit der vom Brennraum in den Einströmbereich des Flammrohres gelangenden Gase bezeichnet, in der oxidierte wie nicht-oxidierte Gasanteile der Gasphasenoxidation vorliegen können, und als Rauchgas jene Gesamtheit der über den Ausströmbereich des Flammrohres in die Rauchgasableitung strömenden Gase, in der die unmittelbar auf die Verbrennung zurückzuführenden chemischen Vorgänge insbesondere der Oxidation weitestgehend abgeschlossen sind.Such methods and heating devices 2-are made, for example EP 0 798 510 A2 and U.S. 4,565,184 known and are used to heat a heat transfer medium for use as hot water or for heating purposes using the combustion of a solid fuel. In practical application, it is crucial on the one hand that the efficiency of the heating device is optimized, i.e. that the largest possible proportion of the combustion heat is transferred to the heat transfer medium, and on the other hand that the emissions of such a system are kept as low as possible. Emissions here are the discharge of harmful or environmentally hazardous pollutants such as carbon monoxide (CO), higher-molecular, volatile, organic Carbon compounds (VOC), nitrogen oxides (NOx) and particles (PM), in particular fine dust particles, understood via the flue gases that arise during the combustion of the solid fuel in the combustion chamber of the heating device. The combustion basically takes place in two different phases, namely in a first phase of the heterogeneous conversion of the solids into fuel gases and in a subsequent phase of the homogeneous gas-phase oxidation of the fuel gases. The first phase of combustion takes place exclusively in the combustion chamber with the supply of fresh air, with which the oxygen required for combustion is introduced into the embers of the combustion chamber, and which is sometimes also referred to as primary air. The subsequent gas-phase oxidation begins in the combustion chamber and continues in the flame tube, with complex chemical reactions taking place during which the combustion gases are oxidized and converted into carbon dioxide and water, but also into the pollutants mentioned above such as carbon monoxide, VOC, nitrogen oxides and fine dust particles. As the flue gases cool down, the second phase of combustion is also completed and the combustion residues are discharged as flue gas via the flue gas discharge. Combustion gas is therefore referred to below as the entirety of the gases entering the inflow area of the flame tube from the combustion chamber, in which oxidized and non-oxidized gas components of the gas-phase oxidation can be present, and as flue gas all of the gases flowing via the outflow area of the flame tube into the flue gas discharge line, in which the chemical processes directly attributable to the combustion, in particular oxidation, have largely been completed.

Der Verlauf der Verbrennung und das Ausmaß der emissionsverursachenden Verbrennungsrückstände hängen von den chemischen und physikalischen Rahmenbedingungen der Verbrennung ab, die zum Teil durch regelbare Bedienparameter der Heizeinrichtung eingestellt werden können. Hierzu zählen zunächst die Brennstoffmenge, die im Fall einer Pelletsheizung über die Fördergeschwindigkeit der Förderschnecke für die Pellets eingestellt werden kann, und die für die Verbrennung verfügbare Sauerstoffmenge, die über die Drehzahl eines Gebläses eingestellt werden kann, das in der Regel als Saugzuggebläse ausgeführt ist und von einer Ansaugöffnung Frischluft ansaugt und über die Frischluftleitung dem Brennraum zuführt. Aufgrund der einheitlichen Größe und der guten Dosierbarkeit der Pellets sowie die exakt regelbare Frischluftmenge kann der Verbrennvorgang gut gesteuert werden, wobei üblicher Weise elektronische Regeleinrichtungen vorgesehen sind, die aus einer geforderten Wärmeleistung der Heizeinrichtung und einem Ist-Zustand, der mithilfe eines Temperatursensors gemessen wird, der beispielsweise im Brennraum oder im Flammrohr angeordnet ist, die Brennstoffmenge und die Drehzahl des Gebläses entsprechend regeln.The course of combustion and the extent of the combustion residues that cause emissions depend on the chemical and physical framework conditions of combustion, which are partly controlled by control parameters of the heating device can be set. First of all, this includes the amount of fuel, which in the case of a pellet heating system can be adjusted via the conveying speed of the screw conveyor for the pellets, and the amount of oxygen available for combustion, which can be adjusted via the speed of a fan, which is usually designed as an induced draft fan and draws in fresh air from an intake opening and feeds it to the combustion chamber via the fresh air line. Due to the uniform size and the good dosability of the pellets as well as the precisely controllable amount of fresh air, the combustion process can be controlled well, with electronic control devices usually being provided, which are based on a required heat output of the heating device and an actual state, which is measured using a temperature sensor. which is arranged, for example, in the combustion chamber or in the flame tube, regulate the amount of fuel and the speed of the fan accordingly.

Eine gut geregelte Verbrennung zeichnet sich durch ein geringes Ausmaß an Verbrennungsrückständen und somit durch geringe Emissionen aus. Um die stöchiometrischen Verhältnisse der Gasphasenoxidation zu verbessern ist es etwa bekannt, von der dem Glutbereich als so genannte Primärluft zugeführten Frischluft einen Frischluftanteil abzuzweigen und dem Brennraum knapp oberhalb des Glutbereiches direkt in die Flammen gerichtet als sogenannte Sekundärluft zuzuführen. Diese Sekundärluft dient dem gezielten Einbringen von zusätzlichem Sauerstoff in einen von Gasphasenoxidation gekennzeichneten Bereich des Brennraums. Ein stöchiometrischer Überschuss an Sauerstoff begünstigt dabei zwar die erwünschte Oxidation von Kohlenstoffverbindungen zu Kohlendioxid, fördert jedoch auch die unerwünschte Bildung von Stickoxiden. Des Weiteren ist es freilich bekannt mithilfe von Filtereinrichtungen Verbrennungsrückstände aus dem Rauchgas zu filtern, um auf diese Weise die Emissionen zu senken. Dennoch stellt insbesondere die Senkung der Feinstaubemissionen bei der Verbrennung fester Brennstoffe in entsprechenden Heizeinrichtungen eine Herausforderung dar.Well-controlled combustion is characterized by a low level of combustion residues and therefore low emissions. In order to improve the stoichiometric conditions of the gas phase oxidation, it is known, for example, to branch off a proportion of fresh air from the fresh air supplied to the embers area as so-called primary air and direct it to the combustion chamber just above the embers area directly into the flames as so-called secondary air. This secondary air is used for the targeted introduction of additional oxygen into an area of the combustion chamber characterized by gas-phase oxidation. Although a stoichiometric excess of oxygen promotes the desired oxidation of carbon compounds to form carbon dioxide, it also promotes the undesired formation of nitrogen oxides. Furthermore, it is of course known to use filter devices to filter combustion residues from the flue gas in order to reduce emissions in this way. Nonetheless In particular, the reduction of particulate matter emissions from the combustion of solid fuels in appropriate heating systems poses a challenge.

Das Ziel der vorliegenden Erfindung besteht somit darin eine Heizeinrichtung bereitzustellen, mit der die Emissionen insbesondere von Feinstaub reduziert werden können.The aim of the present invention is therefore to provide a heating device with which the emissions, in particular of fine dust, can be reduced.

Dieses Ziel wird mithilfe eines Verfahrens gemäß Anspruch 1 sowie mithilfe einer Heizeinrichtung gemäß Anspruch 7 erreicht. Anspruch 1 bezieht sich dabei auf ein Verfahren zur Emissionsreduktion von Heizeinrichtungen, insbesondere Heizkessel, in denen unter Zufuhr von Frischluft fester Brennstoff, insbesondere Biomasse, in einem Brennraum zur Verbrennung gelangt, wobei im Brennraum gebildete Verbrennungsgase über einen dem Brennraum zugewandten Einströmbereich einem Flammrohr zugeführt werden, und aus den Verbrennungsgasen gebildete Rauchgase über einen Ausströmbereich des Flammrohres einer anschließenden Rauchgasableitung zugeführt werden, über die die emissionsverursachenden Rauchgase abgeleitet werden. Erfindungsgemäß wird hierfür vorgeschlagen, dass im Flammrohr ein gasförmiges Medium dem sich im Flammrohr einstellenden Strom an Rauch- und Verbrennungsgasen gegen die Stromrichtung dieses Rauch- und Verbrennungsgasstromes zugeführt wird. Mithilfe dieser Maßnahme gelingt eine in ihrem Ausmaß überraschende Emissionsreduktion insbesondere hinsichtlich der Feinstaubpartikel, mit der eine Reduktion bis unter die Nachweisbarkeitsgrenze herkömmlicher Messmethoden erreicht werden kann. Die Anmelderin vermutet, dass diese Wirkung auf die durch die gegenstromige Zufuhr des gasförmigen Mediums gesteigerte Verweildauer der Rauch- und Verbrennungsgase im Flammrohr zurückzuführen ist, sowie auf den durch die Verwirbelungen verbesserten Kontakt der chemischen Reaktionspartner. Die erhöhte Verweildauer unter den hohen Temperaturen des Flammrohres sowie die Turbulenzen aufgrund der gegenstromigen Zufuhr begünstigen die vollständige Oxidation der Kohlenstoffverbindungen und unterbinden die persistente Bildung von Feinstaub.This aim is achieved using a method according to claim 1 and using a heating device according to claim 7. Claim 1 relates to a method for reducing emissions from heating devices, in particular heating boilers, in which solid fuel, in particular biomass, is burned in a combustion chamber with the supply of fresh air, combustion gases formed in the combustion chamber being fed to a flame tube via an inflow area facing the combustion chamber , and flue gases formed from the combustion gases are fed via an outflow area of the flame tube to a subsequent flue gas discharge line, via which the emission-causing flue gases are discharged. According to the invention, it is proposed that in the flame tube a gaseous medium is supplied to the flow of smoke and combustion gases occurring in the flame tube against the flow direction of this flow of smoke and combustion gases. With the help of this measure, an emission reduction that is surprising in its extent, in particular with regard to fine dust particles, can be achieved with which a reduction below the detection limit of conventional measurement methods can be achieved. The applicant assumes that this effect is due to the increased residence time of the flue and combustion gases in the flame tube due to the countercurrent supply of the gaseous medium, as well as to the improved contact between the chemical reactants due to the turbulence. The increased dwell time under the high temperatures of the flame tube and the turbulence due to the counter-current supply promote the complete oxidation of the carbon compounds and prevent the persistent formation of fine dust.

Dieser Effekt nimmt mit zunehmender Verweildauer und Turbulenz zu, sodass die gegenstromige Zufuhr des gasförmigen Mediums in den achsnahen Bereichen des Flammrohres am effektivsten ist. Dabei wurde aber festgestellt, dass die gegenstromige Zufuhr des gasförmigen Mediums aber dennoch vorzugsweise abweichend von der Flammrohrachse erfolgt. Unter einem achsnahen Bereich wird dabei die innere Hälfte des Flammrohrradius verstanden.This effect increases with increasing residence time and turbulence, so that the countercurrent supply of the gaseous medium is most effective in the areas of the flame tube close to the axis. However, it was found that the countercurrent supply of the gaseous medium nevertheless preferably takes place deviating from the axis of the flame tube. A region close to the axis is understood to mean the inner half of the flame tube radius.

Des Weiteren wird vorzugsweise vorgeschlagen, dass das gasförmige Medium durch den sich im Flammrohr einstellenden Strom an Rauch- und Verbrennungsgasen vorgewärmt wird. Die Vorwärmung verhindert eine zu starke Abkühlung des Rauchgases, die die vollständige Oxidation der Kohlenstoffverbindungen beeinträchtigen würde. Zwar kann eine Temperatursenkung auch durch das Vorwärmen des zugeführten gasförmigen Mediums nicht verhindert werden, diese Temperatursenkung scheint jedoch nicht nachteilig zu sein. Die Anmelderin vermutet, dass die durch die gegenstromige Zufuhr des gasförmigen Mediums verursachte Temperatursenkung keine nennenswerten Auswirkungen auf die Oxidation der Kohlenstoffverbindungen hat, die Bildung von Stickoxiden jedoch unterbindet.Furthermore, it is preferably proposed that the gaseous medium is preheated by the flow of flue and combustion gases occurring in the flame tube. The preheating prevents the flue gas from cooling too much, which would impair the complete oxidation of the carbon compounds. Although a drop in temperature cannot be prevented even by preheating the supplied gaseous medium, this drop in temperature does not appear to be disadvantageous. The Applicant suspects that the drop in temperature caused by the countercurrent supply of the gaseous medium has no appreciable effect on the oxidation of the carbon compounds, but prevents the formation of nitrogen oxides.

Bei dem gasförmigen Medium kann es sich etwa um einen Teilstrom der dem Brennraum zugeführten Frischluft handeln, sodass vorgeschlagen wird, dass das gasförmige Medium von der dem Brennraum zugeführten Frischluft abgeleitet wird.The gaseous medium can be a partial flow of the fresh air supplied to the combustion chamber, so that it is proposed that the gaseous medium be derived from the fresh air supplied to the combustion chamber.

Eine besonders effektive Emissionsreduktion hat sich für Ausführungsformen gezeigt, bei denen eine teilweise Rückführung von Rauchgasen in den Brennraum vorgesehen ist, indem die abgeleiteten Rauchgase teilweise der dem Brennraum zugeführten Frischluft zugeleitet werden. Bei einer solchen Rückführung kann als erfindungsgemäß in das Flammrohr eingeleitetes gasförmiges Medium ein Teilstrom der mit Rauchgasen vermengten Frischluft verwendet werden, sodass vorgeschlagen wird, dass das gasförmige Medium von der mit Rauchgasen vermengten Frischluft abgeleitet wird.A particularly effective reduction in emissions has been shown for embodiments in which a partial recirculation of flue gases into the combustion chamber is provided, in that some of the discharged flue gases are fed to the fresh air supplied to the combustion chamber. In the case of such a recirculation, according to the invention, it can be into the flame tube introduced gaseous medium, a partial flow of the fresh air mixed with flue gases can be used, so that it is proposed that the gaseous medium is derived from the fresh air mixed with flue gases.

In den beiden letztgenannte Ausführungen, bei denen als gasförmiges Medium die dem Brennraum zugeführte Frischluft oder die mit Rauchgasen vermengte Frischluft verwendet wird, zeigt sich auch der große Vorteil, dass die Einleitung des gasförmigen Mediums mit der elektronischen Regelung der Heizeinrichtung mitgeregelt wird, da die Frischluftmenge über das bereits erwähnte Saugzuggebläse geregelt wird, und somit auch mehr an gasförmigem Medium gegenstromig in das Flammrohr eingeblasen wird, wenn die Brennstoffmenge und die Frischluftmenge und somit auch die Stoffmenge der Verbrennungsgase zunehmen.In the last two versions, in which the fresh air supplied to the combustion chamber or the fresh air mixed with flue gases is used as the gaseous medium, there is also the great advantage that the introduction of the gaseous medium is also regulated with the electronic control of the heating device, since the fresh air quantity is regulated via the already mentioned induced draft fan, and thus more of the gaseous medium is blown countercurrently into the flame tube when the fuel quantity and the fresh air quantity and thus also the substance quantity of the combustion gases increase.

Des Weiteren wird vorgeschlagen, dass das gasförmige Medium beim Eintritt in den Rauch- und Verbrennungsgasstrom des Flammrohres eine seiner Bewegung gegen die Stromrichtung des Rauch- und Verbrennungsgasstromes überlagerte Rotationsbewegung um diese Bewegungsrichtung vollzieht. Diese Maßnahme erhöht die Verweildauer sowie die Turbulenzen und begünstigt somit die vollständige Oxidation der Kohlenstoffverbindungen.Furthermore, it is proposed that the gaseous medium, upon entering the smoke and combustion gas flow of the flame tube, performs a rotational movement about this direction of movement superimposed on its movement against the flow direction of the smoke and combustion gas flow. This measure increases the residence time and the turbulence and thus promotes the complete oxidation of the carbon compounds.

Erfindungsgemäß wird zur apparativen Umsetzung des erfindungsgemäßen Verfahrens ferner eine Heizeinrichtung vorgeschlagen, insbesondere ein Heizkessel, mit einem mit einer Frischluftleitung verbundenen Brennraum zur Verbrennung von festem Brennstoff, insbesondere Biomasse, sowie einem Flammrohr mit einem dem Brennraum zugewandten Einströmbereich für im Brennraum gebildete Verbrennungsgase und einem Ausströmbereich für aus den Verbrennungsgasen gebildete Rauchgase, der einer anschließenden und mit einem Gebläse verbundenen Rauchgasableitung zur Abfuhr der Rauchgase zugewandt ist. Erfindungsgemäß ist dabei vorgesehen, dass eine über den Ausströmbereich in das Flammrohr ragende Zufuhrleitung mit einer in Richtung des Einströmbereiches gerichteten Ausströmöffnung für ein gasförmiges Medium vorgesehen ist. Die in Richtung des Einströmbereiches gerichtete Ausströmöffnung für das gasförmige Medium stellt sicher, dass das gasförmige Medium dem sich im Flammrohr einstellenden Strom an Rauch- und Verbrennungsgasen gegen die Stromrichtung dieses Rauch- und Verbrennungsgasstromes zugeführt wird, wie gemäß des erfindungsgemäßen Verfahrens vorgesehen ist. Zudem wird mithilfe der über den Ausströmbereich in das Flammrohr ragenden Zufuhrleitung eine Vorwärmung des gasförmigen Mediums erreicht, die eine zu starke Abkühlung des Rauchgases verhindert. Wie bereits ausgeführt wurde, kann zwar auch durch das Vorwärmen des gasförmigen Mediums eine Temperatursenkung nicht verhindert werden, wobei diese Temperatursenkung jedoch nicht nachteilig zu sein scheint, da die durch die gegenstromige Zufuhr des gasförmigen Mediums verursachte Temperatursenkung keine nennenswerten Auswirkungen auf die Oxidation der Kohlenstoffverbindungen hat, die Bildung von Stickoxiden jedoch unterbindet.According to the invention, a heating device is also proposed for the implementation of the method according to the invention, in particular a heating boiler, with a combustion chamber connected to a fresh air line for the combustion of solid fuel, in particular biomass, and a flame tube with an inflow area facing the combustion chamber for combustion gases formed in the combustion chamber and an outflow area for flue gases formed from the combustion gases, which faces a subsequent flue gas outlet connected to a blower for discharging the flue gases. According to the invention it is provided that a over the outflow area in the flame tube projecting supply line is provided with an outflow opening directed in the direction of the inflow area for a gaseous medium. The outflow opening for the gaseous medium directed in the direction of the inflow area ensures that the gaseous medium is supplied to the flow of flue and combustion gases occurring in the flame tube against the flow direction of this flue and combustion gas flow, as provided according to the method according to the invention. In addition, the gaseous medium is preheated with the help of the supply line projecting over the outflow area into the flame tube, which prevents the flue gas from cooling down too much. As already explained, although preheating the gaseous medium cannot prevent a temperature drop, this temperature drop does not seem to be disadvantageous, since the temperature drop caused by the countercurrent supply of the gaseous medium has no significant effects on the oxidation of the carbon compounds , but prevents the formation of nitrogen oxides.

Eine einfache apparative Ausführung sieht etwa vor, dass die Zufuhrleitung als ein parallel zur Flammrohrachse verlaufendes Zufuhrrohr ausgeführt ist. Dieses Zufuhrrohr ist vorzugsweise in den achsnahen Bereichen des Flammrohres abweichend von der Flammrohrachse angeordnet. Unter einem achsnahen Bereich wird dabei wie bereits erwähnt die innere Hälfte des Flammrohrradius verstanden. Diese Maßnahmen bewirken eine durch die gegenstromige Zufuhr des gasförmigen Mediums gesteigerte Verweildauer der Rauch- und Verbrennungsgase im Flammrohr, sowie einen durch die Verwirbelungen verbesserten Kontakt der chemischen Reaktionspartner. Wie bereits ausgeführt wurde, begünstigen die erhöhte Verweildauer unter den hohen Temperaturen des Flammrohres sowie die Turbulenzen aufgrund der gegenstromigen Zufuhr die vollständige Oxidation der Kohlenstoffverbindungen und unterbinden die persistente Bildung von Feinstaub. Dieser Effekt nimmt mit zunehmender Verweildauer und Turbulenz zu, sodass die gegenstromige Zufuhr des gasförmigen Mediums in den achsnahen Bereichen des Flammrohres, jedoch abweichend von der Flammrohrachse, am effektivsten ist.A simple embodiment of the apparatus provides, for example, that the feed line is designed as a feed tube running parallel to the axis of the flame tube. This feed tube is preferably arranged deviating from the axis of the flame tube in the regions of the flame tube close to the axis. As already mentioned, a region close to the axis is understood to mean the inner half of the flame tube radius. These measures result in an increased dwell time of the flue and combustion gases in the flame tube due to the countercurrent supply of the gaseous medium, as well as improved contact between the chemical reactants due to the turbulence. As already explained, the increased dwell time under the high temperatures of the flame tube and the turbulence due to the countercurrent supply promote complete oxidation of carbon compounds and prevent the persistent formation of fine dust. This effect increases with increasing residence time and turbulence, so that the countercurrent supply of the gaseous medium is most effective in the areas of the flame tube close to the axis, but deviating from the axis of the flame tube.

Für die Bereitstellung des gasförmigen Mediums wird vorgeschlagen, dass die Zufuhrleitung des gasförmigen Mediums mit der Frischluftleitung verbunden ist und es sich bei dem gasförmigen Medium um einen von der dem Brennraum zugeführten Frischluft abgeleiteten Frischluftteilstrom handelt. Insbesondere wird vorgeschlagen, dass die Frischluftleitung zur teilweisen Rückführung von Rauchgasen in den Brennraum mit der Rauchgasableitung verbunden ist und die Zufuhrleitung mit einem Frischluft und Rauchgase führenden Abschnitt der Frischluftleitung verbunden ist, wobei es sich bei dem gasförmigen Medium um einen Rauchgase enthaltenden Frischluftteilstrom handelt. Da die Frischluftleitung in herkömmlicher Weise mit einem Gebläse verbunden ist, um die Frischluft in den Brennraum zu saugen und in weiterer Folge die Rauchgase abzusaugen, haben die beiden letztgenannten Ausführungen den Vorteil, dass die Einleitung des gasförmigen Mediums mit der elektronischen Regelung der Heizeinrichtung mitgeregelt wird, da die Frischluftmenge über das Gebläse geregelt wird, und somit auch mehr an gasförmigem Medium gegenstromig in das Flammrohr eingeblasen wird, wenn die Brennstoffmenge und die Frischluftmenge und somit auch die Stoffmenge der Verbrennungsgase zunehmen.To provide the gaseous medium, it is proposed that the supply line for the gaseous medium be connected to the fresh air line and the gaseous medium be a fresh air partial flow derived from the fresh air supplied to the combustion chamber. In particular, it is proposed that the fresh air line for the partial recirculation of flue gases into the combustion chamber is connected to the flue gas discharge line and the supply line is connected to a section of the fresh air line that carries fresh air and flue gases, with the gaseous medium being a fresh air partial flow containing flue gases. Since the fresh air line is conventionally connected to a blower in order to suck the fresh air into the combustion chamber and subsequently to suck out the smoke gases, the latter two designs have the advantage that the introduction of the gaseous medium is also regulated with the electronic control of the heating device , since the amount of fresh air is controlled by the blower, and thus more of the gaseous medium is blown countercurrently into the flame tube when the amount of fuel and the amount of fresh air and thus also the amount of substance in the combustion gases increase.

Um die Verweildauer sowie die Turbulenzen zu erhöhen und somit die vollständige Oxidation der Kohlenstoffverbindungen zu begünstigen wird des Weiteren vorgeschlagen, dass die Zufuhrleitung einen wendelförmig verlaufenden Gasführungsabschnitt für das gasförmige Medium aufweist. Dieser wendelförmige Gasführungsabschnitt kann entweder durch ein zumindest in seinem Endabschnitt wendelförmig gebogenes Zufuhrrohr für das gasförmige Medium verwirklicht werden, oder durch einen entsprechend wendelförmig geformten Innenmantel des Zufuhrrohres.In order to increase the dwell time and the turbulence and thus promote the complete oxidation of the carbon compounds, it is also proposed that the supply line have a helically running gas guide section for the gaseous medium. This helical gas flow section can either a supply pipe for the gaseous medium that is helically bent at least in its end section, or by a correspondingly helically shaped inner jacket of the supply pipe.

Im Folgenden werden Ausführungsformen der Erfindung anhand der beiliegenden Zeichnung näher beschrieben. Dabei zeigt dieEmbodiments of the invention are described in more detail below with reference to the attached drawing. The

Fig. 1 eine schematische Darstellung für den Aufbau einer erfindungsgemäße Heizeinrichtung zur Verwirklichung des erfindungsgemäßen Verfahrens. 1 a schematic representation of the structure of a heating device according to the invention for implementing the method according to the invention.

Insbesondere zeigt die Fig. 1 einen Heizkessel zur Erwärmung eines Wärmeträgermediums durch Verbrennung von festem Brennstoff, insbesondere Biomasse. In einem Brennraum 1 ist hierfür ein Brennteller 2 angeordnet, dem der feste Brennstoff etwa in Form von riesel- bzw. schüttfähigem Brenngut (z.B. Pellets) zugeführt wird. Unterhalb des Brenntellers 2 sammelt sich die Asche und wird von einer Ascheschnecke in den Aschebehälter befördert. Der Brennraum 1 besitzt eine in der Fig. 1 nicht ersichtliche seitliche Öffnung, über die schüttfähiges Brenngut aus einem Vorratsbehälter mittels einer Fördereinrichtung zum Brennteller 2 gefördert werden kann. Die Fördereinrichtung kann etwa eine mithilfe einer elektronischen Regeleinrichtung automatisch geregelte Förderschnecke sein.In particular, the 1 a boiler for heating a heat transfer medium by burning solid fuel, in particular biomass. For this purpose, a combustion plate 2 is arranged in a combustion chamber 1, to which the solid fuel is supplied, for example in the form of free-flowing or pourable combustion material (eg pellets). The ash collects below the burner plate 2 and is conveyed into the ash container by an ash screw. The combustion chamber 1 has one in the 1 Lateral opening, not visible, through which pourable material to be burned can be conveyed from a storage container by means of a conveyor to the burner plate 2. The conveying device can, for example, be a conveying screw that is automatically regulated with the aid of an electronic control device.

Oberhalb des Brenntellers 2 ist ein Flammrohr 3 vertikal angeordnet, dessen Einströmbereich 3a dem Brennraum 1 zugewandt ist und in den Brennraum 1 mündet. Das Flammrohr 3 ist von entsprechender Dicke und aus einem thermisch isolierenden Material, vorzugsweise keramisches Material oder (Feuer)Beton, gefertigt. Am oberen Ende des Flammrohres 3 treten die Rauchgase R in einem Ausströmbereich 3b des Flammrohres 3 in annähernd laminarer Strömung aus und gelangen in eine anschließende Rauchgasableitung 4. Die Rauchgasableitung 4 durchsetzt einen nicht näher dargestellten Wärmetauscher mit flüssigkeitsgefüllten, insbesondere wassergefüllten Räumen. In diesen Räumen befindet sich das für Heizzwecke oder zur Nutzung als Warmwasser zu erwärmende Wärmeträgermedium.A flame tube 3 is arranged vertically above the combustion plate 2 , the inflow area 3a of which faces the combustion chamber 1 and opens into the combustion chamber 1 . The flame tube 3 is of a suitable thickness and made of a thermally insulating material, preferably ceramic material or (refractory) concrete. At the upper end of the flame tube 3, the flue gases R exit in an outflow region 3b of the flame tube 3 in an approximately laminar flow and enter a subsequent flue gas discharge line 4 water-filled spaces. The heat transfer medium to be heated for heating purposes or for use as hot water is located in these rooms.

Die Rauchgasableitung 4 ist mit einem abgasseitig angeordneten Gebläse 5 verbunden, das als Saugzuggebläse ausgeführt ist und eine Abgabeöffnung 6 aufweist, die etwa an einem außerhalb der Heizeinrichtung verlaufenden Kamin angeschlossen werden kann, um die Rauchgase R abführen zu können. Das Gebläse 5 saugt die Verbrennungsgase V und die Rauchgase R vom Brennraum 1 über das Flammrohr 3 und die Rauchgasableitung 4 in Richtung des Kamins. Des Weiteren wird vom Gebläse 5 Frischluft F in die Frischluftleitung 7 und in den Brennraum 1 angesaugt. Im gezeigten Ausführungsbeispiel der Fig. 1 ist zudem die Frischluftleitung 7 zur teilweisen Rückführung von Rauchgasen R in den Brennraum 1 mit der Rauchgasableitung 4 verbunden. Die Frischluftleitung 7 weist somit einen Abschnitt 7a auf, der mit Rauchgasen R vermengte Frischluft F führt.The flue gas discharge line 4 is connected to a fan 5 arranged on the exhaust gas side, which is designed as an induced draft fan and has a discharge opening 6 which can be connected to a chimney running outside the heating device, for example, in order to be able to discharge the flue gases R. The fan 5 sucks the combustion gases V and the flue gases R from the combustion chamber 1 via the flame tube 3 and the flue gas outlet 4 in the direction of the chimney. Furthermore, fresh air F is sucked into the fresh air line 7 and into the combustion chamber 1 by the blower 5 . In the embodiment shown 1 the fresh air line 7 is also connected to the flue gas discharge line 4 for the partial recirculation of flue gases R into the combustion chamber 1 . The fresh air line 7 thus has a section 7a which carries fresh air F mixed with flue gases R.

Wie der Fig. 1 entnommen werden kann, ist ferner eine über den Ausströmbereich 3b in das Flammrohr 3 ragende Zufuhrleitung 8 mit einer in Richtung des Einströmbereiches gerichteten Ausströmöffnung für ein gasförmiges Medium G angeordnet. Diese Zufuhrleitung 8 ist mit der Frischluftleitung 7 verbunden, sodass es sich bei dem gasförmigen Medium G um einen Frischluftteilstrom handelt, der von der dem Brennraum 1 zugeführten Frischluft F abgeleitet wird. Da die Frischluftleitung 7 in der gezeigten Ausführungsform zur Rückführung von Rauchgasen R in den Brennraum 1 zudem mit der Rauchgasableitung 4 verbunden ist, ist die Zufuhrleitung 8 mit jenem Abschnitt 7a der Frischluftleitung 7 verbunden, der mit Rauchgasen R vermengte Frischluft F führt, die in der Fig. 1 mit einem als "F+R" bezeichneten Pfeil angedeutet ist. Bei dem gasförmigen Medium G handelt es sich somit um einen Rauchgase R enthaltenden Frischluftteilstrom.Again 1 can be seen, a projecting over the outflow area 3b in the flame tube 3 supply line 8 is arranged with an outflow opening directed in the direction of the inflow area for a gaseous medium G. This supply line 8 is connected to the fresh air line 7 so that the gaseous medium G is a partial flow of fresh air which is derived from the fresh air F supplied to the combustion chamber 1 . Since the fresh air line 7 in the embodiment shown is also connected to the flue gas discharge line 4 for returning flue gases R to the combustion chamber 1, the supply line 8 is connected to that section 7a of the fresh air line 7 that carries fresh air F mixed with flue gases R, which is 1 is indicated with an arrow labeled "F+R". The gaseous medium G is therefore a fresh air partial flow containing flue gases R.

Die Zufuhrleitung 8 ist im gezeigten Ausführungsbeispiel als ein parallel zur Flammrohrachse verlaufendes Zufuhrrohr ausgeführt und in den achsnahen Bereichen des Flammrohres 3 angeordnet. Da die Zufuhrleitung 8 den Ausströmbereich 3b des Flammrohres 3 quert, wird das gasförmige Medium G bereits vorgewärmt, bevor es in das Flammrohr 3 eingeleitet wird. Diese Vorwärmung verhindert eine zu starke Abkühlung des Rauchgases R, die die vollständige Oxidation der Kohlenstoffverbindungen beeinträchtigen würde.In the exemplary embodiment shown, the feed line 8 is designed as a feed pipe running parallel to the axis of the flame tube and is arranged in the regions of the flame tube 3 close to the axis. Since the supply line 8 crosses the outflow area 3b of the flame tube 3, the gaseous medium G is already preheated before it is introduced into the flame tube 3. This preheating prevents the flue gas R from cooling down too much, which would impair the complete oxidation of the carbon compounds.

In der Fig. 1 ist des Weiteren ein Temperaturfühler 9 ersichtlich, der die Rauchgastemperatur im Flammrohr 3 misst und mit der oben erwähnten elektronischen Regeleinrichtung verbunden ist.In the 1 a temperature sensor 9 can also be seen, which measures the flue gas temperature in the flame tube 3 and is connected to the electronic control device mentioned above.

Da die Frischluftleitung 7 mit dem Saugzuggebläse 7 verbunden ist, wird auch die Einleitung des gasförmigen Mediums G mit der elektronischen Regeleinrichtung der Heizeinrichtung mitgeregelt, sodass auch mehr an gasförmigem Medium G gegenstromig in das Flammrohr 3 eingeblasen wird, wenn die Brennstoffmenge und die Frischluftmenge und somit auch die Stoffmenge der Verbrennungsgase V zunehmen.Since the fresh air line 7 is connected to the induced draft fan 7, the introduction of the gaseous medium G is also regulated with the electronic control device of the heating device, so that more gaseous medium G is blown countercurrently into the flame tube 3 if the fuel quantity and the fresh air quantity and thus the amount of substance in the combustion gases V will also increase.

Das im Brennraum 1 gebildete Verbrennungsgas V wird dabei über den Einströmbereich 3a dem Flammrohr 3 zugeführt. Als Verbrennungsgas V wird dabei die Gesamtheit der vom Brennraum 1 in den Einströmbereich 3a des Flammrohres gelangenden Gase bezeichnet, in der oxidierte wie nicht-oxidierte Gasanteile der Gasphasenoxidation vorliegen können, und als Rauchgas R jene Gesamtheit der über den Ausströmbereich 3b des Flammrohres 3 in die Rauchgasableitung 4 strömenden Gase, in der die unmittelbar auf die Verbrennung zurückzuführenden chemischen Vorgänge insbesondere der Oxidation weitestgehend abgeschlossen sind. Innerhalb des Flammrohres 3 stellt sich somit ein Strom an Rauchgasen R und Verbrennungsgasen V ein, der in der Fig. 1 mit einem aufwärts zeigenden Pfeil "V+R" angedeutet ist.The combustion gas V formed in the combustion chamber 1 is fed to the flame tube 3 via the inflow area 3a. Combustion gas V refers to all of the gases entering the inflow area 3a of the flame tube from combustion chamber 1, in which oxidized and non-oxidized gas components of the gas-phase oxidation may be present, and flue gas R refers to all of the gases flowing through outflow area 3b of flame tube 3 into the Flue gas discharge 4 flowing gases, in which the chemical processes directly attributable to the combustion, in particular oxidation, are largely completed. Within the flame tube 3 is thus a flow of flue gases R and combustion gases V, which in the 1 is indicated with an upward pointing arrow "V+R".

Diesem Strom an Rauchgasen R und Verbrennungsgasen V wird im Flammrohr 3 das gasförmige Medium G gegen die Stromrichtung dieses Rauch- und Verbrennungsgasstromes zugeführt. Auf diese Weise wird eine erhöhte Verweildauer der Rauchgase R und der Verbrennungsgase V im Flammrohr 3 bewirkt, sowie ein verbesserter Kontakt der chemischen Reaktionspartner aufgrund der durch die gegenstromige Einleitung verursachten Verwirbelungen. Die erhöhte Verweildauer unter den hohen Temperaturen des Flammrohres 3 sowie die Turbulenzen aufgrund der gegenstromigen Zufuhr begünstigen die vollständige Oxidation der Kohlenstoffverbindungen und unterbinden die persistente Bildung von Feinstaub.This flow of flue gases R and combustion gases V is supplied in the flame tube 3 with the gaseous medium G against the direction of flow of this flue and combustion gas flow. In this way, an increased residence time of the flue gases R and the combustion gases V in the flame tube 3 is brought about, as well as improved contact between the chemical reactants due to the turbulence caused by the countercurrent introduction. The increased dwell time under the high temperatures of the flame tube 3 and the turbulence due to the countercurrent supply favor the complete oxidation of the carbon compounds and prevent the persistent formation of fine dust.

Auf diese Weise gelingt eine in ihrem Ausmaß überraschende Emissionsreduktion insbesondere hinsichtlich der Feinstaubpartikel, mit der eine Reduktion bis unter die Nachweisbarkeitsgrenze herkömmlicher Messmethoden erreicht werden kann, wie die Anmelderin zeigen konnte. Mithilfe der Erfindung wird somit eine Heizeinrichtung mit deutlich verbesserten Emissionseigenschaften bereitgestellt.In this way, an emission reduction that is surprising in terms of its extent, in particular with regard to fine dust particles, can be achieved with which a reduction below the detection limit of conventional measurement methods can be achieved, as the applicant was able to show. A heating device with significantly improved emission properties is thus provided with the aid of the invention.

Claims (12)

  1. Method for reducing emissions from heating devices, in particular boilers, in which solid fuel, in particular biomass, is burned in a combustion chamber (1) while fresh air (F) is supplied, wherein combustion gases (V) formed in the combustion chamber (1) are supplied to a flame tube (3) via an inflow region (3a) facing the combustion chamber (1), and flue gases (R) formed from the combustion gases (V) are fed via an outflow region (3b) of the flame tube (3) to a subsequent flue gas discharge line (4) via which the emission-causing flue gases (R) are discharged, characterized in that a gaseous medium (G) is supplied in the flame tube (3) to the flow of flue gases (R) and combustion gases (V) formed in the flame tube (3) against the direction of flow of this flow of flue and combustion gases (R, V).
  2. Method according to claim 1, characterized in that the countercurrent supply of the gaseous medium (G) is effected in the regions of the flame tube (3) close to the axis in a manner deviating from the flame tube axis (3).
  3. Method according to claim 1 or 2, characterized in that the gaseous medium (G) is preheated by the flow of flue and combustion gases (R, V) formed in the flame tube (3).
  4. Method according to one of claims 1 to 3, characterized in that the gaseous medium (G) is diverted from the fresh air (F) supplied to the combustion chamber (1).
  5. Method according to claim 4, characterized in that a partial recirculation of flue gases (R) into the combustion chamber (1) is provided, wherein the discharged flue gases (R) are partially supplied to the fresh air (F) fed to the combustion chamber (1), and the gaseous medium (G) is diverted from the fresh air (F) mixed with flue gases (R).
  6. Method according to one of claims 1 to 5, characterized in that the gaseous medium (G), on entering the flow of flue and combustion gases (R, V) of the flame tube (3), performs a rotational movement about this direction of movement superimposed on its movement against the direction of flow of the flow of flue and combustion gases.
  7. Heating device, in particular a boiler, having a combustion chamber (1) connected to a fresh air line (7) for the combustion of solid fuel, in particular biomass, and a flame tube (3) having an inflow region (3a) facing the combustion chamber (1) for combustion gases (V) formed in the combustion chamber (1) and an outflow region (3b) for flue gases (R) formed from the combustion gases (V), which faces an adjoining flue gas discharge line (4) connected to a fan (5) for discharging the flue gases (R), characterized in that a supply line (8) projecting into the flame tube (3) via the outflow region (3b) is provided with an outflow opening for a gaseous medium (G) directed in the direction of the inflow region (3a).
  8. Heating device according to claim 7, characterized in that the supply line (8) is designed as a supply tube extending parallel to the flame tube axis.
  9. Heating device according to claim 8, characterized in that the supply line (8) is arranged in the areas of the flame tube (3) close to the axis deviating from the flame tube axis.
  10. Heating device according to one of claims 7 to 9, characterized in that the supply line (8) is connected to the fresh air line (7) and the gaseous medium (G) is a fresh air partial flow derived from the fresh air (F) supplied to the combustion chamber (1).
  11. Heating device according to claim 10, characterized in that the fresh air line (7) for partial recirculation of flue gases (R) into the combustion chamber (1) is connected to the flue gas discharge line (4) and the supply line (8) is connected to a section (7a) of the fresh air line (7) carrying fresh air (F) and flue gases (R), wherein the gaseous medium (G) is a fresh air partial flow containing flue gases (R).
  12. Heating device according to one of claims 7 to 11, characterized in that the supply line (8) has a helically extending gas guide section for the gaseous medium (G).
EP20198099.2A 2019-09-26 2020-09-24 Heating device Active EP3798513B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RS20220787A RS63512B1 (en) 2019-09-26 2020-09-24 Heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT508192019 2019-09-26

Publications (2)

Publication Number Publication Date
EP3798513A1 EP3798513A1 (en) 2021-03-31
EP3798513B1 true EP3798513B1 (en) 2022-06-01

Family

ID=72658991

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20198099.2A Active EP3798513B1 (en) 2019-09-26 2020-09-24 Heating device

Country Status (5)

Country Link
EP (1) EP3798513B1 (en)
DK (1) DK3798513T3 (en)
ES (1) ES2925384T3 (en)
PL (1) PL3798513T3 (en)
RS (1) RS63512B1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3537842A1 (en) 1985-10-24 1987-04-30 Edmund Wagner Degassing installation for partly pyrolitic combustion of solid fuels
DE4308001A1 (en) 1993-03-13 1994-09-15 Erk Eckrohrkessel Primary measure for reducing pollutants in flue gases from a combustion plant
DE3614177C2 (en) 1986-04-26 1996-09-26 Erk Eckrohrkessel combustion chamber
DE10021434A1 (en) 1999-05-03 2000-12-21 E T R En Technik Und Recycling Burner for solid material has a cylindrical burn chamber feed from underneath and mounted on height adjusting supports
JP2007285570A (en) 2006-04-14 2007-11-01 Sekisui House Ltd Pellet stove and air supply method
DE102009014010B4 (en) 2009-03-19 2012-02-23 Georg Fischer Gmbh & Co. Kg Burner for solid, lumpy fuel
EP2770255A2 (en) 2013-02-25 2014-08-27 Anton Maggale Method for combustion of fuel
DE202013012063U1 (en) 2012-12-04 2015-02-25 Ökofen Forschungs- Und Entwicklungsgesellschaft M.B.H. Boiler with heat engine
EP3246652A1 (en) 2016-05-18 2017-11-22 ÖKOFEN Forschungs- und Entwicklungsgesellschaft m.b.H. Heating device
AT520068A1 (en) 2017-05-16 2018-12-15 Oekofen Forschungs Und Entw M B H heater

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3685946A (en) * 1970-11-12 1972-08-22 Ecological Controls Inc Combustion chamber supplemental air supply assembly and method
US4565184A (en) * 1984-05-17 1986-01-21 Collins Bruce H Combustible particulate fuel heater
DE3512810A1 (en) 1985-04-10 1986-10-23 Dyckerhoff Engineering GmbH, 6200 Wiesbaden METHOD AND INSTALLATION FOR THE COMBUSTION OF WASTE
CA1319055C (en) 1987-10-02 1993-06-15 Guillermo F. Garrido Non-peripheral blowing of oxygen-containing gas in steam generating boilers
DE4033406A1 (en) 1990-10-20 1992-04-23 Hoval Interliz Ag METHOD AND DEVICE FOR THE BURNING OF WOOD CHIPS AND WOOD SHAVINGS UNDER THE FORMATION OF LOW-POLLUTANT EXHAUST GASES WITH SLIDING REGULATABLE BURNING PERFORMANCE
DE19612403A1 (en) * 1996-03-28 1997-10-02 Fischer Georg Gmbh & Co boiler
FI973932A (en) 1997-10-10 1999-04-11 Kvaerner Pulping Oy Method and Arrangement for Optimizing Oxidation in Combustion of Gaseous and Liquid Fuels
DE102006057710B4 (en) 2006-12-07 2009-01-15 Kosel Gmbh Underfeed combustion plant
DE102007054114A1 (en) 2007-11-10 2009-05-20 Iht Innovative Heiztechnik Gmbh Boiler for combustion of solid fuel
AT507098B1 (en) 2008-12-02 2010-02-15 Knopf Privatstiftung METHOD AND DEVICE FOR CASCADIC BIOMASS OXIDATION WITH THERMAL RECONDITIONING
DE102010051489B4 (en) * 2010-08-06 2013-07-04 Fainest Ag Solid fuel burner with a substantially hollow cylindrical combustion chamber

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3537842A1 (en) 1985-10-24 1987-04-30 Edmund Wagner Degassing installation for partly pyrolitic combustion of solid fuels
DE3614177C2 (en) 1986-04-26 1996-09-26 Erk Eckrohrkessel combustion chamber
DE4308001A1 (en) 1993-03-13 1994-09-15 Erk Eckrohrkessel Primary measure for reducing pollutants in flue gases from a combustion plant
DE10021434A1 (en) 1999-05-03 2000-12-21 E T R En Technik Und Recycling Burner for solid material has a cylindrical burn chamber feed from underneath and mounted on height adjusting supports
JP2007285570A (en) 2006-04-14 2007-11-01 Sekisui House Ltd Pellet stove and air supply method
DE102009014010B4 (en) 2009-03-19 2012-02-23 Georg Fischer Gmbh & Co. Kg Burner for solid, lumpy fuel
DE202013012063U1 (en) 2012-12-04 2015-02-25 Ökofen Forschungs- Und Entwicklungsgesellschaft M.B.H. Boiler with heat engine
EP2770255A2 (en) 2013-02-25 2014-08-27 Anton Maggale Method for combustion of fuel
EP3246652A1 (en) 2016-05-18 2017-11-22 ÖKOFEN Forschungs- und Entwicklungsgesellschaft m.b.H. Heating device
AT520068A1 (en) 2017-05-16 2018-12-15 Oekofen Forschungs Und Entw M B H heater

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HARTMANN INGO, ET AL: "Katalytisch unterstützte Minderung von Emissionen aus Biomasse-Kleinfeuerungs-anlagen", DBFZ REPORT NR.6, 1 January 2011 (2011-01-01), pages 1 - 178, XP093028804, Retrieved from the Internet <URL:http://webdoc.sub.gwdg.de/ebook/serien/yo/DBFZ/06.pdf> [retrieved on 20230303]
WILKEN JENS: "Jens Wilken (Autor) Charakterisierung der Partikelemissionen einer Biomasse-Kleinfeuerungsanlage", CUVILLIER VERLAG, 1 January 2012 (2012-01-01), pages 1 - 11, XP093028797, Retrieved from the Internet <URL:https://cuvillier.de/uploads/preview/public_file/244/9783954040445.pdf> [retrieved on 20230303]
ZUBERBÜHLER: "Maßnahmen zur feuerungsseitigen Emissionsminderung bei der Holzverbrennung in gewerblichen Feuerungsanlagen", UNIVERSITÄT STUTTGART, 1 January 2002 (2002-01-01), pages 1 - 122, XP093028801

Also Published As

Publication number Publication date
EP3798513A1 (en) 2021-03-31
PL3798513T3 (en) 2022-10-03
RS63512B1 (en) 2022-09-30
DK3798513T3 (en) 2022-08-22
ES2925384T3 (en) 2022-10-17

Similar Documents

Publication Publication Date Title
DE2615369C3 (en) Process for flue gas conditioning in waste incineration plants with heat recovery, in particular for municipal and industrial waste, and device for carrying out the process
DE2461078C2 (en) Process for reducing the content of nitrogen oxides, carbon monoxide and carbon in an exhaust gas, as well as a furnace for carrying out the process
EP1901003A1 (en) Method for feeding combustion gas
WO2010102736A1 (en) Wood chip drying system for drying wood chip and associated method for drying wood chip
DE4312820A1 (en) Process for burning fuels, especially waste
EP2787279A1 (en) Method for operating a solid fuel boiler with flue gas recirculation
EP2058589B1 (en) Boiler for solid fuel
DE60122829T2 (en) Waste incineration plant with exhaust gas recirculation
EP0394911A1 (en) Combustion installation
EP0839301A1 (en) Method of incinerating material
EP3798513B1 (en) Heating device
WO2013057187A2 (en) Method and apparatus for heating fluid by the combustion of carbon-based fuels
EP2691701A1 (en) Method for optimising the burnout of exhaust gases of an incinerator
DE4324298A1 (en) Process and furnace for the combustion of liquid and gaseous fuels
AT502343B1 (en) HEATING BOILERS FOR GRAINED FUELS
CH701784A1 (en) Means for improving the burning behavior of a wood heating and wood burning.
DE3923238A1 (en) Burner for liq. or gaseous fuel - incorporates system to recirculate products of combustion
EP0347797A1 (en) Process for reducing NOx in exhaust gases from furnaces, and furnace with means for reducing the NOx content in exhaust gases
WO1992003211A1 (en) Process and device for complete, dry desulphuration of combustion waste gases containing so2 and dust
EP0793063B1 (en) Heating installation with heat exchanger
EP1416224A1 (en) Method of combusting pellet fuel
DE3825291A1 (en) METHOD AND COMBUSTION PLANT FOR COMBUSTION OF FOSSILER FUELS WITH REDUCED EMISSIONS OF NITROGEN
EP0701674B1 (en) Method of reducing waste-incineration emissions
DE102019114571B4 (en) Combustion optimization device for reducing emissions in flue gas, wood-burning oven with a combustion optimization device and its use
DE4006288A1 (en) Treatment of dangerous waste combustion fumes - comprises mixing with cooling air for use in standard refuse incinerator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

17P Request for examination filed

Effective date: 20210921

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220126

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1495605

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220615

Ref country code: CH

Ref legal event code: EP

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020001167

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20220818

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2925384

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20221017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220901

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220902

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221003

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502020001167

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221001

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: FROELING HEIZKESSEL- UND BEHAELTERBAU, GESELLSCHAFT M.B.H

Effective date: 20230217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220924

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220924

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230926

Year of fee payment: 4

Ref country code: CZ

Payment date: 20230828

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RS

Payment date: 20230825

Year of fee payment: 4

Ref country code: PL

Payment date: 20230825

Year of fee payment: 4

Ref country code: FR

Payment date: 20230913

Year of fee payment: 4

Ref country code: DK

Payment date: 20230905

Year of fee payment: 4

Ref country code: DE

Payment date: 20230926

Year of fee payment: 4

Ref country code: BE

Payment date: 20230830

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231002

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230930

Year of fee payment: 4

Ref country code: CH

Payment date: 20231001

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601