EP3795267B1 - Method for operating a rolling mill - Google Patents

Method for operating a rolling mill Download PDF

Info

Publication number
EP3795267B1
EP3795267B1 EP20196043.2A EP20196043A EP3795267B1 EP 3795267 B1 EP3795267 B1 EP 3795267B1 EP 20196043 A EP20196043 A EP 20196043A EP 3795267 B1 EP3795267 B1 EP 3795267B1
Authority
EP
European Patent Office
Prior art keywords
regulating
target value
regulating variable
variable
soll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20196043.2A
Other languages
German (de)
French (fr)
Other versions
EP3795267A1 (en
Inventor
Jörn Sieghart
Dietrich Mathweis
Frank Gorgels
Roland Dinger
Ronny PETERS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Group GmbH
Original Assignee
SMS Group GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=72517109&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3795267(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by SMS Group GmbH filed Critical SMS Group GmbH
Publication of EP3795267A1 publication Critical patent/EP3795267A1/en
Application granted granted Critical
Publication of EP3795267B1 publication Critical patent/EP3795267B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates
    • B21B37/30Control of flatness or profile during rolling of strip, sheets or plates using roll camber control
    • B21B37/32Control of flatness or profile during rolling of strip, sheets or plates using roll camber control by cooling, heating or lubricating the rolls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates
    • B21B37/38Control of flatness or profile during rolling of strip, sheets or plates using roll bending
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates
    • B21B37/40Control of flatness or profile during rolling of strip, sheets or plates using axial shifting of the rolls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/58Roll-force control; Roll-gap control

Definitions

  • the invention relates to a method for operating a roll stand with a pair of work rolls which create a roll gap for rolling a metal strip.
  • Such roll stands are generally known in the prior art, e.g. B. from the Chinese patent CN 102581035B .
  • Each of the k'th control loops has a k'th actuator for controlling a k'th controlled variable.
  • the target value for the first controlled variable in the prior art is variable over time or has a variable over time portion to compensate for changes in process variables during a rolling process. Due to the temporal variability of the setpoint, the actuator of the first control loop can reach its performance limit; please refer Figure 5a : "without correction". This can result in a shortfall in travel in the first actuator.
  • the invention is based on the object of further developing a known method for operating a roll stand with a first and at least one further control circuit such that the occurrence of a (such) power deficit in the actuator of the first control circuit is prevented.
  • the monitoring of the time profile of the setpoint of the first controlled variable as claimed there with regard to the threshold values Min, Max, which lie within the performance limits of the first actuator, advantageously enables a preventive initiation of a countermeasure before the master actuator due to a specified setpoint that is too large reaches its performance limit for the first controlled variable.
  • the countermeasure provides that as soon as the Min or Max threshold value is reached, i.e. before the lower or upper power limit of the master actuator is reached, the setpoint for the first controlled variable is increased or decreased by a correction component determined according to the invention.
  • the corrected setpoint calculated in this way for the first control variable is usually smaller than the previously provided setpoint and is specified for the first control circuit instead of the previously provided setpoint.
  • the correction components for the master setpoint value SM are dimensioned preventively in such a way that the master actuator is not even driven to its upper or lower performance limit.
  • the stability of a rolling installation can be increased in that actuators are specifically moved to operating points that are favorable for the rolling process by linking the master-slave control circuits according to the invention.
  • These working points can offer advantages in terms of process technology, such as targeted control of the actuators in tried and/or pre-calculated working areas.
  • actuators with high dynamic properties are strategically kept in work areas in where they can react quickly to any process changes that may occur, such as damage to the incoming material.
  • the assignment of the link between master and slave actuators offers additional flexibility.
  • the assignment of the actuators can be different for different process situations and/or system types. For example, a different actuator can be defined as the master actuator for a bandwidth r than for a bandwidth j.
  • the assignment and priorities of the slave actuators can also be changed in real time using the factor ak for optimal adaptation to current process conditions.
  • the method according to the invention can be used both for hot rolling and for cold rolling of metal strip.
  • Both the master control circuit and all slave control circuits are operated continuously or iteratively over time. i.e. there is a continuous or ongoing regulation of the controlled variable to its specified setpoints.
  • setpoint used in part of the description and in the claims is representative of a setpoint signal that changes over time. Due to the time-discrete consideration customary in digital technology, the term “setpoint” is also used in the description; however, this target value is by no means absolutely necessary to be regarded as constant over time.
  • figure 1 shows a first or master control circuit 130 for controlling a first controlled variable in a roll stand 100 to a predetermined master setpoint value SM setpoint n* .
  • this setpoint is compared with an actual value of the controlled variable SM actual n .
  • a comparison device 134 typically a difference generator.
  • the result of this comparison is input as a system deviation into a master controller 133, which generates an actuator for a master actuator 132 at its output.
  • the master actuator influences the controlled system 131 of the first or master control circuit 130.
  • the controlled system consists here, for example, of a roll stand 100 for rolling metal strip 120 with the help of work rolls 110.
  • the roll stand 100 When the roll stand 100 is designed in four-high design, the Work rolls 110 each associated with back-up rolls. If the roll stand is designed in a six-high design, the roll stand also has intermediate rolls in addition to the work and back-up rolls (in figure 1 Not shown). According to the figure 1 In the control circuit 130 shown, the controlled variable at the output of the controlled system 131 is detected using a detection device 136, typically a measuring element. The controlled variable recorded is the said actual value of the controlled variable, which is switched at the output of the recording device 136 to the input of the master comparator device 134 .
  • a detection device 136 typically a measuring element.
  • the controlled variable recorded is the said actual value of the controlled variable, which is switched at the output of the recording device 136 to the input of the master comparator device 134 .
  • figure 2 shows the structure of said master setpoint correction device 135 in detail.
  • this correction device the sum of the previous master setpoint value SM setpoint n and the previously calculated correction components y1_n-1 and y2_n-1 is monitored in a threshold value monitoring device 135-1 to determine whether it exceeds a specified upper threshold value Max or a specified one falls below the lower threshold Min.
  • the result is provided at the output of the monitoring device 135-1, here by way of example in the form of the output signals x 1 , x 2 , which are binary-coded, for example.
  • the signals x 1 and x 2 are actually enable signals for enabling a calculation unit 135-2 for a correction component y1 for the master setpoint or to enable a calculation unit 135-3 for an alternative correction component y2 for the master setpoint value SM setpoint n .
  • n 1 . . . N representing discrete points in time. These points in time are specified by the control clock cycles, ie the runs of the control loop.
  • the correction components y1 and y2 calculated in this way are as follows figure 2 into a calculation unit 135-4 for calculating the corrected setpoint value SM setpoint n* .
  • the calculation unit is typically an addition device which adds the correction components y1 and y2 to the previous master setpoint SM setpoint n in order to calculate the said corrected setpoint signal in this way.
  • the correction component y1 is typically negative and the correction component y2 is typically positive.
  • the sign must be selected in such a way that the setpoint SM setpoint n+1 is shifted into the tolerance range.
  • the corrected setpoint value SM setpoint n* is typically smaller than the previous master setpoint value SM setpoint n .
  • the calculation units 135-2 and 135-3 for the correction components y1 and y2 are individually blocked; this is done with the in figure 2 indicated disable signals DIS y2 and DIS y1 .
  • at least one further slave control circuit 140-k is assigned to the roll stand 100 in addition to the master control circuit 130.
  • figure 3 illustrates the structure of such a slave control loop 140-k in detail. It is constructed analogously for all slaves k.
  • the slave control circuit 140-k is used to control a slave control variable SL k actual n to a corrected desired value SL k desired n* .
  • the actual value of the controlled variable is detected with the aid of a detection device 146-k and compared with the corrected setpoint value SL k setpoint n* in a slave comparator 144-k.
  • the result is supplied in the form of a control deviation to the k'th controller 143-k, which provides a control signal for a k'th slave actuator 142-k at its output.
  • the slave actuator 142-k influences a k'th controlled system 141-k.
  • This slave controlled system 141 - k is typically the same roll stand 100 that also represents the master controlled system 131 of the first control loop 130 .
  • figure 4 shows the structure of a k'th setpoint correction device 145-k in detail.
  • a performance deficit ⁇ p k of the k'th actuator is also determined.
  • the detected travel error is distributed to the remaining slave actuators by appropriately changing the respective coefficients ak of the remaining slave actuators.
  • the power deficits ⁇ p k determined in the k-slave setpoint correction devices 145-k are sent to a likewise in figure 4 shown power distribution calculation device 150 entered, so that on the basis of said input signals the coefficients a k for the individual slave setpoint correction devices 145-k updated and also provides the lock or disable signals DIS y1 and DIS y2 for the calculation units 135-2 and 135-3 for the correction components y1 and y2.
  • At least one of the correction components of the first controlled variable is kept constant; this is done by the said disable signals DIS y1 and DIS y2 calculated by the power distribution calculator 150 as above with reference to FIG figure 4 described.
  • the inventive method is described below with reference to the Figures 5a, 5b and 5c described in more detail:
  • the upper and lower physical power limits of the master actuator 132 are entered. They correspond to an upper and/or a lower, positive and/or negative operating limit of the master actuator 132.
  • the invention provides that these performance limits are exceeded when the master actuator is actuated with the associated control signal S generated by the master controller 133 x should never be reached, even if the master setpoint or its change over time is very large.
  • the setpoint value SM setpoint n is monitored according to the invention with regard to reaching low-threshold limit values Max, Min with the aid of the monitoring device 135-1.
  • limit values are lower-threshold insofar as they lie within the upper and lower power limits of the master actuator. By monitoring these low-threshold limit values, it is possible to take preventive action before the upper or lower power limit is reached, in that, according to the invention, said correction components y1 and y2 are calculated for the master setpoint. From a synopsis of Figures 5a and 5b it can be seen that the master setpoint SM setpoint is reached when the upper limit value Max is reached at the time n is reduced by adjusting the amount of correction component y1. This results in the corrected master setpoint at time n1.
  • the corrected master setpoint SM setpoint n1* reduced in this way is further away from the upper power limit and is also lower and more stable within a tolerance range T spanned by the upper and lower limit values Max, Min. But also this corrected master setpoint at the time n1 is also monitored in the monitoring device 135-1 with regard to whether the upper or lower limit value has been reached. If this is determined at point in time n2, then a new correction takes place, specifically a new reduction in its value by a then newly calculated correction component y1. This correction results in a new, corrected master setpoint value SM setpoint n2* at time n2.
  • the process of the master actuator takes place through the opposite activation of at least one slave actuator with only minor flatness disturbances or even flatness-neutral.
  • the master actuator 132 is preferably set to be the bender.
  • any flatness defects that occur due to fluctuations in the rolling force are compensated for by a Profile-Gauge Meter PGM.
  • the functionality of the PGM includes the pre-control of rolling force changes on bends in order to keep the roll gap profile and/or the roll gap contour between the work rolls 110 of the roll stand 100 as constant as possible in the event of a fluctuation in the rolling force.
  • the quality of the difference quotient dQM required for the PGM pre-control depends heavily on the current operating point.
  • the PGM must always have a bending reserve in the event of a sudden change in force, e.g. B. to be able to react quickly to overpickled spots on steel strips.
  • the bending reserve corresponds to in Figure 5a the distance between the upper power limit and the upper limit value Max or the distance between the lower power limit and the lower limit value Min.
  • the work roll bending is used for the PGM pre-control and is accordingly defined as a master controlled variable with corresponding master setpoint specifications.
  • the associated master actuator 132 can reach its physical limits, ie its upper or lower performance limit.
  • an allowed error e.g. B. 4th order
  • monitor and within its limits a replacement of the work roll bending by z. B. allow at least partial axial displacement for the work rolls.
  • the movement of the master actuator occurs through the opposite activation of at least one slave actuator with only minor flatness disturbances or even flatness-neutral.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Betreiben eines Walzgerüstes mit einem Paar Arbeitswalzen, welche einen Walzspalt aufspannen zum Walzen eines Metallbandes.The invention relates to a method for operating a roll stand with a pair of work rolls which create a roll gap for rolling a metal strip.

Derartige Walzgerüste sind im Stand der Technik grundsätzlich bekannt, so z. B. aus der chinesischen Patentschrift CN 102581035 B . Dem dort offenbarten Walzgerüst sind ein erster Regelkreis mit einem ersten Stellglied zum Regeln einer ersten Regelgröße auf einen zeitlich variablen ersten Sollwert und k weitere Regelkreise mit k=1-K zugeordnet. Jeder der k'ten Regelkreise weist jeweils ein k'tes Stellglied zum Regeln einer k'ten Regelgröße auf. Der Sollwert für die erste Regelgröße im Stand der Technik ist zeitlich variabel bzw. hat einen zeitlich variablen Anteil zur Kompensation von Änderungen von Prozessgrößen während eines Walzprozesses. Aufgrund der zeitlichen Variabilität des Sollwertes kann das Stellglied des ersten Regelkreises seine Leistungsgrenze erreichen; siehe Figur 5a: "ohne Korrektur". Dadurch kann ein Stellweg-Fehlbetrag bei dem ersten Stellglied entstehen.Such roll stands are generally known in the prior art, e.g. B. from the Chinese patent CN 102581035B . A first control circuit with a first actuator for controlling a first controlled variable to a time-variable first desired value and k further control circuits with k=1-K are assigned to the roll stand disclosed there. Each of the k'th control loops has a k'th actuator for controlling a k'th controlled variable. The target value for the first controlled variable in the prior art is variable over time or has a variable over time portion to compensate for changes in process variables during a rolling process. Due to the temporal variability of the setpoint, the actuator of the first control loop can reach its performance limit; please refer Figure 5a : "without correction". This can result in a shortfall in travel in the first actuator.

Dieser Stellweg-Fehlbetrag kann im Stand der Technik durch die bekannten weiteren Regelkreise des Walzgerüstes nicht hinreichend kompensiert werden.In the prior art, this shortcoming in the amount of travel cannot be adequately compensated for by the known further control circuits of the roll stand.

Der Erfindung liegt die Aufgabe zugrunde, ein bekanntes Verfahren zum Betreiben eines Walzgerüstes mit einem ersten und mindestens einem weiteren Regelkreis dahingehend weiterzubilden, dass der Entstehung eines (solchen) Leistungsfehlbetrages bei dem Stellglied des ersten Regelkreises vorgebeugt wird.The invention is based on the object of further developing a known method for operating a roll stand with a first and at least one further control circuit such that the occurrence of a (such) power deficit in the actuator of the first control circuit is prevented.

Das US-Patent 4,000,449 offenbart sämtliche Verfahrensschritte gemäß dem Oberbegriff des Patentanspruchs 1.That U.S. Patent 4,000,449 discloses all method steps according to the preamble of patent claim 1.

Diese Aufgabe der Erfindung wird durch das in Patentanspruch 1 beanspruchte Verfahren gelöst.This object of the invention is achieved by the method claimed in patent claim 1.

Das dort beanspruchte Überwachen des zeitlichen Verlaufs des Sollwertes der ersten Regelgröße im Hinblick auf die Schwellenwerte Min, Max, welche innerhalb der Leistungsgrenzen des ersten Stellglieds liegen, ermöglicht vorteilhafterweise ein präventives Einleiten einer Gegenmaßnahme, bevor das Master-Stellglied aufgrund eines betraglich zu groß vorgegebenen Sollwertes für die erste Regelgröße an seine Leistungsgrenze stößt. Konkret sieht die Gegenmaßnahme vor, dass bereits bei Erreichen des Schwellenwertes Min oder Max, d.h. noch vor Erreichen der unteren oder oberen Leistungsgrenze des Master-Stellgliedes, der Sollwert für die erste Regelgröße betraglich um einen erfindungsgemäß ermittelten Korrekturanteil vergrößert bzw. verkleinert wird. Der so berechnete korrigierte Sollwert für die erste Regelgröße ist meist betraglich kleiner als der zuvor vorgesehene Sollwert und wird anstelle des vorher vorgesehenen Sollwertes für den ersten Regelkreis vorgegeben. Die Korrekturanteile für den Master-Sollwert SM werden präventiv so bemessen, dass das Master-Stellglied erst gar nicht an seine obere oder untere Leistungsgrenze gefahren wird.The monitoring of the time profile of the setpoint of the first controlled variable as claimed there with regard to the threshold values Min, Max, which lie within the performance limits of the first actuator, advantageously enables a preventive initiation of a countermeasure before the master actuator due to a specified setpoint that is too large reaches its performance limit for the first controlled variable. Specifically, the countermeasure provides that as soon as the Min or Max threshold value is reached, i.e. before the lower or upper power limit of the master actuator is reached, the setpoint for the first controlled variable is increased or decreased by a correction component determined according to the invention. The corrected setpoint calculated in this way for the first control variable is usually smaller than the previously provided setpoint and is specified for the first control circuit instead of the previously provided setpoint. The correction components for the master setpoint value SM are dimensioned preventively in such a way that the master actuator is not even driven to its upper or lower performance limit.

Die Vorteile der Anwendung der beschriebenen Verfahrensschritte liegen grundsätzlich in der Verbesserung der Walzstabilität sowie der Verbesserung der Produktqualität und Reduzierung von Abmaßlängen.The advantages of using the process steps described lie in the improvement of the rolling stability as well as the improvement of the product quality and the reduction of oversize lengths.

Die Stabilität einer Walzanlage kann erhöht werden, indem Stellglieder gezielt durch die erfindungsgemäße Verknüpfung der Master- Slave Regelkreise in für den Walzprozess günstige Arbeitspunkte gefahren werden. Diese Arbeitspunkte können prozesstechnische Vorteile bieten, wie z.B. ein gezieltes Steuern der Stellglieder in erprobte und oder vorab berechnete Arbeitsbereiche.The stability of a rolling installation can be increased in that actuators are specifically moved to operating points that are favorable for the rolling process by linking the master-slave control circuits according to the invention. These working points can offer advantages in terms of process technology, such as targeted control of the actuators in tried and/or pre-calculated working areas.

Es können weiterhin Vorteile erzielt werden, indem die Stellglieder durch die Wahl der Schwellwerte (Min, Max) gezielt in Bereiche gefahren werden, in denen deren Verhalten nahezu linear ist.Furthermore, advantages can be achieved by using the selection of the threshold values (Min, Max) to specifically drive the actuators into areas in which their behavior is almost linear.

Zusätzlich ergeben sich Vorteile dahingehend, dass die Stellglieder mit hohen dynamischen Eigenschaften strategisch in Arbeitsbereichen gehalten werden, in denen sie schnell auf eventuell auftretende Prozessänderungen, wie z.B. eine Beschädigung des einlaufenden Materials, reagieren können.In addition, there are advantages in that the actuators with high dynamic properties are strategically kept in work areas in where they can react quickly to any process changes that may occur, such as damage to the incoming material.

Insbesondere die Zuordnung der Verknüpfung zwischen Master und Slave Stellgliedern bietet zusätzliche Flexibilität. Die Zuordnung der Stellglieder kann für verschiedene Prozesssituationen und oder Anlagentypen unterschiedlich ausfallen. So kann zum Beispiel bei einer Bandbreite r ein anderes Stellglied als Master Stellglied definiert werden als bei einer Bandbreite j. Auch die Zuordnung und Prioritäten der Slave Stellglieder sind in Echtzeit durch den Faktor ak veränderbar für eine optimale Anpassung an aktuelle Prozessgegebenheiten.In particular, the assignment of the link between master and slave actuators offers additional flexibility. The assignment of the actuators can be different for different process situations and/or system types. For example, a different actuator can be defined as the master actuator for a bandwidth r than for a bandwidth j. The assignment and priorities of the slave actuators can also be changed in real time using the factor ak for optimal adaptation to current process conditions.

Gemäß einem ersten vorteilhaften Ausführungsbeispiel des erfindungsgemäßen Verfahrens weist das Walzgerüst nicht nur einen (k=1), sondern zusätzlich weitere Slave-Regelkreise k=2-K auf. Das Verfahren weist dann vorzugsweise folgenden weiteren Schritt auf: Durchführen der Schritte ii) analog jeweils für jeden der weitern k=2-K Regelkreise mit ihren jeweiligen k=2-K'ten Slave-Stellgliedern.According to a first advantageous exemplary embodiment of the method according to the invention, the roll stand has not only one (k=1) but also additional slave control circuits k=2-K. The method then preferably has the following further step: carrying out steps ii) analogously for each of the further k=2-K control loops with their respective k=2-K'th slave actuators.

Das Vorsehen der k weiteren Regelkreise mit ihren jeweiligen Stellgliedern bietet den Vorteil, dass ein eventuell festgestellter Leistungs- bzw. Stellweg-Fehlbetrag des Master-Stellgliedes nicht nur durch ein erstes Slave-Stellglied, sondern zusätzlich auch durch die besagten weiteren Stellglieder mit k=2-K der weiteren Regelkreise kompensiert werden kann, falls erforderlich.The provision of the k further control circuits with their respective actuators offers the advantage that any performance or actuating travel deficiency of the master actuator that may be determined can be compensated not only by a first slave actuator, but also by said other actuators with k=2 -K of the other control loops can be compensated if necessary.

Das erfindungsgemäße Verfahren kann Anwendung finden sowohl beim Warmwalzen wie auch beim Kaltwalzen von Metallband.The method according to the invention can be used both for hot rolling and for cold rolling of metal strip.

Sowohl der Master-Regelkreis wie auch alle Slave-Regelkreise werden zeitlich kontinuierlich bzw. iterativ betrieben. D. h. es findet eine kontinuierliche bzw. fortlaufende Regelung der Regelgröße auf ihre jeweils vorgegebenen Sollwerte statt.Both the master control circuit and all slave control circuits are operated continuously or iteratively over time. i.e. there is a continuous or ongoing regulation of the controlled variable to its specified setpoints.

Der in der Beschreibung und in den Ansprüchen teilweise verwendete Begriff "Sollwert" steht repräsentativ für ein zeitlich veränderliches Sollwert-Signal. Aufgrund der in der Digitaltechnik üblichen zeitendiskreten Betrachtung wird in der Beschreibung stattdessen auch der besagte Begriff "Sollwert" verwendet; dieser Sollwert ist jedoch keineswegs zwingend notwendig als zeitlich konstant anzusehen.The term “setpoint” used in part of the description and in the claims is representative of a setpoint signal that changes over time. Due to the time-discrete consideration customary in digital technology, the term "setpoint" is also used in the description; however, this target value is by no means absolutely necessary to be regarded as constant over time.

Weitere vorteilhafte Ausgestaltungen des erfindungsgemäßen Verfahrens sind Gegenstand der abhängigen Ansprüche.Further advantageous configurations of the method according to the invention are the subject matter of the dependent claims.

Der Beschreibung sind fünf Figuren beigefügt, wobei

Figur 1
einen ersten bzw. Master-Regelkreis zum Regeln einer erste Regelgröße bei einem Walzgerüst;
Figur 2
eine Master-Sollwert-Korrektureinheit zur Berechnung eines korrigierten Master-Sollwertes;
Figur 3
einen dem Walzgerüst zugeordneten k'ten Slave-Regelkreis zum Regeln einer k'ten Regelgröße;
Figur 4
eine Slave-Sollwert-Korrektureinheit zur Berechnung eines korrigierten k'ten Slave-Sollwertes; und
Figuren 5a), 5b) und 5c)
die Ermittlung eines Korrekturanteils y1 und eines Kompensationsanteils ZSLk bei Durchführung einer erfindungsgemäß notwendigen Korrektur des Master-Sollwertes SMSoll
zeigt.The description is accompanied by five figures, where
figure 1
a first or master control circuit for controlling a first controlled variable in a roll stand;
figure 2
a master setpoint correction unit for calculating a corrected master setpoint;
figure 3
a k'th slave control circuit assigned to the roll stand for controlling a k'th controlled variable;
figure 4
a slave target value correction unit for calculating a corrected kth slave target value; and
Figures 5a), 5b) and 5c)
the determination of a correction component y1 and a compensation component ZSL k when carrying out a correction of the master setpoint value SM setpoint that is necessary according to the invention
indicates.

Die Erfindung wird nachfolgend unter Bezugnahme auf die genannten Figuren in Form von Ausführungsbeispielen detailliert beschrieben. In allen Figuren sind gleiche technische Elemente mit gleichen Bezugszeichen bezeichnet.The invention is described in detail below with reference to the figures mentioned in the form of exemplary embodiments. The same technical elements are denoted by the same reference symbols in all figures.

Figur 1 zeigt einen ersten bzw. Master-Regelkreis 130 zum Regeln einer ersten Regelgröße bei einem Walzgerüst 100 auf einen vorgegebenen Master-Sollwert SMSoll n*. Zum Zwecke der Regelung wird dieser Sollwert verglichen mit einem Istwert der Regelgröße SMlst n. Dies geschieht in einer Vergleichereinrichtung 134, typischerweise einem Differenzbildner. Das Ergebnis dieses Vergleiches findet als Regelabweichung Eingang in einen Master-Regler 133, welcher an seinem Ausgang ein Stellglied für ein Master-Stellglied 132 erzeugt. Das Master-Stellglied nimmt Einfluss auf die Regelstrecke 131 des ersten bzw. Master-Regelkreises 130. Die Regelstrecke besteht hier beispielhaft aus einem Walzgerüst 100 zum Walzen von Metallband 120 mit Hilfe von Arbeitswalzen 110. Bei Ausbildung des Walzgerüstes 100 in Quarto-Bauweise sind den Arbeitswalzen 110 jeweils Stützwalzen zugeordnet. Bei Ausbildung des Walzgerüstes in Sechsto-Bauweise weist das Walzgerüst neben den Arbeits- und Stützwalzen außerdem noch Zwischenwalzen auf (in Figur 1 nicht gezeigt). Gemäß dem in Figur 1 dargestellten Regelkreis 130 wird die Regelgröße am Ausgang der Regelstrecke 131 erfasst mit Hilfe einer Erfassungseinrichtung 136, typischerweise einem Messglied. Bei der erfassten Regelgröße handelt es sich um den besagten Istwert der Regelgröße, der am Ausgang der Erfassungseinrichtung 136 auf den Eingang der Master-Vergleichereinrichtung 134 geschaltet wird. figure 1 shows a first or master control circuit 130 for controlling a first controlled variable in a roll stand 100 to a predetermined master setpoint value SM setpoint n* . For the purpose of regulation, this setpoint is compared with an actual value of the controlled variable SM actual n . This takes place in a comparison device 134, typically a difference generator. The result of this comparison is input as a system deviation into a master controller 133, which generates an actuator for a master actuator 132 at its output. The master actuator influences the controlled system 131 of the first or master control circuit 130. The controlled system consists here, for example, of a roll stand 100 for rolling metal strip 120 with the help of work rolls 110. When the roll stand 100 is designed in four-high design, the Work rolls 110 each associated with back-up rolls. If the roll stand is designed in a six-high design, the roll stand also has intermediate rolls in addition to the work and back-up rolls (in figure 1 Not shown). According to the figure 1 In the control circuit 130 shown, the controlled variable at the output of the controlled system 131 is detected using a detection device 136, typically a measuring element. The controlled variable recorded is the said actual value of the controlled variable, which is switched at the output of the recording device 136 to the input of the master comparator device 134 .

Gegenstand der vorliegenden Erfindung ist weniger der beschriebene Regelkreis 130, sondern vielmehr die ebenfalls in Figur 1 gezeigte Master-Sollwert-Korrektureinrichtung 135. Diese dient dazu, einen ursprünglich bzw. zuvor vorgesehenen Sollwert SMSoll n in einen korrigierten Master-Sollwert SMSoll n* umzuwandeln für den Fall, dass die Summe aus dem vorherigem Master-Sollwert SMSoll n und zuvor berechneten Korrekturanteilen y1_n-1 und y2_n-1 so groß sein sollte, dass sie das Master-Stellglied 132 an seine Leistungsgrenzen bringen würde. Zur Berechnung des korrigierten Master-Sollwertes SMSoll n* werden der Master-Sollwert-Korrektureinrichtung 135 neben dem vorherigen Sollwert SMSoll n diverse andere Parameter zugeführt. Dabei handelt es sich um:

  • Max: einen oberen Schwellenwert für die erste bzw. Master-Regelgröße
  • Min: einen unteren Schwellenwert für die erste bzw. Master-Regelgröße
  • Cposn maximal zulässiger Planheitsfehler oder maximal zulässige Walzspaltprofilkonturänderung, jeweils 2. oder höherer Ordnung, oder die Summe aus beiden, gültig für eine Veränderung des Sollwertes in positiver Richtung;
  • Cnegn minimal zulässiger Planheitsfehler oder minimal zulässige Walzspaltprofilkonturänderung, jeweils 2. oder höherer Ordnung, oder die Summe aus beiden gültig für eine Veränderung des Sollwertes in negativer Richtung;
  • dQMn: Verhältnis von Änderung des Sollwertes der Stellgröße des Masterstellglieds zu Änderung der Planheit 2. und/oder höherer Ordnung des Metallbandes; oder Verhältnis von Änderung des Sollwertes der Stellgröße des Masterstellglieds zu Änderung der Walzspaltkontur 2. und/oder höherer Ordnung.
The subject matter of the present invention is not so much the described control circuit 130, but rather the also in figure 1 shown master setpoint correction device 135. This serves to convert an originally or previously provided setpoint SM setpoint n into a corrected master setpoint SM setpoint n* in the event that the sum of the previous master setpoint SM setpoint n and previously calculated correction components y1_n-1 and y2_n-1 should be so large that they bring the master actuator 132 to its performance limits would. To calculate the corrected master setpoint SM setpoint n* , the master setpoint correction device 135 is supplied with various other parameters in addition to the previous setpoint SM setpoint n . It refers to:
  • Max: an upper threshold for the first or master controlled variable
  • Min: a lower threshold for the first or master controlled variable
  • Cpos n maximum permissible flatness error or maximum permissible change in roll gap profile contour, each of the 2nd or higher order, or the sum of both, valid for a change in the setpoint in the positive direction;
  • Cneg n minimum permissible flatness error or minimum permissible change in roll gap profile contour, each of the 2nd or higher order, or the sum of both valid for a change in the setpoint in the negative direction;
  • dQM n : ratio of the change in the set value of the manipulated variable of the master actuator to the change in the flatness of the second and/or higher order of the metal strip; or ratio of the change in the target value of the manipulated variable of the master actuator to the change in the roll gap contour of the 2nd and/or higher order.

Figur 2 zeigt den Aufbau der besagten Master-Sollwert-Korrektureinrichtung 135 im Detail. In dieser Korrektureinrichtung wird die Summe aus dem vorherigen Master-Sollwert SMSoll n und den zuvor berechneten Korrekturanteilen y1_n-1 und y2_n-1 in einer Schwellenwert-Überwachungseinrichtung 135-1 dahingehend überwacht, ob sie einen vorgegebenen oberen Schwellenwert Max über- oder einen vorgegebenen unteren Schwellenwert Min unterschreitet. Das Ergebnis wird am Ausgang der Überwachungseinrichtung 135-1 bereitgestellt, hier beispielhaft in Form der Ausgangssignale x1, x2, welche beispielsweise binärkodiert sind. Bei den Signalen x1 und x2 handelt es sich faktisch um Freigabesignale zum Freigeben einer Berechnungseinheit 135-2 für einen Korrekturanteil y1 für den Master-Sollwert oder zur Freigabe einer Berechnungseinheit 135-3 für einen alternativen Korrekturanteil y2 für den Master-Sollwert SMSoll n. figure 2 shows the structure of said master setpoint correction device 135 in detail. In this correction device, the sum of the previous master setpoint value SM setpoint n and the previously calculated correction components y1_n-1 and y2_n-1 is monitored in a threshold value monitoring device 135-1 to determine whether it exceeds a specified upper threshold value Max or a specified one falls below the lower threshold Min. The result is provided at the output of the monitoring device 135-1, here by way of example in the form of the output signals x 1 , x 2 , which are binary-coded, for example. The signals x 1 and x 2 are actually enable signals for enabling a calculation unit 135-2 for a correction component y1 for the master setpoint or to enable a calculation unit 135-3 for an alternative correction component y2 for the master setpoint value SM setpoint n .

Sämtliche in der vorliegenden Beschreibung verwendeten Werte bzw. Signale sind zeitabhängig und deshalb mit dem Index n versehen, wobei n=1... N diskrete Zeitpunkte repräsentiert. Diese Zeitpunkte werden durch die Taktzyklen der Regelung, also die Durchläufe der Regelschleife, vorgegeben.All of the values or signals used in the present description are time-dependent and are therefore provided with the index n, with n=1 . . . N representing discrete points in time. These points in time are specified by the control clock cycles, ie the runs of the control loop.

Wenn bei der Überwachung in der Überwachungseinrichtung 135 festgestellt wird, dass der Sollwert SMSoll n für die erste Regelgröße den oberen Schwellenwert Max eines Toleranzbereiches T überschreitet, wird der Korrekturanteil y1 entweder prozess- oder anlagenspezifisch vorgegeben oder er wird in der Berechnungseinheit 135-2 gemäß folgender Formel berechnet: y1n = y1n 1 Cposn * dQMn

Figure imgb0001
If the monitoring in the monitoring device 135 determines that the setpoint SM setpoint n for the first controlled variable exceeds the upper threshold value Max of a tolerance range T, the correction component y1 is specified either process- or system-specifically or it is calculated in the calculation unit 135-2 according to calculated using the following formula: y1n = y1n 1 Cposn * dQMn
Figure imgb0001

Alternativ: Wenn dagegen in der Überwachungseinrichtung 135-1 festgestellt wird, dass der Sollwert SMSoll n für die erste Regelgröße den unteren Schwellenwert Min des Toleranzbereiches T unterschreitet, wird ein Korrekturanteil y2 prozess- oder anlagenspezifisch vorgegeben oder in der Berechnungseinheit 135-3 gemäß folgender Formel berechnet: y2n = y2n 1 + Cnegn * dQMn .

Figure imgb0002
Alternatively: If, on the other hand, it is established in the monitoring device 135-1 that the setpoint SM setpoint n for the first controlled variable falls below the lower threshold value Min of the tolerance range T, a correction component y2 is specified in a process- or plant-specific manner or in the calculation unit 135-3 according to the following Formula calculated: y2n = y2n 1 + cnegn * dQMn .
Figure imgb0002

Schließlich werden, wenn bei der Überwachung in der Überwachungseinrichtung 135-1 festgestellt wird, dass der Sollwert SMSoll n für die erste Regelgröße weder den oberen Schwellenwert Max des Toleranzbereiches überschreitet, noch den unteren Schwellenwert des Toleranzbereiches T unterschreitet, die Korrekturanteile y1, y2 für den Wert der ersten Regelgröße wie folgt berechnet: y1n = y1n 1 ;

Figure imgb0003
und y2n = y2n 1 .
Figure imgb0004
Finally, if monitoring in monitoring device 135-1 determines that setpoint SM setpoint n for the first controlled variable neither exceeds upper threshold value Max of the tolerance range nor falls below lower threshold value of tolerance range T, correction components y1, y2 for calculates the value of the first controlled variable as follows: y1n = y1n 1 ;
Figure imgb0003
and y2n = y2n 1 .
Figure imgb0004

Die so berechneten Korrekturanteile y1 bzw. y2 gehen gemäß Figur 2 ein in eine Berechnungseinheit 135-4 zur Berechnung des korrigierten Sollwertes SMSoll n*. Typischerweise handelt es sich bei der Berechnungseinheit um eine Additionseinrichtung, welche die Korrekturanteile y1 bzw. y2 dem bisherigen Master-Sollwert SMSoll n additiv hinzufügt, um auf diese Weise das besagte korrigierte Sollwert-Signal zu berechnen.The correction components y1 and y2 calculated in this way are as follows figure 2 into a calculation unit 135-4 for calculating the corrected setpoint value SM setpoint n* . The calculation unit is typically an addition device which adds the correction components y1 and y2 to the previous master setpoint SM setpoint n in order to calculate the said corrected setpoint signal in this way.

Der Korrekturanteil y1 ist typischerweise negativ und der Korrekturanteil y2 ist typischerweise positiv. Im Ergebnis muss das Vorzeichen so gewählt werden, das der Sollwert SMSoll n+1 in den Toleranzbereich verschoben wird. Im Ergebnis ist der korrigierte Sollwert SMSoll n* typischerweise betraglich kleiner als der vorherige Master-Sollwert SMSoll n. Unter bestimmten Umständen werden die Berechnungseinheiten 135-2 und 135-3 für die Korrekturanteil y1 und y2 individuell gesperrt; dies erfolgt mit den in Figur 2 angedeuteten Disable-Signalen DISy2 und DISy1.The correction component y1 is typically negative and the correction component y2 is typically positive. As a result, the sign must be selected in such a way that the setpoint SM setpoint n+1 is shifted into the tolerance range. As a result, the corrected setpoint value SM setpoint n* is typically smaller than the previous master setpoint value SM setpoint n . Under certain circumstances, the calculation units 135-2 and 135-3 for the correction components y1 and y2 are individually blocked; this is done with the in figure 2 indicated disable signals DIS y2 and DIS y1 .

Bei einer Sperrung gilt: Y1n = Y1n 1 ;

Figure imgb0005
und/oder Y2n = Y2n 1 .
Figure imgb0006
In the event of a block: Y1n = Y1n 1 ;
Figure imgb0005
and or Y2n = Y2n 1 .
Figure imgb0006

Unter Bezugnahme auf die Figuren 1 und 2 wurde bisher der Master-Regelkreis 130 beschrieben.Referring to the figures 1 and 2 the master control circuit 130 has been described so far.

Die Figuren 3 und 4 beschreiben darüber hinaus weitere dem Walzgerüst 100 zugeordnete Regelkreise 140-k mit k=1-K, sogenannte Slave-Regelkreise. Erfindungsgemäß ist vorgesehen, dass dem Walzgerüst 100 neben dem Master-Regelkreis 130 zumindest ein weiterer Slave-Regelkreis 140-k zugeordnet ist. Figur 3 veranschaulicht den Aufbau eines solchen Slave-Regelkreises 140-k im Detail. Er ist für alle Slaves k analog aufgebaut. Der Slave-Regelkreis 140-k dient dazu, eine Slave-Regelgröße SLk lst n auf einen korrigierten Sollwert SLk Soll n* zu regeln. Zu diesem Zweck wird der Istwert der Regelgröße mit Hilfe einer Erfassungseinrichtung 146-k erfasst und in einem Slave-Vergleicher 144-k mit dem korrigierten Sollwert SLk Soll n* verglichen. Das Ergebnis wird in Form einer Regelabweichung dem k'ten Regler 143-k zugeführt, welcher an seinem Ausgang ein Stellsignal für ein k'tes Slave-Stellglied 142-k bereitstellt. Das Slave-Stellglied 142-k nimmt Einfluss auf eine k'te Regelstrecke 141-k. Bei dieser Slave-Regelstrecke 141-k handelt es sich typischerweise um dasselbe Walzgerüst 100, welches auch die Master-Regelstrecke 131 des ersten Regelkreises 130 repräsentiert.the Figures 3 and 4 also describe further control loops 140-k with k=1-K assigned to the roll stand 100, so-called slave control loops. According to the invention, at least one further slave control circuit 140-k is assigned to the roll stand 100 in addition to the master control circuit 130. figure 3 illustrates the structure of such a slave control loop 140-k in detail. It is constructed analogously for all slaves k. The slave control circuit 140-k is used to control a slave control variable SL k actual n to a corrected desired value SL k desired n* . For this purpose, the actual value of the controlled variable is detected with the aid of a detection device 146-k and compared with the corrected setpoint value SL k setpoint n* in a slave comparator 144-k. The result is supplied in the form of a control deviation to the k'th controller 143-k, which provides a control signal for a k'th slave actuator 142-k at its output. The slave actuator 142-k influences a k'th controlled system 141-k. This slave controlled system 141 - k is typically the same roll stand 100 that also represents the master controlled system 131 of the first control loop 130 .

Erfindungsgemäß wird das bisherige Slave-Sollwert-Signal SLk Soll n mit Hilfe einer Sollwert-Korrektureinrichtung 145-k in dem besagten korrigierten Slave-Sollwert SLk Soll n* korrigiert bzw. umgerechnet. Zu diesem Zwecke empfängt die k'te Sollwert-Korrektureinrichtung 145-k diverse Eingangsgrößen, dabei handelt es sich neben dem besagten k'ten Slave-Sollwert SLk Soll n auch um folgende Größen:

y1, y2
kumulierte Korrekturanteile des Masterstellgliedes
dQSk
Differenzenquotient, welcher das Verhältnis von Änderung des Sollwertes des k'ten Regelkreises 142-k zu einer Änderung des Sollwertes des ersten bzw. Master-Regelkreises 130 repräsentiert
ak
Koeffizient mit k = 1 K ak = konstant
Figure imgb0007
, vorzugsweise = 1.
According to the invention, the previous slave setpoint signal SL k setpoint n is corrected or converted to said corrected slave setpoint value SL k setpoint n* with the aid of a setpoint correction device 145-k. For this purpose, the k'th setpoint correction device 145-k receives various input variables, in addition to the said k'th slave setpoint SL k setpoint n , the following variables are also involved:
y1, y2
cumulative correction components of the master actuator
dQSk
Difference quotient, which represents the ratio of a change in the desired value of the k'th control circuit 142-k to a change in the desired value of the first or master control circuit 130
a.k
coefficient with k = 1 K a.k = constant
Figure imgb0007
, preferably = 1.

Figur 4 zeigt den Aufbau einer k'ten Sollwert-Korrektureinrichtung 145-k im Detail. Insgesamt sind erfindungsgemäß insgesamt K Sollwert-Korrektureinrichtung 145-k entsprechend der Anzahl der Slave-Regelkreise 140-k mit k=1-K vorgesehen. Der Aufbau der Regelkreise 140-k sowie der jeweils zugeordneten Sollwert-Korrektureinrichtungen 145-k sind für alle k-Slaves grundsätzlich identisch, wie in Figur 4 dargestellt. Der Einfachheit halber wird deshalb nachfolgend lediglich beispielhaft eine erste Sollwert-Korrektureinrichtung 145-k=1 detailliert beschrieben. figure 4 shows the structure of a k'th setpoint correction device 145-k in detail. Overall, according to the invention, a total of K setpoint correction devices 145-k are provided, corresponding to the number of slave control circuits 140-k, with k=1-K. The structure of the control circuits 140-k and the respectively assigned setpoint correction devices 145-k are basically identical for all k-slaves, as in figure 4 shown. For the sake of simplicity, therefore, only the following a first setpoint correction device 145-k=1 is described in detail as an example.

Die Sollwert-Korrektureinrichtung 145-k=1 empfängt neben dem bisherigen Slave-Sollwert SLk=1 Soll n auch die in der Master-Sollwert-Korrektureinrichtung 135 berechneten Korrekturanteile y1 und y2 für die Korrektur des Master-Sollwertes. Diese beiden Korrekturanteile werden in einer Additionseinrichtung 145-k=1-1 aufaddiert und die so berechnete Summe findet Eingang in eine Berechnungseinheit 145-1-2 zur Berechnung eines Kompensationsanteils ZSLk=1 für den Slave k. Innerhalb dieser Berechnungseinheit erfolgt die Berechnung gemäß der nachfolgenden Formel: ZSL k = y 1 + y 2 * dQS k * a k

Figure imgb0008
mit
k=1... K : Anzahl der Slave-Stellglieder 142-k.In addition to the previous slave setpoint SL k=1 setpoint n , the setpoint correction device 145-k=1 also receives the correction components y1 and y2 calculated in the master setpoint correction device 135 for correcting the master setpoint. These two correction components are added up in an addition device 145-k=1-1 and the sum calculated in this way is input into a calculation unit 145-1-2 for calculating a compensation component ZSL k=1 for slave k. Within this calculation unit, the calculation is based on the following formula: ZSL k = y 1 + y 2 * dQS k * a k
Figure imgb0008
With
k=1... K : number of slave actuators 142-k.

Schließlich erfolgt in einer weiteren Berechnungseinheit 145-1-3 die Berechnung des korrigierten Slave-Sollwertes durch Addition des bisherigen bzw. vorherigen Slave-Sollwertes SLk=1 Soll n und des berechneten Kompensationsanteils ZSLk.Finally, the corrected slave setpoint value is calculated in a further calculation unit 145-1-3 by adding the previous slave setpoint value SL k=1 setpoint n and the calculated compensation component ZSL k .

Innerhalb der Berechnungseinheit 145-k=1-2 für den Kompensationsanteil erfolgt auch die Ermittlung eines Leistungsfehlbetrages Δpk des k'ten Stellgliedes. Für den Fall, dass die obere oder untere Leistungsgrenze des k'ten Slave-Stellgliedes erreicht wird, wird der festgestellte Stellweg-Fehlbetrag auf die verbleibenden Slave-Stellglieder verteilt durch geeignete Änderung der jeweiligen Koeffizienten ak der verbleibenden Slave-Stellglieder. Zu diesem Zweck werden die in den k-Slave-Sollwert-Korrektureinrichtungen 145-k ermittelten Leistungsfehlbeträge Δpk an eine ebenfalls in Figur 4 gezeigte Leistungsverteilungs-Berechnungseinrichtung 150 eingegeben, damit diese auf Basis der genannten Eingangssignale die Koeffizienten ak für die einzelnen Slave-Sollwert-Korrektureinrichtungen 145-k aktualisiert und darüber hinaus die Sperr- bzw. Disable-Signale DISy1 und DISy2 für die Berechnungseinheiten 135-2 und 135-3 für die Korrekturanteile y1 und y2 bereitstellt. Die Sperrsignale sind beispielsweise gesetzt zu DISy1 = 1, DISy2 = 1.Within the calculation unit 145-k=1-2 for the compensation component, a performance deficit Δp k of the k'th actuator is also determined. In the event that the upper or lower performance limit of the kth slave actuator is reached, the detected travel error is distributed to the remaining slave actuators by appropriately changing the respective coefficients ak of the remaining slave actuators. For this purpose, the power deficits Δp k determined in the k-slave setpoint correction devices 145-k are sent to a likewise in figure 4 shown power distribution calculation device 150 entered, so that on the basis of said input signals the coefficients a k for the individual slave setpoint correction devices 145-k updated and also provides the lock or disable signals DIS y1 and DIS y2 for the calculation units 135-2 and 135-3 for the correction components y1 and y2. For example, the blocking signals are set to DIS y1 = 1, DIS y2 = 1.

Für den Fall, dass die verbleibenden Slave-Stellglieder den Stellweg-Fehlbetrag des k'ten Slave-Stellgliedes nicht hinreichend kompensieren können, wird zumindest einer der Korrekturanteile der ersten Regelgröße konstant gehalten; dies erfolgt durch die besagten Disable-Signale DISy1 und DISy2, welche von der Leistungsverteilungs-Berechnungseinrichtung 150 berechnet werden, wie oben unter Bezugnahme auf Figur 4 beschrieben.In the event that the remaining slave actuators cannot adequately compensate for the adjustment path error of the k'th slave actuator, at least one of the correction components of the first controlled variable is kept constant; this is done by the said disable signals DIS y1 and DIS y2 calculated by the power distribution calculator 150 as above with reference to FIG figure 4 described.

Das erfindungsgemäße Verfahren wird nachfolgend unter Bezugnahme auf die Figuren 5a, 5b und 5c näher beschrieben:
In Figur 5a sind die obere und die untere physikalische Leistungsgrenze des Master-Stellgliedes 132 eingetragen. Sie entsprechen einer oberen und/oder einer unteren, positiven und/oder negativen Betriebsgrenze des Master-Stellgliedes 132. Die Erfindung sieht vor, dass diese Leistungsgrenzen bei der Ansteuerung des Master-Stellgliedes mit dem zugehörigen, von dem Master-Regler 133 generierten Stellsignal Sx in keinem Fall erreicht werden sollen, auch wenn der Master-Sollwert bzw. dessen zeitliche Änderung noch so groß sind. Zu diesem Zweck wird der Sollwert SMSoll n erfindungsgemäß im Hinblick auf das Erreichen von niederschwelligeren Grenzwerte Max, Min mit Hilfe der Überwachungseinrichtung 135-1 überwacht. Diese Grenzwerte sind insofern niederschwelliger, als dass sie innerhalb der oberen und unteren Leistungsgrenze des Master-Stellgliedes liegen. Durch die Überwachung dieser niederschwelligeren Grenzwerte ist es möglich, bereits vor Erreichen der oberen oder unteren Leistungsgrenze präventiv tätig zu werden, indem erfindungsgemäß die besagten Korrekturanteile y1 und y2 für den Master-Sollwert berechnet werden. Aus einer Zusammenschau der Figuren 5a und 5b ist ersichtlich, dass der Master-Sollwert SMSoll bei Erreichen des oberen Grenzwertes Max zum Zeitpunkt n durch Anpassung des Betrags des Korrekturanteils y1 verringert wird. Daraus resultiert der korrigierte Master-Sollwert zum Zeitpunkt n1. Der so verringerte korrigierte Master-Sollwert SMSoll n1* ist weiter entfernt von der oberen Leistungsgrenze und befindet sich außerdem tiefer und stabiler innerhalb eines durch den oberen und den unteren Grenzwert Max, Min aufgespannten Toleranzbereich T. Aber auch dieser korrigierte Master-Sollwert zum Zeitpunkt n1 wird weiterhin in der Überwachungseinrichtung 135-1 im Hinblick auf das Erreichen des oberen oder unteren Grenzwertes überwacht. Wenn dies zum Zeitpunkt n2 festgestellt wird, so erfolgt eine erneute Korrektur, konkret eine erneute Verminderung seines Wertes um einen dann neu berechneten Korrekturanteil y1. Aus dieser Korrektur resultiert ein neuerlicher korrigierter Master-Sollwert SMSoll n2* zum Zeitpunkt n2.
The inventive method is described below with reference to the Figures 5a, 5b and 5c described in more detail:
In Figure 5a the upper and lower physical power limits of the master actuator 132 are entered. They correspond to an upper and/or a lower, positive and/or negative operating limit of the master actuator 132. The invention provides that these performance limits are exceeded when the master actuator is actuated with the associated control signal S generated by the master controller 133 x should never be reached, even if the master setpoint or its change over time is very large. For this purpose, the setpoint value SM setpoint n is monitored according to the invention with regard to reaching low-threshold limit values Max, Min with the aid of the monitoring device 135-1. These limit values are lower-threshold insofar as they lie within the upper and lower power limits of the master actuator. By monitoring these low-threshold limit values, it is possible to take preventive action before the upper or lower power limit is reached, in that, according to the invention, said correction components y1 and y2 are calculated for the master setpoint. From a synopsis of Figures 5a and 5b it can be seen that the master setpoint SM setpoint is reached when the upper limit value Max is reached at the time n is reduced by adjusting the amount of correction component y1. This results in the corrected master setpoint at time n1. The corrected master setpoint SM setpoint n1* reduced in this way is further away from the upper power limit and is also lower and more stable within a tolerance range T spanned by the upper and lower limit values Max, Min. But also this corrected master setpoint at the time n1 is also monitored in the monitoring device 135-1 with regard to whether the upper or lower limit value has been reached. If this is determined at point in time n2, then a new correction takes place, specifically a new reduction in its value by a then newly calculated correction component y1. This correction results in a new, corrected master setpoint value SM setpoint n2* at time n2.

In Figur 5c wird die erfindungsgemäße Reaktion des Slave Stellgliedes angezeigt. Dies dient der Vermeidung von Störungen in der Bandplanheit, die durch das präventive Verfahren des Master Stellgliedes verursacht würden. Unter Zuhilfenahme des Differenzenquotienten dQSk werden die Verfahrwege für die aktiven Slave-Stellglieder, siehe Fig. 5c, so berechnet, dass die Störung in der Planheit, die das präventive Verfahren des Master Stellgliedes verursacht, durch ein entsprechendes Verfahren mindestens eines Slave Stellgliedes präventiv neutralisiert wird.In Figure 5c the inventive reaction of the slave actuator is displayed. This serves to avoid disturbances in the strip flatness, which would be caused by the preventive process of the master actuator. With the help of the difference quotient dQS k , the traverse paths for the active slave actuators, see Figure 5c , calculated in such a way that the disturbance in the flatness caused by the preventive movement of the master actuator is preventively neutralized by a corresponding movement of at least one slave actuator.

Im Resultat geschieht das Verfahren des Master-Stellgliedes durch die gegensinnige Ansteuerung mindestens eines Slave-Stellgliedes mit nur geringen Planheitsstörungen oder sogar planheitsneutral.As a result, the process of the master actuator takes place through the opposite activation of at least one slave actuator with only minor flatness disturbances or even flatness-neutral.

Die erste und jede der zweiten Regelgrößen für den Master- und die Slave-Regelkreise wird vorzugsweise aus der Menge folgender Größen gewählt:

  • Biegekraft für die Arbeitswalzen und/oder die Zwischenwalzen des Walzgerüstes ;
  • Position und/oder Horizontalverschiebung für die Arbeits- und/oder Zwischenwalzen;
  • Position, Kraft und/oder Drehwinkel einer Exzentereinrichtung zur Einstellung einer Änderung der Walzspaltkontur; und/oder
  • Druck eines Kühlmediums, Durchflussmenge des Kühlmediums, Neigungswinkel einer Zonenkühleinrichtung zur Kühlung einer Arbeitswalze 110 über ihrer Breite zur Einstellung bzw. Änderung der Walzspaltkontur;
  • Druck eines Heizmediums, Durchflussmenge des Heizmediums, Neigungswinkel einer Zonenheizeinrichtung zum Aufwärmen einer Arbeitswalze über ihrer Breite zur Einstellung bzw. Änderung der Walzspaltkontur;
  • Stromstärke, elektrische Leistung für induktive Walzenerwärmung;
  • Differenzposition zwischen Bedien- und Antriebsseite einer hydraulischen Anstellung für die Walzen 110.
The first and each of the second controlled variables for the master and slave control loops is preferably selected from the set of the following variables:
  • bending force for the work rolls and/or the intermediate rolls of the roll stand;
  • position and/or horizontal displacement for the work and/or intermediate rolls;
  • Position, force and/or angle of rotation of an eccentric device for setting a change in the roll gap contour; and or
  • Pressure of a cooling medium, flow rate of the cooling medium, angle of inclination of a zone cooling device for cooling a work roll 110 across its width for setting or changing the roll gap contour;
  • Pressure of a heating medium, flow rate of the heating medium, inclination angle of a zone heating device for heating a work roll across its width for setting or changing the roll gap contour;
  • Amperage, electrical power for inductive roller heating;
  • Differential position between operating and drive side of a hydraulic adjustment for the rollers 110.

Das Master- 132 und jedes der Slave-Stellglieder 142-k wird vorzugsweise aus der Menge folgender Stellglieder gewählt:

  • Biegeeinrichtung für die Arbeitswalzen und/oder die Zwischenwalzen des Walzgerüstes (100);
  • Axialverschiebung für die Arbeits- und/oder Zwischenwalzen;-Exzentereinrichtung zur Einstellung einer Änderung der Walzspaltkontur; und/oder
  • Zonenkühleinrichtung mit individuell anzusteuernden Ventilen für das Kühleinrichtung zur Kühlung einer Arbeitswalze über ihrer Breite zur Einstellung bzw. Änderung der Walzspaltkontur;
  • Zonenheizeinrichtung mit individuell anzusteuernden Ventilen für das Heizmittel zur Aufheizung einer Arbeitswalze über ihrer Breite zur Einstellung bzw. Änderung der Walzspaltkontur;
  • induktive Walzenerwärmung;
  • Anstellzylinder der hydraulischen Anstellung von insbesondere den Arbeitswalzen (110).
The master 132 and each of the slave actuators 142-k is preferably selected from the set of the following actuators:
  • Bending device for the work rolls and/or the intermediate rolls of the roll stand (100);
  • Axial displacement for the work and/or intermediate rolls;-eccentric device for setting a change in the roll gap contour; and or
  • Zone cooling device with individually controllable valves for the cooling device for cooling a work roll across its width for setting or changing the roll gap contour;
  • Zone heating device with individually controllable valves for the heating means for heating a work roll across its width for setting or changing the roll gap contour;
  • inductive roller heating;
  • Adjustment cylinder for the hydraulic adjustment of, in particular, the work rolls (110).

Wenn es sich bei dem Walzgerüst 100 um ein Quarto-Gerüst handelt, dann wird vorzugsweise folgende Regelgrößenkombination gewählt:

  • erste Regelgröße : Biegekraft; und
  • k=1'te Regelgröße : Axial-Verschiebung;
    oder
  • erste Regelgröße : Axial-Verschiebung und;
  • k=1'te Regelgröße : Biegekraft.
If the roll stand 100 is a four-high stand, the following controlled variable combination is preferably selected:
  • first controlled variable: bending force; and
  • k=1st controlled variable: axial displacement;
    or
  • first controlled variable: axial displacement and;
  • k=1st controlled variable: bending force.

Für diese beiden Alternativen kann optional jeweils zusätzlich die Zonenkühlung als k=2'te Regelgröße gewählt werden.For these two alternatives, zone cooling can also be optionally selected as the k=2nd controlled variable.

Wenn es sich bei dem Walzgerüst 100 um ein Sechsto-Gerüst handelt, dann werden vorzugsweise folgende Kombinationen von Regelgrößen gewählt:

  • erste Regelgröße : Biegekraft für Arbeitswalzen und;
  • k=1'te Regelgröße : Biegekraft für Zwischenwalzen und;
  • k=2'te Regelgröße : Axialverschiebung der Zwischenwalzen;
    oder
  • erste Regelgröße : Biegekraft für Zwischenwalzen; und
  • k=1 'te Regelgröße : Biegekraft für Arbeitswalzen und;
  • k=2'te Regelgröße : Axialverschiebung der Zwischenwalzen;
    oder
    erste Regelgröße : Axialverschiebung der Zwischenwalzen;
  • k=1'te Regelgröße : Biegekraft für Zwischenwalzen; und
  • k=2'te Regelgröße : Biegekraft für Arbeitswalzen.
If the roll stand 100 is a six-high stand, then the following combinations of controlled variables are preferably selected:
  • first controlled variable: bending force for work rolls and;
  • k=1st controlled variable: bending force for intermediate rolls and;
  • k=2nd controlled variable: axial displacement of the intermediate rolls;
    or
  • first controlled variable: bending force for intermediate rolls; and
  • k=1 'th controlled variable: bending force for work rolls and;
  • k=2nd controlled variable: axial displacement of the intermediate rolls;
    or
    first controlled variable: axial displacement of the intermediate rolls;
  • k=1st controlled variable: bending force for intermediate rolls; and
  • k=2nd controlled variable: bending force for work rolls.

Jede der genannten Kombinationen von Regelgrößen für das Sechsto-Gerüst kann zusätzlich ergänzt werden durch die Zonenkühlung als dritte Regelgröße.Each of the combinations of controlled variables mentioned for the six-high stand can also be supplemented by zone cooling as the third controlled variable.

Wenn die Breite des Metallbandes 120 einen vorgegebenen Breitenschwellenwert übersteigt, wird als Master-Stellglied 132 vorzugsweise die Biegeeinrichtung festgelegt.When the width of the metal strip 120 exceeds a predetermined width threshold, the master actuator 132 is preferably set to be the bender.

Bei Quarto- und Sechsto-Walzgerüsten werden auftretende Planheitsstörungen aufgrund von Walzkraftschwankungen durch einen Profile-Gauge Meter PGM ausgeglichen. Dies ist Stand der Technik. Die Funktionsweise des PGM beinhaltet die Vorsteuerung von Walzkraftänderungen auf Biegungen, um im Fall einer Schwankung der Walzkraft das Walzspaltprofil und oder die Walzspaltkontur zwischen den Arbeitswalzen 110 des Walzgerüstes 100 möglichst konstant zu halten. Die Güte der für die PGM-Vorsteuerung benötigten Differenzenquotienten dQM hängt stark von dem aktuellen Arbeitspunkt ab. Außerdem muss das PGM immer eine Biegereserve aufweisen, um im Fall einer plötzlichen Kraftänderung, z. B. durch überbeizte Stellen bei Stahlbändern, schnell reagieren zu können. Die Biegereserve entspricht in Figur 5a dem Abstand zwischen der oberen Leistungsgrenze und dem oberen Grenzwert Max bzw. dem Abstand zwischen der unteren Leistungsgrenze und dem unteren Grenzwert Min. Gemäß der vorliegenden Erfindung wird der Arbeitspunkt von z. B. einem Biegesystem, wie er durch den Master-Sollwert für die erste Regelgröße vorgegeben wird, in Kenntnis der Arbeitspunkte der anderen dem Walzgerüst 100 zugeordneten Systeme bzw. Regelgrößen geändert und optimiert.In the case of four-high and six-high rolling mill stands, any flatness defects that occur due to fluctuations in the rolling force are compensated for by a Profile-Gauge Meter PGM. This is state of the art. The functionality of the PGM includes the pre-control of rolling force changes on bends in order to keep the roll gap profile and/or the roll gap contour between the work rolls 110 of the roll stand 100 as constant as possible in the event of a fluctuation in the rolling force. The quality of the difference quotient dQM required for the PGM pre-control depends heavily on the current operating point. In addition, the PGM must always have a bending reserve in the event of a sudden change in force, e.g. B. to be able to react quickly to overpickled spots on steel strips. The bending reserve corresponds to in Figure 5a the distance between the upper power limit and the upper limit value Max or the distance between the lower power limit and the lower limit value Min. B. a bending system, as is specified by the master setpoint for the first controlled variable, modified and optimized with knowledge of the operating points of the other systems or controlled variables assigned to the roll stand 100 .

Im einfachen Beispiel eines Quarto-Walzgerüstes wird die Arbeitswalzenbiegung für die PGM-Vorsteuerung genutzt und dementsprechend als Master-Regelgröße mit entsprechenden Master-Sollwert-Vorgaben definiert. Je nach Größe der Sollwert-Vorgabe kann das zugehörige Master-Stellglied 132 an seine physikalischen Grenzen, d. h. seine obere oder untere Leistungsgrenze gelangen. Um dies zu verhindern wird gemäß der Erfindung eine im Hintergrund geschaltete Berechnung einen erlaubten Fehler, z. B. 4. Ordnung, überwachen und innerhalb dessen Grenzen eine Ablösung der Arbeitswalzenbiegung durch z. B. eine zumindest teilweise Axialverschiebung für die Arbeitswalzen zulassen.In the simple example of a four-high rolling stand, the work roll bending is used for the PGM pre-control and is accordingly defined as a master controlled variable with corresponding master setpoint specifications. Depending on the magnitude of the specified setpoint value, the associated master actuator 132 can reach its physical limits, ie its upper or lower performance limit. In order to prevent this, according to the invention, one is switched in the background Calculate an allowed error, e.g. B. 4th order, monitor and within its limits a replacement of the work roll bending by z. B. allow at least partial axial displacement for the work rolls.

Im Falle eines Sechsto-Walzgerüstes können sogar Arbeitspunkte optimiert werden, um trotz Fehlern in der Berechnung der Setzvorgaben den gewünschten Arbeitspunkt anzufahren und somit Vorteile für die Nutzung von berechneten Differenzenquotienten zu erhalten, die danach besser zu dem Arbeitspunkt passen.In the case of a six-high roll stand, operating points can even be optimized in order to approach the desired operating point despite errors in the calculation of the setting specifications and thus obtain advantages for using calculated difference quotients, which then better match the operating point.

Im Resultat geschieht das Verfahren des Master Stellgliedes durch die gegensinnige Ansteuerung mindestens eines Slave Stellgliedes mit nur geringen Planheitsstörungen oder sogar planheitsneutral.As a result, the movement of the master actuator occurs through the opposite activation of at least one slave actuator with only minor flatness disturbances or even flatness-neutral.

BezugszeichenlisteReference List

100100
Walzgerüstmill stand
110110
Arbeitswalzenstrippers
120120
Metallbandmetal strap
130130
erster Regelkreisfirst loop
131131
Regelstrecke des ersten Regelkreises bzw. des Master-RegelkreisesControl system of the first control circuit or the master control circuit
132132
Master-Stellgliedmaster actuator
133133
Master-Reglermaster controller
134134
Master-Vergleichermaster comparator
135135
Master-Sollwert-KorrektureinrichtungMaster setpoint correction device
135-1135-1
Überwachungseinrichtungmonitoring device
135-2135-2
Berechnungseinheit für Korrekturanteil y1Calculation unit for correction component y1
135-3135-3
Berechnungseinheit für Korrekturanteil y2Calculation unit for correction component y2
135-4135-4
Berechnungseinheit für korrigierten SollwertCalculation unit for corrected target value
136136
Erfassungseinrichtungdetection device
140-k140-k
k'ter Regelkreisk'th control loop
141-k141-k
k'te Regelstreckek'th controlled system
142-k142-k
k'tes Slave-Stellgliedk'th slave actuator
143-k143-k
k'ter Reglerk'ter regulator
144-k144-k
k'ter Vergleicherk'ter comparator
145-k145-k
k'te Slave-Sollwert-Korrektureinrichtungk'th slave setpoint correction device
145-k-1145-k-1
Sumierertotalizer
145-k-2145-k-2
Umrechnungseinheitconversion unit
145-k-3145-k-3
Summierer des SollwertsSetpoint totalizer
150150
Leistungsverteilungs-BerechnungseinheitPower Distribution Calculation Unit
TT
Toleranzbereichtolerance range
kk
k'tes Slave-Stellglied mit k=1-Kk'th slave actuator with k=1-K
nn
diskreter Zeitpunkt, Laufindexdiscrete point in time, running index
y1y1
Korrekturanteilcorrection share
y2y2
Korrekturanteilcorrection share
Sxsx
Stellsignal für Master-StellgliedActuating signal for master actuator
**
korrigierter Wertcorrected value

Claims (15)

  1. Method of operating a roll stand (100), which comprises: a pair of work rolls (110) for bounding a rolling gap for the rolling of a metal strip (120), a first regulating circuit (130) with a first setting element (132) for regulating a first regulating variable and k further regulating circuits (140-k) each with a kth setting element (142-k) for regulating a kth regulating variable, wherein k = 1 to K,
    wherein the method comprises the following steps:
    determining that the first setting element (132) functions as a master setting element and the kth setting elements (142-k) each function as a slave setting element; and
    predetermining the target value (SMSoll n) for the first regulating variable;
    wherein the method is characterised by the following steps;
    monitoring the time plot of the target value (SMSoll n) for the first regulating variable with regard to whether the target value exceeds an upper threshold value (Max) or falls short of a lower threshold value (Min), wherein the upper and lower threshold values lie within a tolerance range defined by the upper and lower power limits of the first setting element;
    if yes:
    i) determining at least one correction component (y1, y2) in such a way that the target value for the first regulating variable is displaced in the direction of the tolerance range, calculating a corrected target value (SMSoll n*) for the first regulating variable from the previous target value (SMSoll n) for the first regulating variable with consideration of the correction component (y1, y2) and regulating the first regulating variable to the corrected target value (SMSoll n*) by appropriate activation of the master setting element (132); and
    ii) calculating a compensation component (ZSLk=1) for the target value (SLk = 1 Soll n) of the k = 1st regulating variable with consideration of the correction component (y1, y2) for the target value (SMSoll n) of the first regulating variable; calculating a corrected target value (SLk = 1 Soll n*) for the k = 1st regulating variable from the previous target value (SLk - 1 Soll n) for the k - 1st regulating variable with consideration of the compensation component (ZSLk=1) and regulating the k = 1st regulating variable to the corrected target value (SLk = 1Soll n*) for the k = 1st regulating variable by appropriate activation of the k = 1st slave setting element (142-1).
  2. Method according to claim 1,
    characterised in that
    the roll stand additionally comprises further slave regulating circuits (k = 2 to K); and
    the method additionally comprises the following steps:
    carrying out the step ii) in analogous manner also for each of the further k = 2 to K regulating circuits by its respective k = 2 to Kth slave setting elements (142-k).
  3. Method according to one of the preceding claims,
    characterised in that
    if it is established in the monitoring that the target value (SMSoll n) for the first regulating variable exceeds the upper threshold value (Max) of the tolerance range (x1 = 1, x2 = 0), the correction component (y1) is predetermined in process-specific or plant-specific manner or calculated in accordance with the following formula: y1n = y1n 1 + Cposn * dQMn )
    Figure imgb0016
    or
    if it is established in the monitoring that the target value (SMSoll n) for the first regulating variable falls short of the lower threshold value (Min) of the tolerance range (x1 = 0, x2 = 1), the correction component (y2) is predetermined in process-specific or plant-specific manner or calculated in accordance with the following formula: y2n = y2n 1 = Cnegn * dQMn
    Figure imgb0017
    or
    if it is established in the monitoring that the target value for the first regulating variable neither exceeds the upper threshold value (Max) of the tolerance range nor falls short of the lower threshold value (Min) of the tolerance range (x1 = 0, x2 = 0) or if the disable signals (DISy1 and/or DISy2) from the power distribution calculating device (150) are set, the correction components (y1, y2) for the target value (SMSoll n) of the first regulating variable are calculated as follows: Y1n = Y1n 1 ; and
    Figure imgb0018
    Y2n = Y2n 1
    Figure imgb0019
    wherein
    n = 1 ... N discrete time instants;
    Cposn: maximum permissible planarity error or maximum permissible rolling gap profile contour change, in each instance of 2nd or higher order, or the sum of the two, valid for a change of the target value in positive direction;
    Cnegn: minimum permissible planarity error or minimum permissible rolling gap profile contour change, in each instance of 2nd or higher order, or the sum of the two, valid for a change of the target value in negative direction;
    dQMn: ratio of change of the target value of the setting variable of the master setting element to the change of planarity of 2nd and/or higher order of the metal strip; or ratio of change of the target value of the setting variable of the master setting element to change of the rolling gap contour of 2nd and/or higher order.
  4. Method according to claim 3,
    characterised in that
    the corrected target value (SMSoll n1*) for the master is calculated as: SM Soll n1 * = SM Soll n + y 1 + y 2
    Figure imgb0020
  5. Method according to claim 3 or 4,
    characterised in that
    the compensation component (ZSLk=2-k) for the slave k is calculated in accordance with the following formula: ZSL k = y 1 + y 2 * dQS k * a k
    Figure imgb0021
    wherein
    k = 1... K: number of the slave setting elements 142-k
    ak: coefficient wherein k 1 K a k = constant
    Figure imgb0022
    , preferably = 1
    dQSk: difference quotient: ratio of change of the target value of the kth regulating circuit (142-k) to change of the target value of the first regulating circuit (130).
  6. Method according to any one of the preceding claims,
    characterised in that
    the first and each of the kth regulating variables is selected from the totality of the following variables:
    bending force for the work rolls and/or the intermediate rolls of the roll stand;
    position and/or horizontal displacement for the work rolls and/or intermediate rolls;
    position, force and/or rotational angle of an eccentric device for setting a change of the rolling gap contour; and/or
    pressure of a cooling medium, throughflow quantity of the cooling medium, inclination angle of a zonal cooling device for cooling a work roll (110) over the width thereof for setting or changing the rolling gap contour;
    pressure of a heating medium, throughflow quantity of the heating medium, inclination angle of a zonal heating device for heating a working roll over the width thereof for setting or changing the rolling gap contour;
    current intensity, electrical power for inductive roll heating;
    difference position between control side and drive side of a hydraulic adjustment for the rolls (110).
  7. Method according to any one of the preceding claims,
    characterised in that
    the master setting element (132) and each of the slave setting elements (142-k) are selected from the totality of the following setting elements:
    bending device for the work rolls and/or the intermediate rolls of the roll stand (100);
    axial displacing means for the work rolls and/or intermediate rolls;
    eccentric device for setting a change of the rolling gap contour;
    and/or
    zonal cooling device with valves, which are to be individually activated, for the cooling device for cooling of a work roll over the width thereof for setting or changing the rolling gap contour;
    zonal heating device with valves, which are to be individually activated, for the heating means for heating a work roll over the width thereof for setting or changing the rolling gap contour;
    inductive roll heating means;
    adjusting cylinder for hydraulic adjustment of, in particular, the work rolls (110).
  8. Method according to one of claims 6 and 7,
    characterised in that
    if the roll stand (100) is a four-high stand then:
    first regulating variable: bending force; and
    k = 1st regulating variable: axial displacement;
    or
    first regulating variable: axial displacement; and
    k = 1st regulating variable: bending force.
  9. Method according to claim 8,
    characterised in that
    for the two alternatives according to claim 8 there optionally applies:
    k = 2nd regulating variable: zonal cooling
  10. Method according to one of claims 6 and 7,
    characterised in that
    if the roll stand is a six-high stand then:
    first regulating variable: bending force for work rolls; and
    k = 1st regulating variable: bending force for intermediate rolls; and
    k = 2nd regulating variable: axial displacement of the intermediate rolls;
    or
    first regulating variable: bending force for intermediate rolls; and
    k = 1st regulating variable: bending force for work rolls; and
    k = 2nd regulating variable: axial displacement of the intermediate rolls;
    or
    first regulating variable: axial displacement of the intermediate rolls:
    k = 1st regulating variable: bending force for intermediate rolls; and
    k = 2nd regulating variable: bending force for work rolls.
  11. Method according to claim 10,
    characterised in that
    for all three alternatives according to claim 10, there optionally additionally applies:
    k = 3rd regulating variable: zonal cooling
  12. Method according to any one of the preceding claims,
    characterised in that
    the rolling is hot rolling or cold rolling.
  13. Method according to any one of the preceding claims,
    characterised by:
    monitoring the upper and/or lower power limits of the kth setting element;
    determining a power deficit (Δpk) of the kth setting element; and
    if the upper or lower power limit of the kth slave setting element is reached, redistributing the power deficit to the remaining slave setting elements by appropriate change of the respective coefficients ak of the remaining slave setting elements.
  14. Method according to claim 13,
    characterised in that
    if the remaining slave setting elements cannot provide sufficient compensation for the setting travel deficit of the kth slave setting element at least one of the correction components (y1, y2) of the first regulating variable is kept constant.
  15. Method according to any one of claims 7 to 14,
    characterised in that
    if the width of the metal strip (120) exceeds a predetermined width threshold value the bending device is determined as master setting element (132).
EP20196043.2A 2019-09-18 2020-09-14 Method for operating a rolling mill Active EP3795267B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102019214192.7A DE102019214192A1 (en) 2019-09-18 2019-09-18 Method for operating a roll stand

Publications (2)

Publication Number Publication Date
EP3795267A1 EP3795267A1 (en) 2021-03-24
EP3795267B1 true EP3795267B1 (en) 2022-07-13

Family

ID=72517109

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20196043.2A Active EP3795267B1 (en) 2019-09-18 2020-09-14 Method for operating a rolling mill

Country Status (2)

Country Link
EP (1) EP3795267B1 (en)
DE (1) DE102019214192A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55120409A (en) 1979-03-09 1980-09-16 Nippon Steel Corp Controlling method for shape in six-stage rolling mill
EP0171732A1 (en) 1984-08-10 1986-02-19 Kabushiki Kaisha Toshiba Thickness control method and system for a single-stand/multi-pass rolling mill
JPS62168607A (en) 1986-01-20 1987-07-24 Nippon Steel Corp Shape controlling method for sheet rolling
JPS63177910A (en) 1987-01-16 1988-07-22 Nippon Steel Corp Shape control method for plate rolling
JPH02255208A (en) 1989-03-29 1990-10-16 Sumitomo Metal Ind Ltd Shape control method for sheet rolling
JPH05104120A (en) 1991-10-11 1993-04-27 Hitachi Ltd Method and device for controlling shape in 6 stages rolling mill

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4000449A (en) * 1974-10-22 1976-12-28 Westinghouse Electric Corporation Electrical shaft system
CN102581035B (en) 2012-01-30 2014-07-02 中冶南方工程技术有限公司 Feed-forward control system for cold-rolled steel strip shape

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55120409A (en) 1979-03-09 1980-09-16 Nippon Steel Corp Controlling method for shape in six-stage rolling mill
EP0171732A1 (en) 1984-08-10 1986-02-19 Kabushiki Kaisha Toshiba Thickness control method and system for a single-stand/multi-pass rolling mill
JPS62168607A (en) 1986-01-20 1987-07-24 Nippon Steel Corp Shape controlling method for sheet rolling
JPS63177910A (en) 1987-01-16 1988-07-22 Nippon Steel Corp Shape control method for plate rolling
JPH02255208A (en) 1989-03-29 1990-10-16 Sumitomo Metal Ind Ltd Shape control method for sheet rolling
JPH0636926B2 (en) 1989-03-29 1994-05-18 住友金属工業株式会社 Shape control method in strip rolling
JPH05104120A (en) 1991-10-11 1993-04-27 Hitachi Ltd Method and device for controlling shape in 6 stages rolling mill

Also Published As

Publication number Publication date
EP3795267A1 (en) 2021-03-24
DE102019214192A1 (en) 2021-03-18

Similar Documents

Publication Publication Date Title
EP0850704B1 (en) Method for rolling a band
EP2691188B1 (en) Operating method for a rolling train
EP0121148B1 (en) Method of making hot rolled strip with a high quality section and flatness
DE69404527T2 (en) Rolling mill and process
EP1425116B1 (en) Rolling stand for the production of rolled strip
EP2293889B1 (en) Conti-mill train with integration/deintegration of roller frameworks in active operation
WO2013167366A1 (en) Method for processing rolling stock and rolling mill
EP3795267B1 (en) Method for operating a rolling mill
EP3691806B1 (en) Flatness control with optimiser
EP1173295A1 (en) Rolling process for a metal strip and corresponding rolling device
AT410905B (en) METHOD AND DEVICE FOR THE DYNAMIC ADJUSTMENT OF THE ROLLING GAP IN A ROLLING STAND OF A MULTIPLE-SETTED ROLLING MILL
EP4103339B1 (en) Determining a sensitivity of a target size of a rolling stock for an operating variable of a hot rolling mill
DE102018200166A1 (en) Control device, control method and control program of a rolling mill
DE3401894A1 (en) Method for the production of rolled strip with high strip shape accuracy and flatness
EP3895820A1 (en) Operation of a cooling device with minimum working pressure
EP3823771B1 (en) Method for ascertaining control variables for active profile and flatness control elements for a rolling stand and profile and average flatness values for hot-rolled metal strip
EP3231522B1 (en) Robust strip tension control
WO2021099052A1 (en) Adjustment of an outlet temperature of a metal strip exiting a rolling train
EP4178735B1 (en) Method and computer program product for calculating a pass schedule for a stable rolling process
EP1893367B2 (en) Method for regulating an adjust ing segment in a continuous casting installation
DE19644131C2 (en) Method for optimizing the distribution of strip width at the ends of a strip passing through a rolling train in one or more passes
EP3536411A1 (en) Avoidance of wearing edges when rolling flat rolled products
DE10106527A1 (en) Method for operating a rolling mill and control system for a rolling mill
EP1112783A2 (en) Rolling method for a profile, in particular a flanged profile, and corresponding universal rolling stand
EP2861360B1 (en) Method for processing milled goods in a rolling mill

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200914

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210330

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: B21B 37/00 20060101AFI20220104BHEP

INTG Intention to grant announced

Effective date: 20220201

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020001358

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1503991

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221114

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221013

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221113

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221014

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502020001358

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

26 Opposition filed

Opponent name: PRIMETALS TECHNOLOGIES GERMANY GMBH

Effective date: 20230412

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220914

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220914

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230707

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230920

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230930

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20200914

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APAW Appeal reference deleted

Free format text: ORIGINAL CODE: EPIDOSDREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230930

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713