EP3788018A1 - Materiau d'isolation thermique comprenant des particules d'oyde de graphite partiellement oxydees - Google Patents

Materiau d'isolation thermique comprenant des particules d'oyde de graphite partiellement oxydees

Info

Publication number
EP3788018A1
EP3788018A1 EP19728482.1A EP19728482A EP3788018A1 EP 3788018 A1 EP3788018 A1 EP 3788018A1 EP 19728482 A EP19728482 A EP 19728482A EP 3788018 A1 EP3788018 A1 EP 3788018A1
Authority
EP
European Patent Office
Prior art keywords
oxide particles
graphite oxide
insulation material
material according
peaks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19728482.1A
Other languages
German (de)
English (en)
Inventor
Joël AZEVEDO
Veneta Grigorova-Moutiers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Isover SA France
Placoplatre SA
Original Assignee
Saint Gobain Isover SA France
Placoplatre SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Isover SA France, Placoplatre SA filed Critical Saint Gobain Isover SA France
Publication of EP3788018A1 publication Critical patent/EP3788018A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/23Oxidation
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/7654Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only comprising an insulating layer, disposed between two longitudinal supporting elements, e.g. to insulate ceilings
    • E04B1/7658Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only comprising an insulating layer, disposed between two longitudinal supporting elements, e.g. to insulate ceilings comprising fiber insulation, e.g. as panels or loose filled fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/42Coatings containing inorganic materials
    • C03C25/44Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0095Mixtures of at least two compounding ingredients belonging to different one-dot groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B2001/742Use of special materials; Materials having special structures or shape

Definitions

  • the thermal insulation of buildings reduces heat loss and thus contributes to improving comfort, reduce the risk of damage to buildings related to early aging, and reduce energy consumption for both the heating only for possible cooling.
  • Heat exchanges with the outside through the building envelope are usually by conduction and / or radiation.
  • Traditional thermal insulation materials tend to reduce these exchanges: air immobilized for example in foams or between fibers reduces the thermal conduction of the walls and the walls of the cells of the foams where the fibers contribute to screen the radiation.
  • An opacifying agent is a component
  • graphite particles as opacifying agent in polymer foams such as expanded polystyrene (EPS) has for example been proposed (EP 0981574, EP 1758951, EP 1819758, EP 2683763, EP 1945700, EP 2010601).
  • Graphite particles have the advantage of having high extinction coefficients in the infrared while being inexpensive. However, they may have certain disadvantages, especially for their implementation. Graphite being extremely hydrophobic, its implementation in existing processes is not easy. It can indeed be difficult to obtain a homogeneous dispersion of the graphite particles in the insulation materials. Poor dispersion resulting in loss of efficiency
  • the objective of the present invention is to obviate the disadvantages mentioned above by providing a opacifying agent having improved opacification properties, low cost and the quality of dispersion in different media can to be assured.
  • one aspect of the present invention relates to an insulation material
  • the term "partially oxidized graphite oxide particles” means that the graphite particles have undergone a mild oxidation. It has indeed been observed that the partial oxidation of graphite particles, in contrast to a high oxidation (to which the term graphite oxide generally refers), allowed to significantly improve their opacification efficiency by a better dispersion of the particles and / or an improvement in their opacification properties. While not wishing to be bound by any theory, it is believed that the partially oxidized graphite oxide particles have a core-shell structure with an infra-red absorbing graphite conductive core and an infrared reflective oxidized shell.
  • the graphite oxide particles can be obtained by oxidation of graphite using methods well known to those skilled in the art, as described for example by Brodie et al., Philos. Trans. R. Soc. London, 1859, 149, 249-259, Staudenmaier, Ber. Dtsch. Chem. Ges., 1898, 31 (2), 1481-1487, Hummers et al., J. Am. Chem. Soc. 1958, 80 (6), 1339, Moritomo et al., Self. Rep., 2016, 6, 21715, Lee et al., J. Phys. Chem. C, 2011, 115 (6), pp 2705-2708, Zhao et al. ACS Nano, 2010, 4 (9), pp 5245-5252 or Muzyka et al. New Carbon
  • the graphite oxide particles used in the present invention exhibit extinction coefficients.
  • the insulation material according to the invention can thus be characterized in that the partially oxidized graphite oxide particles have an absolute mass extinction coefficient at room temperature in the range 2 to 18 miti, greater than 5000 m 2 / kg, preferably greater than 7000 m 2 / kg, more preferably greater than 10000 m 2 / kg, or even greater than 13000 m 2 / kg, and typically less than 30000 m 2 / kg, even 25000 m 2 / kg.
  • the degree of oxidation of the graphite oxide particles can be evaluated by X-ray photoelectron spectrometry (XPS). More precisely, a deconvolution is carried out starting from an XPS spectrum of the carbon (C1 s) by considering the contribution of four peaks: the C1 peak at 284 eV attributed to the carbon bonds:
  • the insulating material according to the invention can be characterized in that the partially oxidized graphite oxide particles preferably have an oxidation ratio greater than 6%, more preferably greater than 7%, 8% or 9%, in particular 9.5% or even 10%, 10.5% or even 11%, and up to 50% or even 40%, 30% or even 20% .
  • the ratio A2 / (A2 + A3 + A4) is preferably at least 15.0%, plus
  • the insulation material according to the invention can also be characterized in that the partially oxidized graphite oxide particles have both an extinction coefficient of greater than 5000 m 2 / kg, preferably greater than at 7000 m 2 / kg, more preferably greater than 10000 m 2 / kg, or even greater than 13000 m 2 / kg, and typically less than 30000 m 2 / kg, or even 25000 m 2 / kg, and an oxidation ratio , or even a ratio A2 / (A2 + A3 + A4), as defined above.
  • the thermal insulation material may be any type of material well known to those skilled in the art. It can be in particular in the form of insulation blanket, insulation board or bulk.
  • fibrous insulation materials based on natural fibers of animal or vegetable origin, or synthetic / mineral such as glass wool or wool. rock.
  • the fibrous insulation material is preferably based on glass wool or rockwool.
  • a conventional glass wool composition comprises the following constituents, expressed as weight percentages:
  • Glass wool may also be rich in alumina, in which case it
  • a conventional rock wool composition generally comprises the following constituents, expressed in percentages by weight:
  • the fibers may be bonded by a binder.
  • the binder can be a binder
  • thermoplastic or thermosetting examples of binders thermoplastic or thermosetting examples of binders
  • thermosetting agents include phenol / formaldehyde binders, polymeric binders based on acrylates and / or polyols, as well as biosourced binders as described in particular in WO 2009/080938, WO 2009/080938 or WO 2007/014236.
  • the material according to the invention may comprise fibers not bound by a binder.
  • the graphite oxide particles may be dispersed on the surface of the fibers in powder form or via a sizing composition, before the possible application of the binder using a sizing composition.
  • the graphite oxide particles can be dispersed in the binder when it is present. In this case, the graphite oxide particles are introduced into the sizing composition before it is applied to the fibers.
  • the fibrous insulation material may be in the form of fiber mat, fiber board or wool to blow. It typically comprises 1%, or even 2% or 3%, and up to 100%, even 60%, or even 20% by weight of graphite oxide particles based on the weight of fibers. Insulating materials comprising a large amount of opacifier, especially greater than 20% by weight, are particularly suitable for high temperature applications. [0030] Mention may also be made of cellular insulation materials of the expanded polymer foam type such as expanded (EPS) or extruded polystyrene (XPS), phenolic foams, polyurethane foams or biosourced foams.
  • EPS expanded
  • XPS extruded polystyrene
  • phenolic foams polyurethane foams or biosourced foams.
  • biosourced foams examples include foams obtained from reducing sugars and amine compounds, described for example in WO 2016/139401, foams obtained from sugars and strong acids, described for example in WO 2016/174328, or foams obtained from polyols and polyacids, described for example in WO 2016/207517.
  • the polymer matrix forming the polystyrene foams comprise
  • styrene typically a homopolystyrene or a styrene copolymer which may contain up to 20%, based on the weight of the polymers, of
  • ethylenic unsaturation in particular alkylstyrene, divinylbenzene, acrylonitrile or ⁇ -methylstyrene.
  • Mixtures of polystyrene and other polymers, particularly with rubber and polyphenylene ether are also possible.
  • the polymer matrix may also contain customary and known additives, for example flame retardants, nucleating agents, UV stabilizers, chain transfer agents, blowing agents, plasticizers, pigments and antioxidants.
  • cellular insulation materials are generally in the form of panels or blocks. They can be associated with other materials in the form of composite panels comprising for example a layer of polymeric foam such as expanded polystyrene and a layer of a more rigid material such as a wood panel or a plasterboard.
  • the graphite oxide particles are preferably dispersed in the polymer matrix of the foam, either by introduction during the mixing of the precursor solutions, or by prior introduction into one of the precursor solutions.
  • the graphite oxide particles may be mixed with the melt polymer, preferably in an extruder.
  • an expanding agent can be present in the molten polymer at the time of adding the graphite oxide particles or added simultaneously thereto.
  • Foams of expanded polymer in particular polystyrene, have
  • the cellular insulation material typically comprises 1%, even 2% or 3%, and up to 100%, even 60%, or even 20% by weight of graphite oxide particles with respect to the weight of foam.
  • the thermal insulation material according to the invention may also be an insulation material based on airgel or amorphous silica, in particular pyrogenic or precipitated, or a vacuum insulation material.
  • Aerogels typically in the form of translucent granules or of powder having grain sizes or granules conventionally of the order of one millimeter, are generally used with protections or a reinforcing agent, for example in mats formed of mechanically entangled fibers. resistant. Examples of such insulating materials are described in particular in WO 01/28675, US 2007/154698 or EP 0171722.
  • the present invention also relates to a method of manufacturing a thermal insulation material having improved thermal conductivity properties, especially as described above, comprising the introduction of graphite oxide particles into the material.
  • thermal insulation comprising the introduction of graphite oxide particles into the material.
  • the introduction of the graphite oxide particles can be carried out by applying a solution comprising the graphite oxide particles (for example a sizing composition, a sizing composition or a surface coating composition) on the insulation material.
  • the particles can also be introduced into the insulation material by incorporating into the matrix of the insulation material during its manufacture.
  • the present invention also relates to the use of graphite oxide particles as described above as an opacifying agent in a thermal insulation material, as well as a process for reducing the
  • thermal conductivity of a thermal insulation material comprising introducing graphite oxide particles into the thermal insulation material.
  • the thermal insulation material according to the invention can be used in the field of construction, in particular for the interior and / or exterior insulation of walls, floors or roofs of buildings. Other areas of application also include the isolation of means of transport, including rail or sea, high temperature devices (furnaces, inserts ...), ventilation ducts, ducting, etc.
  • opacifiers Four types of opacifiers (OPO, OP1, OP2 and OP3) have been characterized.
  • the OPO opacifier consists of graphite particles that have not undergone any oxidation.
  • OP1 and OP2 opacifiers are graphite particles
  • partially oxidized graphite particles can be obtained by methods well known to those skilled in the art, especially by ultrasonic treatment.
  • Particles OP2 were, for example, obtained in the following manner: an aqueous dispersion of 1% by weight of graphite particles was subjected to ultrasonic treatment for one hour. The dispersion produced is then frozen and lyophilized to recover partially oxidized graphite particles.
  • OP3 particles are particles that have undergone extensive oxidation by conventional chemical means. Ultrasonic treatment methods have the advantage of being inexpensive and easy to implement, particularly from the point of view of safety or environmental considerations, compared to chemical oxidation methods.
  • the absolute mass extinction coefficients (EC m ), expressed in m 2 / kg, at room temperature over the range 2 to 18 miti, OPO, OP1, OP2 and OP3 opacifiers were determined in two stages: i) determining the mass extinction coefficient of a polymer / opacifier system; and (ii) subtracting the polymer contribution to this system. [0043] (i) The determination of the mass extinction coefficients of the polymer / opacifier systems is based on the approach proposed by Zeng el al., J. Mater. Res., Vol.11, No.3, Mar 1996. It consists of a characterization
  • the mass extinction coefficient of the ECs system ys is determined according to the following relation:
  • E thin expressed in m, is the thickness of the optically thin film
  • Thin is the transmission of the optically thin film over the length range
  • R thick is the reflection of the optically thick film on the length range
  • the films are made from a mixture of opacifier (OPO, OP1, OP2 and OP3) dispersed in a polystyrene matrix with an amount of opacifier particles - 6% - and constant dispersion quality.
  • the optically thin films have a thickness of 10 to 25 ⁇ m while the optically thick films have a thickness greater than 350 ⁇ m.
  • OR is the percentage of opacifying particles in the polymer / opacifier system.
  • the extinction coefficient of a material over a given wavelength range represents the capacity of the material to absorb and / or scatter the radiation over this range of wavelengths.
  • the characteristics of the opacifiers OPO, OP1 OP2 and OP3 are summarized in the table below.
  • the partially oxidized graphite particles OP1 and OP2 have extinction coefficients that are significantly greater than the extinction coefficient of the unoxidized graphite particles OPO.
  • the OP3 graphite particles having undergone a high oxidation have an extinction coefficient comparable to the unoxidized graphite particles OPO.
  • Expanded polystyrene foam panels with a density of 10kg / m 3 and comprising 6% by weight of opacifier with respect to polystyrene were prepared with each of OPO, OP1, OP2 and OP3 opacifiers.
  • the panels according to the invention comprising the opacifiers OP1 and OP2 have been found to have significantly lower thermal conductivities (1), which can be reduced by up to 12%, compared with panels comprising opacifier OPO or OP3.
  • the absolute mass extinction coefficient of the opacifier can be evaluated from the measurements of the effective thermal conductivity carried out on the insulation material, for example according to DIN 52612, using the additive approximation. the thermal conductivity of light porous media and the Rosseland approximation (valid for an optically thick sample, for example a thickness greater than 10 mm for EPS foams).
  • l 9 is the gaseous conductivity
  • X s is the solid conductivity
  • l G is the radiative conductivity
  • the Rosseland approximation also makes it possible to connect the radiative conductivity G to the extinction coefficient of the opacifying powder EC op by the following relationship:
  • S s is the Stefan-Boltzmann constant (5.67 ⁇ 10 8 W / (m 2 ⁇ K 4 ));
  • T expressed in K, is the temperature of the medium
  • OR is the rate of opacification (mass percentage of opacifier in the insulation material).
  • EC M a t expressed in m 2 / kg, is the mass extinction coefficient of the non-opacified insulation material (typically 35 m 2 / kg for an EPS foam of

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Architecture (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Building Environments (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

La présente invention concerne un matériau d'isolation thermique comprenant des particules d'oxyde de graphite, ainsi que l'utilisation de particules d'oxyde de graphite partiellement oxydées comme agent opacifiant dans un matériau d'isolation thermique.

Description

MATERIAU D'ISOLATION THERMIQUE COMPRENANT DES PARTICULES D'OYDE DE GRAPHITE PARTIELLEMENT OXYDEES
[0001] La présente invention concerne le domaine des matériaux d’isolation
thermique. Elle vise plus particulièrement l’utilisation de particules d’oxyde de graphite comme agent opacifiant dans de tels matériaux d’isolation.
[0002] L'isolation thermique des bâtiments permet de réduire les déperditions de chaleur et contribue ainsi à améliorer le confort, à réduire les risques de dégâts dans les bâtiments liés à un vieillissement précoce, et à réduire la consommation d'énergie tant pour le chauffage que pour un éventuel refroidissement. Les échanges de chaleur avec l’extérieur à travers l’enveloppe du bâtiment se font généralement par conduction et/ou par rayonnement. Les matériaux d’isolation thermique traditionnels tendent à réduire ces échanges : l'air immobilisé par exemple dans des mousses ou entre des fibres réduit la conduction thermique des parois et les parois des alvéoles des mousses ou les fibres contribuent à faire écran au rayonnement. Il est également connu d’ajouter des agents opacifiants dans les matériaux d’isolation pour l’habitat pour diminuer les échanges par rayonnement. Un agent opacifiant est un composant,
généralement sous forme particulaire, présentant une forte capacité d’absorption et/ou de diffusion d’au moins une partie des rayonnements infrarouge.
L’utilisation de particules de graphite en tant qu’agent opacifiant dans des mousses polymère tels que le polystyrène expansé (EPS) a par exemple été proposée (EP 0981574, EP 1758951 , EP 1819758, EP 2683763, EP 1945700, EP 2010601 ). Les particules de graphite ont l’avantage de présenter des coefficients d’extinctions élevés dans l’infrarouge tout en étant peu onéreuses. Elles peuvent cependant présenter certains inconvénients, notamment pour leur mise en œuvre. Le graphite étant extrêmement hydrophobe, sa mise en œuvre dans les procédés existants n’est pas aisée. Il peut en effet être difficile d’obtenir une dispersion homogène des particules de graphite dans les matériaux d’isolation. Une mauvaise dispersion entraînant une perte d’efficacité
d’opacification, la qualité de dispersion est une propriété cruciale pour les agents d’opacification. Par ailleurs, il persiste une demande d’amélioration des performances des matériaux d’isolation thermique.
[0003] L’objectif de la présente invention est d’obvier aux inconvénients mentionnés ci-dessus en proposant un agent d’opacification présentant des propriétés d’opacification améliorées, à faible coût de revient et dont la qualité de dispersion dans différents milieux peut être assurée.
[0004] Ainsi, un aspect de la présente invention concerne un matériau d’isolation
thermique comprenant des particules d’oxyde de graphite partiellement oxydées. Par particules d’oxyde de graphite partiellement oxydée, on entend au sens de la présente invention que les particules de graphite ont subi une oxydation douce. Il a en effet été observé que l’oxydation partielle des particules de graphite, contrairement à une oxydation poussée (ce à quoi l’appellation oxyde de graphite fait généralement référence), permettait d’améliorer significativement leur efficacité d’opacification de par une meilleure dispersion des particules et/ou une amélioration de leurs propriétés d’opacification. Sans vouloir être lié par une quelconque théorie, il est supposé que les particules d’oxyde de graphite partiellement oxydées présentent une structure cœur-coquille avec un cœur conducteur en graphite absorbant dans l’infrarouge et une coquille oxydée réfléchissante dans l’infrarouge. De plus, par le choix du degré d’oxydation partielle des particules d’oxyde de graphite il est possible d’ajuster la balance hydrophobe (contribution des plans carbonés)/hydrophile (contribution des groupements oxygénés) pour optimiser leur dispersion dans différents milieux en fonction de leur nature plus ou moins hydrophile/hydrophobe.
[0005] Les particules d’oxyde de graphite peuvent être obtenues par oxydation du graphite à l’aide de méthodes bien connues de l’homme du métier, telles que décrites par exemple par Brodie et al., Philos. Trans. R. Soc. London, 1859, 149, 249-259, Staudenmaier, Ber. Dtsch. Chem. Ges., 1898, 31 (2), 1481 -1487, Hummers et al., J. Am. Chem. Soc. 1958, 80 (6), 1339, Moritomo et al., Soi. Rep., 2016, 6, 21715, Lee et al., J. Phys. Chem. C, 2011 , 115 (6), pp 2705-2708, Zhao et al. ACS Nano, 2010, 4 (9), pp 5245-5252 ou Muzyka et al. New Carbon
Materials, 2017, 32(1 ), 15-20. L’utilisation de méthodes d’oxydation plutôt douces ou au contraire poussées du graphite permet d’ajuster le degré d’oxydation souhaité pour les particules d’oxyde de graphite. En particulier, les particules d’oxyde de graphite partiellement oxydée peuvent être obtenues par des méthodes d’oxydation chimique utilisant des oxydant plus faibles et/ou des temps de réaction réduit par rapport aux méthodes classiques d’oxydation poussée. D’autres méthodes d’oxydation douces mettent en œuvre des traitments physiques tels que des traitements par ultrasons.
[0006] Du fait de leur oxydation partielle, les particules d’oxyde de graphite utilisées dans la présente invention présentent des coefficients d’extinction
significativement plus élevés que les particules de graphite ou même que les particules de graphite oxydé classiques ayant subi une oxydation poussée. En d’autres termes, ces coefficients d’extinctions élevés sont caractéristiques d’une oxydation partielle des particules d’oxyde de graphite. Dans un premier mode de réalisation, le matériaux d’isolation selon l’invention peut ainsi être caractérisé en ce que les particules d’oxyde de graphite partiellement oxydées présentent un coefficient d’extinction massique absolu, à température ambiante sur la plage 2 à 18 miti, supérieur à 5000 m2/kg, de préférence supérieur à 7000 m2/kg, plus préférentiellement supérieur à 10000 m2/kg, ou même supérieure à 13000 m2/kg, et typiquement inférieur à 30000 m2/kg, voire 25000 m2/kg.
[0007] Le degré d’oxydation des particules d’oxyde de graphite peut être évalué par spectrométrie photoélectronique X (XPS). Plus précisément, une déconvolution est réalisée à partir d’un spectre XPS du carbone (C1 s) en considérant la contribution de quatre pics : le pic C1 à 284 eV attribué aux liaisons carbone :
C=C et C-C ; le pic C2 à 286,5 eV attribué aux liaisons hyroxyle et époxy : C-OH et C-O-C ; le pic C3 à 288,3 eV attribué aux liaisons cétone : C=0 ; et le pic C4 à 290,5 eV attribué aux liaisons acide carboxylique : 0=C-OH. La déconvolution est réalisée en considérant des fonctions gaussiennes pour les pics C2, C3 et C4 et un pic asymétrique avec une largeur à mi-hauteur de 0,8 eV pour la
composante graphitique C1. Le rapport des aires Ai
(A2 + A3 + A4)/(A1 + A2 + A3 + A4), correspondant respectivement aux pics Ci (i=1 à 4) permet de définir un ratio d’oxydation. Plus ce ratio d’oxydation est élevé, plus les particules d’oxyde de graphite sont oxydées et inversement. Dans un deuxième mode de réalisation, le matériau d’isolation selon l’invention peut être caractérisé en ce que les particules d’oxyde de graphite partiellement oxydées présentent de préférence un ratio d’oxydation supérieur à 6%, plus préférentiellement supérieur à 7%, 8% ou 9%, en particulier de 9,5%, voire 10%, 10,5% ou même 11 %, et jusqu’à 50%, voire 40%, 30% ou même 20%. De plus, le ratio A2/(A2 + A3 + A4) est de préférence d’au moins 15,0%, plus
préférentiellement de 18,0%, voire 19,0% ou même 20,0% à 60%, voire 50%, 40% ou même 30%. Il va de soit que le matériau d’isolation selon l’invention peut être aussi caractérisé en ce que les particules d’oxyde de graphite partiellement oxydées présentent à la fois un coefficient d’extinction supérieur à 5000 m2/kg, de préférence supérieur à 7000 m2/kg, plus préférentiellement supérieur à 10000 m2/kg, ou même supérieure à 13000 m2/kg, et typiquement inférieur à 30000 m2/kg, voire 25000 m2/kg, et un ratio d’oxydation, voire également un ratio A2/(A2 + A3 + A4), tels que définis précédemment.
[0008] Le matériau d’isolation thermique peut être tout type de matériau bien connu de l’homme du métier. Il peut être notamment sous forme de matelas isolant, de panneau d’isolation ou en vrac.
[0009] Parmi les matériaux d’isolation thermique les plus courants, on peut citer les matériaux d’isolation fibreux, à base de fibres naturelles d’origine animale ou végétale, ou synthétiques/minérales telles que la laine de verre ou la laine de roche. Le matériau d’isolation fibreux est de préférence à base de laine de verre ou de laine de roche. Une composition classique de laine de verre comprend les constituants suivants, exprimés en pourcentages pondéraux :
[0010] Si02 50 à 75%
[0011] Al203 0 à 8%
[0012] CaO+MgO 5 à 20%
[0013] Fe203 0 à 3%
[0014] Na20+K20 12 à 20%
[0015] B203 2 à 10%
[0016] La laine de verre peut également être riches en alumine, auquel cas elle
comprend généralement les constituants suivants, exprimés en pourcentages pondéraux :
[0017] Si02 35 à 50% [0018] Al203 10 à 30%
[0019] CaO+MgO 12 à 35%
[0020] Fe203 1 à 15%
[0021] Na20+K20 0 à 20%
[0022] Une composition classique de laine de roche comprend généralement les constituants suivants, exprimés en pourcentages pondéraux :
[0023] Si02 30 à 50%
[0024] Al203 10 à 20%
[0025] CaO+MgO 20 à 40%
[0026] Fe203 5 à 15%
[0027] Les fibres peuvent être liées par un liant. Le liant peut être un liant
thermoplastique ou thermodurcissable Des exemples de liants
thermodurcissables comprennent les liants phénol/formaldéhyde, les liants polymères à base d’acrylates et/ou de polyols, ainsi que des liants biosourcés tels que décrits notamment dans WO 2009/080938, WO 2009/080938 ou WO 2007/014236. Dans un autre mode de réalisation, le matériau selon l’invention peut comprendre des fibres non liées par un liant.
[0028] Les particules d’oxyde de graphite peuvent être dispersées à la surface des fibres sous forme de poudre ou via une composition d’ensimage, avant l’application éventuelle du liant à l’aide d’une composition d’encollage. De façon alternative, les particules d’oxyde de graphite peuvent être dispersées dans le liant lorsque celui-ci est présent. Dans ce cas, les particules d’oxyde de graphite sont introduites dans la composition d’encollage avant son application sur les fibres.
[0029] Le matériau d’isolation fibreux peut être sous forme de matelas de fibres, de panneau de fibres ou de laine à souffler. Il comprend typiquement de 1 %, voire 2% ou 3%, et jusqu’à 100%, voire 60%, ou même 20% en poids de particules d’oxyde de graphite par rapport au poids de fibres. Les matériaux d’isolation comprenant d’importantes quantité d’opacifiant, notamment supérieures à 20% en poids, sont particulièrement adaptés aux applications haute température. [0030] On peut également citer les matériaux d’isolation cellulaires du type mousse de polymère expansé tel que le polystyrène expansé (EPS) ou extrudé (XPS), les mousses phénoliques, les mousses polyuréthane ou les mousses biosourcées. Des exemples de mousses biosourcées comprennent des mousses obtenues à partir de sucres réducteurs et de composés aminés, décrites par exemple dans WO 2016/139401 , des mousses obtenues à partir de sucres et d’acides forts, décrites par exemple dans WO 2016/174328, ou des mousses obtenues à partir de polyols et de polyacides, décrites par exemple dans WO 2016/207517.
[0031] La matrice polymère formant les mousses de polystyrène comprennent
typiquement un homopolystyrène ou un copolymère de styrène pouvant contenir jusqu'à 20%, par rapport au poids des polymères, de comonomères à
insaturation éthylénique, en particulier d'alkylstyrène, de divinylbenzène, d'acrylonitrile ou a-méthylstyrène. Des mélanges de polystyrène et d'autres polymères, en particulier avec du caoutchouc et du polyphénylène éther sont également possibles. La matrice polymère peut également contenir des additifs usuels et connus, par exemple des ignifugeants, des agents de nucléation, des stabilisants UV, des agents de transfert de chaîne, des agents d'expansion, des plastifiants, des pigments et des antioxydants. Certains modes d’application, notamment pour les mousses polyuréthane, permettent le mélange et
l’application de solutions de précurseurs in situ, formant ainsi la mousse directement sur la surface à isoler. Cependant, les matériaux d’isolation cellulaires sont en général sous forme de panneaux ou de blocs. Ils peuvent être associés à d’autres matériaux sous forme de panneaux composites comprenant par exemple une couche de mousse polymère telle que du polystyrène expansé et une couche d’un matériau plus rigide tel qu’un panneau de bois ou une plaque de plâtre.
[0032] Les particules d’oxyde de graphite sont de préférence dispersées dans la matrice polymère de la mousse, soit par introduction lors du mélange des solutions de précurseurs, soit par introduction préalable dans l’une des solutions de précurseurs. De façon alternative, les particules d’oxyde de graphite peuvent être mélangées au polymère fondu, de préférence dans un extrudeur. Dans le cas de mousse de polystyrène notamment, un agent d’expansion peut être présent dans le polymère fondu au moment de l’ajout des particules d’oxyde de graphite ou ajouté simultanément à celles-ci.
[0033] Les mousses de polymère expansé, notamment de polystyrène, ont
typiquement une densité de 7 à 20 kg/m3, de préférence de 9 à 15 kg/m3.
[0034] Le matériau d’isolation cellulaire comprend typiquement de 1 %, voire 2% ou 3%, et jusqu’à 100%, voire 60%, ou même 20% en poids de particules d’oxyde de graphite par rapport au poids de mousse.
[0035] Le matériau d’isolation thermique selon l’invention peut également être un matériau d’isolation à base d'aérogel ou de silice amorphe, notamment pyrogénée ou précipitée, ou un matériau d’isolation sous vide. Les aérogels, typiquement sous forme de granules translucides ou de poudre présentant des tailles de grains ou granules classiquement de l'ordre du millimètre, sont généralement utilisés avec des protections ou un agent de renforcement, par exemple au sein de mats formés de fibres enchevêtrées mécaniquement résistantes. Des exemples de tels matériaux d’isolation sont décrits notamment dans WO 01/28675, US 2007/154698 ou EP 0171722.
[0036] La présente invention concerne également un procédé de fabrication d’un matériau d’isolation thermique présentant des propriétés de conductivité thermique améliorées, notamment tel que décrit ci-dessus, comprenant l’introduction de particules d’oxyde de graphite dans le matériau d’isolation thermique. L’introduction des particules d’oxyde de graphite peut être réalisée par application d’une solution comprenant les particules d’oxyde de graphite (par exemple une composition d’ensimage, une composition d’encollage ou une composition de revêtement de surface) sur le matériau d’isolation. Les particules peuvent également être introduites dans le matériau d’isolation par incorporation dans la matrice du matériau d’isolation lors de sa fabrication.
[0037] La présente invention concerne également l’utilisation de particules d’oxyde de graphite telles que décrites ci-dessus comme agent opacifiant dans un matériau d’isolation thermique, ainsi qu’un procédé de réduction de la
conductivité thermique d’un matériau d’isolation thermique comprenant l’introduction de particules d’oxyde de graphite dans le matériau d’isolation thermique. [0038] Le matériau d’isolation thermique selon l’invention peut être utilisé dans le domaine de la construction, notamment pour l’isolation intérieure et/ou extérieure des parois, planchers ou toitures de bâtiments. D’autres domaines d’application comprennent également l’isolation de moyens de transports, notamment ferroviaires ou maritimes, d’appareils à haute température (fours, inserts...), des conduits d’aération, de canalisation, etc.
[0039] Les exemples qui suivent illustrent l’invention de manière non limitative.
[0040] Quatre types d’opacifiants (OPO, OP1 , OP2 et OP3) ont été caractérisés.
L’opacifiant OPO consiste en des particules de graphite n’ayant subi aucune oxydation. Les opacifiants OP1 et OP2 sont des particules de graphite
partiellement oxydées à différents degrés. De telles particules de graphite partiellement oxydées peuvent être obtenues par des méthodes bien connues de l’homme du métier, notamment par traitement par ultrasons. Les particules OP2 ont, par exemple, été obtenues de la façon suivante : une dispersion aqueuse de 1 % en poids de particules de graphite a été soumise à un traitement ultrasonique pendant une heure. La dispersion réalisée est ensuite congelée et lyophilisée pour récupérer les particules de graphite partiellement oxydées. Les particules OP3 sont des particules ayant subi une oxydation poussée par voie chimique classique. Les méthodes de traitement par ultrasons présentent l’avantage d’être peu onéreuses et faciles à mettre en œuvre, en particulier du point de vue des considérations de sécurité ou environnementales, comparées aux méthodes d’oxydation chimique.
[0041] Une analyse XPS du carbone C1 s des particules d’oxyde de graphite OP1 et OP2 a été réalisée afin d’évaluer le degré d’oxydation de celles-ci. Une
déconvolution du spectre d’analyse XPS a été réalisé en considérant les pics C1 , C2, C3 et C4 tels que mentionnés ci-dessus afin de déterminer le ratio
d’oxydation (A2 + A3 + A4)/(A1 + A2 + A3 + A4) et le ratio A2/(A2 + A3 + A4).
[0042] Les coefficients d’extinction massiques absolus (ECm), exprimés en m2/kg, à température ambiante sur la plage 2 à 18 miti, des opacifiants OPO, OP1 , OP2 et OP3 ont été déterminés en deux étapes : (i) la détermination du coefficient d’extinction massique d’un système polymère/opacifiant ; et (ii) la soustraction de la contribution du polymère à ce système. [0043] (i) La détermination des coefficients d’extinction massique des systèmes polymère/opacifiant est basée sur l’approche proposée par Zeng el al., J. Mater. Res., vol.11 , No.3, Mar 1996. Elle consiste en une caractérisation
spectrométrique (en réflexion et en transmission) du système analysé sous la forme de deux films du même matériau mais d’épaisseurs différentes : un film optiquement épais (c’est-à-dire présentant une transmission nulle sur la plage de longueur d’onde considérée), et un film optiquement fin (c’est-à-dire présentant une transmission significative sur la plage de longueur d’onde considérée). Le coefficient d’extinction massique du système ECsys, exprimée en m2/kg, est déterminé selon la relation suivante :
[0045] dans laquelle p, exprimée en kg/m3, est la masse volumique du système
polymère/opacifiant ;
[0046] ethin, exprimée en m, est l’épaisseur du film optiquement mince ;
[0047] T thin est la transmission du film optiquement fin sur la plage de longueur
d’onde considérée ; et
[0048] Rthick est la réflexion du film optiquement épais sur la plage de longueur
d’onde considérée.
[0049] Les films sont réalisés à partir d’un mélange d’opacifiant (OPO, OP1 , OP2 et OP3) dispersées dans une matrice de polystyrène à quantité de particules d’opacifiant - 6% -, et qualité de dispersion constantes. Les films optiquement fins ont une épaisseur de 10 à 25 pm tandis que les films optiquement épais ont une épaisseur supérieure à 350 pm.
[0050] (ii) Le coefficient d’extinction massique du polymère seul, ECp0i exprimé en m2/kg, est déterminé selon la méthode des doubles épaisseurs décrite ci-dessus. Le coefficient d’extinction massique absolu des particules opacifiantes, ECm exprimé en m2/kg, est ensuite déterminé en soustrayant la contribution de la matrice polymère selon la formule suivante :
(±-OR)ECp0i~ ECSys
[0051] EC, OR [0052] dans laquelle OR est le pourcentage de particules opacifiantes dans le système polymère/opacifiant.
[0053] Le coefficient d’extinction d’un matériau sur une gamme de longueurs d’onde donnée représente la capacité du matériau à absorber et/ou diffuser le rayonnement sur cette gamme de longueurs d’onde. Ainsi, plus le coefficient d’extinction dans l’infrarouge d’un matériau est élevé, meilleures sont ses propriétés opacifiantes.
[0054] Les caractéristiques des opacifiants OPO, OP1 OP2 et OP3 sont résumées dans le tableau ci-dessous.
[0055] [Tableau 1]
[0056] Les particules de graphite partiellement oxydées OP1 et OP2 présentent des coefficients d’extinctions significativement supérieurs au coefficient d’extinction des particules de graphite non oxydées OPO. Au contraire, les particules de graphite OP3 ayant subi une oxydation poussée présentent un coefficient d’extinction comparable aux particules de graphite non oxydées OPO.
[0057] Des panneaux de mousse de polystyrène expansé d’une masse volumique de 10kg/m3 et comprenant 6% en poids d’opacifiant par rapport au polystyrène ont été préparés avec chacun des opacifiants OPO, OP1 , OP2 et OP3. Les panneaux selon l’invention comprenant les opacifiants OP1 et OP2 se sont avérés présenter des conductivités thermiques (l) significativement plus faibles, pouvant être réduites jusqu’à 12%, par rapport aux panneaux comprenant l’opacifiant OPO ou OP3. [0058] On remarquera que le coefficient d’extinction massique absolu de l’opacifiant peut être évalué à partir des mesures de conductivité thermique effective réalisées sur le matériau d’isolation, par exemple selon la norme DIN 52612, en utilisant l’approximation additive de la conductivité thermique des milieux poreux légers et l’approximation de Rosseland (valable pour un échantillon optiquement épais, soit par exemple une épaisseur supérieure à 10 mm pour les mousses d’EPS).
[0059] Selon l’approximation additive, la conductivité thermique effective d’un milieu poreux léger tel que les mousses de polystyrène expansé s’écrit comme suit :
[0060] l g†† = Àg + ÀS + lg
[0061 ] dans laquelle l9 est la conductivité gazeuse ; Xs est la conductivité solide ; et lG est la conductivité radiative.
[0062] Pour une mousse EPS de 10 kg/m3 par exemple, le terme (l9 + l8) vaut
28,5 mW/(m.K) et cette relation peut s’écrire Àeff = 28,5 + Ar
[0063] L’approximation de Rosseland permet de relier par ailleurs la conductivité radiative lG au coefficient d’extinction de la poudre opacifiante ECop par la relation suivante :
[0065] n est l’indice de réfraction du gaz (pour l’air n=1 ) ;
[0066] as est la constante de Stefan-Boltzmann (5.67 10 8 W/(m2.K4)) ;
[0067] T, exprimée en K, est la température du milieu ;
[0068] OR est le taux d’opacification (pourcentage massique d’opacifiant dans le matériau d’isolation) ;
[0069] ECMat, exprimé en m2/kg, est le coefficient d’extinction massique du matériau d’isolation non opacifié (typiquement 35m2/kg pour une mousse EPS de
10 kg/m3) ;
[0070] ECm, exprimé en m2/kg, est le coefficient d’extinction massique de
l’opacifiant ; et
[0071 ] p, exprimée en kg/m3, est la masse volumique du matériau d’isolation. [0072] La combinaison de ces deux équations permet ainsi de déterminer le coefficient d’extinction d’un opacifiant ECm à partir de la conductivité thermique effective du matériau d’isolation eff.
[0073] Typiquement, pour une mousse EPS de 10 kg/m3 comprenant 6 % en poids d’opacifiant et à température de 283 K, cette relation s’écrit : 548
[0075] Cette relation peut être aisément adaptée par l’homme du métier en fonction de la nature du matériau d’isolation et de la quantité d’opacifiant utilisé.

Claims

Revendications
[Revendication 1] Matériau d’isolation thermique comprenant des particules d’oxyde de graphite partiellement oxydées.
[Revendication 2] Matériau selon la revendication 1 , caractérisé en ce que les particules d’oxyde de graphite partiellement oxydées présentent un coefficient d’extinction supérieur à 5000 m2/kg.
[Revendication 3] Matériau selon la revendication 1 ou 2, caractérisé en ce que les particules d’oxyde de graphite présentent un ratio d’oxydation
(A2 + A3 + A4)/(A1 + A2 + A3 + A4) de 6 à 50%, de préférence de 9 à 30%, dans lequel A1 , A2, A3 et A4 correspondent respectivement aux aires des pics C1 , C2, C3 et C4 issus de la déconvolution d’un spectre de
spectrophotométrie photoélectronique X (XPS) du carbone C1 s en
considérant la contribution de quatre pics : C1 à 284 eV, C2 à 286,5 eV, C3 à 288,3 eV et C4 à 290,5 eV ; en utilisant des fonctions gaussiennes pour les pics C2, C3 et C4 et un pic asymétrique avec une largeur à mi-hauteur de 0,8 eV pour le pic C1.
[Revendication 4] Matériau selon la revendication 3, caractérisé en ce que les particules d’oxyde de graphite présentent un ratio A2/(A2 + A3 + A4) d’au moins 15,0%, de préférence au moins 18,0%.
[Revendication 5] Matériau selon l’une des revendications 1 à 4, caractérisé en ce que ledit matériau est un matériau d’isolation fibreux, un matériau d’isolation cellulaire, un matériau d’isolation à base d’aérogel ou de silice amorphe, ou un matériau d’isolation sous vide.
[Revendication 6] Matériau selon l’une des revendications 1 à 5, caractérisé en ce que ledit matériau est un matériau d’isolation fibreux est à base de fibres minérales sous forme de matelas de fibres, de panneau de fibres ou de laine à souffler.
[Revendication 7] Matériau selon l’une des revendications 6, caractérisé en ce que ledit matériau comprend 1 à 100% en poids de particules d’oxyde de graphite par rapport au poids de fibres minérales.
[Revendication 8] Matériau selon l’une des revendications 1 à 5, caractérisé en ce que ledit matériau est un matériau d’isolation cellulaire de type mousse de polymère expansé tel que le polystyrène expansé ou extrudé, les mousses phénoliques, les mousses polyuréthane ou les mousses biosourcées.
[Revendication 9] Matériau selon la revendication 8, caractérisé en ce que le matériau d’isolation cellulaire est sous forme de panneaux de mousse polymère, de blocs de mousse polymère ou de panneau composite
comprenant une couche de mousse polymère.
[Revendication 10] Matériau selon la revendication 8 ou 9, caractérisé en ce que la mousses de polymère expansé a une densité de 7 à 20 kg/m3, de préférence de 9 à 15 kg/m3.
[Revendication 11] Matériau selon l’une des revendications 8 à 10,
caractérisé en ce que lesdites particules d’oxyde de graphite sont dispersées dans la matrice polymère de la mousse.
[Revendication 12] Matériau selon l’une des revendications 8 à 11 ,
caractérisé en ce que ledit matériau comprend 1 à 100% en poids de particules d’oxyde de graphite par rapport au poids de mousse.
[Revendication 13] Utilisation de particules d’oxyde de graphite partiellement oxydées comme agent opacifiant dans un matériau d’isolation thermique.
[Revendication 14] Utilisation selon la revendication 13, caractérisée en ce que les particules d’oxyde de graphite présentent un coefficient d’extinction supérieur à 5000 m2/kg.
[Revendication 15] Utilisation selon la revendication 13 ou 14, caractérisée en ce que les particules d’oxyde de graphite présentent un ratio d’oxydation (A2 + A3 + A4)/(A1 + A2 + A3 + A4) de 6 à 50%, de préférence de 9 à 30%, dans lequel A1 , A2, A3 et A4 correspondent respectivement aux aires des pics C1 , C2, C3 et C4 issus de la déconvolution d’un spectre de
spectrophotométrie photoélectronique X (XPS) du carbone C1 s en
considérant la contribution de quatre pics : C1 à 284 eV, C2 à 286,5 eV, C3 à 288,3 eV et C4 à 290,5 eV ; en utilisant des fonctions gaussiennes pour les pics C2, C3 et C4 et un pic asymétrique avec une largeur à mi-hauteur de 0,8 eV pour le pic C1.
EP19728482.1A 2018-05-04 2019-04-30 Materiau d'isolation thermique comprenant des particules d'oyde de graphite partiellement oxydees Pending EP3788018A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1870534A FR3080850B1 (fr) 2018-05-04 2018-05-04 Materiau d’isolation thermique
PCT/FR2019/051006 WO2019211559A1 (fr) 2018-05-04 2019-04-30 Materiau d'isolation thermique comprenant des particules d'oyde de graphite partiellement oxydees

Publications (1)

Publication Number Publication Date
EP3788018A1 true EP3788018A1 (fr) 2021-03-10

Family

ID=63579505

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19728482.1A Pending EP3788018A1 (fr) 2018-05-04 2019-04-30 Materiau d'isolation thermique comprenant des particules d'oyde de graphite partiellement oxydees

Country Status (7)

Country Link
US (1) US20210230864A1 (fr)
EP (1) EP3788018A1 (fr)
JP (1) JP7411572B2 (fr)
KR (1) KR20210003134A (fr)
CA (1) CA3100134A1 (fr)
FR (1) FR3080850B1 (fr)
WO (1) WO2019211559A1 (fr)

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3429671A1 (de) 1984-08-11 1986-02-20 Basf Ag, 6700 Ludwigshafen Verfahren zur herstellung von aerogelen
ES2151268T3 (es) 1997-05-14 2000-12-16 Basf Ag Polimeros de estireno expandibles que contienen particulas de grafito.
RU2002113291A (ru) 1999-10-21 2004-03-27 Эспен Системз, Инк. (Us) Способ ускоренного изготовления аэрогеля
DE102004028768A1 (de) 2004-06-16 2005-12-29 Basf Ag Styrolpolymer-Partikelschaumstoffe mit verringerter Wärmeleitfähigkeit
DE102004058586A1 (de) 2004-12-03 2006-06-14 Basf Ag Halogenfrei flammgeschützte, expandierbare Styrolpolymerisate
AU2006272595C1 (en) 2005-07-26 2014-08-28 Knauf Insulation Gmbh Binders and materials made therewith
IT1366567B (it) 2005-10-18 2009-10-06 Polimeri Europa Spa Granulati espandibili a basemdi polimeri vinilaromatici dotati di migliorata espansibilita'e procedimento per la loro preparazione
US20070154698A1 (en) 2005-12-30 2007-07-05 Aspen Aerogels, Inc. Highly flexible aerogel insulated textile-like blankets
DE102006018528A1 (de) 2006-04-21 2007-11-08 Deutsche Amphibolin-Werke Von Robert Murjahn Stiftung & Co Kg Dämmender geschäumter Werkstoff
FR2924719B1 (fr) 2007-12-05 2010-09-10 Saint Gobain Isover Composition d'encollage pour laine minerale comprenant un monosaccharide et/ou un polysaccharide et un acide organique polycarboxylique, et produits isolants obtenus.
EP2683763A1 (fr) 2011-06-27 2014-01-15 Total Research & Technology Feluy Polymères aromatiques vinyliques expansibles contenant du graphite
EP2724780B1 (fr) 2012-10-26 2015-07-22 Evonik Degussa GmbH Procédé de fabrication d'un mélange d'isolation thermique
KR101575989B1 (ko) 2014-12-24 2015-12-09 고영신 팽창흑연을 이용한 경량화된 흡음내화 단열재 및 그 제조방법
MA41344B1 (fr) * 2015-01-14 2019-01-31 Synthos Sa Combinaison de silice et de graphite et son utilisation pour réduire la conductivité thermique d'une mousse de polymère aromatique vinylique
FR3033326B1 (fr) 2015-03-02 2018-10-26 Saint-Gobain Isover Mousses thermodurcies et procede de fabrication
FR3035402B1 (fr) 2015-04-27 2019-04-05 Saint-Gobain Isover Mousses thermodurcies et procede de fabrication
FR3037964B1 (fr) 2015-06-24 2019-12-20 Saint-Gobain Isover Mousses polyester thermodurcies et procede de fabrication
CN106009493A (zh) * 2016-08-01 2016-10-12 合肥广能新材料科技有限公司 酚醛泡沫外墙保温材料及其制备方法
CN107827479A (zh) * 2017-10-24 2018-03-23 安徽艾米伦特建材科技有限公司 高强度岩棉板及其制备方法

Also Published As

Publication number Publication date
US20210230864A1 (en) 2021-07-29
JP2021522395A (ja) 2021-08-30
WO2019211559A1 (fr) 2019-11-07
JP7411572B2 (ja) 2024-01-11
FR3080850B1 (fr) 2022-08-12
KR20210003134A (ko) 2021-01-11
FR3080850A1 (fr) 2019-11-08
CA3100134A1 (fr) 2019-11-07

Similar Documents

Publication Publication Date Title
JP4562210B2 (ja) 少なくとも1個のエーロゲル含有層および少なくとも1個の別の層を有する多層複合材料、その製造法およびその使用
CN101594985B (zh) 耐火复合板
US20030003284A1 (en) Multilayer composite materials with at least one aerogel-containing layer and at least one layer containing polyethylene terephthalate fibres, process for producing the same and their use
KR101336964B1 (ko) 유리장섬유 단열재 성형용 에어로젤 바인더 및 이를 이용한 단열재 성형방법
KR101287805B1 (ko) 유리장섬유 단열재 성형용 에어로젤 바인더 및 이를 이용한 단열재 성형방법
CN106082780B (zh) 纳米硅溶胶改性低密度保温板及其制备方法
Kim et al. Flame retardant composite foam modified by silylated nanocellulose and tris (2-chloropropyl) phosphate
CN103210032B (zh) 中空胶乳基体中的纳米多孔粒子
EP3788018A1 (fr) Materiau d'isolation thermique comprenant des particules d'oyde de graphite partiellement oxydees
AU707288B2 (en) Process for producing non-flammable phenolic resin foam
Zhao et al. Study of the mechanical properties of mica‐filled polypropylene‐based GMT composite
EP0694101B1 (fr) Materiau absorbant acoustique
JP3195266B2 (ja) 複層断熱材及びその製造法
CN108862286B (zh) 阻燃隔热的弹性二氧化硅气凝胶片材及汽车锂离子动力电池热管理***用薄片
CN109955554B (zh) 一种隔音材料及其制备方法
KR102258690B1 (ko) 내열 및 불연 특성을 갖는 불연소재, 그 제조 방법, 이를 포함하는 건축 내장재, 보온재, 흡음재 및 단열재
KR102337294B1 (ko) 준불연성 금속제 패널 및 이의 제조 방법
WO2018062606A1 (fr) Panneau en nid d'abeilles rempli de mousse semi-incombustible écologique
JP3302595B2 (ja) 断熱材の製造法
CN114634331B (zh) 一种气凝胶改性的玻璃纤维隔热板及制备方法
RU2295547C2 (ru) Способ получения композиционного радиационно-сшитого пенополиэтилена с пониженной горючестью
FR3140569A3 (fr) Matériau d’isolation et procédé pour sa production
EP0594469B1 (fr) Panneau d'isolation thermique et/ou acoustique et ses procédés d'obtention
JPH10166321A (ja) 複合合成木材
CN117801434A (zh) 一种装配式建筑预制件用轻质化复合材料

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201204

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)