EP3774293A1 - Dispositif pour manipuler des particules - Google Patents

Dispositif pour manipuler des particules

Info

Publication number
EP3774293A1
EP3774293A1 EP19711924.1A EP19711924A EP3774293A1 EP 3774293 A1 EP3774293 A1 EP 3774293A1 EP 19711924 A EP19711924 A EP 19711924A EP 3774293 A1 EP3774293 A1 EP 3774293A1
Authority
EP
European Patent Office
Prior art keywords
particles
sieve
screen
scraper
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19711924.1A
Other languages
German (de)
English (en)
Inventor
Matthias HICK
Kevin ECKES
Colin GUILLAUME
Antoine DEBLIRE
Charles-Edouard MOENS DE HASE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schaeffler Aerosint SA
Original Assignee
Aerosint SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aerosint SA filed Critical Aerosint SA
Publication of EP3774293A1 publication Critical patent/EP3774293A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/60Planarisation devices; Compression devices
    • B22F12/63Rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/004Filling molds with powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/12Spreading-out the material on a substrate, e.g. on the surface of a liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/214Doctor blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/321Feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/364Conditioning of environment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/70Gas flow means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a device for manipulating particles. More specifically, the present invention relates to a device for manipulating particles that can be used in 3D printing.
  • a problem is that the structure on the moving surface may be irregular in time and / or space.
  • US2007 / 126157 A1 discloses methods and apparatus for removing finished articles from a powder-based rapid prototyping system.
  • US2004 / 084814 A1 discloses a system for making three-dimensional objects with a non-bonded powder removal device.
  • US2015 / 266241 A1 discloses an additive manufacturing system comprising a planarizer configured to perform solvent assisted planarizations on intermediate construction surfaces of the three-dimensional part.
  • An object of the invention is to provide a device for manipulating particles to obtain a particle structure present on a particularly smooth moving surface.
  • the invention proposes a device for handling particles and comprising:
  • a screen having a first surface on which a particle structure can be formed, the first surface being arranged to be moved to move the particle structure in a direction parallel to the tangent to the first surface;
  • a first scraper located on a first side of the sieve, at a non-zero distance from the first surface, and arranged to scrape the particle structure on a first portion of the sieve, and
  • a first support member located on a second side of the screen and arranged to support the first portion of the screen, the second side of the screen and the first side of the screen being separated by the screen.
  • the first scraper can scrape the particles on the screen to obtain a structure having a particularly constant thickness in time and space.
  • the first support member which is preferred but not necessary in the context of the present invention, allows that the pressure exerted by the first scraper does not deform the sieve.
  • the first support element improves in particular the uniformity of the thickness over the width of the sieve.
  • the sieve is typically maintained laterally by a reinforcing structure that allows it to be stretched, it is more likely to deform towards the middle than on its edges, resulting that, without the first support element, the particle structure tends to be thicker in the middle.
  • the first support member allows the first surface of the sieve is, on the first portion of the sieve, substantially parallel to the first squeegee.
  • the first support element is arranged to stretch the first portion of the sieve.
  • the first element of support has the primary function of locally tightening the sieve.
  • the first support member exerts pressure on the screen. Preferably, this pressure has a horizontal component.
  • the first part of the sieve is preferably the part of the sieve on which the particles are at the moment when they are scraped by the first squeegee. It usually extends from one side to the other of the sieve. If the sieve is cylindrical, the first part of the sieve may for example correspond to an angle of less than 5 degrees, preferably less than 2 degrees.
  • the first scraper comprises a scraping part which is a part of the first scraper intended to be in contact with the particles.
  • the scraping part may comprise a scraping line, which is preferably a line where the first scraper imposes the thickness of the particle structure, and which is preferably rectilinear and essentially perpendicular to the direction of movement of the first part of the sieve. It is usually the line of the first scraper that is closest to the first surface.
  • the scraping line there is a plane, called foreground, which comprises the scraping line and which is perpendicular to the first surface at the first scraper.
  • the first support element is arranged to support the sieve in the foreground.
  • the first support member comprises a contact portion which is in mechanical contact with the screen.
  • the contact portion comprises a contact line which is in mechanical contact with the screen and which is perpendicular to the direction of movement of the particle structure on the first portion of the screen.
  • the first surface is preferably convex at the first scraper.
  • the second surface is preferably concave at the first support member.
  • the first scraper is preferably located at a non-zero distance from the first surface, this distance determining the thickness of the particle structure which remains on the first surface after scraping. This distance can be for example controlled by a gauge located between the sieve and the first squeegee.
  • the first scraper may for example comprise a blade, a roller or any other device. If it comprises a blade, it is preferably inclined relative to the first plane.
  • the first scraper preferably extends from one side to the other of the screen at the first portion of the screen. In other words, it preferably extends over the entire width of the sieve at the first portion of the sieve.
  • the particles are not chemically bonded together.
  • the particle structure is preferably a layer of particles.
  • the particles are electrically neutral, that is to say devoid of electric charge.
  • a screen is a porous media (for example the screen may have through holes in which a gas can pass).
  • the first surface is impenetrable by the particles (i.e. the particles remain locked against said first surface and do not penetrate the screen).
  • the device is preferably designed so that permanently at least 90% of the second surface of the sieve is free of any blockage. This allows the holes to be clear over a large part of the second surface of the sieve.
  • the screen preferably comprises a sheet of material.
  • the screen is flexible but is stretched laterally.
  • the screen forms a means of particle transport since the first surface displaces the particle structure in a direction parallel to its tangent.
  • the movement of the first surface makes it possible to advance the particle structure, preferably in a direction locally parallel to the first surface.
  • the second surface moves along with the first surface. This movement is preferably a rotation.
  • the screen has a convex surface, for example a cylinder, at least partially delimiting an interior space.
  • the interior space corresponds to the second side of the sieve.
  • the screen has a section which is a curve h, so as to form a conveyor belt to have a continuous handling method.
  • the screen may be cylindrical. Its axis of rotation is then preferably in the foreground. This closed curve further allows the internal volume of the sieve to be depressed by suction means so as to hold the particles on the first surface.
  • the particle structure is preferably continuous on the first part of the sieve. Indeed, it is preferred that a continuous structure is formed upstream of the scraper, and that eventually parts of this structure is removed downstream of the scraper.
  • the device preferably comprises a feed element arranged to feed particles to the first surface.
  • the first surface is typically an outer surface of the screen and the second surface is typically an inner surface of the screen.
  • the first support member is directly opposite the first squeegee relative to the sieve, particularly with respect to the first portion of the sieve.
  • the contact line may be in the foreground.
  • the first support element may comprise two parts located on either side of the first plane but arranged to support the first portion of the sieve in the first plane.
  • the first support member is permanently directly opposite the first squeegee relative to the sieve.
  • the first support element is fixed, the first support element too; and if the first scraper moves, the first support member moves simultaneously on the other side of the screen so as to stay directly opposite the first scraper with respect to the screen.
  • the first support member extends from one side to the other of the sieve at the first portion of the sieve. In other words, it preferably extends over the entire width of the sieve at the first portion of the sieve.
  • the first scraper comprises a scraping part intended to be in contact with the particles, the device being arranged so that the scraping part can be set in motion in a direction opposite to the direction of movement. of the particle structure on the first part of the sieve. This allows to lift the particles that do not pass between the first surface and the first scraper. Thus, this fluidifies the particle powder, which allows it to spread more easily because it forms fewer agglomerates difficult to break. This movement of the scraping part is particularly easy when the first scraper is cylindrical, in which case it is rotated, but can be considered with other forms of scraper.
  • the device according to the invention comprises a motor for moving the first scraper, so as to obtain this movement of the scraping part.
  • the first scraper is a cylinder.
  • the axis of this cylinder is parallel to the scraping line.
  • the axis of this cylinder is in the foreground.
  • a cylinder makes it easier to spread the powder than a blade.
  • the first support member comprises a support cylinder.
  • the axis of this cylinder is parallel to the line of contact.
  • the support cylinder is arranged to be rotated by the sieve.
  • the device further comprises suction means arranged to maintain the particles on the first surface.
  • the particles are held on the first surface during at least a portion of the movement of the first surface.
  • the particles are preferentially held on the first surface during scraping by the first scraper.
  • the suction means preferably generates a sub-pressure on the side of the second surface of the sieve relative to the pressure prevailing on the side of the first surface of the sieve, on at least a portion of the sieve.
  • the interior volume of the sieve is closed laterally, so as to prevent a passage of gas at the lateral ends.
  • the suction means is at least partially located on the second side of the screen.
  • the device further comprises a second scraper located on the first side of the sieve and arranged to scrape the particle structure on a second portion of the sieve, and
  • a second support element located on the second side of the sieve and arranged to support the second portion of the sieve.
  • the second portion of the sieve is different from the first portion of the sieve.
  • the second support element has the same characteristics and the same arrangement as the first support element.
  • the second scraper has the same characteristics and the same arrangement as the first scraper.
  • the feed member is preferably arranged to feed the first surface between the two scrapers.
  • the reservoir is preferably located between the two scrapers and may be partially delimited by them.
  • the device according to the invention is preferably symmetrical in a vertical plane passing through its axis of rotation.
  • the device comprises a blower arranged to blow or expel a gas through the screen in a particle tank.
  • a blower is any device capable of generating a flow of gas, preferably by ejection.
  • the flow of gas generated by the blower, and passing through the sieve, sets in motion the particles present in the tank.
  • the blower makes it possible to thin the powder of particles in the tank. This allows for example to avoid the formation of bridges that prevents the fluid flow of particles. It also makes scraping easier and more effective.
  • the reservoir is at least partially defined by the first scraper.
  • the reservoir may also be partially delimited by a part of the first surface, by the second scraper and / or by walls arranged to retain the particles.
  • the reservoir is a part of the device in which the particles are provided, preferably by a feed member. They are in reserve in the tank.
  • the reservoir is typically upstream of the scraper.
  • the feed element may be part of the tank.
  • the tank is located on the first side of the sieve.
  • the reservoir is preferably located above the sieve.
  • a wall of the tank is at least partially formed by a portion of the screen, in particular by a portion of the first surface of the screen.
  • the blower comprises a purge nozzle located on the second side of the screen.
  • the purge nozzle allows to blow gas through the sieve.
  • the blower comprises a first zone located on the second side of the screen and overpressure relative to the tank.
  • the pressure difference between the first zone and the reservoir generates a breath through the sieve, from the first zone to the reservoir.
  • the device comprises an ejection device arranged to eject the particles from the first surface, preferably so as to repel the sieve particles.
  • the ejection device may for example blow gas or send a sound wave to the sieve, which passes through the sieve and carries particles.
  • the ejection device blows the gas, or sends the sound wave, perpendicular to the surface of the sieve.
  • the ejection device is preferably arranged to eject the particles downwards or in any other direction (eg horizontal) from the first surface of the sieve.
  • the ejection device is located on the second side of the screen and is arranged to generate a flow of transport fluid that passes only predetermined portions of the first surface of the screen.
  • the ejection device may comprise a series of ejection orifices, each orifice ejecting an element of the transport fluid stream, which is preferably perpendicular to the first portion of the sieve.
  • each orifice ejecting an element of the transport fluid stream, which is preferably perpendicular to the first portion of the sieve.
  • he It is possible to control which ports eject from the transport fluid stream, for example through a valve system.
  • the orifices are preferably arranged in staggered rows.
  • the invention further relates to a three-dimensional printing system comprising at least once the device according to one of the embodiments of the invention, and an agglomeration means.
  • the system comprises means for moving the screen relative to a three-dimensional printing structure.
  • the three-dimensional printing is one of the possible applications of the device according to the invention. It can for example be used in the system described in the international patent application PCT / EP2017 / 071039. It can also be used, for example, in a powder bed system, in particular a powder bed additive manufacturing system, as in an SLS system (selective laser sintering) where the device can be used as a cover doctor (recoater in English). In such a system, the function of the device according to the invention may be to deposit a layer of powder on the structure being printed. It is also possible to use it in a screen printing process. In screen printing, it allows in particular to print digital images; to handle powders (dry inks); and print reliefs on different substrates for any type of application.
  • the sintering means makes it possible to adhere at least a portion of the deposited particles, for example by ejection, to a three-dimensional printing structure, so that these particles are integrated in this three-dimensional printing structure.
  • an agglomeration of particles is an attachment together of said particles. Agglomeration is preferentially selective, in that inert particles are not agglomerated. Agglomeration may comprise at least one of the following: heat treatment, sintering, melting, glue application, binder application, or ultrasonic welding.
  • the agglomeration means may comprise at least one of: a furnace, a laser, an electron beam, a laser equipped with a scanning system for ability to heat the entire stratum, a halogen lamp, inductive heating, microwave heating, an ion beam, a local or uniform chemical reaction. Agglomeration can be carried out uniformly line by line, sweeping in one direction with a beam heating the material along a line.
  • the invention furthermore relates to a method for handling particles comprising the steps of:
  • the supply of particles on the first surface precedes scraping.
  • the particles are provided on the first surface and then moved to the first portion of the screen where they are scraped.
  • the invention further relates to a three-dimensional printing method comprising, in this order:
  • the particles are provided on the first surface, then scraped by the first scraper, and some are ejected by the ejection device.
  • This ejection deposits them on a first substrate or a three-dimensional printing structure where they are agglomerated thanks to agglomeration means.
  • the invention proposes a device for manipulating particles and comprising:
  • a screen having a first surface on which a particle structure can be formed, the first surface being arranged to be set in motion,
  • a blower arranged to blow a gas through the screen in the tank.
  • the movement of fluid generated by the blower, and passing through the sieve, sets in motion the particles present in the tank.
  • the blower makes it possible to thin the powder of particles in the tank. This fluidification allows the particles to spread better and do not form blocks. This makes it possible to obtain a more regular particle structure.
  • the blower is below the tank, which allows the screen prevents particles from falling into the blower.
  • the blower may be combined with one or more of the elements presented in this document, in particular the first and / or second scraper, the first and / or second support element, the suction means, the ejection device and / or the agglomeration means, whatever the arrangement of said element (s).
  • the device comprises a first scraper located on a first side of the sieve and arranged to scrape the particle structure on a first portion of the sieve.
  • the device comprises suction means arranged to hold the particles on the first surface.
  • the device comprises an ejection device arranged to eject the particles from the first surface.
  • the ejection device is located on the second side of the screen and is arranged to generate a flow of transport fluid that passes only predetermined portions of the first surface of the screen.
  • a tank wall is at least partially formed by a portion of the screen.
  • the blower includes a purge nozzle located opposite the tank relative to the screen.
  • the purge nozzle is on the second side of the screen. The purge nozzle allows gas to be blown through the screen.
  • the blower comprises a first zone located opposite the tank relative to the screen and overpressure relative to the tank.
  • the first zone is on the second side of the sieve.
  • the invention further provides a three-dimensional printing system comprising at least once the device according to one embodiment of the invention, and a sintering means.
  • the invention furthermore proposes a method for handling particles comprising the steps of:
  • FIG. 1 illustrates a sectional view of a part of a device for handling particles according to one embodiment of the invention
  • FIG. 2 illustrates a device for manipulating particles according to one embodiment of the invention
  • FIG. 3 illustrates a sectional view of a device for handling particles according to one embodiment of the invention
  • FIG. 4 illustrates a system comprising at least two devices for manipulating particles according to one embodiment of the invention
  • FIG. 5 illustrates a system comprising at least two devices for manipulating particles according to one embodiment of the invention
  • FIG. 6 illustrates a sectional view of a part of a device for handling particles according to one embodiment of the invention
  • FIG. 7 illustrates a sectional view of a portion of a device for handling particles according to one embodiment of the invention.
  • first and second serve only to differentiate the different elements and do not imply order between these elements.
  • the particles are shown as being spherical, the present invention may relate to particles of any shape.
  • the size of the particles and the particle structure is generally exaggerated in the figures.
  • the device comprises a first scraper and a first support element.
  • the first scraper and the first support element are illustrated in FIGS. 1, 2, 3 and 4.
  • the device comprises a reservoir and a blower.
  • the reservoir and the blower are illustrated in FIGS. 2, 3, 5 and 6.
  • the elements illustrated in all the figures of the present document are compatible with both aspects of the invention.
  • a feature presented in one embodiment of one of the two aspects may be present in one embodiment of the other of the two aspects of the invention.
  • Figure 1 illustrates a sectional view of a portion of a device 1 for handling particles according to one embodiment of the invention.
  • the device 10 comprises a screen 10, a first scraper 86 and a first support element 88.
  • the screen 10 has a first surface 1 1 located on a first side 201 of the screen 10 and a second surface 12, opposite the first surface 1 1 and located on a second side 202 of the sieve 10 opposite the first side 202.
  • the sieve 10 can be set in motion. In particular, it can be rotated, for example according to a closed curve of any shape.
  • the first side 202 is preferably underpressure with respect to the first side 201, by means of suction means, so as to now the particles on the surface of the sieve 10 by suction.
  • a structure 30 of particles may be formed on the first surface 1 1. It moves with the first surface January 1. In general, it moves in a direction that is parallel to the tangent to the first surface 1 1. This direction is illustrated by the arrow 203 at the first scraper 86.
  • the particle structure 30 is scraped by the first scraper 86 , so that it is generally thicker upstream of the first scraper 86 downstream thereof.
  • the portion of the sieve 10 on which scraping is performed may be referred to as the first portion 51 of the sieve. It is preferably essentially a rectilinear line tangent to the first surface 1 1 and perpendicular to the direction 203 of the movement of the structure 30.
  • the first scraper 86 is located on the first side 201 of the screen 10 at a distance 206 from the screen.
  • the first scraper 86 includes a scraper portion 187 which is intended to be in contact with the particles. It can also be called the first scraping part.
  • the scraping portion 187 comprises a scraping line 186 perpendicular to the plane of FIG.
  • the first support element 88 is located on the second side 202 of the screen 10, preferably directly opposite the first scraper 86.
  • first plane 150 which comprises the scraping line 186 and which is perpendicular to the first surface 1 1 at the first scraper 86.
  • the first support element 88 comprises a contact portion 188 which is in mechanical contact with the screen 10, in particular with the second surface 12.
  • This contact part may for example be a line parallel to the line
  • the contact portion 188 is preferably at least partially in the first plane 150.
  • the device 1 is arranged so that the scraping part 187 can be set in motion in a direction 204 opposite the direction 203 of movement of the particle structure on the first part 51 sieve 10.
  • FIG. 2 illustrates a device 1 for manipulating particles according to one embodiment of the invention.
  • the screen 10 is cylindrical and the first support member 88 is a support cylinder.
  • the axis of rotation of the screen and that of the first support element 88 are parallel and in the first plane 150.
  • the rotation of the screen 10 causes the rotation of the first support element 88 by contact.
  • FIG. 2 illustrates that the device 1 may comprise a reservoir 80 of particles, one wall 81 of which is formed by a part of the screen 10. Another wall of the reservoir 80 is formed by the first scraper 86.
  • the device 1 comprises in part in addition to a blower arranged to blow a gas through the screen 10 in a tank 80.
  • the blower may comprise for example a purge nozzle 91.
  • FIG. 2 also illustrates a width 205 of the screen 10, which is a dimension of the screen perpendicular to its direction of movement 203. It can be seen that the first scraper 86 and the first support element 88 extend on one side. to the other of the sieve 10.
  • Figure 3 illustrates a sectional view of a device 1 for handling particles according to one embodiment of the invention.
  • the screen 10, the first scraper 86 and the first support member 88 are cylindrical. Their axes of rotation are parallel and in the foreground 150.
  • the device 1 further comprises a second scraper 87 located on the first side 201 of the screen 10 and arranged to scrape the particle structure 30 on a second portion 52 of the screen 10 and a second support element 89 located on the second side 202 of the screen 10 and arranged to support the second portion 52 of the screen 10.
  • the second scraper 87 and the second support element 89 are cylindrical, but they could have another shape while remaining in the context of the present invention. Their axes of rotation are parallel to that of the screen 10 and are in a second plane 152.
  • the second plane 152 is defined with respect to the second scraper 87 as the first plane 150 is defined relative to the first scraper 86.
  • a second scraping portion 189 is defined with respect to the second scraper 87 as the first scraping portion 187 is defined with respect to the first scraper 86.
  • the second scraper 87 and the second support element 89 serve in particular to be able to reverse the direction of rotation of the screen 10 while retaining the characteristics of the device 1.
  • the second scraper 87 may also serve as a wall for the reservoir 80.
  • the rotation of the screen 10 causes the rotation of the first support element 88 and the second support element 89 by contact.
  • the first scraper 86 is preferably in rotation, so that the scraping part 187 describes a movement in the direction 204 opposite the direction 203 of movement of the particle structure on the first part 51 of the screen 10.
  • This rotation is preferably driven by a motor. This rotation makes it possible to return particles to the reservoir 80.
  • the device 1 is preferably arranged to be able to also rotate the first scraper 86 in the other direction.
  • the second scraper 87 is preferably rotated, so as to bring particles to the reservoir 80. This rotation is preferably driven by a motor.
  • the device 1 comprises a blower comprising a first zone 92 located on the second side 202 of the screen 10 and overpressure relative to the tank 80.
  • the blower sends gas through the part of the sieve 81 which forms a wall of the tank 80.
  • the tank 80 is preferably situated above the sieve 10, so that the particles tend to go on the first surface 11 of the sieve 10 thanks to the gravity, despite the blower.
  • the blower of the device 1 illustrated in FIG. 3 could comprise the purge nozzle 91 illustrated in FIG. 2, in addition to the first zone 92 under excess pressure.
  • the device 1 also comprises a feed element 90.
  • the blower also blows in the feed element 90.
  • the device 1 also comprises a second zone 94, in depression relative to the pressure prevailing on the first side 201 of the screen 10 by means of suction means. This depression makes it possible to maintain the particles on the screen 10.
  • the first 92 and the second 94 zones can be separated by a separation wall 93 hermetic to gas.
  • the device 1 also comprises an ejection device 121 arranged to eject the particles from the first surface 11 of the screen 10.
  • the device 1 may for example operate in the following manner.
  • the supply element 90 supplies the reservoir 80 with particles.
  • the particle structure is formed in the reservoir 80 and is driven by the rotation of the screen to form a layer on the first surface 1 1.
  • the particles Upon reaching the first scraper 86, the particles are compacted and scraped and some remain in the reservoir 80.
  • the particles that continue the movement form a continuous portion 31 of the structure 30, that is to say an even layer of particles.
  • some parts of the particle structure 30 are ejected, for example to form part of a particle stratum.
  • the portions of the particle structure that are not ejected remain on the first surface 11 and form discontinuous portions 32 of the structure 30.
  • the blower is particularly interesting to take off these particles from the first surface 1 1 so that the structure 30 formed again on these parts of the first surface 1 1 is as regular as possible and does not keep track of previous ejections .
  • FIGS. 4 and 5 illustrate a system 100 comprising at least two devices 1a, 1b for handling particles according to one embodiment of the invention.
  • This system can for example be used for three-dimensional printing. It is possible, while remaining within the scope of the invention, that the system 100 comprises more than two devices 1 according to the invention.
  • the screens 10a, 10b are arranged parallel to each other, preferably with their axis in the same horizontal plane.
  • the system 100 is in printing a three-dimensional printing structure 72 which may comprise particles already agglomerated or not yet agglomerated.
  • Figure 4 illustrates that the scrapers 86a, 86b, 87a, 87b can be inclined relative to the first plane, while the support elements 88a, 88b 89a, 89b are in the foreground.
  • the particles 3a disposed by the first device 1a are particles 3a of a first type, for example capable of being agglomerated by a specific method.
  • the particles 3b disposed by the second device 1b are particles 3b of a second type, for example not capable of being agglomerated by this determined method.
  • the sieves 10a, 10b rotate by maintaining fixed their axis of rotation when a stratum 35 is deposited, and a first substrate 60, which serves as a support for the three-dimensional printing structure 72 advances in a direction or in the other. It is also possible, while remaining within the scope of the invention, that the screens 10a, 10b have their axis of rotation which moves parallel to the first substrate 60 and that it is fixed. It is also possible that the screens 10a, 10b and the first substrate 60 move in a coordinated manner.
  • the ejection devices 121a, 121b are controlled so as to obtain the desired three-dimensional printing structure 72. Preferably, they are controlled so that the layer 35 formed by the particles 3a, 3b deposited by the devices 1a, 1b is continuous, that is to say, has no hole.
  • the sieves 10a, 10b are moved away from the three-dimensional printing structure 72 by a distance preferably equal to the thickness of the film. stratum 35. This allows the next stratum to be deposited. It is possible that successive layers have different thicknesses.
  • the system 100 further comprises at least one compacting roller 141 forming a means for uniformizing the height of the layer of powder deposited on the three-dimensional printing structure.
  • the system 100 comprises two uniformizing means, each being located on one side of the screens 10a, 10b.
  • the system 100 further comprises at least one agglomeration means 75.
  • the system 100 comprises two agglomeration means 75, each being located on one side of the screens 10a, 10b, further that means of standardization.
  • the system 100 operates as follows.
  • the bed of particles forms the structure of three-dimensional printing 72 starting.
  • the reservoir 80a is filled with particles of the first type 3a, which are capable of being agglomerated by the process carried out by the agglomeration means 75.
  • the reservoir 80b is filled with particles of the second type 3b.
  • the screens 10a, 10b each rotate about their axis, causing particles of the tanks 80a, 80b which are maintained on the first surfaces by an air suction, for example by an external fan connected to the internal volumes of the sieve.
  • the air flow of the suction is chosen according to the type of powder.
  • the thickness of the particle layer 3a, 3b on the screen 10 is preferably between 50 ⁇ m and 1000 ⁇ m. It is determined in particular by the position of the second scrapers 87a, 87b.
  • the thickness of the layer 35 may be different from the thickness of the layer on the screen 10. In fact, the particles of the layer 35 may spread after deposition. It is also possible to vary the thickness of the layer 35 by varying the rotational speed of the screen and / or translation of the three-dimensional printing structure 72.
  • the sieves 10a, 10b move horizontally in a direction perpendicular to their axis, so as to traverse the three-dimensional printing structure 72, while rotating on themselves.
  • the rotation and translation speeds are synchronized so that the relative speed of the closest point of the screen 10 and the three-dimensional printing structure 72 is zero.
  • the particles have no tangential velocity sieve during the transfer, which allows a deposit of greater accuracy.
  • the stratum 35 is deposited, it is standardized by the compacting roller 141, then agglomerated by the agglomeration means 75 so as to integrate the three-dimensional printing structure 72. The following stratum 35 is then filed.
  • next layer 35 is deposited on the return path with respect to the layer that has just been integrated into the three-dimensional printing structure 72.
  • the deposition of the layers can be from right to left, and from left to right.
  • the system comprises two uniformization means and two agglomeration means 75 as illustrated in FIG. 16.
  • FIG. 6 illustrates a sectional view of a part of a device 1 for handling particles according to one embodiment of the invention.
  • Figure 7 illustrates a sectional view of a portion of a device 1 for handling particles according to one embodiment of the invention.
  • the device 1 does not necessarily include a scraper, and if it includes a scraper, it does not necessarily include a support member as described herein.
  • Device 1 comprises a screen 10 having a first surface 11 on which a particle structure 30 may be formed.
  • the sieve is preferably similar to that described with reference to any one of Figures 1 to 5.
  • the device 1 also comprises a blower arranged to blow a gas through the sieve 10 in a tank 80 of particles.
  • the blower may for example comprise a purge nozzle 91 situated opposite the reservoir 80 with respect to the screen 10, or a first zone 92 situated opposite the reservoir 80 with respect to the screen 10 and in excess pressure with respect to the reservoir 80.
  • the invention relates to a device 1 for manipulating particles.
  • the device 1 comprises a rotating screen 10 on which a particle structure 30 may be formed.
  • the device 1 comprises at least one scraper 86, 87 and at least one support element 88, 89 supporting the screen 10 at the scraper 86, 87.
  • the device 1 comprises a reservoir 80 of particles and a blower, preferably located inside the screen 10 and under the tank 80, and blowing a gas to lift the particles present in the reservoir 80.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Toxicology (AREA)
  • Developing Agents For Electrophotography (AREA)

Abstract

La présente demande concerne un dispositif (1) pour manipuler des particules. Le dispositif (1) comprend un tamis (10) en rotation sur lequel une structure (30) de particules peut être formée. Selon un premier aspect, le dispositif (1) comprend au moins un racloir (86, 87) et au moins un élément de soutien (88, 89) soutenant le tamis (10) au niveau du racloir (86, 87). Selon un deuxième aspect, le dispositif (1) comprend un réservoir (80) de particules et une soufflerie, située à l'intérieur du tamis et sous le réservoir (80) et soufflant un gaz pour fluidifier les particules présentes dans le réservoir (80).

Description

Dispositif pour manipuler des particules
Domaine technique
[0001] La présente invention concerne un dispositif pour manipuler des particules. Plus précisément, la présente invention concerne un dispositif pour manipuler des particules qui peut être utilisé en impression 3D.
Art antérieur
[0002] Il est connu de déposer une structure de particules sur une surface en mouvement afin de manipuler ces particules.
[0003] Un problème est que la structure présente sur la surface en mouvement peut être irrégulière dans le temps et/ou dans l’espace.
[0004] Le document US2007/126157 A1 divulgue des procédés et un appareil permettant de retirer des articles finis d'un système de prototypage rapide à base de poudre. Le document US2004/084814 A1 décrit un système pour fabriquer des objets trois dimensions avec un dispositif d'élimination de la poudre non-liée. Le document US2015/266241 A1 décrit un système de fabrication additive comprenant un dispositif de planarisation configuré pour effectuer des planarisations assistées par solvant sur des surfaces de construction intermédiaires de la pièce tridimensionnelle.
Résumé de l’invention
[0005] Un des buts de l'invention est de fournir un dispositif pour manipuler des particules permettant d’obtenir une structure de particules présente sur une surface en mouvement particulièrement régulière. A cet effet, selon un premier aspect, l’invention propose un dispositif pour manipuler des particules et comprenant:
• un tamis présentant une première surface sur laquelle une structure de particules peut se former, la première surface étant agencée pour être mise en mouvement de façon à déplacer la structure de particules dans une direction parallèle à la tangente à la première surface, • un premier racloir situé d’un premier côté du tamis, à une distance non-nulle de la première surface, et agencé pour racler la structure de particules sur une première partie du tamis, et
• un premier élément de soutien situé d’un deuxième côté du tamis et agencé pour soutenir la première partie du tamis, le deuxième côté du tamis et le premier côté du tamis étant séparés par le tamis.
[0006] Le premier racloir permet de racler les particules sur le tamis afin d’obtenir une structure ayant une épaisseur particulièrement constante dans le temps et dans l’espace. Le premier élément de soutien, qui est préféré mais pas nécessaire dans le cadre de la présente invention, permet que la pression exercée par le premier racloir ne déforme pas le tamis.
[0007] En outre, s’il existe une déformation globale du tamis, par exemple à cause d’une dépression à l’intérieur du tamis, il est particulièrement intéressant d’éviter cette déformation sur la partie du tamis où le raclage a lieu, car c’est à cet endroit que l’épaisseur de la structure de particules est déterminée. Soutenir la première partie du tamis permet donc d’éviter l’influence de phénomènes parasites sur l’épaisseur de la structure de particules.
[0008] Le premier élément de soutien améliore notamment l’uniformité de l’épaisseur sur la largeur du tamis. En effet, le tamis étant typiquement maintenu latéralement par une structure de renfort qui permet de le tendre, il a davantage tendance à se déformer vers le milieu que sur ses bords, ce qui entraîne que, sans le premier élément de soutien, la structure particules a tendance à être plus épaisse au milieu.
[0009] Le premier élément de soutien permet que la première surface du tamis soit, sur la première partie du tamis, essentiellement parallèle au premier racloir.
[0010] Le premier élément de soutien est agencé pour tendre la première partie du tamis. Le premier élément de soutien a pour fonction première de tendre localement le tamis. Le premier élément de soutien exerce une pression sur le tamis. Préférentiellement, cette pression a une composante horizontale.
[0011] La première partie du tamis est de préférence la partie du tamis sur laquelle se trouvent les particules au moment où elles se font racler par le premier racloir. Elle s’étend en général d’un côté à l’autre du tamis. Si le tamis est cylindrique, la première partie du tamis peut par exemple correspondre à un angle de moins de 5 degrés, de préférence de moins de 2 degrés.
[0012] De préférence, le premier racloir comprend une partie de raclage qui est une partie du premier racloir prévue pour être en contact avec les particules. En particulier, la partie de raclage peut comprendre une ligne de raclage, qui est préférentiellement une ligne où le premier racloir impose l’épaisseur de la structure de particules, et qui est de préférence rectiligne et essentiellement perpendiculaire à la direction du mouvement de la première partie du tamis. C’est en général la ligne du premier racloir qui est la plus proche de la première surface.
[0013] De préférence, il existe un plan, appelé premier plan, qui comprend la ligne de raclage et qui est perpendiculaire à la première surface au niveau du premier racloir. Le premier élément de soutien est agencé pour soutenir le tamis dans le premier plan.
[0014] De préférence, le premier élément de soutien comprend une partie de contact qui est en contact mécanique avec le tamis. De préférence la partie de contact comprend une ligne de contact qui est en contact mécanique avec le tamis et qui est perpendiculaire à la direction de mouvement de la structure des particules sur la première partie du tamis.
[0015] La première surface est de préférence convexe au niveau du premier racloir. La deuxième surface est de préférence concave au niveau du premier élément de soutien.
[0016] Le premier racloir est de préférence situé à une distance non-nulle de la première surface, cette distance déterminant l’épaisseur de la structure de particules qui reste sur la première surface après raclage. Cette distance peut être par exemple contrôlée grâce à une jauge située entre le tamis et le premier racloir.
[0017] Le premier racloir peut par exemple comprendre une lame, un rouleau ou tout autre dispositif. S’il comprend une lame, elle est de préférence inclinée par rapport au premier plan. Le premier racloir s’étend de préférence d’un côté à l’autre du tamis au niveau de la première partie du tamis. En d’autres termes, il s’étend de préférence sur toute la largeur du tamis au niveau de la première partie du tamis. [0018] De préférence, dans la structure de particules formée sur la première surface du tamis, les particules ne sont pas liées entre elles chimiquement. La structure de particules est de préférence une couche de particules. De préférence, les particules sont électriquement neutres, c’est-à-dire dépourvues de charge électrique.
[0019] Dans le cadre du présent document, un tamis est un média poreux (par exemple le tamis peut comporter des trous traversants dans lesquels un gaz peut passer). De préférence, la première surface est impénétrable par les particules (c'est-à-dire que les particules restent bloquées contre ladite première surface et ne pénètrent pas dans le tamis). Le dispositif est de préférence conçu pour qu’en permanence, au moins 90% de la deuxième surface du tamis soit libre de tout blocage. Cela permet que les trous soient dégagés sur une grande partie de la deuxième surface du tamis.
[0020] Le tamis comprend de préférence une feuille de matériau. De préférence, le tamis est souple mais est tendu latéralement. Le tamis forme un moyen de transport des particules puisque la première surface déplace la structure de particules dans une direction parallèle à sa tangente.
[0021] Le mouvement de la première surface permet de faire avancer la structure de particules, de préférence dans une direction localement parallèle à la première surface. De préférence, la deuxième surface se déplace en même temps que la première surface. Ce mouvement est de préférence une rotation.
[0022] De préférence, le tamis a une surface convexe, par exemple un cylindre, délimitant au moins partiellement un espace intérieur. De préférence, l’espace intérieur correspond au deuxième côté du tamis.
[0023] De préférence, le tamis a une section qui est une courbe h, de façon à former une courroie de convoyage pour avoir un procédé de manipulation continu. Par exemple, le tamis peut être cylindrique. Son axe de rotation est alors de préférence dans le premier plan. Cette courbe fermée permet en outre que le volume intérieur du tamis soit mis en dépression par un moyen d’aspiration de façon à faire tenir les particules sur la première surface. [0024] La structure de particules est de préférence continue sur la première partie du tamis. En effet, il est préféré qu’une structure continue se forme en amont du racloir, et qu’éventuellement, des parties de cette structure soit enlevées en aval du racloir.
[0025] Le dispositif comprend de préférence un élément d’alimentation agencé pour alimenter en particules la première surface.
[0026] La première surface est typiquement une surface extérieure du tamis et la deuxième surface est typiquement une surface intérieure du tamis.
[0027] Dans un mode de réalisation, le premier élément de soutien se trouve directement à l’opposé du premier racloir par rapport au tamis, en particulier par rapport à la première partie du tamis.
[0028] Par exemple, la ligne de contact peut se trouver dans le premier plan. Cela permet un soutien mécanique particulièrement efficace. Il est aussi possible, tout en restant dans le cadre de l’invention, que le premier élément de soutien comprenne deux parties situées de part et d’autre du premier plan mais agencées pour soutenir la première partie du tamis dans le premier plan.
[0029] Préférentiellement, le premier élément de soutien se trouve en permanence directement à l’opposé du premier racloir par rapport au tamis. Par exemple, si le premier racloir est fixe, le premier élément de soutien aussi ; et si le premier racloir se déplace, le premier élément de soutien se déplace simultanément de l’autre côté du tamis de façon à rester directement à l’opposé du premier racloir par rapport au tamis.
[0030] Dans un mode de réalisation, le premier élément de soutien s’étend d’un côté à l’autre du tamis au niveau de la première partie du tamis. En d’autres termes, il s’étend de préférence sur toute la largeur du tamis au niveau de la première partie du tamis.
[0031] Dans un mode de réalisation, le premier racloir comprend une partie de raclage prévue pour être en contact avec les particules, le dispositif étant agencé pour que la partie de raclage puisse être mise en mouvement dans une direction opposée à la direction de mouvement de la structure des particules sur la première partie du tamis. [0032] Cela permet de soulever les particules qui ne passent pas entre la première surface et le premier racloir. Ainsi, cela fluidifie la poudre de particules, ce qui permet qu’elle s’étende plus facilement car elle forme moins d’agglomérats difficiles à briser. Ce mouvement de la partie de raclage est particulièrement facile quand le premier racloir est cylindrique, auquel cas il est animé d’une rotation, mais peut être envisagé avec d’autres formes de premier racloir.
[0033] De préférence, le dispositif selon l’invention comprend un moteur pour mettre en mouvement le premier racloir, de façon à obtenir ce mouvement de la partie de raclage.
[0034] Dans un mode de réalisation, le premier racloir est un cylindre. De préférence, l’axe de ce cylindre est parallèle à la ligne de raclage. De préférence, l’axe de ce cylindre est dans le premier plan. Un cylindre permet de mieux étaler la poudre qu’une lame.
[0035] Dans un mode de réalisation, le premier élément de soutien comprend un cylindre de soutien. De préférence, l’axe de ce cylindre est parallèle à la ligne de contact.
[0036] Dans un mode de réalisation, le cylindre de soutien est agencé pour être entraîné en rotation par le tamis.
[0037] Dans un mode de réalisation, le dispositif comprend en outre un moyen d’aspiration agencé pour maintenir les particules sur la première surface. Les particules sont maintenues sur la première surface durant au moins une partie du mouvement de la première surface. En particulier, les particules sont préférentiellement maintenues sur la première surface durant le raclage par le premier racloir.
[0038] Le moyen d’aspiration génère de préférence une sous-pression du côté de la deuxième surface du tamis par rapport à la pression régnant du côté de la première surface du tamis, sur au moins une partie du tamis. De préférence, le volume intérieur du tamis est fermé latéralement, de façon à empêcher un passage de gaz aux extrémités latérales. De préférence, le moyen d’aspiration est au moins partiellement situé du deuxième côté du tamis.
[0039] Dans un mode de réalisation, le dispositif comprend en outre - un deuxième racloir situé du premier côté du tamis et agencé pour racler la structure de particules sur une deuxième partie du tamis, et
- un deuxième élément de soutien situé du deuxième côté du tamis et agencé pour soutenir la deuxième partie du tamis.
[0040] La deuxième partie du tamis est différente de la première partie du tamis.
[0041] De préférence, le deuxième élément de soutien a les mêmes caractéristiques et le même agencement que le premier élément de soutien. De préférence, le deuxième racloir a les mêmes caractéristiques et le même agencement que le premier racloir.
[0042] Si le dispositif comprend deux racloirs, l’élément d’alimentation est de préférence agencé pour alimenter la première surface entre les deux racloirs. Le réservoir est de préférence situé entre les deux racloirs et peut être partiellement délimité par ceux-ci.
[0043] La présence de deux racloirs et deux éléments de soutien permet d’inverser le sens de rotation du tamis tout en gardant l’effet de raclage et de soutien.
[0044] Le dispositif selon l’invention est de préférence symétrique dans un plan vertical passant par son axe de rotation.
[0045] Dans un mode de réalisation, le dispositif comprend une soufflerie agencée pour souffler ou expulser un gaz à travers le tamis dans un réservoir de particules.
[0046] Dans le cadre du présent document, une soufflerie est tout dispositif capable de générer un flux de gaz, de préférence par éjection.
[0047] Le flux de gaz généré par la soufflerie, et traversant le tamis, met en mouvement les particules présentes dans le réservoir. Ainsi, la soufflerie permet de fluidifier la poudre de particules dans le réservoir. Cela permet par exemple d’éviter la formation de ponts qui empêche l’écoulement fluide des particules. Cela permet aussi que le raclage soit plus facile et plus efficace.
[0048] De préférence, le réservoir est au moins partiellement délimité par le premier racloir. Le réservoir peut également être partiellement délimité par une partie de la première surface, par le deuxième racloir et/ou par des parois agencées pour retenir les particules. [0049] Le réservoir est une partie du dispositif dans laquelle les particules sont pourvues, de préférence par un élément d’alimentation. Elles sont en réserve dans le réservoir. Le réservoir est typiquement en amont du racloir. L’élément d’alimentation peut faire partie du réservoir.
[0050] Le réservoir est situé du premier côté du tamis. Le réservoir est de préférence situé au-dessus du tamis.
[0051] Dans un mode de réalisation, une paroi du réservoir est au moins partiellement formée par une partie du tamis, en particulier par une partie de la première surface du tamis.
[0052] Dans un mode de réalisation, la soufflerie comprend une buse de purge située du deuxième côté du tamis.
[0053] La buse de purge permet de souffler du gaz à travers le tamis.
[0054] Dans un mode de réalisation, la soufflerie comprend une première zone située du deuxième côté du tamis et en surpression par rapport au réservoir. La différence de pression entre la première zone et le réservoir génère un souffle à travers le tamis, depuis la première zone vers le réservoir.
[0055] Dans un mode de réalisation, le dispositif comprend un dispositif d’éjection agencé pour éjecter les particules de la première surface, préférentiellement de façon à repousser les particules du tamis.
[0056] Le dispositif d’éjection peut par exemple souffler du gaz ou envoyer une onde sonore vers le tamis, qui traverse le tamis et emporte des particules. Préférentiellement, le dispositif d’éjection souffle le gaz, ou envoie l’onde sonore, perpendiculairement à la surface du tamis. Le dispositif d’éjection est de préférence agencé pour éjecter les particules vers le bas ou vers toute autre direction (par exemple horizontale) à partir de la première surface du tamis.
[0057] Dans un mode de réalisation, le dispositif d’éjection est situé du deuxième côté du tamis et est agencé pour générer un flux de fluide de transport qui ne traverse que des parties prédéterminées de la première surface du tamis.
[0058] Par exemple, le dispositif d’éjection peut comprendre une série d’orifices d’éjection, chaque orifice éjectant un élément du flux de fluide de transport, qui est préférentiellement perpendiculaire à la première partie du tamis. De préférence, il est possible de contrôler quels orifices éjectent du flux de fluide de transport, par exemple par un système de vannes. Les orifices sont de préférences disposés en quinconce.
[0059] L’invention porte en outre sur un système d'impression tridimensionnelle comprenant au moins une fois le dispositif selon l'un des modes de réalisation de l’invention, et un moyen d'agglomération.
[0060] De préférence, le système comprend un moyen pour déplacer le tamis par rapport à une structure d'impression tridimensionnelle.
[0061] L’impression tridimensionnelle est une des applications possibles du dispositif selon l’invention. Il peut par exemple être utilisé dans le système décrit dans la demande de brevet internationale PCT/EP2017/071039. Il peut aussi par exemple être utilisé dans un système à lit de poudre, en particulier un système de fabrication additive à lit de poudre, comme dans un système SLS (frittage sélectif par laser) où le dispositif peut être utilisé comme racle de recouvrement (recoater en anglais). Dans un tel système, la fonction du dispositif selon l’invention peut être de déposer une couche de poudre sur la structure en cours d’impression. Il est aussi possible de l’utiliser dans un procédé de sérigraphie. En sérigraphie, il permet notamment d’imprimer des images numériques; de manipuler des poudres (des encres sèches) ; et d’imprimer des reliefs sur différents substrats pour n’importe quel type d’application.
[0062] Le moyen d'agglomération permet de faire adhérer au moins une partie des particules déposées, par exemple par éjection, à une structure d'impression tridimensionnelle, de façon à ce que ces particules soient intégrées dans cette structure d'impression tridimensionnelle. Dans le cadre du présent document, une agglomération de particules est une fixation ensemble desdites particules. Une agglomération est préférentiellement sélective, en ce sens que des particules inertes ne sont pas agglomérées. Une agglomération peut comprendre au moins un procédé parmi les suivants: un traitement thermique, un frittage, une fusion, une application de colle, une application de liant, ou un soudage ultrasonique. Par exemple, le moyen d'agglomération peut comprendre au moins un parmi : un four, un laser, un faisceau d’électrons, un laser équipé d’un système de balayage pour pouvoir chauffer l’ensemble de la strate, une lampe halogène, un chauffage inductif, un chauffage micro-onde, un faisceau d’ions, une réaction chimique locale ou uniforme. L'agglomération peut être réalisée de manière uniforme ligne par ligne, en balayant dans une seule direction avec un faisceau chauffant la matière selon une ligne.
[0063] L’invention porte en outre sur un procédé de manipulation de particules comprenant les étapes de :
• fournir un dispositif selon l’un des modes de réalisation de l’invention,
• fournir des particules sur la première surface,
• déplacer les particules jusqu’à la première partie du tamis, et
• racler les particules.
La fourniture des particules sur la première surface précède le raclage. En d’autres termes, les particules sont fournies sur la première surface, puis déplacées jusqu’à la première partie du tamis où elles sont raclées.
[0064] L’invention porte en outre sur un procédé d’impression tridimensionnelle comprenant, dans cet ordre :
• le procédé de manipulation de particules décrit ci-dessus,
• une éjection des particules d’au moins certaines parties de la structure de particules, et
• une agglomération desdites particules.
Par exemple, les particules sont fournies sur la première surface, puis raclée par le premier racloir, puis certaines sont éjectées par le dispositif d’éjection. Cette éjection les dépose sur un premier substrat ou une structure d'impression tridimensionnelle où elles sont agglomérées grâces au moyen d’agglomération.
[0065] Selon un deuxième aspect, l’invention propose un dispositif pour manipuler des particules et comprenant:
• un tamis présentant une première surface sur laquelle une structure de particules peut se former, la première surface étant agencée pour être mise en mouvement,
• un réservoir de particules et
• une soufflerie agencée pour souffler un gaz à travers le tamis dans le réservoir. [0066] Le mouvement de fluide généré par la soufflerie, et traversant le tamis, met en mouvement les particules présentes dans le réservoir. Ainsi, la soufflerie permet de fluidifier la poudre de particules dans le réservoir. Cette fluidification permet que les particules s’étalent mieux et ne forment pas de blocs. Cela permet donc d’obtenir une structure de particules plus régulière.
[0067] De préférence, la soufflerie se trouve en-dessous du réservoir, ce qui permet que le tamis empêche les particules de tomber dans la soufflerie.
[0068] La soufflerie peut être combinée avec un ou plusieurs des éléments présentés dans le présent document, notamment le premier et/ou deuxième racloir, le premier et/ou deuxième élément de soutien, le moyen d’aspiration, le dispositif d’éjection et/ou le moyen d'agglomération, quelle que soit l’agencement dudit ou desdits élément(s).
[0069] Selon différents modes de réalisation, qui peuvent être pris ensemble ou séparément :
- Le dispositif comprend un premier racloir situé d’un premier côté du tamis et agencé pour racler la structure de particules sur une première partie du tamis.
-Le dispositif comprend un moyen d’aspiration agencé pour maintenir les particules sur la première surface.
-Le dispositif comprend un dispositif d’éjection agencé pour éjecter les particules de la première surface.
-Le dispositif d’éjection est situé du deuxième côté du tamis et est agencé pour générer un flux de fluide de transport qui ne traverse que des parties prédéterminées de la première surface du tamis.
- Une paroi du réservoir est au moins partiellement formée par une partie du tamis.
- La soufflerie comprend une buse de purge située à l’opposé du réservoir par rapport au tamis. En d’autres termes, la buse de purge est du deuxième côté du tamis. La buse de purge permet de souffler du gaz à travers le tamis.
- La soufflerie comprend une première zone située à l’opposé du réservoir par rapport au tamis et en surpression par rapport au réservoir. En d’autres termes, la première zone est du deuxième côté du tamis. [0070] L’invention propose en outre un système d'impression tridimensionnelle comprenant au moins une fois le dispositif selon un mode de réalisation de l’invention, et un moyen d'agglomération.
[0071] L’invention propose en outre un procédé de manipulation de particules comprenant les étapes de :
• fournir un dispositif selon l’un des modes de réalisation de l’invention,
• fournir des particules au réservoir,
• souffler un gaz à travers le tamis dans les particules situées dans le réservoir.
Brève description des figures
[0072] D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée qui suit pour la compréhension de laquelle on se reportera aux figures annexées parmi lesquelles :
- la figure 1 illustre une vue en coupe d’une partie d’un dispositif pour manipuler des particules selon un mode de réalisation de l’invention,
- la figure 2 illustre un dispositif pour manipuler des particules selon un mode de réalisation de l’invention,
- la figure 3 illustre une vue en coupe d’un dispositif pour manipuler des particules selon un mode de réalisation de l’invention,
- la figure 4 illustre un système comprenant au moins deux dispositifs pour manipuler des particules selon un mode de réalisation de l’invention,
- la figure 5 illustre un système comprenant au moins deux dispositifs pour manipuler des particules selon un mode de réalisation de l’invention,
- la figure 6 illustre une vue en coupe d’une partie d’un dispositif pour manipuler des particules selon un mode de réalisation de l’invention, et
- la figure 7 illustre une vue en coupe d’une partie d’un dispositif pour manipuler des particules selon un mode de réalisation de l’invention. Modes de réalisation de l’invention
[0073] La présente invention est décrite avec des réalisations particulières et des références à des figures mais l’invention n’est pas limitée par celles-ci. Les dessins ou figures décrits ne sont que schématiques et ne sont pas limitants.
[0074] Dans le contexte du présent document, les termes « premier » et « deuxième » servent uniquement à différencier les différents éléments et n'impliquent pas d'ordre entre ces éléments.
[0075] Sur les figures, les éléments identiques ou analogues peuvent porter les mêmes références.
[0076] Bien que les particules sont représentées comme étant sphériques, la présente invention peut se rapporter à des particules de n’importe quelle forme. En outre, la taille des particules et de la structure de particules est en général exagérée dans les figures.
[0077] Selon un premier aspect de l’invention, le dispositif comprend un premier racloir et un premier élément de soutien. Le premier racloir et le premier élément de soutien sont illustrés aux figures 1 , 2, 3 et 4. Selon un deuxième aspect de l’invention, le dispositif comprend un réservoir et une soufflerie. Le réservoir et la soufflerie sont illustrés aux figures 2, 3, 5 et 6. Les éléments illustrés sur toutes les figures du présent document sont compatibles avec les deux aspects de l’invention. En outre, une caractéristique présentée dans un mode de réalisation d’un des deux aspects peut être présente dans un mode de réalisation de l’autre des deux aspects de l’invention.
[0078] La figure 1 illustre une vue en coupe d’une partie d’un dispositif 1 pour manipuler des particules selon un mode de réalisation de l’invention. Le dispositif 10 comprend un tamis 10, un premier racloir 86 et un premier élément de soutien 88.
[0079] Le tamis 10 a une première surface 1 1 située d’un premier côté 201 du tamis 10 et une deuxième surface 12, opposée à la première surface 1 1 et située d’un deuxième côté 202 du tamis 10 opposé au premier côté 202. Le tamis 10 peut être mis en mouvement. En particulier, il peut être mis en rotation, par exemple selon une courbe fermée de forme quelconque. [0080] Le premier côté 202 est de préférence en sous-pression par rapport au premier côté 201 , grâce à un moyen d’aspiration, de façon à maintenant les particules sur la surface du tamis 10 par aspiration.
[0081] Une structure 30 de particules peut se former sur la première surface 1 1. Elle se déplace avec la première surface 1 1 . De façon générale, elle se déplace selon une direction qui est parallèle à la tangente à la première surface 1 1. Cette direction est illustrée par la flèche 203 au niveau du premier racloir 86. La structure 30 de particules est raclée par le premier racloir 86, ce qui fait qu’elle est en général plus épaisse en amont du premier racloir 86 qu’en aval de celui-ci. La partie du tamis 10 sur laquelle le raclage est réalisé peut être appelé première partie 51 du tamis. C’est préférentiellement essentiellement une ligne rectiligne tangente à la première surface 1 1 et perpendiculaire à la direction 203 du mouvement de la structure 30.
[0082] Le premier racloir 86 est situé du premier côté 201 du tamis 10, à une distance 206 du tamis. Le premier racloir 86 comprend une partie de raclage 187 qui est prévue pour être en contact avec les particules. Elle peut également être appelée première partie de raclage. De préférence, la partie de raclage 187 comprend une ligne de raclage 186, perpendiculaire au plan de la figure 1 .
[0083] Le premier élément de soutien 88 est situé du deuxième côté 202 du tamis 10, de préférence directement à l’opposé du premier racloir 86.
[0084] En général, il existe un plan, appelé premier plan 150, qui comprend la ligne de raclage 186 et qui est perpendiculaire à la première surface 1 1 au niveau du premier racloir 86.
[0085] De préférence, le premier élément de soutien 88 comprend une partie de contact 188 qui est en contact mécanique avec le tamis 10, en particulier avec la deuxième surface 12. Cette partie de contact peut par exemple être une ligne parallèle à la ligne de raclage 186. La partie de contact 188 est de préférence au moins partiellement dans le premier plan 150.
[0086] Selon un mode de réalisation de l’invention, le dispositif 1 est agencé pour que la partie de raclage 187 puisse être mise en mouvement dans une direction 204 opposée la direction 203 de mouvement de la structure des particules sur la première partie 51 du tamis 10. [0087] La figure 2 illustre un dispositif 1 pour manipuler des particules selon un mode de réalisation de l’invention.
[0088] Dans le mode de réalisation illustré à la figure 2, le tamis 10 est cylindrique et le premier élément de soutien 88 est un cylindre de soutien. L’axe de rotation du tamis et celui du premier élément de soutien 88 sont parallèles et dans le premier plan 150. La rotation du tamis 10 entraine la rotation du premier élément de soutien 88 par contact.
[0089] La figure 2 illustre que le dispositif 1 peut comprendre un réservoir 80 de particules dont une paroi 81 est formée par une partie du tamis 10. Une autre paroi du réservoir 80 est formée par le premier racloir 86. Le dispositif 1 comprend en outre une soufflerie agencée pour souffler un gaz à travers le tamis 10 dans un réservoir 80. La soufflerie peut comprendre par exemple une buse de purge 91.
[0090] La figure 2 illustre aussi une largeur 205 du tamis 10, qui est une dimension du tamis perpendiculaire à sa direction de mouvement 203. On voit que le premier racloir 86 et le premier élément de soutien 88 s’étendent d’un côté à l’autre du tamis 10.
[0091] La figure 3 illustre une vue en coupe d’un dispositif 1 pour manipuler des particules selon un mode de réalisation de l’invention. Dans le mode de réalisation illustré à la figure 3, le tamis 10, le premier racloir 86 et le premier élément de soutien 88 sont cylindriques. Leurs axes de rotation sont parallèles et dans le premier plan 150.
[0092] Dans le mode de réalisation illustré à la figure 3, le dispositif 1 comprend en outre un deuxième racloir 87 situé du premier côté 201 du tamis 10 et agencé pour racler la structure 30 de particules sur une deuxième partie 52 du tamis 10 et un deuxième élément de soutien 89 situé du deuxième côté 202 du tamis 10 et agencé pour soutenir la deuxième partie 52 du tamis 10. Le deuxième racloir 87 et le deuxième élément de soutien 89 sont cylindriques, mais ils pourraient avoir une autre forme tout en restant dans le cadre de la présente invention. Leurs axes de rotation sont parallèles à celui du tamis 10 et sont dans un deuxième plan 152. Le deuxième plan 152 est défini par rapport au deuxième racloir 87 comme le premier plan 150 est défini par rapport au premier racloir 86. [0093] Une deuxième partie de raclage 189 est définie par rapport au deuxième racloir 87 comme la première partie de raclage 187 est définie par rapport au premier racloir 86.
[0094] Le deuxième racloir 87 et le deuxième élément de soutien 89 servent notamment à pouvoir inverser le sens de rotation du tamis 10 tout en conservant les caractéristiques du dispositif 1. Le deuxième racloir 87 peut aussi servir de paroi pour le réservoir 80.
[0095] La rotation du tamis 10 entraine la rotation du premier élément de soutien 88 et du deuxième élément de soutien 89 par contact.
[0096] Le premier racloir 86 est de préférence en rotation, de façon à ce que la partie de raclage 187 décrive un mouvement dans la direction 204 opposée la direction 203 de mouvement de la structure des particules sur la première partie 51 du tamis 10. Cette rotation est de préférence entraînée par un moteur. Cette rotation permet de ramener des particules vers le réservoir 80. Le dispositif 1 est de préférence agencé pour pouvoir faire aussi tourner le premier racloir 86 dans l’autre sens.
[0097] Le deuxième racloir 87 est de préférence en rotation, de façon à ramener des particules vers le réservoir 80. Cette rotation est de préférence entraînée par un moteur.
[0098] Dans le mode de réalisation illustré à la figure 3, le dispositif 1 comprend une soufflerie comprenant une première zone 92 située du deuxième côté 202 du tamis 10 et en surpression par rapport au réservoir 80. La soufflerie envoie du gaz à travers la partie du tamis 81 qui forme un paroi du réservoir 80. Le réservoir 80 est de préférence situé au-dessus du tamis 10, de façon à ce que les particules tendent à aller sur la première surface 1 1 du tamis 10 grâce à la gravité, malgré la soufflerie.
[0099] La soufflerie du dispositif 1 illustré à figure 3 pourrait comprendre la buse de purge 91 illustrée à la figure 2, en plus de la première zone 92 en surpression.
[0100] Dans le mode de réalisation illustré à la figure 3, le dispositif 1 comprend aussi un élément d’alimentation 90. De préférence, la soufflerie souffle aussi dans l’élément d’alimentation 90. [0101] De préférence, le dispositif 1 comprend aussi une deuxième zone 94, en dépression par rapport à la pression régnant du premier côté 201 du tamis 10 grâce à un moyen d’aspiration. Cette dépression permet de maintenir les particules sur le tamis 10. La première 92 et la deuxième 94 zones peuvent être séparée par une paroi de séparation 93 hermétique au gaz.
[0102] Dans le mode de réalisation illustré à la figure 3, le dispositif 1 comprend aussi un dispositif d’éjection 121 agencé pour éjecter les particules de la première surface 1 1 du tamis 10.
[0103] Le dispositif 1 peut par exemple fonctionner de la façon suivante. L’élément d’alimentation 90 alimente le réservoir 80 en particules. La structure 30 de particules se forme dans le réservoir 80 et est entraînée par la rotation du tamis de façon à former une couche sur la première surface 1 1. En arrivant à la hauteur du premier racloir 86, les particules sont tassées et raclées et certaines restent dans le réservoir 80. Les particules qui continuent le mouvement forment une partie continue 31 de la structure 30, c’est-à-dire une couche régulière de particules. En arrivant à la hauteur du dispositif d’éjection 121 , certaines parties de la structure 30 de particules sont éjectées, par exemple pour former une partie d’une strate de particules. Les parties de la structure 30 de particules qui ne sont pas éjectées restent sur la première surface 1 1 et forment des parties discontinues 32 de la structure 30. Ces parties passent entre le deuxième racloir 87 et la première surface 1 1 et sont réintégrées dans les particules du réservoir 80. La soufflerie est particulièrement intéressante pour décoller ces particules de la première surface 1 1 afin que la structure 30 formée à nouveau sur ces parties de la première surface 1 1 soit la plus régulière possible et ne garde pas trace des éjections précédentes.
[0104] Les figures 4 et 5 illustrent un système 100 comprenant au moins deux dispositifs 1 a, 1 b pour manipuler des particules selon un mode de réalisation de l’invention. Ce système peut par exemple être utilisé pour une impression tridimensionnelle. Il est possible, tout en restant dans le cadre de l’invention, que le système 100 comprenne plus de deux dispositifs 1 selon l’invention. Les tamis 10a, 10b sont disposés parallèlement l’un à l’autre, de préférence avec leur axe dans un même plan horizontal. Dans l’illustration des figures 4 et 5, le système 100 est en train d’imprimer une structure d'impression tridimensionnelle 72 qui peut comprendre des particules déjà agglomérées ou pas encore agglomérées.
[0105] La figure 4 permet d’illustrer que les racloirs 86a, 86b, 87a, 87b peuvent être inclinés par rapport au premier plan, alors que les éléments de soutien 88a, 88b 89a, 89b sont dans le premier plan.
[0106] De préférence, les particules 3a disposées par le premier dispositif 1 a sont des particules 3a d'un premier type, par exemple susceptibles d'être agglomérées par un procédé déterminé. De préférence, les particules 3b disposées par le deuxième dispositif 1 b sont des particules 3b d'un deuxième type, par exemple non- susceptibles d'être agglomérées par ce procédé déterminé.
[0107] De préférence, les tamis 10a, 10b tournent en maintenant fixe leur axe de rotation lorsqu’une strate 35 est déposée, et un premier substrat 60, qui sert de support à la structure d'impression tridimensionnelle 72 avance dans une direction ou dans l’autre. Il est aussi possible, tout en restant dans le cadre de l’invention, que les tamis 10a, 10b aient leur axe de rotation qui se déplace parallèlement au premier substrat 60 et que celui-ci soit fixe. Il est aussi possible que les tamis 10a, 10b et le premier substrat 60 se déplacent de façon coordonnée.
[0108] Les dispositif d’éjection 121 a, 121 b sont contrôlés de façon à obtenir la structure d'impression tridimensionnelle 72 désirée. De préférence, ils sont contrôlés pour que la strate 35 formée par les particules 3a, 3b déposées par les dispositifs 1 a, 1 b soit continue, c’est-à-dire ne comporte pas de trou.
[0109] Lorsqu’une strate 35 de particules a été déposée, et avant de déposer la strate 35 suivante, les tamis 10a, 10b sont éloignés de la structure d'impression tridimensionnelle 72 d’une distance de préférence égale à l’épaisseur de la strate 35. Cela permet de déposer la strate 35 suivante. Il est possible que des strates 35 successives aient des épaisseurs différentes.
[0110] Dans un mode de réalisation de l’invention, le système 100 comprend en outre au moins un rouleau de compaction 141 formant un moyen d’uniformisation de la hauteur de la strate de poudre déposée sur la structure d'impression tridimensionnelle. De préférence, le système 100 comprend deux moyens d’uniformisation, chacun étant situé d’un côté des tamis 10a, 10b. Dans un mode de réalisation de l’invention, le système 100 comprend en outre au moins un moyen d'agglomération 75. De préférence, le système 100 comprend deux moyens d'agglomération 75, chacun étant situé d’un côté des tamis 10a, 10b, plus loin que les moyens d’uniformisation.
[0111] De préférence, le système 100 fonctionne de la façon suivante.
[0112] Un lit de particules du deuxième type 3b, qui ne sont pas susceptibles d'être agglomérées par le procédé réalisé par le moyen d'agglomération 75, est déposé sur le premier substrat 60. Le lit de particules forme la structure d’impression tridimensionnelle 72 de départ.
[0113] Le réservoir 80a est rempli de particules du premier type 3a, qui sont susceptibles d'être agglomérées par le procédé réalisé par le moyen d'agglomération 75. Le réservoir 80b est rempli de particules du deuxième type 3b.
[0114] Les tamis 10a, 10b tournent chacun autour de leur axe, entraînant des particules des réservoirs 80a, 80b qui sont maintenues sur les premières surfaces grâce à une aspiration d’air, par exemple réalisée par un ventilateur extérieur relié aux volumes intérieurs des tamis. Le débit d’air de l’aspiration est choisi en fonction du type de poudre. L’épaisseur de la couche de particules 3a, 3b sur le tamis 10 est de préférence entre 50 pm et1000 pm. Elle est déterminée notamment grâce à la position des deuxièmes racloirs 87a, 87b. L’épaisseur de la strate 35 peut être différente de l’épaisseur de la couche sur le tamis 10. En effet, les particules de la strate 35 peuvent s’étaler après déposition. Il est aussi possible de faire varier l’épaisseur de la strate 35 en variant la vitesse de rotation du tamis et/ou de translation de la structure d’impression tridimensionnelle 72.
[0115] Les tamis 10a, 10b se déplacent horizontalement dans une direction perpendiculaire à leur axe, de façon à parcourir la structure d’impression tridimensionnelle 72, tout en tournant sur eux-mêmes. De préférence, les vitesses de rotation et translation sont synchronisées pour que la vitesse relative du point le plus proche du tamis 10 et de la structure d’impression tridimensionnelle 72 soit nulle. Ainsi, les particules ne possèdent aucune vitesse tangentielle au tamis lors du transfert, ce qui permet un dépôt d'une plus grande précision. Les particules qui n’ont pas été déposées remontent vers les réservoirs 80a, 80b et peuvent être utilisées par la suite.
[0116] De préférence, une fois que la strate 35 est déposée, elle est uniformisée par le rouleau de compaction 141 , puis agglomérée par le moyen d'agglomération 75 de façon à intégrer la structure d’impression tridimensionnelle 72. La strate 35 suivante est alors déposée.
[0117] Il est possible que la strate 35 suivante soit déposée sur le chemin du retour par rapport à la strate qui vient d’être intégrée dans la structure d’impression tridimensionnelle 72. Par exemple, la déposition des strates (ainsi que la compaction et l’agglomération) peut se faire de droite à gauche, et de gauche à droite. Dans ce cas, il est préféré que le système comporte deux moyens d’uniformisation et deux moyens d'agglomération 75 comme illustré à la figure 16.
[0118] La figure 6 illustre une vue en coupe d’une partie d’un dispositif 1 pour manipuler des particules selon un mode de réalisation de l’invention. La figure 7 illustre une vue en coupe d’une partie d’un dispositif 1 pour manipuler des particules selon un mode de réalisation de l’invention. Dans le deuxième aspect de l’invention, le dispositif 1 ne comporte pas nécessairement de racloir, et s’il comprend un racloir, il ne comporte pas nécessairement un élément de soutien tel que décrit dans le présent document. Le dispositif 1 comprend un tamis 10 présentant une première surface 1 1 sur laquelle une structure 30 de particules peut se former. Le tamis est de préférence similaire à celui décrit en référence à l’une quelconque des figures 1 à 5. Le dispositif 1 comprend aussi soufflerie agencée pour souffler un gaz à travers le tamis 10 dans un réservoir 80 de particules. La soufflerie peut par exemple comprendre une buse de purge 91 située à l’opposé du réservoir 80 par rapport au tamis 10, ou une première zone 92 située à l’opposé du réservoir 80 par rapport au tamis 10 et en surpression par rapport au réservoir 80.
[0119] En d'autres termes, l'invention se rapporte à un dispositif 1 pour manipuler des particules. Le dispositif 1 comprend un tamis 10 en rotation sur lequel une structure 30 de particules peut être formée. Selon un premier aspect de l’invention, le dispositif 1 comprend au moins un racloir 86, 87 et au moins un élément de soutien 88, 89 soutenant le tamis 10 au niveau du racloir 86, 87. Selon un deuxième aspect de l’invention, le dispositif 1 comprend un réservoir 80 de particules et une soufflerie, située de préférence à l’intérieur du tamis 10 et sous le réservoir 80, et soufflant un gaz pour soulever les particules présentes dans le réservoir 80.
[0120] Les différents modes de réalisation et aspects de l’invention sont combinables avec le système décrit dans la demande de brevet internationale PCT/EP2017/071039.
[0121] La présente invention a été décrite en relation avec des modes de réalisations spécifiques, qui ont une valeur purement illustrative et ne doivent pas être considérés comme limitatifs. D’une manière générale, la présente invention n’est pas limitée aux exemples illustrés et/ou décrits ci-dessus. L’usage des verbes « comprendre », « inclure », « comporter », ou toute autre variante, ainsi que leurs conjugaisons, ne peut en aucune façon exclure la présence d’éléments autres que ceux mentionnés. L’usage de l’article indéfini « un », « une », ou de l’article défini « le », « la » ou « », pour introduire un élément n’exclut pas la présence d’une pluralité de ces éléments. Les numéros de référence dans les revendications ne limitent pas leur portée.

Claims

Revendications
1. Dispositif (1 ) pour manipuler des particules comprenant:
• un tamis (10) présentant une première surface (1 1 ) sur laquelle une structure
(30) de particules peut se former, la première surface (1 1 ) étant agencée pour être mise en mouvement, et
• un premier racloir (86) situé d’un premier côté (201 ) du tamis (10), à une distance (206) non-nulle de la première surface (1 1 ), et agencé pour racler la structure (30) de particules sur une première partie (51 ) du tamis (10), caractérisé en ce qu’il comprend un premier élément de soutien (88) situé d’un deuxième côté (202) du tamis (10) et agencé pour soutenir la première partie (51 ) du tamis (10), le deuxième côté (202) du tamis (10) et le premier côté (201 ) du tamis (10) étant séparés par le tamis (10),
la première surface (1 1 ) étant agencée pour être mise en mouvement de façon à déplacer la structure (30) de particules dans une direction parallèle à la tangente à la première surface (1 1 ).
2. Dispositif (1 ) selon la revendication 1 , comprenant en outre un moyen d’aspiration agencé pour maintenir les particules sur la première surface (1 1 ).
3. Dispositif (1 ) selon l’une quelconque des revendications précédentes, dans lequel le premier élément de soutien (88) est agencé pour tendre la première partie (51 ) du tamis (10).
4. Dispositif (1 ) selon l’une quelconque des revendications précédentes, dans lequel le premier élément de soutien (88) s’étend d’un côté à l’autre du tamis (10) au niveau de la première partie (51 ) du tamis (10).
5. Dispositif (1 ) selon l’une quelconque des revendications précédentes, dans lequel le premier racloir (86) comprend une partie de raclage (187) prévue pour être en contact avec les particules, le dispositif (1 ) étant agencé pour que la partie de raclage (187) puisse être mise en mouvement dans une direction (204) opposée à la direction (203) de mouvement de la structure des particules sur la première partie (51 ) du tamis (10).
6. Dispositif (1 ) selon l’une quelconque des revendications précédentes, dans lequel le premier racloir (86) est un cylindre.
7. Dispositif (1 ) selon l’une quelconque des revendications précédentes, dans lequel le premier élément de soutien (88) comprend un cylindre de soutien.
8. Dispositif (1 ) selon la revendication précédente, dans lequel le cylindre de soutien est agencé pour être entraîné en rotation par le tamis (10).
9. Dispositif (1 ) selon l’une quelconque des revendications précédentes, comprenant en outre :
- un deuxième racloir (87) situé du premier côté (201 ) du tamis (10) et agencé pour racler la structure (30) de particules sur une deuxième partie (52) du tamis (10), et
- un deuxième élément de soutien (89) situé du deuxième côté (202) du tamis
(10) et agencé pour soutenir la deuxième partie (52) du tamis (10).
10. Dispositif (1 ) selon l’une quelconque des revendications précédentes, comprenant une soufflerie agencée pour expulser un gaz à travers le tamis (10) dans un réservoir (80) de particules.
1 1. Dispositif (1 ) selon l’une quelconque des revendications précédentes, comprenant en outre un dispositif d’éjection (121 ) agencé pour éjecter les particules de la première surface (1 1 ).
12. Dispositif (1 ) selon la revendication précédente, dans lequel le dispositif d’éjection (121 ) est situé du deuxième côté (202) du tamis (10) et est agencé pour générer un flux de fluide de transport qui ne traverse que des parties prédéterminées de la première surface (1 1 ) du tamis (10).
13. Système d'impression tridimensionnelle comprenant au moins une fois le dispositif (1 ) selon l'une quelconque des revendications précédentes, et un moyen d'agglomération (75).
14. Procédé de manipulation de particules comprenant les étapes de :
• fournir un dispositif (1 ) selon une quelconque des revendications 1 à 12, · fournir des particules sur la première surface (1 1 ),
• déplacer les particules jusqu’à la première partie (51 ) du tamis (10), et
• racler les particules
dans lequel la fourniture des particules sur la première surface précède le raclage.
15. Procédé d’impression tridimensionnelle comprenant, dans cet ordre :
• le procédé selon la revendication précédente,
• une éjection des particules d’au moins certaines parties de la structure (30) de particules, et
· une agglomération desdites particules.
EP19711924.1A 2018-03-28 2019-03-22 Dispositif pour manipuler des particules Withdrawn EP3774293A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BE2018/5209A BE1026143B1 (fr) 2018-03-28 2018-03-28 Dispositif pour manipuler des particules
PCT/EP2019/057202 WO2019185466A1 (fr) 2018-03-28 2019-03-22 Dispositif pour manipuler des particules

Publications (1)

Publication Number Publication Date
EP3774293A1 true EP3774293A1 (fr) 2021-02-17

Family

ID=61911320

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19711924.1A Withdrawn EP3774293A1 (fr) 2018-03-28 2019-03-22 Dispositif pour manipuler des particules

Country Status (4)

Country Link
US (1) US11273599B2 (fr)
EP (1) EP3774293A1 (fr)
BE (1) BE1026143B1 (fr)
WO (1) WO2019185466A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11981080B2 (en) * 2019-04-23 2024-05-14 Hewlett-Packard Development Company, L.P. Build material supply units
BE1029565B1 (fr) 2021-07-06 2023-02-06 Aerosint Système de transfert de matériau granulaire autorégulé

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040084814A1 (en) * 2002-10-31 2004-05-06 Boyd Melissa D. Powder removal system for three-dimensional object fabricator
US20070126157A1 (en) * 2005-12-02 2007-06-07 Z Corporation Apparatus and methods for removing printed articles from a 3-D printer
US20170015063A1 (en) * 2014-03-07 2017-01-19 Canon Kabushiki Kaisha Method of producing three-dimensional shaped article
US10144175B2 (en) * 2014-03-18 2018-12-04 Evolve Additive Solutions, Inc. Electrophotography-based additive manufacturing with solvent-assisted planarization
WO2016176432A1 (fr) * 2015-04-30 2016-11-03 The Exone Company Recoucheuse de poudre pour imprimante en trois dimensions
KR20180099752A (ko) * 2015-12-31 2018-09-05 이볼브 애디티브 솔루션스, 아이엔씨. 적층 제조에서 실린더형 층을 이용한 구축
BE1024613B1 (fr) 2016-09-29 2018-05-02 Aerosint Sa Dispositif et méthode pour créer une structure de particules

Also Published As

Publication number Publication date
US11273599B2 (en) 2022-03-15
BE1026143B1 (fr) 2019-10-28
BE1026143A1 (fr) 2019-10-22
US20210114296A1 (en) 2021-04-22
WO2019185466A1 (fr) 2019-10-03

Similar Documents

Publication Publication Date Title
EP3519163A1 (fr) Dispositif et méthode pour manipuler des particules
FR2790418A1 (fr) Procede de prototypage rapide permettant l'utilisation de materiaux pateux, et dispositif pour sa mise en oeuvre
FR2802128A1 (fr) Dispositif de depose de couches minces de matiere en poudre ou pulverulente et procede adapte
EP3774293A1 (fr) Dispositif pour manipuler des particules
EP2731731B1 (fr) Installation et procede pour le depot d'un film de particules ordonnees, de largeur reglable, sur un substrat en defilement
WO1995015842A1 (fr) Procede et installation pour la fabrication de pieces par phototransformation de matiere
FR3088831A1 (fr) Procédé de fabrication par addition de matière de supports inorganiques de filtration à partir d’un filament thermofusible et membrane obtenue
FR3088832A1 (fr) Procédé de fabrication par addition de matière de supports inorganiques de filtration et membrane obtenue
EP3774368A1 (fr) Méthode et dispositif pour former un motif de matière
WO2020011736A1 (fr) Dispositif et procédé de dépose d'un matériau granulaire en fabrication additive
FR2679797A1 (fr) Appareil de revetement par extrusion.
EP4061616B1 (fr) Système et méthodes de nivellement
EP1649734B1 (fr) Procede et dispositif de remplissage par un produit visqueux de zones situees en creux ou interpistes sur un circuit imprime, et equipement utilisant un tel dispositif
FR2858255A1 (fr) Procede de remplissage de zones situees en creux par entrainement de l'air et remplacement par du produit en mouvement
BE1026152B1 (fr) Méthode et dispositif pour former un motif de matière
FR2858254A1 (fr) Procede et dispositif de remplissage par un produit visqueux de zones situees en creux ou interpistes sur un circuit imprime, et equipement utilisant un tel dispositif
FR3132653A1 (fr) Procédé de dépoudrage d’un objet obtenu par synthèse additive de type liage de poudre
FR2836860A1 (fr) Dispositif de demoulage sous pression
FR2696360A1 (fr) Installation de régénération par traitement mécanique de particules enrobées d'une gangue.
BE619741A (fr)

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200925

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: B29C 41/12 20060101ALI20230329BHEP

Ipc: B33Y 30/00 20150101ALI20230329BHEP

Ipc: B33Y 40/00 20200101ALI20230329BHEP

Ipc: B22F 12/63 20210101ALI20230329BHEP

Ipc: B22F 10/28 20210101ALI20230329BHEP

Ipc: B22F 3/00 20210101ALI20230329BHEP

Ipc: B29C 64/205 20170101ALI20230329BHEP

Ipc: B29C 64/321 20170101AFI20230329BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230508

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20230919