EP3766090B1 - Schutzschalter zur trennung eines stromkreises - Google Patents

Schutzschalter zur trennung eines stromkreises Download PDF

Info

Publication number
EP3766090B1
EP3766090B1 EP19709715.7A EP19709715A EP3766090B1 EP 3766090 B1 EP3766090 B1 EP 3766090B1 EP 19709715 A EP19709715 A EP 19709715A EP 3766090 B1 EP3766090 B1 EP 3766090B1
Authority
EP
European Patent Office
Prior art keywords
arc
fixed contact
circuit breaker
contact
quenching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19709715.7A
Other languages
English (en)
French (fr)
Other versions
EP3766090A1 (de
Inventor
Klaus Loos
Klaus Werner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ellenberger and Poensgen GmbH
Original Assignee
Ellenberger and Poensgen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ellenberger and Poensgen GmbH filed Critical Ellenberger and Poensgen GmbH
Publication of EP3766090A1 publication Critical patent/EP3766090A1/de
Application granted granted Critical
Publication of EP3766090B1 publication Critical patent/EP3766090B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/04Means for extinguishing or preventing arc between current-carrying parts
    • H01H33/18Means for extinguishing or preventing arc between current-carrying parts using blow-out magnet
    • H01H33/182Means for extinguishing or preventing arc between current-carrying parts using blow-out magnet using permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/30Means for extinguishing or preventing arc between current-carrying parts
    • H01H9/44Means for extinguishing or preventing arc between current-carrying parts using blow-out magnet
    • H01H9/443Means for extinguishing or preventing arc between current-carrying parts using blow-out magnet using permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/53Cases; Reservoirs, tanks, piping or valves, for arc-extinguishing fluid; Accessories therefor, e.g. safety arrangements, pressure relief devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/10Operating or release mechanisms
    • H01H71/12Automatic release mechanisms with or without manual release
    • H01H71/24Electromagnetic mechanisms
    • H01H71/2463Electromagnetic mechanisms with plunger type armatures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/30Means for extinguishing or preventing arc between current-carrying parts
    • H01H9/34Stationary parts for restricting or subdividing the arc, e.g. barrier plate
    • H01H9/36Metal parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/30Means for extinguishing or preventing arc between current-carrying parts
    • H01H9/44Means for extinguishing or preventing arc between current-carrying parts using blow-out magnet
    • H01H9/446Means for extinguishing or preventing arc between current-carrying parts using blow-out magnet using magnetisable elements associated with the contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/30Means for extinguishing or preventing arc between current-carrying parts
    • H01H9/46Means for extinguishing or preventing arc between current-carrying parts using arcing horns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/10Operating or release mechanisms
    • H01H71/50Manual reset mechanisms which may be also used for manual release
    • H01H71/52Manual reset mechanisms which may be also used for manual release actuated by lever
    • H01H71/526Manual reset mechanisms which may be also used for manual release actuated by lever the lever forming a toggle linkage with a second lever, the free end of which is directly and releasably engageable with a contact structure

Definitions

  • the invention relates to a circuit breaker with a switching unit as a disconnecting device for interrupting a circuit, having a stationary fixed contact and a moving contact which can be moved relative to the fixed contact and can be transferred from a closed position to an open position, and a quenching device for extinguishing an arc that occurs when the contacts open , with an antechamber for guiding the arc from the contacts to an arcing chamber.
  • a corresponding switching unit or isolating device must be able to carry out an interruption under load, ie without first switching off a voltage source feeding the circuit.
  • Mechanical switches can be used to disconnect the load.
  • Switching arcs often occur when the current-carrying electrical contacts are separated, particularly with direct voltages above 24 volts (DC) to be switched, in that the electrical current continues to flow along an arc path in the form of an arc discharge after the contacts have opened. Since such switching arcs may not extinguish automatically with direct voltages from about 50 volts and direct currents from about 1 ampere, for example So-called snap-action contacts are used as a mechanical contact system, in which mechanical springs are used to accelerate the contact separation.
  • the arcs that occur when the contacts open under load are quickly moved to the quenching devices provided for this purpose, where the corresponding arc quenching takes place.
  • the force required for this is provided, for example, by magnetic fields, so-called blowout fields, which are typically generated by one or more permanent magnets. Due to the special design of the contact zones and the arc conducting piece, the arc is guided into the appropriate arcing chambers, where the arc is extinguished according to known principles.
  • Basic measures for avoiding or controlling such switching arcs essentially consist of using an insulating material to increase the dielectric strength and thus arc quenching even with a small contact gap or to reduce the arc voltage by dividing the arc.
  • the invention is based on the object of specifying a particularly suitable circuit breaker for disconnecting a circuit.
  • the circuit breaker according to the invention is suitable and set up for interrupting a circuit, in particular a DC circuit.
  • the circuit breaker is therefore designed as a switching device for manually and/or automatically switching off electrical circuits or individual consumers when permissible current or voltage values (overcurrent, fault current) are exceeded.
  • the circuit breaker has a switching unit as a disconnecting device with a switchable mechanical contact system.
  • switching means in particular a mechanical or galvanic contact separation (“opening”) and/or a contact closure (“closing”) of the contact system.
  • the contact system has a stationary fixed contact and a moving contact.
  • the moving contact can be moved relative to the fixed contact and can be transferred from a closed position to an open position. This means that in order to switch the contact system or the switching unit, the moving contact is moved between the open position and the closed position.
  • the switching unit also has a quenching device for quenching a (switching) arc that occurs when the contacts open.
  • the quenching device is designed with a quenching chamber for quenching the switching arc and with a pre-chamber for guiding the arc from the contacts to the quenching chamber.
  • the antechamber has two insulating side walls as side cover plates, with a pair of arc runners sitting between the side walls.
  • the antechamber is thus open on both sides at the ends, with one end facing the contact system and the other end facing the arcing chamber.
  • the antechamber thus forms an arc running space, which is delimited towards the sides by means of the insulating side walls as cover plates and the arc running rails for guiding the arc.
  • the transition of the arc from the contacts of the contact system to the adjacent ones Arc rails of the antechamber are also referred to below as commutation.
  • the quenching chamber suitably has an inlet, which faces the open front side of the pre-chamber, and an oppositely arranged outlet for the gas flow of the arc.
  • a ferromagnetic molded part is arranged according to the invention on the side walls, which is preferably adapted to the course of the arc rails.
  • the molded parts are produced in a simple manner, for example as stamped parts.
  • the molded parts are preferably applied outside of the arc running space, that is to say on the outside of the side walls of the antechamber.
  • the molded parts essentially surround the entire surface of the arc running space of the antechamber.
  • a permanent magnet (permanent magnet) is also arranged in the area of the fixed contact, the magnetic field of which guides the arc along one of the arc guide rails. This enables an arc that is produced to be extinguished particularly quickly and effectively. A particularly effective and reliable switching unit is thus realized.
  • the ionized (switching) arc is forced or channeled in the direction of the arcing chamber due to the electrodynamic interactions with the magnetic field of the permanent magnet.
  • the ferromagnetic molded parts as side plates allow the magnetic field to be bundled or focused in the immediate contact area of the contacts.
  • the arc magnetic field which accompanies the arc, tends to pass through the more magnetically conductive molded parts in the vicinity of a ferromagnetic material. This creates a "suction effect" towards the mold parts, which causes the arc to move to the antechamber.
  • the ferromagnetic molded parts are at least partially magnetized by the magnetic field of the permanent magnet, so that the magnetic field or whose magnetic field lines are effectively bundled between the arc rails, i.e. concentrated or focused. This concentrated bundling of the magnetic field results in a particularly even and rapid arcing right into the quenching packet.
  • the permanent magnet is suitably made of a refractory material.
  • the permanent magnet is made of a magnetic material that retains its magnetic properties even at high temperatures, such as those that occur in particular in the area of the arc.
  • a magnetized ferromagnetic material is used for the permanent magnet, the material-specific Curie temperature of which is greater than the temperatures to be expected in the area of the arc.
  • the permanent magnet is made, for example, from a samarium alloy, in particular a samarium-cobalt alloy, preferably Sm 2 Co 17 , or a neodymium alloy, in particular neodymium-NiCuN, or an aluminum alloy, in particular AlNiCo500.
  • the permanent magnet generates a magnetic field with a magnetic field strength of between 900 mT (milli-Tesla) and 1500 mT, in particular between 1000 mT and 1250 mT.
  • the arc is commutated particularly quickly from the fixed contact to the running rails and is thus drawn away from the contact system. This reduces the contact material losses in the area of the contacts due to arcing. Furthermore, the arc is moved particularly stably and quickly on the arc guide rail due to the magnetic field concentrated by the molded parts.
  • the quenching device is optimized in such a way that a switching arc is “sucked in” quickly and effectively into the quenching chamber by means of the antechamber and the permanent magnet, without passing through the quenching chamber and igniting back at the outlet or bouncing off the quenching chamber and igniting back before its inlet.
  • a particularly effective quenching device is implemented by guiding the arc by means of the antechamber, so that the quenching chamber can be designed to be particularly flat with sufficiently good quenching behavior. This enables a switching unit that is particularly compact in terms of installation space.
  • two shaped magnets are provided in addition to the permanent magnet to guide the arc.
  • the permanent magnet is suitably arranged between the mold magnets. This ensures that the arc is guided to the arcing chamber in a particularly reliable and reliable manner.
  • the switching unit has, in contrast to the embodiment described above, instead of the shaped parts, in particular a shaped magnet in each case, with the common magnetic field generated by the shaped magnets guiding the arc along one of the arc running rails.
  • the molded magnets essentially have the same geometric shape or contour as the ferromagnetic molded parts. It is thus conceivable, for example, to design the molded parts and the molded magnets to be interchangeable.
  • the circuit breakers according to the invention thus each have a particularly effective extinguishing device for extinguishing switching arcs that occur. Thanks to the improved quenching behavior of the quenching device of the circuit breakers, these can be designed to be particularly flat. This enables a flat circuit breaker design, which improves its use in installation situations with reduced installation space, such as in control cabinets.
  • the arc guide rail along which the arc is guided by means of the magnetic field of the permanent magnet, if necessary the shaped magnet, is brought up to the fixed contact.
  • the arcing rail has a curved or curved course from the fixed contact to the arcing chamber.
  • this (first) arcing rail connects the fixed contact to a first side wall of the arcing chamber.
  • the arcing rail has a convex profile due to the bend. Due to the curvature or bend, the arc is guided away from the fixed contact in a particularly reliable manner, so that material loss or wear of the fixed contact is reduced.
  • the other (second) arcing rail preferably connects a stop surface, on which the moving contact rests in the open position, to a second side wall of the arcing chamber, so that reliable commutation of the arc is also made possible in the area of the moving contact.
  • the first side wall of the arcing chamber is in particular as a magnetic yoke of a short-circuit release of a release mechanism of the circuit breaker.
  • the (first) arc running rail is in particular designed integrally with the magnet yoke.
  • the permanent magnet is arranged radially on the inside of the (first) arc running rail in relation to the bending radius of the bend or curvature. With such a radially inner arrangement of the permanent magnet, it is thus arranged outside the antechamber.
  • the permanent magnet is thus at least partially surrounded or bordered by the (first) arc running rail. In the case of a convex course of the (first) arc running rail, this is guided around the permanent magnet in an approximately U-shape or V-shape.
  • the permanent magnet is protected from direct contact with the arc in a reliable and structurally simple manner. This significantly improves the service life of the permanent magnet.
  • the ferromagnetic molded parts and/or the molded magnets each have electrical insulation on the end faces oriented towards the arcing chamber.
  • the molded parts or molded magnets are provided with insulation towards the inlet of the arcing chamber. This prevents an electrical short circuit along the arcing chamber and the mold parts or mold magnets. As a result, this is advantageously transferred to the service life of the quenching device and thus of the switching unit.
  • the molded parts or molded magnets are injection molded as inserts with the insulation in the area of the end faces.
  • the molded parts or molded magnets are inserted on the front side in particular in an insulating part.
  • the insulation is injection molded and/or encapsulated or inserted in process technology on the ferromagnetic molded parts or molded magnets. This means that the molded part or the molded magnet and the insulation are designed in particular as a composite part. This ensures a particularly simple and inexpensive production and insulation of the molded parts or molded magnets. A particularly cost-effective circuit breaker is thus realized.
  • the quenching chamber is designed as a deion chamber with an arc quenching package, ie with a stack of quenching packages with a number of arc splitters or scattering plates.
  • Ferromagnetic materials for example, are used as the material for the arc splitters, since the magnetic field that accompanies the arc tends to pass through the better magnetically conducting arc splitters in the vicinity of a ferromagnetic material. This creates suction towards the splitters, causing the arc to travel to and split between the array of splitters.
  • the moving contact of the switching unit used is arranged on a pivotable switching arm, which is coupled to a manual operating mechanism for manually adjusting the switching arm between the open position and the closed position, and to a triggering mechanism for automatically returning the switching arm to the open position when a triggering condition occurs is.
  • the manual operating mechanism has, for example, a pivoting lever which is coupled to the switching arm by means of a mechanism.
  • the mechanism has, for example, a spring element, expediently a torsion spring, which prestresses the pivoting lever in the direction of a first pivoting position corresponding to the open position of the switching arm, so that the pivoting lever always automatically moves into this first pivoting position in the unloaded state returns.
  • the pivoted lever in a second pivoted position corresponding to the closed position of the switching arm, the pivoted lever is preferably locked by latching of the mechanism with the switching arm located in the closed position.
  • the switching arm and the manual operating device are expediently matched to one another in such a way that when the switching arm returns to the open position and the pivoted lever returns to the first pivoted position, the mechanism automatically latches to the switching arm, so that the switching arm can be immediately adjusted again using the manual operating mechanism without any further action.
  • the triggering mechanism preferably has a short-circuit release which is designed to actuate the triggering mechanism in the event of an electrical short circuit as a triggering condition.
  • the short-circuit release has, for example, a magnet coil, a magnet yoke and a magnet armature, with the magnet yoke forming in particular a first side wall of the arcing chamber.
  • the release mechanism preferably has an overload release or overcurrent release.
  • the overload release is essentially formed by a bimetallic strip, for example, which heats up as a result of the current flow and deforms in such a way that in the event of an overload, i.e. the associated triggering condition, it actuates the triggering mechanism and thus the switching arm or the contact system.
  • the switching unit and the triggering mechanism as well as the manual operating mechanism are accommodated at least partially in a common switch housing. This provides reliable contact protection (finger protection).
  • the side walls of the switch unit are oriented parallel to the end faces of the switch housing, with a gap area, ie a clearance, being formed between the antechamber and the switch housing.
  • a gap area is particularly advantageous for pressure equalization in the course of an arc extinguishing.
  • the gap area is preferably on the end faces the antechamber, i.e. open to contacts and to the inlet. Due to the sudden heating of the air, the arc pushes a pressure wave in front of it in the antechamber, which can impede the entry of the arc into the arcing chamber.
  • the gap area between the switching housing and the antechamber enables pressure equalization in front of and behind the antechamber, so that the arc is not prevented from entering the arcing chamber. This ensures that the arc is extinguished in a particularly safe and reliable manner.
  • the 1 shows a circuit breaker 2 for interrupting a circuit.
  • the circuit breaker 2 based on the Figures 2 to 5 Switching unit 4 explained in more detail.
  • the circuit breaker 2 also has a switch housing 6 made of an insulating material.
  • the circuit breaker 2 is preferably designed in the manner of a series installation device.
  • the switching housing 6 correspondingly has a shape that is characteristic of such devices and is stepped symmetrically to a front side 8 .
  • at one protruding central part 10 of the front side 8 protrudes for the manual actuation of the switching unit 4 a swiveling lever 12 of a manual operating mechanism 14 ( 4 , figure 5 ) out of the switch housing 6.
  • the circuit breaker 2 On a rear side 16 opposite the front side 8, the circuit breaker 2 is provided with a latching groove 18, which is typical for rail-mounted devices, for latching onto a mounting rail, in particular a top-hat rail.
  • Two end faces 20 of the switch housing 6 are arranged perpendicularly to the front side 8 and the rear side 16, along which the circuit breaker 2 is lined up in the installed or assembled state of a rail-mounted device.
  • the figures 2 and 3 show a first and second embodiment of the switching unit 4, 4'.
  • the switching unit 4, 4' has a mechanical contact system with a stationary fixed contact 22 and with a moving contact 24 that can be moved relative thereto.
  • the moving contact 24 is carried by a switching arm 26 and can be moved by means of this between an open position in which the fixed contact 22 and the moving contact 24 are spaced apart from one another and a closed position in which the fixed contact 22 and the moving contact 24 are in electrically conductive physical contact or transferrable.
  • the switching unit 4, 4' also has a quenching device 28 for quenching a (switching) arc that occurs when the contacts 22, 24 open.
  • the quenching device 28 has a quenching chamber 30 which is designed as a deion chamber with a set of quenching plates 32 arranged parallel to one another inserted therein.
  • the quenching plates 32 are provided with reference numbers only by way of example.
  • the quenching device 28 also has an antechamber 34, by means of which the arc is guided from the contacts 22, 24 to the quenching chamber 30.
  • the antechamber 34 has a first arc runner 36 and a second arc runner 38 .
  • the arcing rail 36 is in this case designed integrally with a magnetic yoke 40 of a short-circuit release 42 of a release mechanism 44 of the circuit breaker 2 ( 4 , figure 5 ).
  • the arc runner 38 is formed together with a power supply 46 as a one-piece coherent sheet metal part, the power supply 46 simultaneously forming a carrier for a bimetallic strip 48 of an overload release 50 of the release mechanism 44 ( 4 , figure 5 ).
  • the antechamber 34 also has two insulating side walls 52 as lateral cover plates, between which the arc rails 36, 38 are enclosed.
  • the side walls 52 and the arcing rails 36, 38 thus form an arcing space for guiding the arc from the contacts 22, 24 to the arcing chamber 30.
  • ferromagnetic molded parts 54 are applied to the outer surfaces, ie to the surfaces facing the end faces 20, of the side walls 52 of the switching unit 4.
  • the molded parts 54 have an outer contour which is approximately adapted to the course of the arc rails 36, 38.
  • the molded parts 54 are designed as a composite part with an injection-moulded insulation 56 which is arranged on the end face of the molded parts 54 facing the arcing chamber 30 .
  • two molded magnets 54' are provided instead of the ferromagnetic molded parts 54.
  • the mold magnets 54 ′ have essentially the same shape or contour as the mold parts 54 .
  • the mold magnets 54' are also provided with the insulation 56. This means that the shaped magnets 54' and the shaped parts 54 differ essentially only in the material used.
  • the 3 shows the switching unit 4, 4 'of 2 with a removed side panel 52.
  • a heat-resistant permanent magnet 58 is arranged in the area of the fixed contact 22 .
  • the permanent magnet 58 is provided here in addition to the shaped magnets 54' in the embodiment of the switching unit 4'.
  • the permanent magnet 58 By using the permanent magnet 58 in addition to the two shaped magnets 54 ′, the resulting magnetic field is concentrated particularly strongly in the area of the fixed contact 22 , so that the arc is moved particularly quickly from the latter onto the arc guide rail 36 .
  • the mold magnets 54 ′ like the mold parts 54 , are each arranged on one of the side walls 52 .
  • the permanent magnet 58 generates a magnetic field which guides the arc along the arc guide rail 36 .
  • the permanent magnet 58 is arranged radially on the inside of a convex bend or curvature 60 of the arc guide rail 36—seen from the stationary contact 22 .
  • the permanent magnet 58 is thus arranged essentially within the course of the arc runner 36 .
  • the insulating side walls 52 insulate the ferromagnetic mold parts 54 or the mold magnets 54' from the arc, so that the mold parts 54 or the mold magnets 54' in particular are not heated above their respective Curie temperatures and are thus placed in a paramagnetic state.
  • the side walls 52 protrude at the end beyond the contact point of the contacts 22, 24, so that these are essentially enclosed between the side walls 52 of the antechamber 34. The arc is thus "squeezed" between the side walls 52 as soon as it occurs, as a result of which an increase in voltage is brought about.
  • the molded parts 54 of the switching unit 4 bundle the magnetic field of the permanent magnet 58. Due to the arrangement of the permanent magnet 58 close to the fixed contact 22, the resulting magnetic force acts immediately on the arc that is created and pulls it down from the fixed contact 22 to the arc guide rail 36. In other words, when the arc is generated by the magnetic field, it is commutated particularly quickly onto the arc runner 36 and guided to the quenching chamber 30 .
  • the magnetic field is generated by the shaped magnets 54' of the switching unit 4' in addition to the magnetic field of the permanent magnet 58, and thus the arc is commutated by the resulting magnetic force from the fixed contact 22 to the arc runner 36 .
  • the figures 4 and 5 show another embodiment of the switching unit 4, 4 '.
  • the moving contact 24 is designed in one piece, that is to say in one piece or monolithically, on the free end of the switching arm 26 .
  • the figures 4 and 5 show the antechamber 34 without the side walls 52 and thus without the molded parts 54 or molded magnets 54′, which, however, in the assembled state also delimit the arc running space of the antechamber 34 towards the end faces 20 in this embodiment.
  • the figures 4 and 5 show, in addition to the switching unit 4, the manual operating mechanism 14 and the tripping mechanism 44 with the short-circuit release 42 and the overcurrent release 50.
  • the manual operating mechanism 14 and the tripping mechanism 44 as well as the switching arm 26 of the switching unit 4, 4' form an unspecified switching mechanism of the circuit breaker 2.
  • the manual operating mechanism 14 is essentially formed by the pivoted lever 12 as well as a coupling rod 62 and a torsion spring 64.
  • the switching arm 26 is designed in two parts and has a contact lever 66 with the movement contact 24 on the free end, and a ratchet lever 68 .
  • the switching arm 26 is preloaded by means of a tension spring 70 .
  • the release mechanism 44 has a release slide 72 and the overload release 50 essentially formed from the bimetallic strip 48 and the electromagnetic short-circuit release 42 .
  • the short-circuit release 42 has a magnet coil 74 and a magnet core 76 as well as the magnet yoke 40 and a magnet armature 78 .
  • the magnet armature 78 is in this case coupled to a plastic rod, not shown in any more detail, which is kept prestressed by means of a compression spring.
  • the pawl lever 68 of the switching arm 26 is pivotably mounted about an axis of rotation 80 fixed to the housing.
  • the contact lever 66 is articulated on the pawl lever 68 by means of a rotary joint 82, so that the switching arm 26 has a certain degree of flexibility.
  • the resulting relative mobility of the contact lever 66 with respect to the latch lever 68 is limited by a slot 84 at the rear end of the contact lever 66, ie the end facing away from the moving contact 24, in which the rotary axis 80 engages in the manner of a linear guide.
  • the moving contact 24 cooperates with the fixed contact 22 to switch a circuit.
  • the fixed contact 22 is applied here in particular to an upper side of the magnet yoke 40 at the base of the arc guide rail 36 integrally connected thereto.
  • the 4 shows the switching unit 4, 4' in a closed state or in a closed position of the switching arm 26, in which the free end of the contact lever 66 forming the moving contact 24 rests against the fixed contact 22.
  • an electrically conductive connection is created between a feed connection 86 or coupling contact 88 and a load connection 90 of the circuit breaker 2, which is connected via a busbar 92, the magnet coil 74, the magnet yoke 40, the fixed contact 22, the contact lever 66 with the moving contact 24, the bimetallic strip 48 and an adjoining busbar 94 leads.
  • the electrical connection between the rear end of the contact lever 66 and the bimetallic strip 48 and between the bimetallic strip 48 and the busbars 94 is closed in each case by means of a stranded connection 96, which in the 4 are shown only schematically.
  • the core component of the tripping mechanism 44 is the tripping slide 72, which is actuated both by the bimetallic strip 48 of the overload release 50 and by the plastic rod of the short-circuit release 42 coupled to the magnet armature 78, and which, when one of the releases 50 or 42 is actuated, resets the switching arm 26 from the closed position to the open position ( figure 5 ) causes.
  • a short circuit in a circuit connected to terminals 86 and 90 results in a sudden increase in the current flowing through solenoid coil 74 .
  • the strong increase in current causes a proportional increase in the magnetic field generated by the magnet coil 74, as a result of which the magnet armature 78 is actuated.
  • the resulting movement actuates the release slide 72 and thus the contacts 22 and 24 are separated.
  • the figure 5 shows an end state of a triggering process in which the moving contact 24 bears against a stop surface 98 which forms a projection of the second arcing rail 38 which is opposite the fixed contact 22 at a distance.
  • the (switching) arc occurs between the fixed contact 22 and the moving contact 24 that lifts off from it, which leads to strong heating and, in the long term, to a burning of the contacts 22 and 24 .
  • the quenching device 28 is used here to quickly and effectively extinguish the arc.
  • the arcing rail 38 is released from the power supply line 46 in such a way that the arcing rail 38 is guided in the area of the stop surface 98 along the contact lever 66 which rests against it in its open position, and - viewed from the moving contact 24 along the contact lever 66 - only behind the moving contact 24 goes into the power supply 46.
  • the current conducted from the fixed contact 22 via the arc gap to the moving contact 24 must therefore travel a certain distance in the direction of the slot-side, as before the contact lever 66 struck within the contact lever 66 or the arcing rail 38, even if the contact lever 66 is already in contact with the stop surface 98 Lever end flow until it is derived via the power supply 46 in the opposite direction.
  • the arc guide rail 38 is cut out of the power supply line 46 in particular in the center in order to ensure the most symmetrical current flow possible in the transition area.
  • the magnetic yoke 40 in which the running rail 36 is integrated, is also not closed in a circular manner around the magnetic coil 74. Rather, the magnet yoke 40 is on an underside facing the magnet armature 78 through a narrow air gap 100 ( 4 ) interrupted. In this case, the air gap 100 is dimensioned in such a way that it does not significantly impair the magnetic flux within the magnetic yoke 74, but effectively prevents a current flow across the gap distance. Instead, a current path directed in the direction of the fixed contact 22 and the arc guide rail 36 is always enforced within the magnet yoke 40 .
  • the direction of the current path is specified as starting from the feed connection 86 or coupling contact 88 and aligned with the load connection 90, independently of the actual direction of current flow.
  • the arc Under the induction effect and in particular due to the concentrated magnetic field of the permanent magnet 58, the arc is released from the contacts 22 and 24 at the latest after the contact lever 66 has struck the stop surface 98 and is transferred to the adjacent arcing rails 26 and 38. This process is called commutation.
  • the arc then migrates, enclosed by the side walls 52 and mold parts 54 or the mold magnets 54', still under the influence of the electrodynamic forces, along the arc runners 36 and 38 in the arc runner space of the antechamber 34 formed between them towards an inlet 102 of the arcing chamber 30 .
  • the arc enters the arcing chamber 30 via the inlet 102 and is divided into a number of partial arcs by the arc splitters 32 .
  • the quenching plates 32 promote the quenching of the arc in a manner known per se, in that the total voltage dropping over the entire arc gap is multiplied and the arc is cooled.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)
  • Breakers (AREA)
  • Keying Circuit Devices (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)

Description

  • Die Erfindung betrifft einen Schutzschalter mit einer Schalteinheit als Trennvorrichtung zur Unterbrechung eines Stromkreises, aufweisend einen stationären Festkontakt und einen Bewegkontakt, welcher relativ zum Festkontakt bewegbar und aus einer Schließstellung in eine Offenstellung überführbar ist, sowie eine Löscheinrichtung zum Verlöschen eines beim Öffnen der Kontakte entstehenden Lichtbogens, mit einer Vorkammer zur Führung des Lichtbogens von den Kontakten zu einer Löschkammer.
  • Eine zuverlässige Trennung von elektrischen Komponenten oder Einrichtungen von einem Schalt- oder Stromkreis ist beispielsweise zu Installations-, Montage- oder Servicezwecken sowie insbesondere auch zum allgemeinen Personenschutz wünschenswert. Eine entsprechende Schalteinheit oder Trennvorrichtung muss hierbei in der Lage sein, eine Unterbrechung unter Last, also ohne ein vorheriges Abschalten einer den Stromkreis speisenden Spannungsquelle, vorzunehmen. Zur Lasttrennung können mechanische Schalter (Schaltkontakt) eingesetzt werden. Diese haben den Vorteil, dass bei erfolgter Kontaktöffnung ebenso eine galvanische Trennung der elektrischen Einrichtung von der Spannungsquelle hergestellt ist.
  • Insbesondere bei zu schaltenden Gleichspannungen oberhalb von 24 Volt (DC) treten beim Trennen der stromdurchflossenen elektrischen Kontakte häufig Schaltlichtbögen auf, indem der elektrische Strom nach Öffnen der Kontakte entlang einer Lichtbogenstrecke in Form einer Bogenentladung weiter fließt. Da bei Gleichspannungen ab etwa 50 Volt und Gleichströmen ab etwa 1 Ampere derartige Schaltlichtbögen unter Umständen nicht selbsttätig verlöschen, werden beispielsweise sogenannte Sprungkontakte als mechanisches Kontaktsystem eingesetzt, bei denen zur Beschleunigung der Kontakttrennung mechanische Federn eingesetzt werden.
  • Die beim Öffnen der Kontakte unter Last entstehenden Lichtbögen werden schnell in dafür vorgesehene Löscheinrichtungen bewegt, wo die entsprechende Lichtbogenlöschung stattfindet. Die dafür benötigte Kraft erfolgt beispielsweise durch magnetische Felder, sogenannte Blasfelder, welche typischerweise durch einen oder mehrere Permanentmagneten erzeugt werden. Durch besondere Gestaltung der Kontaktzonen und des Lichtbogenleitstücks wird der Lichtbogen in entsprechende Löschkammern geleitet, wo die Lichtbogenlöschung nach bekannten Prinzipien erfolgt.
  • Grundsätzliche Maßnahmen zur Vermeidung oder Beherrschung derartiger Schaltlichtbögen bestehen im Wesentlichen darin, einen Isolierstoff zur Erhöhung der Spannungsfestigkeit und damit zur Lichtbogenlöschung schon bei kleinem Kontaktabstand einzusetzen oder die Lichtbogenspannung durch Aufteilung des Lichtbogens zu reduzieren.
  • Aus der DE 20 2006 021 064 U1 ist ein Schutzschalter mit einer Schalteinheit beschrieben, bei welcher ein beim Öffnen eines Kontaktsystems entstehender (Schalt-)Lichtbogen mittels einer Löscheinrichtung verlöscht wird. Die Löscheinrichtung weist eine Vorkammer mit zwei Lichtbogenlaufschienen auf, welche zwischen zwei isolierenden Seiten- oder Abdeckwänden als seitliche Begrenzung zur Lichtbogenführung angeordnet sind. Der Lichtbogen wird mittels der Vorkammer zu einer Löschkammer geführt und dort verlöscht.
  • Der Erfindung liegt die Aufgabe zugrunde, einen besonders geeigneten Schutzschalter zur Trennung eines Stromkreises anzugeben.
  • Die Aufgabe wird mit den Merkmalen des Anspruchs 1 erfindungsgemäß gelöst. Vorteilhafte Ausgestaltungen und Weiterbildungen sind Gegenstand der Unteransprüche.
  • Der erfindungsgemäße Schutzschalter ist zur Unterbrechung eines Stromkreises, insbesondere eines Gleichstromkreises, geeignet und eingerichtet. Der Schutzschalter ist also als ein Schaltgerät zum manuellen und/oder selbsttätigen Abschalten von elektrischen Stromkreisen oder einzelnen Verbrauchern bei einem Überschreiten von zulässigen Strom- oder Spannungswerten (Überstrom, Fehlerstrom) ausgeführt.
  • Hierzu weist der Schutzschalter eine Schalteinheit als eine Trennvorrichtung mit einem schaltbaren mechanischen Kontaktsystem auf. Unter "Schalten" wird hier und im Folgenden insbesondere eine mechanische oder galvanische Kontakttrennung ("Öffnen") und/oder eine Kontaktschließung ("Schließen") des Kontaktsystems verstanden.
  • Das Kontaktsystem weist einen stationären Festkontakt und einen Bewegkontakt auf. Der Bewegkontakt ist hierbei relativ zum Festkontakt bewegbar und aus einer Schließstellung in eine Offenstellung überführbar. Dies bedeutet, dass zum Schalten des Kontaktsystems bzw. der Schalteinheit der Bewegkontakt zwischen der Offenstellung und der Schließstellung bewegt wird.
  • Die Schalteinheit weist weiterhin eine Löscheinrichtung zum Verlöschen eines beim Öffnen der Kontakte entstehenden (Schalt-)Lichtbogens auf. Die Löscheinrichtung ist mit einer Löschkammer zur Löschung des Schaltlichtbogens sowie mit einer Vorkammer zur Führung des Lichtbogens von den Kontakten zu der Löschkammer ausgeführt.
  • Die Vorkammer weist zwei isolierende Seitenwände als seitliche Abdeckplatten auf, wobei zwischen den Seitenwänden ein Paar von Lichtbogenlaufschienen einsitzt. Die Vorkammer ist somit beidseitig an den Stirnseiten geöffnet, wobei die eine Stirnseite dem Kontaktsystem und die andere Stirnseite der Löschkammer zugewandt ist. Die Vorkammer bildet somit einen Lichtbogenlaufraum, welcher zu den Seiten hin mittels der isolierenden Seitenwänden als Abdeckplatten und den Lichtbogenlaufschienen zur Führung des Lichtbogens begrenzt ist. Der Übergang des Lichtbogens von den Kontakten des Kontaktsystems auf die angrenzenden Lichtbogenlaufschienen der Vorkammer ist nachfolgend auch als Kommutierung bezeichnet.
  • Die Löschkammer weist geeigneterweise einen Einlass, welcher der geöffneten Stirnseite der Vorkammer zugewandt ist, und einen gegenüberliegenden angeordneten Auslass für den Gasstrom des Lichtbogens auf.
  • In einer ersten Ausführung der Erfindung ist erfindungsgemäß an den Seitenwänden jeweils ein ferromagnetisches Formteil angeordnet, welches vorzugsweise an den Verlauf der Lichtbogenlaufschienen angepasst ist. Die Formteile sind in einfacher Art und Weise hergestellt, beispielsweise als Stanzteile. Vorzugsweise sind die Formteile hierbei außerhalb des Lichtbogenlaufraums, also auf die Außenseite der Seitenwände der Vorkammer aufgebracht. Die Formteile umgeben den Lichtbogenlaufraum der Vorkammer im Wesentlichen vollflächig.
  • Im Bereich des Festkontakts ist in dieser Ausführung zusätzlich ein Permanentmagnet (Dauermagnet) angeordnet, dessen Magnetfeld den Lichtbogen entlang einer der Lichtbogenlaufschienen führt. Dadurch ist eine besonders schnelle und effektive Verlöschung eines entstehenden Lichtbogens ermöglicht. Somit ist eine besonders effektive und betriebssichere Schalteinheit realisiert.
  • Der ionisierte (Schalt-)Lichtbogen wird aufgrund der elektrodynamischen Wechselwirkungen mit dem Magnetfeld des Permanentmagneten in Richtung der Löschkammer gedrängt oder kanalisiert. Durch die ferromagnetischen Formteile als Seitenplatten wird einerseits eine Bündelung oder Fokussierung des Magnetfelds im unmittelbaren Kontaktbereich der Kontakte realisiert. Andererseits ist das Lichtbogenmagnetfeld, welches den Lichtbogen begleitet, in der Nähe eines ferromagnetischen Werkstoffes bestrebt, durch die magnetisch besser leitenden Formteile zu verlaufen. Dadurch entsteht eine "Saugwirkung" in Richtung der Formteile, welche dazu führt, dass sich der Lichtbogen zu der Vorkammer bewegt.
  • Die ferromagnetischen Formteile werden durch das Magnetfeld des Permanentmagneten zumindest teilweise magnetisiert, sodass das Magnetfeld beziehungsweise dessen Magnetfeldlinien zwischen den Lichtbogenlaufschienen effektiv gebündelt, also konzentriert oder fokussiert, wird. Durch diese konzentrierte Bündelung des Magnetfelds wird eine besonders gleichmäßige und schnelle Lichtbogenführung bis in das Löschpaket bewirkt.
  • Der Permanentmagnet ist geeigneterweise aus einem hitzebeständigen Material gefertigt. Dies bedeutet, dass der Permanentmagnet aus einem magnetischen Material gefertigt ist, welches auch bei hohen Temperaturen, wie sie insbesondere im Bereich des Lichtbogens auftreten, seine magnetischen Eigenschaften beibehält. Mit anderen Worten wird beispielsweise ein magnetisiertes ferromagnetisches Material für den Permanentmagnet verwendet, dessen materialspezifische Curie-Temperatur größer als die zu erwartenden Temperaturen im Bereich des Lichtbogens sind.
  • Der Permanentmagnet ist beispielsweise aus einer Samariumlegierung, insbesondere einer Samarium-Cobalt-Legierung, vorzugsweise Sm2Co17, oder einer Neodymlegierung, insbesondere Neodym-NiCuN, oder einer Aluminiumlegierung, insbesondere AlNiCo500, hergestellt. Der Permanentmagnet erzeugt hierbei ein Magnetfeld mit einer Magnetfeldstärke zwischen 900 mT (Milli-Tesla) bis 1500 mT, insbesondere zwischen 1000 mT bis 1250 mT.
  • Dadurch wird der Lichtbogen besonders schnell von dem Festkontakt auf die Laufschienen kommutiert, und somit von dem Kontaktsystem weggezogen. Somit werden die Kontakt-Material-Verluste im Bereich der Kontakte aufgrund der Lichtbogenbildung reduziert. Des Weiteren wird der Lichtbogen durch das mittels der Formteile konzentrierte Magnetfeld besonders stabil und schnell auf der Lichtbogenlaufschiene bewegt.
  • Die Löscheinrichtung ist in bevorzugter Ausführungsform dahingehend optimiert, dass ein Schaltlichtbogen mittels der Vorkammer und des Permanentmagneten schnell und effektiv in die Löschkammer "eingesaugt" wird, ohne die Löschkammer zu durchlaufen und am Auslass zurückzuzünden oder an der Löschkammer abzuprallen und vor deren Einlass zurückzuzünden. Durch die schnelle und zuverlässige Führung des Lichtbogens mittels der Vorkammer ist eine besonders effektive Löscheinrichtung realisiert, so dass die Löschkammer mit hinreichend gutem Löschverhalten besonders flachbauend ausführbar ist. Dadurch ist eine besonders bauraumkompakte Schalteinheit ermöglicht.
  • In einer denkbaren Ausgestaltung sind zur Führung des Lichtbogens zusätzlich zum Permanentmagneten zwei Formmagnete vorgesehen. Der Permanentmagnet ist hierbei geeigneterweise zwischen den Formmagneten angeordnet. Dadurch ist eine besonders zuverlässige und betriebssichere Führung des Lichtbogens zur Löschkammer gewährleistet.
  • Die im Hinblick auf die vorstehend beschriebene erste Ausführung angeführten Vorteile und bevorzugten Ausgestaltungen sind sinngemäß auch auf die nachfolgend beschriebene, alternative Ausführung zu übertragen und umgekehrt.
  • In einer nicht beanspruchten alternativen Ausführung weist die Schalteinheit im Gegensatz zu der vorstehend beschriebenen Ausführung anstelle der Formteile insbesondere jeweils einen Formmagneten auf, wobei das von den Formmagneten erzeugte gemeinsame Magnetfeld den Lichtbogen entlang einer der Lichtbogenlaufschiene führt.
  • Die Formmagnete weisen hierbei im Wesentlichen die gleiche geometrische Form oder Kontur wie die ferromagnetischen Formteile auf. Somit ist es beispielsweise denkbar, die Formteile und die Formmagneten gegeneinander austauschbar auszuführen.
  • Die erfindungsgemäßen Schutzschalter weisen somit jeweils eine besonders effektive Löscheinrichtung zur Verlöschung auftretender Schaltlichtbögen auf. Durch das verbesserte Löschverhalten der Löscheinrichtung der Schutzschalter sind diese besonders flachbauend ausführbar. Dadurch ist eine flache Schutzschalterkonstruktion ermöglicht, wodurch der Einsatz in bauraumreduzierten Einbausituationen, wie beispielsweise in Schaltschränken, verbessert wird.
  • Erfindungsgemäß ist die Lichtbogenlaufschiene, entlang welcher der Lichtbogen mittels des Magnetfelds des Permanentmagneten gegebenenfalls der Formmagnete geführt wird, an den Festkontakt herangeführt. Die Lichtbogenlaufschiene weist hierbei vom Festkontakt zur Löschkammer hin einen gekrümmten oder gebogenen Verlauf auf. Dadurch ist ein besonders zweckmäßiger und betriebssicherer Verlauf der Lichtbogenlaufschiene realisiert.
  • Erfindungsgemäß verbindet diese (erste) Lichtbogenlaufschiene den Festkontakt mit einer ersten Seitenwand der Löschkammer. Die Lichtbogenlaufschiene weist ausgehend vom Festkontakt aufgrund der Biegung einen konvexen Verlauf auf. Durch die Krümmung oder Biegung wird der Lichtbogen besonders zuverlässig von dem Festkontakt weggeführt, so dass ein Materialverlust oder Verschleiß des Festkontakts reduziert wird.
  • Die andere (zweite) Lichtbogenlaufschiene verbindet vorzugsweise eine Anschlagfläche, an welcher der Bewegkontakt in der Öffnungsstellung anliegt, mit einer zweiten Seitenwand der Löschkammer, so dass eine zuverlässige Kommutierung des Lichtbogens auch im Bereich des Bewegkontakts ermöglicht ist.
  • In einer geeigneten Weiterbildung ist die erste Seitenwand der Löschkammer insbesondere als ein Magnetjoch eines Kurzschlussauslösers einer Auslösemechanik des Schutzschalters ausgeführt. Die (erste) Lichtbogenlaufschiene ist insbesondere integral mit dem Magnetjoch ausgeführt.
  • Erfindungsgemäß ist der Permanentmagnet bezogen auf den Biegeradius der Biegung oder Krümmung radial innenseitig zur (ersten) Lichtbogenlaufschiene angeordnet. Bei einer solchen, radial innenseitigen, Anordnung des Permanentmagneten ist dieser somit außerhalb der Vorkammer angeordnet. Insbesondere ist der Permanentmagnet somit von der (ersten) Lichtbogenlaufschiene zumindest teilweise umgeben oder eingefasst. Bei einem konvexen Verlauf der (ersten) Lichtbogenlaufschiene ist diese somit etwa U-förmig oder V-förmig um den Permanentmagneten herum geführt. Somit ist der Permanentmagnet vor einem direkten Kontakt mit dem Lichtbogen zuverlässig und konstruktiv einfach geschützt. Dadurch wird die Lebensdauer des Permanentmagneten wesentlich verbessert.
  • In einer zweckmäßigen Ausbildung weisen die ferromagnetischen Formteile und/oder die Formmagnete an den zur Löschkammer orientierten Stirnseiten jeweils eine elektrische Isolierung auf. Mit anderen Worten sind die Formteile oder Formmagnete zum Einlass der Löschkammer hin mit einer Isolierung versehen. Dadurch wird ein elektrischer Kurzschluss entlang der Löschkammer und den Formteilen oder Formmagneten verhindert. Dies überträgt sich in der Folge vorteilhaft auf die Lebensdauer der Löscheinrichtung und somit der Schalteinheit.
  • In einer bevorzugten Ausführung sind die Formteile oder Formmagnete als Einlegteile mit der Isolierung im Bereich der Stirnseiten umspritzt. In einer alternativen Ausführungsform sind die Formteile oder Formmagnete stirnseitig insbesondere in ein Isolierteil eingelegt. Mit anderen Worten werden die Isolierungen an den ferromagnetischen Formteilen oder Formmagneten prozesstechnisch angespritzt und/oder umspritzt oder eingelegt. Dies bedeutet, dass das Formteil oder der Formmagnete und die Isolierung insbesondere als ein Verbundteil ausgeführt sind. Dadurch ist eine besonders einfache und aufwandsarme Herstellung und Isolierung der Formteile oder Formmagnete gewährleistet. Somit ist ein besonders kostengünstiger Schutzschalter realisiert.
  • Ein zusätzlicher oder weiterer Aspekt der Erfindung sieht vor, dass die Löschkammer als eine Deionkammer mit einem Lichtbogenlöschpaket, also mit einem Löschpaketstapel mit einer Anzahl von Löschblechen oder Streuplatten, ausgeführt ist. Als Material für die Löschbleche werden beispielsweise ferromagnetische Werkstoffe eingesetzt, da das Magnetfeld, welches den Lichtbogen begleitet, in der Nähe eines ferromagnetischen Werkstoffes bestrebt ist, durch die magnetisch besser leitenden Löschbleche zu verlaufen. Dadurch entsteht eine Saugwirkung in Richtung der Löschbleche, die dazu führt, dass sich der Lichtbogen zu der Anordnung der Löschbleche bewegt und zwischen diesen aufgeteilt wird.
  • In einer bevorzugten Ausgestaltung ist der Bewegkontakt der verwendeten Schalteinheit an einem verschwenkbaren Schaltarm angeordnet, welcher mit einer Handbetätigungsmechanik zur manuellen Verstellung des Schaltarms zwischen der Offenstellung und der Schließstellung, und mit einer Auslösemechanik zur automatischen Rückführung des Schaltarms in die Offenstellung bei einem Eintritt einer Auslösebedingung gekoppelt ist. Dadurch ist ein besonders geeigneter Schutzschalter realisiert.
  • Die Handbetätigungsmechanik weist beispielsweise einen Schwenkhebel auf, welcher mittels einer Mechanik mit dem Schaltarm gekoppelt ist. Die Mechanik weist beispielsweise ein Federelement, zweckmäßigerweise eine Torsionsfeder, auf, welches den Schwenkhebel in Richtung auf eine der Offenstellung des Schaltarms entsprechende erste Schwenkstellung vorspannt, so dass der Schwenkhebel in unbelasteten Zustand stets von selbst in diese erste Schwenkstellung zurückkehrt. In einer der Schließstellung des Schaltarms entsprechenden zweiten Schwenkstellung wird der Schwenkhebel dagegen bevorzugt durch eine Verklinkung der Mechanik mit dem in der Schließstellung befindlichen Schaltarm arretiert. Zweckmäßigerweise sind der Schaltarm und die Handbetätigungseinrichtung derart aufeinander abgestimmt, dass bei einer Rückkehr des Schaltarms in die Öffnungsstellung und des Schwenkhebels in die erste Schwenkstellung die Mechanik selbsttätig mit dem Schaltarm verklinkt, so dass der Schaltarm mittels der Handbetätigungsmechanik ohne weiteres Zutun sofort wieder verstellbar ist.
  • Die Auslösemechanik weist vorzugsweise einen Kurzschlussauslöser auf, welcher dazu ausgebildet ist, im Falle eines elektrischen Kurzschlusses als Auslösebedingung die Auslösemechanik zu betätigen. Der Kurzschlussauslöser weist beispielsweise eine Magnetspule, ein Magnetjoch sowie einen Magnetanker auf, wobei das Magnetjoch insbesondere eine erste Seitenwand der Löschkammer ausbildet.
  • Zusätzlich oder alternativ zu dem Kurzschlussauslöser weist die Auslösemechanik vorzugsweise einen Überlastauslöser oder Überstromauslöser auf. Der Überlastauslöser ist beispielsweise im Wesentlichen durch einen Bimetallstreifen gebildet, welcher sich infolge des Stromflusses erhitzt und sich dabei derart verformt, dass er im Überlastfall, also bei der zugehörigen Auslösebedingung, die Auslösemechanik und somit den Schaltarm bzw. das Kontaktsystem betätigt.
  • In einer geeigneten Weiterbildung sind die Schalteinheit und die Auslösemechanik sowie die Handbetätigungsmechanik zumindest teilweise in einem gemeinsamen Schaltgehäuse aufgenommen. Dadurch ist ein zuverlässiger Berührungsschutz (Fingerschutz) realisiert.
  • Die Seitenwände der Schalteinheit sind hierbei parallel zu den Stirnseiten des Schaltgehäuses orientiert, wobei zwischen der Vorkammer und dem Schaltgehäuse ein Spaltbereich, also ein lichter Abstand, gebildet ist. Ein derartiger Spaltbereich ist insbesondere vorteilhaft für einen Druckausgleich im Zuge einer Lichtbogenverlöschung. Der Spaltbereich ist hierbei vorzugsweise an den Stirnseiten der Vorkammer, also zu Kontakten und zum Einlass hin geöffnet. Der Lichtbogen schiebt in Vorkammer aufgrund der plötzlichen Lufterhitzung eine Druckwelle vor sich her, welche den Einlauf des Lichtbogens in Löschkammer behindern kann. Durch den Spaltbereich zwischen dem Schaltgehäuse und der Vorkammer ist ein Druckausgleich vor und hinter der Vorkammer möglich, so dass der Einlauf des Lichtbogens in die Löschkammer nicht behindert wird. Dadurch wird eine besonders betriebssichere und zuverlässige Löschung des Lichtbogens gewährleistet.
  • Nachfolgend sind Ausführungsbeispiele der Erfindung anhand einer Zeichnung näher erläutert. Darin zeigen in perspektivischen Darstellungen:
  • Fig. 1
    einen Schutzschalter,
    Fig. 2
    eine Schalteinheit des Schutzschalters mit einem Kontaktsystem und mit einer Löscheinheit, welche eine Vorkammer mit zwei Seitenwänden sowie eine Löschkammer aufweist,
    Fig. 3
    die Schalteinheit aus Fig. 2 mit einer abgenommenen Seitenwand,
    Fig. 4
    eine alternative Ausführungsform der Schalteinheit mit einem Handbetätigungsmechanismus und mit einem Auslösemechanismus des Schutzschalters, und
    Fig. 5
    in vergrößerter Detailansicht die Ausführungsform gemäß Fig. 4.
  • Einander entsprechende Teile und Größen sind in allen Figuren stets mit den gleichen Bezugszeichen versehen.
  • Die Fig. 1 zeigt einen Schutzschalter 2 zur Unterbrechung eines Stromkreises. Hierzu weist der Schutzschalter 2 eine anhand der Figuren 2 bis 5 näher erläuterte Schalteinheit 4 auf. Der Schutzschalter 2 weist weiterhin ein Schaltgehäuse 6 aus einem Isoliermaterial auf.
  • Der Schutzschalter 2 ist vorzugsweise nach Art eines Reiheneinbaugeräts ausgebildet. Das Schaltgehäuse 6 weist entsprechend eine für solche Geräte charakteristische, symmetrisch zu einer Frontseite 8 abgestufte Formgebung auf. An einem herausragenden Mittelteil 10 der Frontseite 8 ragt zur manuellen Betätigung der Schalteinheit 4 ein Schwenkhebel 12 einer Handbetätigungsmechanik 14 (Fig. 4, Fig. 5) aus dem Schaltgehäuse 6 heraus. An einer der Frontseite 8 gegenüberliegenden Rückseite 16 ist der Schutzschalter 2 mit einer für Reiheneinbaugeräte typischen Rastnut 18 zum Aufrasten auf eine Tragschiene, insbesondere auf eine Hutschiene, versehen. Senkrecht zu der Frontseite 8 und der Rückseite 16 sind zwei Stirnseiten 20 des Schaltgehäuses 6 angeordnet, entlang welcher der Schutzschalter 2 im Einbau- oder Montagezustand eines Reiheneinbaugeräts aneinandergereiht wird.
  • Die Figuren 2 und 3 zeigen eine erste und zweite Ausführungsform der Schalteinheit 4, 4'. Die Schalteinheit 4, 4' weist ein mechanisches Kontaktsystem mit einem stationären Festkontakt 22 und mit einem gegenüber diesem relativ bewegbaren Bewegungskontakt 24 auf. Der Bewegungskontakt 24 ist von einem Schaltarm 26 getragen und mittels diesem zwischen einer Offenstellung, in welcher der Festkontakt 22 und der Bewegungskontakt 24 voneinander beabstandet sind, und einer Schließstellung, in welcher der Festkontakt 22 und der Bewegungskontakt 24 in einem elektrisch leitfähigen Berührungskontakt sind, bewegbar oder überführbar.
  • Die Schalteinheit 4, 4' weist weiterhin eine Löscheinrichtung 28 zum Verlöschen eines beim Öffnen der Kontakte 22, 24 entstehenden (Schalt-)Lichtbogens auf. Die Löscheinrichtung 28 weist eine Löschkammer 30, welche als eine Deionkammer mit einem darin eingesetzten Paket von zueinander parallel angeordneten Löschblechen 32 ausgebildet ist, auf. In den Figuren sind die Löschbleche 32 lediglich beispielhaft mit Bezugszeichen versehen.
  • Die Löscheinrichtung 28 weist weiterhin eine Vorkammer 34 auf, mittels welcher der Lichtbogen von den Kontakten 22, 24 zur Löschkammer 30 geführt wird. Die Vorkammer 34 weist eine erste Lichtbogenlaufschiene 36 und eine zweite Lichtbogenlaufschiene 38 auf. Die Lichtbogenlaufschiene 36 ist hierbei integral mit einem Magnetjoch 40 eines Kurzschlussauslösers 42 einer Auslösemechanik 44 des Schutzschalters 2 ausgeführt (Fig. 4, Fig. 5). Die Lichtbogenlaufschiene 38 ist zusammen mit einer Stromzuführung 46 als ein einstückig zusammenhängendes Blechteil gebildet, wobei die Stromzuführung 46 gleichzeitig einen Träger für einen Bimetallstreifen 48 eines Überlastauslösers 50 der Auslösemechanik 44 bildet (Fig. 4, Fig. 5).
  • Die Vorkammer 34 weist des Weiteren zwei isolierende Seitenwände 52 als seitliche Abdeckplatten auf, zwischen denen die Lichtbogenlaufschienen 36, 38 eingefasst sind. Die Seitenwände 52 und die Lichtbogenlaufschienen 36, 38 bilden somit einen Lichtbogenlaufraum zur Führung des Lichtbogens von den Kontakten 22, 24 zu der Löschkammer 30.
  • Wie insbesondere in der Fig. 2 ersichtlich ist, sind auf die Außenflächen, also auf den den Stirnseiten 20 zugewandten Oberflächen, der Seitenwände 52 der Schalteinheit 4 ferromagnetische Formteile 54 aufgebracht. Die Formteile 54 weisen eine Außenkontur auf, welche etwa dem Verlauf der Lichtbogenlaufschienen 36, 38 angepasst ist. Die Formteile 54 sind als ein Verbundteil mit einer angespritzten Isolierung 56 ausgeführt, welche an der der Löschkammer 30 zugewandten Stirnseite der Formteile 54 angeordnet ist.
  • In der alternativen Ausführung der Schalteinheit 4' sind anstelle der ferromagnetischen Formteile 54 zwei Formmagneten 54' vorgesehen. Die Formmagnete 54' weisen im Wesentlichen die gleiche Form oder Kontur wie die Formteile 54 auf. Insbesondere sind die Formmagneten 54' ebenfalls mit der Isolierung 56 versehen. Dies bedeutet, dass sich die Formmagnete 54' und die Formteile 54 im Wesentlichen lediglich durch das verwendete Material unterscheiden.
  • Die Fig. 3 zeigt die Schalteinheit 4, 4' der Fig. 2 mit einer abgenommenen Seitenwand 52. Wie in der Fig. 3 ersichtlich, ist im Bereich des Festkontakts 22 ein hitzebeständiger Permanentmagnet 58 angeordnet. Der Permanentmagnet 58 ist bei der Ausführung der Schalteinheit 4'hierbei zusätzlich zu den Formmagneten 54' vorgesehen.
  • Durch die Verwendung des Permanentmagneten 58 zusätzlich zu den zwei Formmagneten 54' wird das resultierende Magnetfeld besonders stark im Bereich des Festkontakts 22 gebündelt, so dass der Lichtbogen besonders schnell von diesem auf die Lichtbogenlaufschiene 36 bewegt wird. Die Formmagnete 54' sind hierzu - wie die Formteile 54 - jeweils an einer der Seitenwände 52 angeordnet. Der Permanentmagnet 58 erzeugt ein Magnetfeld, welches den Lichtbogen entlang der Lichtbogenlaufschiene 36 führt. Hierzu ist der Permanentmagnet 58 radial innenseitig einer - vom Festkontakt 22 aus gesehen - konvexen Biegung oder Krümmung 60 der Lichtbogenlaufschiene 36 angeordnet. Somit ist der Permanentmagnet 58 im Wesentlichen innerhalb des Verlaufs der Lichtbogenlaufschiene 36 angeordnet.
  • Die isolierenden Seitenwände 52 isolieren die ferromagnetischen Formteile 54 oder die Formmagnete 54' gegenüber dem Lichtbogen, so dass die Formteile 54 oder die Formmagneten 54' insbesondere nicht über ihre jeweilige Curie-Temperatur hinaus erwärmt, und somit in einen paramagnetischen Zustand versetzt werden. Die Seitenwände 52 ragen stirnseitig über die Kontaktstelle der Kontakte 22, 24 hinaus, so dass diese im Wesentlichen zwischen den Seitenwänden 52 der Vorkammer 34 eingefasst sind. Der Lichtbogen wird somit bereits bei einer Entstehung zwischen den Seitenwänden 52 "eingequetscht", wodurch eine Spannungserhöhung bewirkt wird.
  • Die Formteile 54 der Schalteinheit 4 bündeln das Magnetfeld des Permanentmagneten 58. Durch die Anordnung des Permanentmagneten 58 nahe dem Festkontakt 22 wirkt die resultierende magnetische Kraft sofort auf den entstehenden Lichtbogen und zieht diesen von dem Festkontakt 22 auf die Lichtbogenlaufschiene 36 herunter. Mit anderen Worten wird der Lichtbogen bei der Entstehung durch das Magnetfeld besonders schnell auf die Lichtbogenlaufschiene 36 kommutiert und zur Löschkammer 30 geführt.
  • Entsprechend wird das Magnetfeld durch die Formmagneten 54' der Schalteinheit 4' zusätzlich zu dem Magnetfeld des Permanentmagneten 58 erzeugt, und somit der Lichtbogen durch die resultierende magnetische Kraft von dem Festkontakt 22 auf die Lichtbogenlaufschiene 36 kommutiert.
  • Die Figuren 4 und 5 zeigen eine weitere Ausführungsform der Schalteinheit 4, 4'. In diesem Ausführungsbeispiel ist der Bewegungskontakt 24 einstückig, also einteilig oder monolithisch, an dem Freiende des Schaltarms 26 ausgeführt. Die Figuren 4 und 5 zeigen die Vorkammer 34 ohne die Seitenwände 52 und somit ohne die Formteile 54 oder Formmagneten 54', welche den Lichtbogenlaufraum der Vorkammer 34 jedoch im Montagezustand auch in dieser Ausführungsform zu den Stirnseiten 20 hin begrenzen.
  • Die Figuren 4 und 5 zeigen neben der Schalteinheit 4 die Handbetätigungsmechanik 14 sowie die Auslösemechanik 44 mit dem Kurzschlussauslöser 42 und dem Überstromauslöser 50. Die Handbetätigungsmechanik 14 und die Auslösemechanik 44 sowie der Schaltarm 26 der Schalteinheit 4, 4' bilden ein nicht näher bezeichnetes Schaltschloss des Schutzschalters 2.
  • Die Handbetätigungsmechanik 14 ist im Wesentlichen gebildet durch den Schwenkhebel 12 sowie eine Koppelstange 62 und eine Torsionsfeder 64.
  • Der Schaltarm 26 ist in dem gezeigten Ausführungsbeispiel zweigliedrig ausgeführt und weist einen Kontakthebel 66 mit dem freiendseitigen Bewegungskontakt 24, und einen Klinkenhebel 68 auf. Der Schaltarm 26 wird mittels einer Zugfeder 70 vorgespannt.
  • Die Auslösemechanik 44 weist einen Auslöseschieber 72 und den im Wesentlichen aus dem Bimetallstreifen 48 gebildeten Überlastauslöser 50 sowie den elektromagnetischen Kurzschlussauslöser 42 auf. Der Kurzschlussauslöser 42 weist eine Magnetspule 74 und einen Magnetkern 76 sowie das Magnetjoch 40 und einen Magnetanker 78 auf. Der Magnetanker 78 ist hierbei mit einem nicht näher gezeigten Kunststoffstab gekoppelt, welcher mittels einer Druckfeder vorgespannt gehalten ist.
  • Im Montagezustand ist der Klinkenhebel 68 des Schaltarms 26 um eine gehäusefeste Drehachse 80 schwenkbar gelagert. Der Kontakthebel 66 ist mittels eines Drehgelenks 82 an dem Klinkenhebel 68 angelenkt, so dass der Schaltarm 26 in sich eine gewisse Flexibilität aufweist. Die dadurch bewirkte Relativbeweglichkeit des Kontakthebels 66 bezüglich des Klinkenhebels 68 wird begrenzt durch ein Langloch 84 an dem rückwärtigen, also dem Bewegkontakt 24 abgewandten, Ende des Kontakthebels 66, in welches die Drehachse 80 nach Art einer Linearführung eingreift.
  • Der Bewegkontakt 24 wirkt mit dem Festkontakt 22 zusammen, um einen Stromkreis zu schalten. Der Festkontakt 22 ist hierbei insbesondere an einer Oberseite des Magnetjochs 40 am Ansatz der mit diesem integral verbundenen Lichtbogenlaufschiene 36 aufgebracht.
  • Die Fig. 4 zeigt die Schalteinheit 4, 4' in einem Schließzustand oder in einer Schließstellung des Schaltarms 26, in dem das den Bewegkontakt 24 bildende Freiende des Kontakthebels 66 an dem Festkontakt 22 anliegt. In dieser Schließstellung ist zwischen einem Einspeiseanschluss 86 beziehungsweise Koppelkontakt 88 und einem Lastanschluss 90 des Schutzschalters 2 eine elektrisch leitende Verbindung erzeugt, welche über eine Stromschiene 92, die Magnetspule 74, das Magnetjoch 40, den Festkontakt 22, den Kontakthebel 66 mit dem Bewegkontakt 24, den Bimetallstreifen 48 und eine daran anschließende Stromschiene 94 führt. Die elektrische Verbindung zwischen dem rückwärtigen Ende des Kontakthebels 66 und dem Bimetallstreifen 48 sowie zwischen dem Bimetallstreifen 48 und der Stromscheine 94 ist jeweils mittels einer Litzenverbindung 96 geschlossen, welche in der Fig. 4 lediglich schematisch dargestellt sind.
  • Kernbestandteil der Auslösemechanik 44 ist der Auslöseschieber 72, welcher sowohl von dem Bimetallstreifen 48 des Überlastauslösers 50 als auch von dem mit dem Magnetanker 78 gekoppelten Kunststoffstab des Kurzschlussauslösers 42 betätigt wird, und der unter Betätigung einer der Auslöser 50 oder 42 die Rückstellung des Schaltarms 26 von der Schließstellung in die Offenstellung (Fig. 5) bewirkt.
  • Ein Kurzschluss in einem an den Anschlüssen 86 und 90 angeschlossenen Stromkreis führt zu einem sprunghaften Anstieg des durch die Magnetspule 74 fließenden Stromes. Der starke Stromanstieg bewirkt einen proportionalen Anstieg des durch die Magnetspule 74 erzeugten Magnetfeldes, in Folge dessen der Magnetanker 78 betätigt wird. Durch die resultierende Bewegung wird der Auslöseschieber 72 betätigt und somit die Kontakte 22 und 24 aufgetrennt.
  • Die Fig. 5 zeigt hierbei einen Endzustand eines Auslösevorgangs, in dem der Bewegkontakt 24 an einer Anschlagfläche 98 anliegt, die einen dem Festkontakt 22 mit Abstand gegenüberliegenden Ansatz der zweiten Lichtbogenlaufschiene 38 bildet.
  • Im Zuge eines solchen Auslösevorgangs entsteht zwischen dem Festkontakt 22 und dem sich von diesem abhebenden Bewegkontakt 24 der (Schalt-)Lichtbogen, welcher zu einer starken Erhitzung und langfristig zu einem Abbrennen der Kontakte 22 und 24 führt. Die Löscheinrichtung 28 dient hierbei dem schnellen effektiven Verlöschen des Lichtbogens.
  • Beim Öffnen der Kontakte 22 und 24 wirkt der Stromfluss innerhalb des Kontakthebels 66, der Lichtbogenstrecke und der dem Kontakthebel 66 gegenüberliegenden Strecke des Magnetjochs 40 als Stromschleife. Diese Stromschleife übt zusätzlich zu einer Lorenzkraft aufgrund des mittels der Formteile 54 gebündelten Magnetfelds des Permanentmagneten 58 eine Induktionskraft auf den Lichtbogen aus, welche den Lichtbogen in Richtung auf die Löschkammer 30 treibt.
  • Mit dem Anschlagen des Schaltarms 26 an der Anschlagfläche 98 wird die leitende Verbindung zwischen dem Bimetallstreifen 48, den Litzenverbindungen 96 (Fig. 4) und dem Kontakthebel 66 über die Stromzuführung 46 kurzgeschlossen. Durch die Formgebung des Blechstreifens, aus dem die Stromzuführung 46 und die Lichtbogenlaufschiene 38 integral gebildet sind, wird sichergestellt, dass die Induktionswirkung des Stromflusses auf den Lichtbogen bei diesem Vorgang dem Vorzeichen nach erhalten bleibt.
  • Die Lichtbogenlaufschiene 38 ist aus der Stromzuführung 46 derart freigestellt, dass die Lichtbogenlaufschiene 38 im Bereich der Anschlagfläche 98 an dem in seiner Öffnungsstellung hieran anliegenden Kontakthebel 66 entlanggeführt ist, und - von dem Bewegkontakt 24 aus entlang des Kontakthebels 66 gesehen - erst hinter dem Bewegkontakt 24 in die Stromzuführung 46 übergeht. Der von dem Festkontakt 22 über die Lichtbogenstrecke zum Bewegkontakt 24 geführte Strom muss somit, auch wenn der Kontakthebel 66 bereits an der Anschlagfläche 98 anliegt, wie vor dem Anschlagen des Kontakthebels 66 innerhalb des Kontakthebels 66 oder der Lichtbogenlaufschiene 38 eine gewisse Strecke in Richtung des langlochseitigen Hebelendes fließen, bis er über die Stromzuführung 46 in entgegengesetzter Richtung abgeleitet wird. Die Lichtbogenlaufschiene 38 ist hierbei insbesondere mittig aus der Stromzuführung 46 ausgeschnitten, um im Übergangsbereich einen möglichst symmetrischen Stromfluss zu gewährleisten.
  • Mit Rücksicht auf die elektrodynamische Wechselwirkung des Strompfades ist auch das Magnetjoch 40, in das die Laufschiene 36 integriert ist, nicht kreisförmig um die Magnetspule 74 herum geschlossen. Vielmehr ist das Magnetjoch 40 an einer dem Magnetanker 78 zugewandten Unterseite durch einen engen Luftspalt 100 (Fig. 4) unterbrochen. Der Luftspalt 100 ist hierbei derart bemessen, dass er den Magnetfluss innerhalb des Magnetjochs 74 nicht signifikant beeinträchtigt, aber einen Stromfluss über die Spaltstrecke hinweg wirksam unterbindet. Es wird vielmehr innerhalb des Magnetjochs 40 stets ein Richtung des Festkontakts 22 und der Lichtbogenlaufschiene 36 gerichteter Strompfad erzwungen. Die Richtung des Strompfades wird im Rahmen dieser Beschreibung unabhängig von der tatsächlichen Stromflussrichtung als ausgehend von dem Einspeiseanschluss 86 bzw. Koppelkontakt 88 und ausgerichtet auf den Lastanschluss 90 angegeben.
  • Insgesamt bleiben die geometrische Charakteristik des Stromflusses innerhalb des Schutzschalters 2 und die hierdurch hervorgerufene Induktionswirkung, über den gesamten Auslösevorgang bis zum Erlöschen des Lichtbogens erhalten.
  • Unter der Induktionswirkung sowie insbesondere aufgrund des gebündelten Magnetfeldes des Permanentmagneten 58 löst sich der Lichtbogen spätestens nach dem Anschlagen des Kontakthebels 66 an der Anschlagfläche 98 von den Kontakten 22 und 24 ab und geht auf die angrenzenden Lichtbogenlaufschienen 26 und 38 über. Dieser Vorgang wird als Kommutierung bezeichnet. Der Lichtbogen wandert anschließend, eingeschlossen von den Seitenwänden 52 und Formteilen 54 oder den Formmagneten 54', weiterhin unter dem Einfluss der elektrodynamischen Kräfte, entlang der Lichtbogenlaufschienen 36 und 38 in dem zwischen diesen gebildeten Lichtbogenlaufraum der Vorkammer 34 auf einen Einlass 102 der Löschkammer 30 zu.
  • Über den Einlass 102 tritt der Lichtbogen in die Löschkammer 30 ein und wird durch die Löschbleche 32 in eine Anzahl von Teillichtbögen aufgeteilt. Die Löschbleche 32 begünstigen die Löschung des Lichtbogens in an sich bekannter Weise, indem die über die gesamte Lichtbogenstrecke abfallende Gesamtspannung vervielfacht und der Lichtbogen abgekühlt wird.
  • Die Erfindung ist nicht auf die vorstehend beschriebenen Ausführungsbeispiele beschränkt. Vielmehr können auch andere Varianten der Erfindung von dem Fachmann hieraus abgeleitet werden, ohne den Gegenstand der Erfindung zu verlassen.
  • Bezugszeichenliste
  • 2
    Schutzschalter
    4, 4'
    Schalteinheit
    6
    Schaltgehäuse
    8
    Frontseite
    10
    Mittelteil
    12
    Schwenkhebel
    14
    Handbetätigungsmechanik
    16
    Rückseite
    18
    Rastnut
    20
    Stirnseite
    22
    Festkontakt
    24
    Bewegkontakt
    26
    Schaltarm
    28
    Löscheinrichtung
    30
    Löschkammer
    32
    Löschblech
    34
    Vorkammer
    36, 38
    Lichtbogenlaufschiene
    40
    Magnetjoch
    42
    Kurzschlussauslöser
    44
    Auslösemechanik
    46
    Stromzuführung
    48
    Bimetallstreifen
    50
    Überlastauslöser
    52
    Seitenwand
    54
    Formteil
    54'
    Formmagnet
    56
    Isolierung
    58
    Permanentmagnet
    60
    Krümmung/Biegung
    62
    Koppelstange
    64
    Torsionsfeder
    66
    Kontakthebel
    68
    Klinkenhebel
    70
    Zugefeder
    72
    Auslöseschieber
    74
    Magnetspule
    76
    Magnetkern
    78
    Magnetanker
    80
    Drehachse
    82
    Drehgelenk
    84
    Langloch
    86
    Einspeiseanschluss
    88
    Koppelkontakt
    90
    Lastanschluss
    92, 94
    Stromschiene
    96
    Litzenverbindung
    98
    Anschlagfläche
    100
    Luftspalt
    102
    Einlass

Claims (7)

  1. Schutzschalter (2) mit einer Schalteinheit (4, 4') zur Unterbrechung eines Stromkreises, aufweisend
    - einen stationären Festkontakt (22) und einen Bewegkontakt (24), welcher relativ zum Festkontakt (22) bewegbar und aus einer Schließstellung in eine Offenstellung überführbar ist, sowie
    - eine Löscheinrichtung (28) zum Verlöschen eines beim Öffnen der Kontakte (22, 24) entstehenden Lichtbogens, mit einer Vorkammer (34) zur Führung des Lichtbogens von den Kontakten (22, 24) zu einer Löschkammer (30), wobei die Vorkammer (34) zwei isolierende Seitenwände (52) und ein dazwischen einsitzendes Paar von Lichtbogenlaufschienen (36, 38) aufweist,
    - wobei eine der Lichtbogenlaufschiene (36), an den Festkontakt (22) herangeführt ist,
    - wobei diese Lichtbogenlaufschiene (36) vom Festkontakt (22) zur Löschkammer (30) hin einen gekrümmten oder gebogenen Verlauf aufweist, und
    - wobei die Lichtbogenlaufschiene (36) den Festkontakt (22) mit einer ersten Seitenwand (40) der Löschkammer (30) verbindet, und ausgehend vom Festkontakt (22) einen konvexen Verlauf aufweist,
    dadurch gekennzeichnet,
    - dass an den Seitenwänden (52) jeweils ein ferromagnetisches Formteil (54) angeordnet ist oder dass an den Seitenwänden (52) jeweils ein Formmagnet (54') angeordnet ist, deren gemeinsames Magnetfeld den Lichtbogen entlang der Lichtbogenlaufschiene (36) führt,
    - dass im Bereich des Festkontakts (22) ein Permanentmagnet (58) angeordnet ist, dessen Magnetfeld den Lichtbogen entlang der Lichtbogenlaufschiene (36) führt,
    - dass der Permanentmagnet (58) radial innenseitig der Biegung oder Krümmung (60) der Lichtbogenlaufschiene (36) angeordnet ist, und
    - dass das resultierende Magnetfeld des Permanentmagneten (58) und der Formteile (54) oder Formmagnete (54') im Bereich des Festkontakts (22) gebündelt ist.
  2. Schutzschalter (2) nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die Seitenwand (40) durch ein Magnetjoch eines Kurzschlussauslösers (42) gebildet ist.
  3. Schutzschalter (2) nach Anspruch 1 oder 2,
    dadurch gekennzeichnet,
    dass die ferromagnetischen Formteile (54) oder die Formmagnete (54') an den zur Löschkammer (30) orientierten Stirnseiten jeweils eine elektrische Isolierung (56) aufweisen.
  4. Schutzschalter (2) nach Anspruch 3,
    dadurch gekennzeichnet,
    dass die Formteile (54) oder die Formmagnete (54') als Einlegteile mit der Isolierung (56) im Bereich der Stirnseiten umspritzt sind.
  5. Schutzschalter (2) nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet,
    dass die Löschkammer (30) als Deionkammer mit einem Lichtbogenlöschpaket ausgeführt ist.
  6. Schutzschalter (2) nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet,
    dass der Bewegkontakt (24) der Schalteinheit (4, 4') an einem verschwenkbaren Schaltarm (26) angeordnet ist, welcher mit einer Handbetätigungsmechanik (14) zur manuellen Verstellung des Schaltarms (26) zwischen der Offenstellung und der Schließstellung, und mit einer Auslösemechanik (44) zur automatischen Rückführung des Schaltarms (26) in die Offenstellung bei einem Eintritt einer Auslösebedingung gekoppelt ist.
  7. Schutzschalter (2) nach Anspruch 6,
    dadurch gekennzeichnet,
    dass die Schalteinheit (4, 4') und die Auslösemechanik (44) sowie die Handbetätigungsmechanik (14) zumindest teilweise in einem gemeinsamen Schaltgehäuse (6) aufgenommen sind.
EP19709715.7A 2018-03-16 2019-03-08 Schutzschalter zur trennung eines stromkreises Active EP3766090B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018204104.0A DE102018204104A1 (de) 2018-03-16 2018-03-16 Schalteinheit zur Trennung eines Stromkreises und Schutzschalter
PCT/EP2019/055812 WO2019175042A1 (de) 2018-03-16 2019-03-08 Schutzschalter zur trennung eines stromkreises

Publications (2)

Publication Number Publication Date
EP3766090A1 EP3766090A1 (de) 2021-01-20
EP3766090B1 true EP3766090B1 (de) 2023-05-03

Family

ID=65718022

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19709715.7A Active EP3766090B1 (de) 2018-03-16 2019-03-08 Schutzschalter zur trennung eines stromkreises

Country Status (11)

Country Link
US (1) US20200411259A1 (de)
EP (1) EP3766090B1 (de)
JP (1) JP2021518632A (de)
KR (1) KR20200128574A (de)
CN (1) CN112219253A (de)
CA (1) CA3094003A1 (de)
DE (1) DE102018204104A1 (de)
ES (1) ES2947094T3 (de)
HU (1) HUE062383T2 (de)
PL (1) PL3766090T3 (de)
WO (1) WO2019175042A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD901400S1 (en) * 2017-03-07 2020-11-10 Phoenix Contact Gmbh & Co. Kg Electrical connector
USD952572S1 (en) * 2020-02-05 2022-05-24 Dehn Se Surge protection device
DE102020127201B3 (de) 2020-10-15 2022-03-17 WST Präzisionstechnik GmbH Vorrichtung zum Be- und Entladen sowie zum Bedienen eines Maschinenschraubstocks
FR3123143A1 (fr) * 2021-05-21 2022-11-25 Socomec Module de coupure électrique équipé d’un dispositif de soufflage magnétique et appareil de coupure électrique comportant un tel module

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3369095A (en) * 1964-01-29 1968-02-13 Maggi Ernesto Arc-extinguishing chambers for alternating current utilizing permanent magnets
DE3466318D1 (en) * 1983-10-15 1987-10-22 Licentia Gmbh Quenching device for an automatic circuit breaker
US5004874A (en) * 1989-11-13 1991-04-02 Eaton Corporation Direct current switching apparatus
DE29620519U1 (de) * 1996-11-25 1997-02-06 Heinrich Kopp Ag, 63796 Kahl Kontaktanordnung für Fehlerstromschutzschalter
DE10117346B4 (de) * 2001-04-06 2004-05-06 Siemens Ag Schutzschalter mit einer Löscheinrichtung
DE102006027140A1 (de) 2006-06-12 2007-12-13 Ellenberger & Poensgen Gmbh Schutzschalter
DE102007025537A1 (de) * 2007-05-31 2008-12-04 Abb Ag Elektrisches Installationsschaltgerät mit einer Lichtbogenblaseinrichtung
DE102007053636B3 (de) * 2007-11-08 2009-04-09 Abb Ag Elektrisches Installationsgerät mit Lichtbogen-Vorkammerraum, Vorkammerplatten und strombegrenzender Lichtbogenlöscheinrichtung
DE102007054958A1 (de) * 2007-11-17 2009-06-04 Moeller Gmbh Schaltgerät für Gleichstrom-Anwendungen
CN101866788A (zh) * 2009-04-14 2010-10-20 上海良信电器股份有限公司 一种改善熄弧效果的直流断路器
DE102011002714B4 (de) * 2011-01-14 2021-01-14 Siemens Aktiengesellschaft Schutzschaltgerät
DE102011112714B4 (de) * 2011-09-07 2015-01-22 Audi Ag Vorrichtung zur Reduzierung von Schwingungen an einer Radaufhängung
EP2590192A1 (de) * 2011-11-02 2013-05-08 Eaton Industries GmbH Schalter für einen mehrpoligen Gleichstrombetrieb
US8847096B2 (en) * 2012-09-05 2014-09-30 Eaton Corporation Single direct current arc chute, and bi-directional direct current electrical switching apparatus employing the same
DE102014002902B4 (de) * 2014-02-27 2019-08-01 Schaltbau Gmbh Löschkammer für ein Schütz und ein Schütz zum Löschen von Lichtbögen

Also Published As

Publication number Publication date
EP3766090A1 (de) 2021-01-20
CN112219253A (zh) 2021-01-12
DE102018204104A1 (de) 2019-09-19
HUE062383T2 (hu) 2023-10-28
JP2021518632A (ja) 2021-08-02
WO2019175042A1 (de) 2019-09-19
ES2947094T3 (es) 2023-08-01
CA3094003A1 (en) 2019-09-19
PL3766090T3 (pl) 2023-09-11
US20200411259A1 (en) 2020-12-31
KR20200128574A (ko) 2020-11-13

Similar Documents

Publication Publication Date Title
EP3766090B1 (de) Schutzschalter zur trennung eines stromkreises
EP1998350B1 (de) Elektrisches Installationsschaltgerät mit einer Lichtbogenblaseinrichtung
EP1693869A2 (de) Elektrisches Installationsgerät mit Lichtbogen-Vorkammerraum, Vorkammerplatten und strombegrenzender Lichtbogenlöscheinrichtung
DE69701902T2 (de) Elektrischer Schaltapparat mit Löschvorrichtung
EP2980822A1 (de) Schutzschaltgerät und magnetjoch
DE102012212236A1 (de) Schutzschaltgerät und Magnetjoch
EP1145265B1 (de) Strombegrenzende kontaktanordnung
EP1683173B1 (de) Lichtbogen-löschvorrichtung
EP1548773A1 (de) Lichtbogenlöscheinrichtung für Schutzschalter mit Doppelunterbrechung
DE19915397A1 (de) Leitungsschutzschalter
EP3428942A1 (de) Gleichstrom-lichtbogenlöschvorrichtung und elektromechanisches gleichstrom-schaltgerät
DE102011002714B4 (de) Schutzschaltgerät
DE102017204942B4 (de) Elektromechanisches Schutzschaltgerät
EP1548772A1 (de) Lichtbogenlöscheinrichtung für Schutzschalter mit Doppelunterbrechung
EP1722384B1 (de) Elektrisches Installationsgerät mit Lichtbogen-Vorkammerraum, Vorkammerplatten und strombegrenzender Lichtbogenlöscheinrichtung
EP2541574B1 (de) Doppeltunterbrechendes Schutzschaltgerät
DE102012005031A1 (de) Installationsschaltgerät
DE102005007303B4 (de) Elektrisches Installationsgerät mit Lichtbogen-Vorkammerraum, Lichtbogenleitschienen und strombegrenzender Lichtbogenlöscheinrichtung
DE2138381C3 (de) Schutzschalter, insbesondere Leitungsschutzschalter
DE102017202818A1 (de) Slot-motor-konfiguration für einen mehrfinger-leistungsschalter für hohe amperezahlen
DE3803849C1 (en) High-power switching path for protective switching devices
WO2002075764A1 (de) Joch mit einstückigem festkontaktträger
DE102014002161B4 (de) Schaltkammerbaugruppe mit Festkontaktträger und mehrpoliges Installationsschaltgerätmit einer derartigen Schaltkammerbaugruppe
DE102015217694A1 (de) Lichtbogen-Löschvorrichtung und Schutzschaltgerät
DE102016213073A1 (de) Schaltsystem

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200827

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20221031

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019007618

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1565376

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230515

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2947094

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20230801

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20230503

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 41985

Country of ref document: SK

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E062383

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230903

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019007618

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20240206

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240320

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240318

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20240312

Year of fee payment: 6

Ref country code: CZ

Payment date: 20240226

Year of fee payment: 6

Ref country code: GB

Payment date: 20240322

Year of fee payment: 6

Ref country code: SK

Payment date: 20240301

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240227

Year of fee payment: 6

Ref country code: SE

Payment date: 20240321

Year of fee payment: 6

Ref country code: PL

Payment date: 20240223

Year of fee payment: 6

Ref country code: NO

Payment date: 20240321

Year of fee payment: 6

Ref country code: IT

Payment date: 20240329

Year of fee payment: 6

Ref country code: FR

Payment date: 20240320

Year of fee payment: 6

Ref country code: BE

Payment date: 20240320

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240424

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240401

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240417

Year of fee payment: 6