EP3755939A2 - System for storing and transporting a cryogenic fluid on a ship - Google Patents

System for storing and transporting a cryogenic fluid on a ship

Info

Publication number
EP3755939A2
EP3755939A2 EP19710045.6A EP19710045A EP3755939A2 EP 3755939 A2 EP3755939 A2 EP 3755939A2 EP 19710045 A EP19710045 A EP 19710045A EP 3755939 A2 EP3755939 A2 EP 3755939A2
Authority
EP
European Patent Office
Prior art keywords
pipe
vessel
ship
primary
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19710045.6A
Other languages
German (de)
French (fr)
Inventor
Sébastien COROT
Sébastien DELANOE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gaztransport et Technigaz SA
Original Assignee
Gaztransport et Technigaz SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaztransport et Technigaz SA filed Critical Gaztransport et Technigaz SA
Publication of EP3755939A2 publication Critical patent/EP3755939A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/24Arrangement of ship-based loading or unloading equipment for cargo or passengers of pipe-lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/004Details of vessels or of the filling or discharging of vessels for large storage vessels not under pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/30Arrangement of ship-based loading or unloading equipment for transfer at sea between ships or between ships and off-shore structures
    • B63B27/34Arrangement of ship-based loading or unloading equipment for transfer at sea between ships or between ships and off-shore structures using pipe-lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B3/00Hulls characterised by their structure or component parts
    • B63B3/14Hull parts
    • B63B3/48Decks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B73/00Building or assembling vessels or marine structures, e.g. hulls or offshore platforms
    • B63B73/40Building or assembling vessels or marine structures, e.g. hulls or offshore platforms characterised by joining methods
    • B63B73/43Welding, e.g. laser welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/08Mounting arrangements for vessels
    • F17C13/082Mounting arrangements for vessels for large sea-borne storage vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/025Bulk storage in barges or on ships
    • F17C3/027Wallpanels for so-called membrane tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B2231/00Material used for some parts or elements, or for particular purposes
    • B63B2231/02Metallic materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0157Polygonal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/03Orientation
    • F17C2201/037Orientation with sloping main axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0358Thermal insulations by solid means in form of panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0639Steels
    • F17C2203/0643Stainless steels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • F17C2205/0332Safety valves or pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0352Pipes
    • F17C2205/0364Pipes flexible or articulated, e.g. a hose
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/04Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by other properties of handled fluid before transfer
    • F17C2223/042Localisation of the removal point
    • F17C2223/043Localisation of the removal point in the gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0135Pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/0626Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • F17C2270/0107Wall panels

Definitions

  • the invention relates to the field of storage and transport facilities for a cryogenic fluid on board ships and comprising one or more sealed tanks and thermally insulating membranes.
  • the vessel (s) may be for carrying cryogenic fluid or for receiving cryogenic fluid as a fuel for the propulsion of the vessel.
  • Liquefied natural gas transport vessels have a plurality of tanks for storing the cargo.
  • the liquefied natural gas is stored in these tanks, at atmospheric pressure, at about -162 ° C and is thus in a state of two-phase liquid-vapor equilibrium so that the heat flow exerted through the walls of the tanks tends to cause evaporation of liquefied natural gas.
  • each tank is associated with a sealed pipe for evacuation of the vapor produced by evaporation of the liquefied natural gas.
  • a sealed pipe for steam evacuation is described in particular in WO2013093261, for example.
  • the pipe passes through a wall of the tank and opens into the upper part of the internal space of the tank and thus defines a passage of steam between the interior of the tank and a steam collector arranged outside the tank.
  • the vapor thus collected can then be passed to a re-liquefaction plant to then reintroduce the fluid in the tank, to a power generation equipment or to a degassing mast provided on the deck of the vessel.
  • An idea underlying the invention is to provide a solution for penetrating a sealed pipe through the wall of a membrane vessel, which is relatively simple and resistant to temperature variations between room temperature and the temperature of storage of the cryogenic fluid.
  • Another idea underlying the invention is to propose a solution that is resistant to deformations of the ship during the sea transport, in particular to the bending of the beam vessel
  • Another idea underlying the invention is to provide a solution that easily adapts to existing storage tank structures.
  • Another idea underlying the invention is to propose an installation for storing and transporting a cryogenic fluid on board a ship which makes it possible to reduce the risks that such isolated vapor phase gas pockets can not form at all. inside a tank without being able to be evacuated.
  • the invention provides an installation for storing and transporting a cryogenic fluid onboard a ship, the installation comprising:
  • a sealed and thermally insulating tank for storing the cryogenic fluid in a diphasic liquid-vapor equilibrium state
  • the tank having a ceiling wall comprising, in the direction of a thickness of the wall, from the outside towards the inside; a primary heat-insulating barrier and a primary sealing membrane for contact with the cryogenic fluid; a leaktight pipe penetrating through the ceiling wall of the tank so as to define a passage for discharging the vapor phase of the cryogenic fluid from the inside to the outside of the tank, the pipe comprising a lower portion, one of which first end is located inside the ceiling wall of the tank and a second end is located outside the ceiling wall of the tank in a thickness direction of the ceiling wall, and a top portion attached to the second end of the lower portion;
  • the lower portion is composed of an alloy with a low coefficient of thermal expansion
  • the sealed pipe penetrating through the wall makes it possible to reduce the risks that such insulated vapor phase gas pockets are formed inside a tank by defining an evacuation passage.
  • the lower portion of the pipe that is in contact with the cryogenic fluid is in a low thermal expansion coefficient material which ensures that the pipe is resistant to temperature variations between the ambient temperature and the storage temperature. cryogenic fluid avoiding that it is deformed.
  • such an installation may have one or more of the following characteristics.
  • the conduit passes through the ceiling wall at one end of the ceiling wall.
  • the conduit is a first conduit and the storage facility includes a second conduit similar to the first conduit, the second conduit passing through the ceiling wall at an opposite end of the end through which the first conduit passes.
  • the storage facility comprises a gas dome located in the center of the ceiling wall.
  • the first end of the lower portion of the pipe is a collection end opening inside the tank for collect a vapor phase of the liquefied gas.
  • a pipe for collecting the vapor phase in the tank may be provided with a relatively small diameter, for example less than 100 mm.
  • the second end of the upper portion of the sealed pipe is connected to a gas dome of the tank and / or to a main gas manifold and / or pressure relief valves of the tank.
  • the lower portion of the pipe and the primary waterproofing membrane are composed of an iron-nickel alloy whose thermal expansion coefficient is between 1, 2 and 2.0 ⁇ 10 -6 K 1 , or an iron alloy with a high manganese content whose expansion coefficient is typically of the order of 7.10 6 K 1
  • the lower portion is composed of an iron-nickel alloy with 36% Ni by weight.
  • the upper portion is made of stainless steel.
  • the upper portion has a greater thickness than the lower portion.
  • the lower portion is sealed to the primary waterproofing membrane by means of a flanged ring.
  • the ceiling wall of the tank further comprises, in the direction of the thickness of the wall outside the primary heat-insulating barrier, a secondary heat-insulating barrier and a secondary sealing membrane.
  • the thermal insulation and the tightness of the storage tank is ensured by two layers of primary and secondary waterproofing membranes, as well as two layers of thermally insulating barriers, primary and secondary, which allows
  • the primary and secondary membranes are composed of an iron-nickel alloy with 36% Ni by weight, the coefficient of thermal expansion of which is between 1.2 and 2.0 ⁇ 10 6 K 1 or an iron alloy with a high manganese content whose expansion coefficient is typically of the order of 7 ⁇ 10 6 K 1
  • the primary thermally insulating barrier and the secondary thermally insulating barrier each consist of a plurality of insulating boxes, the conduit passing right through one of the boxes of the plurality of boxes of each of the thermally protected barriers. primary and secondary insulators.
  • the pipe passes through a box in a central zone of the box.
  • a box of the plurality of boxes is composed of plywood plates forming a grid, the box being filled inside the grid of expanded perlite or glass wool or other insulating material.
  • the primary waterproofing membrane and / or the secondary waterproofing membrane comprise a plurality of elongate strakes with raised edges welded edge to edge in the longitudinal direction of the strake, each strake comprising a flat zone between two longitudinal raised edges, the pipe passing through the primary sealing member and / or the secondary sealing membrane by the flat area of an elongated strake.
  • the strake of the primary waterproofing membrane and / or the secondary sealing membrane traversed by the pipe comprises a reinforced portion, the reinforced portion having a thickness greater than the rest of the strake and comprising a zone plane between two longitudinal raised edges, the pipe passing through the reinforced portion.
  • the reinforced portion stiffens and reinforces the junction between the primary or secondary sealing membrane and the sealed pipe or sheath respectively.
  • the reinforced portion stiffens and reinforces the junction between the primary or secondary sealing membrane and the sealed pipe or sheath respectively.
  • the reinforced portion has a thickness greater than or equal to 1 mm, for example of 1.5 mm.
  • the sealed pipe passes through the reinforced portion of the primary waterproofing membrane and / or the secondary waterproofing membrane by the flat zone of the reinforced portion.
  • the pipe passes through the reinforced portion in an area where it is easier to make a tight connection between the pipe and the strake. In addition, it also avoids having to interrupt the raised edges of the strakes with the sealed pipe.
  • the installation comprises a sheath surrounding the pipe with a spacing in a radial direction and fixed to the upper portion of the pipe, the sheath extending from the upper portion at least to the membrane of the pipe. secondary sealing, and the secondary sealing membrane being sealed to the sheath all around the sheath.
  • the attachment of the secondary waterproofing membrane is made on a sheath surrounding the pipe, the sheath being itself fixed to the upper portion which allows for a double wall throughout the lower portion of the pipe thus avoiding that in case of rupture of the pipe the cryogenic fluid does not spread out of the storage tank.
  • the sheath thus plays the role of continuity of the secondary sealing membrane.
  • the attachment of the sheath on the upper portion of the pipe facilitates maintenance operations.
  • the radial spacing between the sheath and the pipe makes it possible to take into account the greater deformation of the sheath due to its greater flexibility with respect to the pipe.
  • the sheath extends from the upper portion at least to the secondary sealing membrane and beyond.
  • the secondary sealing membrane is sealed to the sheath all around the sheath.
  • a filling of insulating material is arranged between the sheath and the sealed pipe.
  • the sheath is welded to the secondary sealing membrane by means of a collar ring.
  • the ring or rings have a thickness greater than the strakes.
  • the collar ring has a thickness of between 1 and 2 mm, preferably 1.5 mm.
  • the collar ring stiffens and reinforces the junction between the primary or secondary sealing membrane and the pipe or sheath respectively.
  • the flange ring is composed of a base, preferably annular and flat, and a flange projecting from the base.
  • the base may have a thickness greater than the strakes, preferably a thickness of between 1 and 2 mm, preferably of 1.5 mm.
  • the flange may have a thickness greater than the strakes, preferably a thickness of between 1 and 2 mm, preferably of 1.5 mm.
  • the sheath is composed of an iron-nickel alloy with 36% Ni by weight, the coefficient of thermal expansion of which is between 1.2 and 2.0 ⁇ 10 -6 K 1 , or of an iron alloy with a high manganese content whose expansion coefficient is typically of the order of 7.10 6 K 1
  • the invention provides a vessel comprising an installation according to the invention, the ceiling wall being attached to a lower surface of an intermediate bridge of the ship.
  • the pipe comprises an accordion compensator on one end of the upper portion remote from the lower portion, the compensator being configured to secure the pipe to a surface upper deck of the ship, the compensator having corrugations configured to allow the thermal contraction of the pipe.
  • the accordion compensator allows the pipe, including the upper portion, to have at its attachment a set of connection allowing it to shrink / expand thermally without risk of rupture of the pipe or the link .
  • the accordion compensator is made of stainless steel.
  • the pipe comprises an insulating sleeve surrounding a portion of the upper portion of the pipe and located between the intermediate bridge of the ship and a top deck of a ship.
  • the insulating sleeve thermally isolates a portion of the upper portion so that the low temperatures of the cryogenic fluid do not propagate in the steerage that may damage equipment located there.
  • the intermediate bridge and the upper bridge comprise an orifice, the orifice having a diameter greater than an outer diameter of the upper portion of the pipe, the pipe passing through the intermediate bridge and the upper bridge through the orifice. intermediate bridge and the upper deck opening respectively.
  • the pipe and the upper bridge opening and the intermediate bridge opening which provides a mounting clearance between the pipe and the two bridges.
  • the mounting clearance facilitates assembly and allows bridges to be deformed without damaging the pipe.
  • the intermediate bridge comprises a coaming on an upper surface of the intermediate bridge, the coaming surrounding the intermediate bridge port and being traversed by the pipe, and wherein the pipe is fixed to the coaming.
  • the coaming allows to deport the fixing of the pipe to the intermediate bridge which provides flexibility to the fixing. This attachment offset allows the pipe to better withstand the deformations of the intermediate bridge by avoiding that the pipe is damaged.
  • the pipe is welded tightly around the coaming.
  • the coaming comprises an upper portion and a lateral portion connecting the upper portion to the intermediate bridge, the fixing of the pipe being in the upper part of the coaming.
  • the coaming is composed of a metal including stainless steel.
  • the invention provides a method for loading or unloading a ship according to the invention, in which a cryogenic fluid is conveyed through isolated pipes from or to a floating or land storage facility to or from a tank of the ship.
  • the invention provides a transfer system for a cryogenic fluid, the system comprising a vessel according to the invention, insulated ducts arranged to connect the vessel installed in the double hull of the vessel to an installation of floating or ground storage and a pump for driving a flow of cryogenic fluid through the insulated pipelines from or to the floating or land storage facility to or from the vessel vessel.
  • FIG. 1 is a cutaway schematic representation of a vessel comprising a cryogenic fluid storage tank
  • FIG. 2 is a partial schematic representation of an installation for storing and transporting a cryogenic fluid onboard a ship.
  • FIG. 3 is an enlarged view of detail III of the storage facility of FIG. 2.
  • FIG. 4 is an enlarged view of detail IV of the storage facility of FIG. 2.
  • FIG. 5 is an exploded view of a tank wall, in particular of the secondary thermally insulating barrier and of the secondary sealing membrane;
  • FIG. 6 is an exploded view of a vessel wall, in particular of the primary heat-insulating barrier and the primary sealing membrane.
  • FIG. 7 is a schematic sectional view of an inclined cryogenic fluid storage tank.
  • FIG. 8 is a schematic cutaway representation of a vessel comprising a cryogenic fluid storage tank and a loading / unloading terminal of this vessel.
  • FIG. 1 a vessel 1 equipped with a cryogenic fluid storage and transport facility, including liquefied natural gas, which comprises a plurality of sealed and thermally insulating tanks 2.
  • a cryogenic fluid storage and transport facility including liquefied natural gas, which comprises a plurality of sealed and thermally insulating tanks 2.
  • Each tank 2 is associated with a degassing mast 4 which is provided on an upper deck 9 of the vessel 1 and allowing the escape of the gas in the vapor phase during an overpressure inside the associated tank 2.
  • a machine compartment 3 which conventionally comprises a steam turbine with mixed feed capable of operating either by combustion of diesel fuel or by combustion of evaporation gas from the tanks 2.
  • the tanks 2 have a longitudinal dimension extending along the longitudinal direction of the ship 1. Each tank 2 is lined at each of its longitudinal ends by a pair of transverse partitions 5 delimiting a sealed spacer space, known as "cofferdam" 6.
  • the tanks are thus separated from each other by a transverse cofferdam 6. It is thus observed that the tanks 2 are each formed inside a supporting structure which is constituted, on the one hand, by the double hull 7 of the vessel 1 1 and, on the other hand, by one of the transverse partitions. 5 of each of the cofferdams 6 bordering the tank 2.
  • FIG. 2 schematically represents a pipe 14 making it possible to define a passage for discharging the vapor phase of the cryogenic fluid from the inside to the outside of the tank 2, the pipe 14 passing successively through the tank 2, the intermediate bridge 8 of the ship 1 and the upper deck 9 of the ship 1.
  • the sealed and thermally insulating tank 2 has a ceiling wall attached to the intermediate bridge 8, the wall comprising in the direction of a thickness of the wall from the outside to the inside of the tank 2: a secondary heat-insulating barrier 13 , a secondary sealing membrane 12, a primary heat-insulating barrier 11 and a primary sealing membrane 10.
  • the pipe 14 is formed of a lower portion 15 and an upper portion 16.
  • the lower portion 15 is formed from an alloy of iron and nickel whose expansion coefficient is typically between 1, 2 ⁇ 10 6 and 2.10 -6 K 1 , or in an iron alloy with a high manganese content whose expansion coefficient is typically of the order of 7.10 6 K 1 , ie a low coefficient of thermal expansion.
  • the lower portion 15 has a first end located inside the tank 2 and a second end located outside the tank 2.
  • the upper portion 16 is formed from stainless steel and is welded at a first end to the second end of the lower portion 15 of in order to create a continuity of the pipe 14.
  • the second end of the upper portion 16 is connected to a channel of the ship 1.
  • the upper portion 16 has a greater wall thickness than the lower portion 15.
  • the lower portion 15 of the pipe 14 passes firstly through the primary waterproofing membrane 10 and the primary heat-insulating barrier 1 1.
  • the primary waterproofing membrane 10 is welded all around the lower portion 15 of the sealed way to guarantee the continuity of the tightness of the primary waterproofing membrane 10.
  • a sheath 21 surrounds the pipe 14 with a spacing in a radial direction and fixed to the upper portion 16 of the pipe 14.
  • the sheath extends from the upper portion 16 at least as far as the secondary sealing membrane 12.
  • secondary sealing membrane 12 is welded around the sheath 21 in a sealed manner to ensure the continuity of the sealing of the secondary sealing membrane 12.
  • the pipe 14 therefore passes through the secondary sealing membrane 12 and the heat barrier secondary insulation 13 through the sheath 21.
  • the lower portion 15 is thus welded to the upper portion 16 inside the sheath 21, so that the sheath 21 ensures the sealing and sealing of the secondary membrane in case of rupture of the lower portion 15, by example at the welding.
  • the lower portion 15 therefore acts as part of the primary sealing membrane 10 while the sheath 21 acts as part of the secondary sealing membrane 12.
  • the lower portion 15 therefore acts as part of the primary sealing membrane 10 while the sheath 21 acts as part of the secondary sealing membrane 12.
  • the pipe 14 then passes through the intermediate bridge 8 of the ship 1 at an intermediate bridge orifice 27.
  • the intermediate bridge orifice 27 has a diameter greater than the outside diameter of the sheath 21 so that there is a connecting clearance allowing the intermediate bridge 8 to deform without causing deformation of the sheath 21 and the pipe 14.
  • the intermediate bridge 8 comprises on its upper surface a coaming 22.
  • the coaming 22 comprises an upper portion 23 and a lateral portion 24 connecting the upper portion 23 of the intermediate bridge 8.
  • the upper portion 16 of the pipe 14 passes through the upper part 23 of the coaming 22.
  • the upper portion 16 of the pipe 14 is welded all around the upper part 23 of the coaming 22 so waterproof.
  • the conduit 14 then passes through the space between the intermediate bridge 8 and the upper deck 9 called steerage where the pipe is coated with an insulating sleeve 26 so that the low temperatures of the cryogenic gas contained in the pipe 14 do not cause a leak high thermal in the tween.
  • the pipe 14 finally crosses the upper deck 9 of the ship 1 at an upper deck opening 28.
  • the upper deck opening 28 has a diameter greater than the outside diameter of the pipe 14 so that there is a connecting set allowing the upper bridge 9 to deform without causing deformation of the pipe 14.
  • the pipe 14 comprises an accordion compensator 25 on the second end of the upper portion 16 remote from the lower portion 15.
  • the compensator ensures the attachment of the pipe 14 to an upper surface of the upper deck 9 of the ship 1.
  • the accordion compensator 25 has corrugations configured to allow thermal contraction of the pipe 14 including the upper portion 16 which is stainless steel, a material that has a high coefficient of expansion relative to the alloy of the lower portion 15.
  • Figures 3 and 4 show enlarged details III and IV of Figure 2.
  • FIG. 3 makes it possible to distinguish the fastening of the primary sealing membrane 10 to the pipe 14 and the fixing of the secondary waterproofing membrane 12 to the sheath 21.
  • the fixing of the primary waterproofing membrane 10 to the pipe 14 is made using a collar ring 17 provided with a base and a flange. The flange of the ring 17 is welded to the pipe 14 and the base of the ring 17 is welded to the primary waterproofing membrane 10 which allows a tight fixing.
  • the attachment of the secondary sealing membrane 12 to the sheath 21 is carried out using a collar ring 17 provided with a base and a flange.
  • the flange of the ring 17 is welded to the sheath 21 and the base of the ring 17 is welded to the secondary sealing membrane 12 which allows a sealed fastening.
  • the base of the collar ring 17 may in particular be of flat annular shape comprising an inner diameter and an outer diameter.
  • the flange of the collar ring 17 projects from the inside diameter of the base of the collar ring 17.
  • the base and flange of the collar ring have a thickness of 1.5 mm greater than the thicknesses of the flanges.
  • primary and secondary waterproofing membranes 10, 12 of 0.7 mm.
  • FIG. 4 makes it possible to distinguish the junction between the lower portion 15 and the upper portion 16 of the pipe 14 as well as the fastening of the sheath 21 to the upper portion 16.
  • the welding attachment of the second end of the portion 15 and the first end of the upper portion 16 of the pipe 14 is of equal thickness of the two portions 15, 16 of the pipe 14.
  • the thickness of the first end of the upper portion 16 decreases, by linear example, the thickness of the upper portion 16 to the thickness of the lower portion 15 so as to facilitate the welding of these portions 15, 16 and improve the strength of the fastener.
  • the fixing of the sheath 21 to the upper portion 16 is performed by welding all around the upper portion 16 just after the first end of the upper portion 16 so that the sheath 21 is fixed to the upper portion 16 at a location where its thickness is maximum but also close to the first end of the upper portion 16 to limit as much as possible the length of the sheath 21 where it is not necessary to act as a secondary sealing membrane 12.
  • FIGS. 5 and 6 show schematic views of the primary and secondary sealing membranes 12 as well as the primary and secondary heat-insulating barriers 11 and 13.
  • the sealing membranes 10, 12 and the thermally insulating barriers 11, 13 are carried out according to technology N096 which is described in particular in document WO2012072906 A1.
  • the thermally insulating barriers 11, 13 are for example formed by insulating boxes 18 comprising a bottom panel and a panel parallel covers, spaced in the direction of thickness of the insulating casing 18, the supporting elements 19 extending in the thickness direction, optionally the peripheral walls, and a heat insulating lining housed inside the insulating boxes.
  • the bottom and lid panels, the peripheral partitions and the support elements 19 are for example made of wood, for example plywood or composite thermoplastic material.
  • the heat-insulating lining may consist of glass wool, wadding or polymer foam, such as polyurethane foam, polyethylene foam or polyvinyl chloride foam or granular or powdery material - such as perlite, vermiculite or glass wool - or a nanoporous material of the airgel type.
  • the primary and secondary sealing membranes 12 comprise a continuous sheet of metal strakes with raised edges, said strakes being welded by their raised edges to parallel welding supports held on the insulating housings.
  • the metal strakes 20 are, for example, made of Invar ®: that is to say an alloy of iron and nickel whose expansion coefficient is typically between 1, 2.10 e and 2.10 6 K 1 , or in a high manganese iron alloy whose expansion coefficient is typically of the order of 7.10 6 K 1 .
  • Figures 5 and 6 distinguish where the pipe 14 passes through the sealing membranes 10, 12 and thermally insulating barriers 1 1, 13. Indeed, it is preferable not to weaken the structure of the box 18 to avoid that the pipe 14 does not pass through the caisson on the ends of the caisson 18.
  • the pipe 14 passes through the primary thermally insulating barrier 1 1 and the secondary thermally insulating barrier 13 in a central zone of the caisson 18 between a plurality of support elements 19.
  • the pipe 14 is preferable to prevent the pipe 14 from passing through the sealing membranes. at the level of the raised edges of the strakes 20. Indeed, the area where the edges are raised, is geometrically complex and is already subject to the bonding bonding two adjacent strakes and a support wing. That's why driving 14 crosses the sealing membranes 10, 12 in a flat zone of a strake 20 between two raised edges.
  • the strakes 20 of the primary sealing membrane 10 and the secondary sealing membrane 12 traversed by the pipe 14 comprise a reinforced portion 32 so as to maintain continuity of the primary and secondary sealing membranes.
  • the reinforced portion 32 represents a portion of the strake 20 traversed by the pipe 14.
  • the reinforced portion 32 has a thickness greater than the rest of the strake 20, for example a thickness of 1.5 mm compared to a 0.7 mm thick strake.
  • the reinforced portion 32 comprises a flat area between two longitudinal raised edges.
  • the conduit 14 passes through the reinforced portion 32 of the primary sealing membrane 10 and the reinforced portion 32 of the secondary sealing membrane 12 by the flat area.
  • the sheath 21 passes through the reinforced portion 32 of the secondary sealing membrane 12 also through the flat zone.
  • FIG. 7 represents a sealed and thermally insulating tank 2 filled with liquefied gas and transported by a ship 1, the vessel having fifteen degrees of heel due to, for example, damage.
  • the tank 2 evacuates the liquefied gas which evaporates to avoid generating overpressure inside the tank 2 by a gas dome 29 passing through the wall ceiling of the tank 2 in the center.
  • the gas dome 29 is completely immersed in the liquefied gas and no longer fulfills its role of evacuation of the evaporated liquefied gas.
  • two ducts 14 situated at the ends of the ceiling wall and on either side of the gas dome 29 are placed in the tank 2 passing through the ceiling wall 29.
  • the ducts 14 are then connected to the main gas manifold 30 of the ship 1 which conveys the gas to the engine compartment 3 and / or to a reliquefaction unit.
  • the lines 14 are also connected to pressure valves 31 which open if the pressure is too high, thus redirecting a portion of the gas to the degassing rods 4.
  • the lines 14 are connected to the main gas manifold 30 and the overpressure valves 31 via the gas dome 29 outside the double shell 7.
  • a cutaway view of a LNG vessel 1 shows a sealed and insulated tank 2 of generally prismatic shape mounted in the double hull 7 of the ship 1.
  • loading / unloading lines 40 arranged on the upper deck 9 of the ship 1 can be connected, by means of appropriate connectors, to a marine or port terminal to transfer a cargo of liquefied gas from or to the tank 2.
  • FIG. 8 represents an example of a marine terminal comprising a loading and unloading station 42, an underwater pipe 43 and an onshore installation 44.
  • the loading and unloading station 42 is a fixed off-shore installation comprising an arm mobile 41 and a tower 45 which supports the movable arm 41.
  • the movable arm 41 carries a bundle of insulated flexible pipes 46 that can connect to the loading / unloading pipes 40.
  • the movable arm 41 can be adapted to all gauges LNG carriers .
  • a connecting pipe (not shown) extends inside the tower 45.
  • the loading and unloading station 42 allows the loading and unloading of the LNG carrier 1 from or to the shore installation 44. This includes liquefied gas storage tanks 47 and connecting lines 48 connected by the underwater line 43 to the loading or unloading station 42.
  • the underwater line 43 allows the transfer of the liquefied gas between the loading or unloading station 42 and the onshore installation 44 for a great distance, for example 5 km, which makes it possible to keep the LNG ship 1 at a great distance from the coast during the loading and unloading operations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Optics & Photonics (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

The invention relates to a system for storing and transporting a cryogenic fluid on a ship, said system comprising: a sealed, thermally insulated tank (2) having a ceiling wall which includes, from the outside towards the inside of the tank (2) in the direction of a thickness of the wall, a primary thermally insulating barrier (11) and a primary sealing membrane (10) that is to be inw contact with the cryogenic fluid; a sealed pipe (14) which penetrates the ceiling wall of the tank (2), said pipe (14) having a lower portion (15), a first end of which is located inside the ceiling wall of the tank (2) and a second end of which is located outside the ceiling wall of the tank (2) in a direction of the thickness of the ceiling wall, and an upper portion (16) that is attached to the second end of the lower portion (15); the lower portion (15) is made of an alloy having a low coefficient of thermal expansion, and the primary sealing membrane (10) is attached in a sealed manner to the lower portion (15) of the pipe (14) around the pipe (14).

Description

Installation de stockage et de transport d’un fluide cryogénique embarquée sur un navire  Installation for storing and transporting a cryogenic fluid onboard a ship
Domaine technique  Technical area
L’invention se rapporte au domaine des installations de stockage et de transport d’un fluide cryogénique embarquées sur des navires et comportant une ou plusieurs cuves étanches et thermiquement isolantes à membranes.  The invention relates to the field of storage and transport facilities for a cryogenic fluid on board ships and comprising one or more sealed tanks and thermally insulating membranes.
La ou les cuves peuvent être destinées à transporter du fluide cryogénique ou à recevoir du fluide cryogénique servant de carburant pour la propulsion du navire.  The vessel (s) may be for carrying cryogenic fluid or for receiving cryogenic fluid as a fuel for the propulsion of the vessel.
Arrière-plan technologique  Technological background
Les navires de transport de gaz naturel liquéfié présentent une pluralité de cuves pour le stockage de la cargaison. Le gaz naturel liquéfié est stocké dans ces cuves, à pression atmosphérique, à environ -162°C et se trouve ainsi dans un état d’équilibre diphasique liquide-vapeur de telle sorte que le flux thermique s’exerçant au travers des parois des cuves tend à entraîner une évaporation du gaz naturel liquéfié.  Liquefied natural gas transport vessels have a plurality of tanks for storing the cargo. The liquefied natural gas is stored in these tanks, at atmospheric pressure, at about -162 ° C and is thus in a state of two-phase liquid-vapor equilibrium so that the heat flow exerted through the walls of the tanks tends to cause evaporation of liquefied natural gas.
Afin d’éviter de générer des surpressions à l’intérieur des cuves, chaque cuve est associée à une conduite étanche d’évacuation de la vapeur produite par l’évaporation du gaz naturel liquéfié. Une telle conduite étanche d’évacuation de la vapeur est notamment décrite dans la demande WO2013093261 , par exemple. La conduite traverse une paroi de la cuve et débouche en partie supérieure de l’espace interne de la cuve et définit ainsi un passage de vapeur entre l’espace intérieur de la cuve et un collecteur de vapeur agencé à l’extérieur de la cuve. La vapeur ainsi collectée peut ensuite être transmise vers une installation de re-liquéfaction en vue de réintroduire ensuite le fluide dans la cuve, vers un équipement de production d’énergie ou vers un mât de dégazage prévu sur le pont du navire.  In order to avoid generating overpressure inside the tanks, each tank is associated with a sealed pipe for evacuation of the vapor produced by evaporation of the liquefied natural gas. Such a sealed pipe for steam evacuation is described in particular in WO2013093261, for example. The pipe passes through a wall of the tank and opens into the upper part of the internal space of the tank and thus defines a passage of steam between the interior of the tank and a steam collector arranged outside the tank. The vapor thus collected can then be passed to a re-liquefaction plant to then reintroduce the fluid in the tank, to a power generation equipment or to a degassing mast provided on the deck of the vessel.
Dans certaines conditions d’avarie, lorsque le niveau de remplissage de la cuve est maximum et que le navire est échoué dans une position dans laquelle il présente une inclinaison de gite et/ou une inclinaison d’assiette importante(s), il existe un risque que la conduite d’évacuation de la vapeur débouche dans la phase liquide et ne soit donc plus en contact avec la phase vapeur stocké dans la cuve. Dans de telles circonstances, des poches isolées de gaz en phase vapeur sont susceptibles de se former à l’intérieur des cuves. Or, de telles poches de gaz sont susceptibles d’induire des surpressions qui peuvent endommager les cuves et/ou entraîner une expulsion de la phase liquide vers l’extérieur de la cuve au travers de la conduite d’évacuation de la vapeur précitée. In certain damaged conditions, when the filling level of the tank is maximum and the ship is stranded in a position in which it has a slope of the cottage and / or an important attitude inclination (s), there is a risk that the steam discharge pipe opens into the liquid phase and is therefore no longer in contact with the vapor phase stored in the tank. In In such circumstances, insulated pockets of vapor-phase gas are likely to form inside the tanks. However, such gas pockets are likely to induce overpressures that can damage the tanks and / or cause an expulsion of the liquid phase to the outside of the tank through the evacuation pipe of the aforementioned steam.
Toutefois les conduites étanches d’évacuation de gaz de l’art antérieur présentent de grandes dimensions, sont assez complexes et ne sont pas adaptées aux variations importantes de température.  However, the gas leakproof pipes of the prior art have large dimensions, are quite complex and are not adapted to significant temperature variations.
Résumé  summary
Une idée à la base de l’invention est de proposer une solution pour faire pénétrer une conduite étanche à travers la paroi d’une cuve à membrane, qui soit relativement simple et qui résiste aux variations de température entre la température ambiante et la température de stockage du fluide cryogénique.  An idea underlying the invention is to provide a solution for penetrating a sealed pipe through the wall of a membrane vessel, which is relatively simple and resistant to temperature variations between room temperature and the temperature of storage of the cryogenic fluid.
Une autre idée à la base de l’invention est de proposer une solution qui résiste à des déformations du navire lors du transport en mer, notamment à la flexion de la poutre navire  Another idea underlying the invention is to propose a solution that is resistant to deformations of the ship during the sea transport, in particular to the bending of the beam vessel
Une autre idée à la base de l’invention est de proposer une solution qui s’adapte facilement à des structures de cuve de stockage déjà existantes.  Another idea underlying the invention is to provide a solution that easily adapts to existing storage tank structures.
Une autre idée à la base de l’invention est de proposer une installation de stockage et de transport d’un fluide cryogénique embarquée sur un navire qui permette de diminuer les risques que de telles poches de gaz en phase vapeur isolées ne se forment à l’intérieur d’une cuve sans pouvoir en être évacuées.  Another idea underlying the invention is to propose an installation for storing and transporting a cryogenic fluid on board a ship which makes it possible to reduce the risks that such isolated vapor phase gas pockets can not form at all. inside a tank without being able to be evacuated.
Selon un mode de réalisation, l’invention fournit une installation de stockage et de transport d’un fluide cryogénique embarquée sur un navire, l’installation comportant :  According to one embodiment, the invention provides an installation for storing and transporting a cryogenic fluid onboard a ship, the installation comprising:
- une cuve étanche et thermiquement isolante destinée au stockage du fluide cryogénique dans un état d’équilibre diphasique liquide-vapeur, la cuve présentant une paroi de plafond comportant dans le sens d’une épaisseur de la paroi depuis l’extérieur vers l’intérieur de la cuve une barrière thermiquement isolante primaire et une membrane d’étanchéité primaire destinée à être en contact avec le fluide cryogénique ; - une conduite étanche pénétrant à travers la paroi de plafond de la cuve de sorte à définir un passage d’évacuation de la phase vapeur du fluide cryogénique de l’intérieur vers l’extérieur de la cuve, la conduite comportant une portion inférieure dont une première extrémité est située à l’intérieur de la paroi de plafond de la cuve et une deuxième extrémité est située à l’extérieur de la paroi de plafond de la cuve dans une direction d’épaisseur de la paroi de plafond, et une portion supérieure fixée à la deuxième extrémité de la portion inférieure ; a sealed and thermally insulating tank for storing the cryogenic fluid in a diphasic liquid-vapor equilibrium state, the tank having a ceiling wall comprising, in the direction of a thickness of the wall, from the outside towards the inside; a primary heat-insulating barrier and a primary sealing membrane for contact with the cryogenic fluid; a leaktight pipe penetrating through the ceiling wall of the tank so as to define a passage for discharging the vapor phase of the cryogenic fluid from the inside to the outside of the tank, the pipe comprising a lower portion, one of which first end is located inside the ceiling wall of the tank and a second end is located outside the ceiling wall of the tank in a thickness direction of the ceiling wall, and a top portion attached to the second end of the lower portion;
dans laquelle la portion inférieure est composée d’un alliage à faible coefficient de dilatation thermique, in which the lower portion is composed of an alloy with a low coefficient of thermal expansion,
et dans laquelle la membrane d’étanchéité primaire est fixée de manière étanche à la portion inférieure de la conduite autour de la conduite. and wherein the primary waterproofing membrane is sealingly attached to the lower portion of the pipe around the pipe.
Grâce à ces caractéristiques, la conduite étanche pénétrant à travers la paroi permet de diminuer les risques que de telles poches de gaz en phase vapeur isolées ne se forment à l’intérieur d’une cuve en définissant un passage d’évacuation. De plus, la portion inférieure de la conduite qui est en contact avec le fluide cryogénique est dans un matériau à faible coefficient de dilatation thermique ce qui permet d’assurer que la conduite résiste aux variations de température entre la température ambiante et la température de stockage du fluide cryogénique en évitant qu’elle ne se déforme.  Thanks to these characteristics, the sealed pipe penetrating through the wall makes it possible to reduce the risks that such insulated vapor phase gas pockets are formed inside a tank by defining an evacuation passage. In addition, the lower portion of the pipe that is in contact with the cryogenic fluid is in a low thermal expansion coefficient material which ensures that the pipe is resistant to temperature variations between the ambient temperature and the storage temperature. cryogenic fluid avoiding that it is deformed.
Selon d’autres modes de réalisation avantageux, une telle installation peut présenter une ou plusieurs des caractéristiques suivantes.  According to other advantageous embodiments, such an installation may have one or more of the following characteristics.
Selon un mode de réalisation, la conduite traverse la paroi de plafond à une extrémité de la paroi de plafond.  In one embodiment, the conduit passes through the ceiling wall at one end of the ceiling wall.
Selon un mode de réalisation, la conduite est une première conduite et l’installation de stockage comprend une deuxième conduite similaire à la première conduite, la deuxième conduite traversant la paroi de plafond à une extrémité opposée de l’extrémité où traverse la première conduite.  In one embodiment, the conduit is a first conduit and the storage facility includes a second conduit similar to the first conduit, the second conduit passing through the ceiling wall at an opposite end of the end through which the first conduit passes.
Selon un mode de réalisation, l’installation de stockage comprend un dôme gaz situé au centre de la paroi de plafond.  According to one embodiment, the storage facility comprises a gas dome located in the center of the ceiling wall.
Selon un mode de réalisation, la première extrémité de la portion inférieure de la conduite est une extrémité de collecte débouchant à l’intérieur de la cuve pour collecter une phase vapeur du gaz liquéfié. Une telle conduite pour collecter la phase vapeur dans la cuve peut être prévue avec un diamètre relativement faible, par exemple inférieur à 100 mm. According to one embodiment, the first end of the lower portion of the pipe is a collection end opening inside the tank for collect a vapor phase of the liquefied gas. Such a pipe for collecting the vapor phase in the tank may be provided with a relatively small diameter, for example less than 100 mm.
Selon un mode de réalisation, la deuxième extrémité de la portion supérieure de la conduite étanche est reliée à un dôme gaz de la cuve et/ou à un collecteur principal de gaz et/ou à des vannes de surpression de la cuve.  According to one embodiment, the second end of the upper portion of the sealed pipe is connected to a gas dome of the tank and / or to a main gas manifold and / or pressure relief valves of the tank.
Selon un mode de réalisation, la portion inférieure de la conduite et la membrane d’étanchéité primaire sont composées d’un alliage fer-nickel dont le coefficient de dilatation thermique est compris entre 1 ,2 et 2,0 x 10~6 K 1, ou d’un alliage de fer à forte teneur en manganèse dont le coefficient de dilatation est typiquement de l’ordre de 7.106 K 1 According to one embodiment, the lower portion of the pipe and the primary waterproofing membrane are composed of an iron-nickel alloy whose thermal expansion coefficient is between 1, 2 and 2.0 × 10 -6 K 1 , or an iron alloy with a high manganese content whose expansion coefficient is typically of the order of 7.10 6 K 1
Selon un mode de réalisation la portion inférieure est composée d’un alliage fer-nickel avec 36% de Ni en poids.  According to one embodiment, the lower portion is composed of an iron-nickel alloy with 36% Ni by weight.
Selon un mode de réalisation, la portion supérieure est composée d’acier inoxydable.  According to one embodiment, the upper portion is made of stainless steel.
Selon un mode de réalisation, la portion supérieure présente une épaisseur plus importante que la portion inférieure.  According to one embodiment, the upper portion has a greater thickness than the lower portion.
Selon un mode de réalisation, la portion inférieure est soudée de manière étanche à la membrane d’étanchéité primaire par l’intermédiaire d’un anneau à collerette.  According to one embodiment, the lower portion is sealed to the primary waterproofing membrane by means of a flanged ring.
Ainsi, une liaison étanche est assurée entre la portion inférieure de la conduite et la membrane d’étanchéité primaire par l’anneau à collerette.  Thus, a tight connection is provided between the lower portion of the pipe and the primary waterproofing membrane by the collar ring.
Selon un mode de réalisation, la paroi de plafond de la cuve comprend en outre dans le sens de l’épaisseur de la paroi à l’extérieur de la barrière thermiquement isolante primaire, une barrière thermiquement isolante secondaire et une membrane d’étanchéité secondaire.  According to one embodiment, the ceiling wall of the tank further comprises, in the direction of the thickness of the wall outside the primary heat-insulating barrier, a secondary heat-insulating barrier and a secondary sealing membrane.
Grâce à ces caractéristiques, l’isolation thermique et l’étanchéité de la cuve de stockage est assurée par deux couches de membranes d’étanchéités, primaire et secondaire, ainsi que deux couches de barrières thermiquement isolantes, primaire et secondaire, ce qui permet Selon un mode de réalisation, les membranes primaire et secondaire sont composées d’un alliage fer-nickel avec 36% de Ni en poids dont le coefficient de dilatation thermique est compris entre 1 ,2 et 2,0 x 10 6 K 1 ou d’un alliage de fer à forte teneur en manganèse dont le coefficient de dilatation est typiquement de l’ordre de 7.106 K 1 Thanks to these characteristics, the thermal insulation and the tightness of the storage tank is ensured by two layers of primary and secondary waterproofing membranes, as well as two layers of thermally insulating barriers, primary and secondary, which allows According to one embodiment, the primary and secondary membranes are composed of an iron-nickel alloy with 36% Ni by weight, the coefficient of thermal expansion of which is between 1.2 and 2.0 × 10 6 K 1 or an iron alloy with a high manganese content whose expansion coefficient is typically of the order of 7 × 10 6 K 1
Selon un mode de réalisation, la barrière thermiquement isolante primaire et la barrière thermiquement isolante secondaire sont constituées chacune d’une pluralité de caissons isolants, la conduite traversant de part en part l’un des caissons de la pluralité de caissons de chacune des barrières thermiquement isolantes primaire et secondaire.  According to one embodiment, the primary thermally insulating barrier and the secondary thermally insulating barrier each consist of a plurality of insulating boxes, the conduit passing right through one of the boxes of the plurality of boxes of each of the thermally protected barriers. primary and secondary insulators.
Selon un mode de réalisation, la conduite traverse un caisson dans une zone centrale du caisson.  According to one embodiment, the pipe passes through a box in a central zone of the box.
Selon un mode de réalisation, un caisson de la pluralité de caissons est composé de plaques de contreplaqué formant un quadrillage, le caisson étant rempli à l’intérieur du quadrillage de perlite expansée ou laine de verre ou autre matière isolante.  According to one embodiment, a box of the plurality of boxes is composed of plywood plates forming a grid, the box being filled inside the grid of expanded perlite or glass wool or other insulating material.
Selon un mode de réalisation, la membrane d’étanchéité primaire et/ou la membrane d’étanchéité secondaire comprennent une pluralité de virures allongées à bords relevés soudées bord à bord dans le sens longitudinal de la virure, chaque virure comprenant une zone plane entre deux bords relevés longitudinaux, la conduite traversant la membre d’étanchéité primaire et/ou la membrane d’étanchéité secondaire par la zone plane d’une virure allongée.  According to one embodiment, the primary waterproofing membrane and / or the secondary waterproofing membrane comprise a plurality of elongate strakes with raised edges welded edge to edge in the longitudinal direction of the strake, each strake comprising a flat zone between two longitudinal raised edges, the pipe passing through the primary sealing member and / or the secondary sealing membrane by the flat area of an elongated strake.
Selon un mode de réalisation, la virure de la membrane d’étanchéité primaire et/ou de la membrane d’étanchéité secondaire traversée par la conduite comprend une portion renforcée, la portion renforcée ayant une épaisseur supérieure au reste de la virure et comprenant une zone plane entre deux bords relevés longitudinaux, la conduite traversant la portion renforcée.  According to one embodiment, the strake of the primary waterproofing membrane and / or the secondary sealing membrane traversed by the pipe comprises a reinforced portion, the reinforced portion having a thickness greater than the rest of the strake and comprising a zone plane between two longitudinal raised edges, the pipe passing through the reinforced portion.
Ainsi, la portion renforcée permet de rigidifier et renforcer la jonction entre la membrane d’étanchéité primaire ou secondaire et la conduite étanche ou la gaine respectivement. Par exemple, dans le cas où une virure présente une épaisseur inférieure à 1 mm, par exemple 0,7 mm, la portion renforcée a une épaisseur supérieure ou égale à 1 mm, par exemple de 1 ,5 mm. Thus, the reinforced portion stiffens and reinforces the junction between the primary or secondary sealing membrane and the sealed pipe or sheath respectively. For example, in the case where a strake has a thickness of less than 1 mm, for example 0.7 mm, the reinforced portion has a thickness greater than or equal to 1 mm, for example of 1.5 mm.
Selon un mode de réalisation, la conduite étanche traverse la portion renforcée de la membrane d’étanchéité primaire et/ou de la membrane d’étanchéité secondaire par la zone plane de la portion renforcée  According to one embodiment, the sealed pipe passes through the reinforced portion of the primary waterproofing membrane and / or the secondary waterproofing membrane by the flat zone of the reinforced portion.
Grâce à ces caractéristiques, la conduite traverse la portion renforcée dans une zone où il est plus simple de réaliser une liaison étanche entre la conduite et la virure. De plus, cela évite également de devoir interrompre les bords relevés des virures avec la conduite étanche.  Thanks to these characteristics, the pipe passes through the reinforced portion in an area where it is easier to make a tight connection between the pipe and the strake. In addition, it also avoids having to interrupt the raised edges of the strakes with the sealed pipe.
Selon un mode de réalisation, l’installation comprend une gaine entourant la conduite avec un espacement dans une direction radiale et fixée à la portion supérieure de la conduite, la gaine s’étendant de la portion supérieure au moins jusqu’à la membrane d’étanchéité secondaire, et la membrane d’étanchéité secondaire étant fixée de manière étanche à la gaine tout autour de la gaine.  According to one embodiment, the installation comprises a sheath surrounding the pipe with a spacing in a radial direction and fixed to the upper portion of the pipe, the sheath extending from the upper portion at least to the membrane of the pipe. secondary sealing, and the secondary sealing membrane being sealed to the sheath all around the sheath.
Ainsi, la fixation de la membrane d’étanchéité secondaire se fait sur une gaine entourant la conduite, la gaine étant elle-même fixée à la portion supérieure ce qui permet d’avoir une double paroi tout au long de la portion inférieure de la conduite évitant ainsi qu’en cas de rupture de la conduite le fluide cryogénique ne se répande hors de la cuve de stockage. La gaine joue donc le rôle de continuité de la membrane d’étanchéité secondaire. De plus, la fixation de la gaine sur la portion supérieure de la conduite permet de faciliter les opérations de maintenance. Enfin, l’espacement radial entre la gaine et la conduite permet de prendre en compte la déformation plus importante de la gaine due à sa souplesse également plus importante par rapport à la conduite.  Thus, the attachment of the secondary waterproofing membrane is made on a sheath surrounding the pipe, the sheath being itself fixed to the upper portion which allows for a double wall throughout the lower portion of the pipe thus avoiding that in case of rupture of the pipe the cryogenic fluid does not spread out of the storage tank. The sheath thus plays the role of continuity of the secondary sealing membrane. In addition, the attachment of the sheath on the upper portion of the pipe facilitates maintenance operations. Finally, the radial spacing between the sheath and the pipe makes it possible to take into account the greater deformation of the sheath due to its greater flexibility with respect to the pipe.
Selon un mode de réalisation, la gaine s’étend de la portion supérieure au moins jusqu’à la membrane d’étanchéité secondaire et au-delà.  According to one embodiment, the sheath extends from the upper portion at least to the secondary sealing membrane and beyond.
Selon un mode de réalisation, la membrane d’étanchéité secondaire est soudée de manière étanche à la gaine tout autour de la gaine. Selon un mode de réalisation, un remplissage de matière isolante est agencé entre la gaine et la conduite étanche. According to one embodiment, the secondary sealing membrane is sealed to the sheath all around the sheath. According to one embodiment, a filling of insulating material is arranged between the sheath and the sealed pipe.
Selon un mode de réalisation, la gaine est soudée à la membrane d’étanchéité secondaire par l’intermédiaire d’un anneau à collerette.  According to one embodiment, the sheath is welded to the secondary sealing membrane by means of a collar ring.
Ainsi, une liaison étanche est assurée entre la portion inférieure de la conduite et la membrane d’étanchéité secondaire par l’anneau à collerette.  Thus, a tight connection is provided between the lower portion of the pipe and the secondary sealing membrane by the collar ring.
Selon un mode de réalisation, le ou les anneaux à collerette ont une épaisseur supérieure aux virures. Par exemple, dans le cas où la virure fait moins de 1 mm, par exemple 0,7 mm, l’anneau à collerette a une épaisseur comprise entre 1 et 2 mm, de préférence 1 ,5 mm.  According to one embodiment, the ring or rings have a thickness greater than the strakes. For example, in the case where the strake is less than 1 mm, for example 0.7 mm, the collar ring has a thickness of between 1 and 2 mm, preferably 1.5 mm.
Ainsi, l’anneau à collerette permet de rigidifier et renforcer la jonction entre la membrane d’étanchéité primaire ou secondaire et la conduite ou la gaine respectivement.  Thus, the collar ring stiffens and reinforces the junction between the primary or secondary sealing membrane and the pipe or sheath respectively.
Selon un mode de réalisation, l’anneau à collerette est composé d’une base, de préférence de forme annulaire et plate, et d’une collerette faisant saillie de la base. La base peut avoir une épaisseur supérieure aux virures, de préférence une épaisseur compris entre 1 et 2 mm, de manière préférentielle de 1 ,5 mm. La collerette peut avoir une épaisseur supérieure aux virures, de préférence une épaisseur compris entre 1 et 2 mm, de manière préférentielle de 1 ,5 mm.  According to one embodiment, the flange ring is composed of a base, preferably annular and flat, and a flange projecting from the base. The base may have a thickness greater than the strakes, preferably a thickness of between 1 and 2 mm, preferably of 1.5 mm. The flange may have a thickness greater than the strakes, preferably a thickness of between 1 and 2 mm, preferably of 1.5 mm.
Selon un mode de réalisation, la gaine est composée d’un alliage fer-nickel avec 36% de Ni en poids dont le coefficient de dilatation thermique est compris entre 1 ,2 et 2,0 x 10~6 K 1, ou d’un alliage de fer à forte teneur en manganèse dont le coefficient de dilatation est typiquement de l’ordre de 7.106 K 1 According to one embodiment, the sheath is composed of an iron-nickel alloy with 36% Ni by weight, the coefficient of thermal expansion of which is between 1.2 and 2.0 × 10 -6 K 1 , or of an iron alloy with a high manganese content whose expansion coefficient is typically of the order of 7.10 6 K 1
Selon un mode de réalisation, l’invention fournit un navire comportant une installation selon l’invention, la paroi de plafond étant attachée à une surface inférieure d’un pont intermédiaire du navire.  According to one embodiment, the invention provides a vessel comprising an installation according to the invention, the ceiling wall being attached to a lower surface of an intermediate bridge of the ship.
Selon un mode de réalisation, la conduite comporte un compensateur en accordéon sur une extrémité de la portion supérieure distante de la portion inférieure, le compensateur étant configuré pour assurer la fixation de la conduite à une surface supérieure d’un pont supérieur du navire, le compensateur présentant des ondulations configurées pour autoriser la contraction thermique de la conduite. According to one embodiment, the pipe comprises an accordion compensator on one end of the upper portion remote from the lower portion, the compensator being configured to secure the pipe to a surface upper deck of the ship, the compensator having corrugations configured to allow the thermal contraction of the pipe.
Grâce à ces caractéristiques, le compensateur en accordéon permet à la conduite, notamment la portion supérieure, d’avoir au niveau de sa fixation un jeu de liaison lui permettant de se contracter/dilater thermiquement sans risque de rupture de la conduite ou de la liaison.  Thanks to these features, the accordion compensator allows the pipe, including the upper portion, to have at its attachment a set of connection allowing it to shrink / expand thermally without risk of rupture of the pipe or the link .
Selon un mode de réalisation, le compensateur accordéon est composé d’acier inoxydable.  According to one embodiment, the accordion compensator is made of stainless steel.
Selon un mode de réalisation, la conduite comprend un manchon isolant entourant une partie de la portion supérieure de la conduite et situé entre le pont intermédiaire du navire et un pont supérieur d’un navire.  According to one embodiment, the pipe comprises an insulating sleeve surrounding a portion of the upper portion of the pipe and located between the intermediate bridge of the ship and a top deck of a ship.
Ainsi, le manchon isolant permet d’isoler thermiquement une partie de la portion supérieure de manière à ce que les températures basses du fluide cryogénique ne se propagent pas dans l’entrepont risquant d’endommager les équipements situés à cet endroit.  Thus, the insulating sleeve thermally isolates a portion of the upper portion so that the low temperatures of the cryogenic fluid do not propagate in the steerage that may damage equipment located there.
Selon un mode de réalisation, le pont intermédiaire et le pont supérieur comprennent un orifice, l’orifice ayant un diamètre supérieur à un diamètre extérieur de la portion supérieure de la conduite, la conduite traversant le pont intermédiaire et le pont supérieur par l’orifice de pont intermédiaire et l’orifice de pont supérieur respectivement.  According to one embodiment, the intermediate bridge and the upper bridge comprise an orifice, the orifice having a diameter greater than an outer diameter of the upper portion of the pipe, the pipe passing through the intermediate bridge and the upper bridge through the orifice. intermediate bridge and the upper deck opening respectively.
Grâce à ces caractéristiques, il y a un espacement entre la conduite et l’orifice du pont supérieur et l’orifice du pont intermédiaire, ce qui permet d’obtenir un jeu de montage entre la conduite et les deux ponts. Le jeu de montage permet notamment de faciliter le montage et d’admettre les déformations des ponts sans endommager la conduite.  Thanks to these characteristics, there is a spacing between the pipe and the upper bridge opening and the intermediate bridge opening, which provides a mounting clearance between the pipe and the two bridges. In particular, the mounting clearance facilitates assembly and allows bridges to be deformed without damaging the pipe.
Selon un mode de réalisation, le pont intermédiaire comprend un surbau sur une surface supérieure du pont intermédiaire, le surbau entourant l’orifice de pont intermédiaire et étant traversé par la conduite, et dans lequel la conduite est fixée au surbau. Ainsi, le surbau permet de déporter la fixation de la conduite au pont intermédiaire ce qui apporte de la souplesse à la fixation. Ce déport de fixation permet à la conduite de mieux supporter les déformations du pont intermédiaire en évitant que la conduite soit endommagée. According to one embodiment, the intermediate bridge comprises a coaming on an upper surface of the intermediate bridge, the coaming surrounding the intermediate bridge port and being traversed by the pipe, and wherein the pipe is fixed to the coaming. Thus, the coaming allows to deport the fixing of the pipe to the intermediate bridge which provides flexibility to the fixing. This attachment offset allows the pipe to better withstand the deformations of the intermediate bridge by avoiding that the pipe is damaged.
Selon un mode de réalisation, la conduite est soudée de manière étanche tout autour du surbau.  According to one embodiment, the pipe is welded tightly around the coaming.
Selon un mode de réalisation, le surbau comprend une partie supérieure et une partie latérale reliant la partie supérieure au pont intermédiaire, la fixation de la conduite se faisant dans la partie supérieure du surbau.  According to one embodiment, the coaming comprises an upper portion and a lateral portion connecting the upper portion to the intermediate bridge, the fixing of the pipe being in the upper part of the coaming.
Selon un mode de réalisation, le surbau est composé d’un métal notamment d’acier inoxydable.  According to one embodiment, the coaming is composed of a metal including stainless steel.
Selon un mode de réalisation, l’invention fournit un procédé de chargement ou déchargement d’un navire selon l’invention, dans lequel on achemine un fluide cryogénique à travers des canalisations isolées depuis ou vers une installation de stockage flottante ou terrestre vers ou depuis une cuve du navire.  According to one embodiment, the invention provides a method for loading or unloading a ship according to the invention, in which a cryogenic fluid is conveyed through isolated pipes from or to a floating or land storage facility to or from a tank of the ship.
Selon un mode de réalisation, l’invention fournit un système de transfert pour un fluide cryogénique, le système comportant un navire selon l’invention, des canalisations isolées agencées de manière à relier la cuve installée dans la double coque du navire à une installation de stockage flottante ou terrestre et une pompe pour entraîner un flux de fluide cryogénique à travers les canalisations isolées depuis ou vers l’installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.  According to one embodiment, the invention provides a transfer system for a cryogenic fluid, the system comprising a vessel according to the invention, insulated ducts arranged to connect the vessel installed in the double hull of the vessel to an installation of floating or ground storage and a pump for driving a flow of cryogenic fluid through the insulated pipelines from or to the floating or land storage facility to or from the vessel vessel.
Brève description des figures  Brief description of the figures
L’invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement au cours de la description suivante de plusieurs modes de réalisation particuliers de l’invention, donnés uniquement à titre illustratif et non limitatif, en référence aux dessins annexés.  The invention will be better understood, and other objects, details, characteristics and advantages thereof will appear more clearly in the course of the following description of several particular embodiments of the invention, given solely for illustrative and non-limiting purposes. with reference to the accompanying drawings.
- La figure 1 est une représentation schématique écorchée d’un navire comportant une cuve de stockage de fluide cryogénique - La figure 2 est une représentation schématique partielle d’une installation de stockage et de transport d’un fluide cryogénique embarquée sur un navire. FIG. 1 is a cutaway schematic representation of a vessel comprising a cryogenic fluid storage tank FIG. 2 is a partial schematic representation of an installation for storing and transporting a cryogenic fluid onboard a ship.
- La figure 3 est une vue agrandie du détail III, de l’installation de stockage de la figure 2.  FIG. 3 is an enlarged view of detail III of the storage facility of FIG. 2.
- La figure 4 est une vue agrandie du détail IV, de l’installation de stockage de la figure 2.  FIG. 4 is an enlarged view of detail IV of the storage facility of FIG. 2.
- La figure 5 est une vue éclatée d’une paroi de cuve, notamment de la barrière thermiquement isolante secondaire et de la membrane d’étanchéité secondaire  FIG. 5 is an exploded view of a tank wall, in particular of the secondary thermally insulating barrier and of the secondary sealing membrane;
- La figure 6 est une vue éclatée d’une paroi de cuve, notamment de la barrière thermiquement isolante primaire et de la membrane d’étanchéité primaire.  - Figure 6 is an exploded view of a vessel wall, in particular of the primary heat-insulating barrier and the primary sealing membrane.
- La figure 7 est une vue en coupe schématique d’une cuve de stockage de fluide cryogénique inclinée.  - Figure 7 is a schematic sectional view of an inclined cryogenic fluid storage tank.
- La figure 8 est une représentation schématique écorchée d’un navire comportant une cuve de stockage de fluide cryogénique et d’un terminal de chargement/déchargement de cette cuve.  - Figure 8 is a schematic cutaway representation of a vessel comprising a cryogenic fluid storage tank and a loading / unloading terminal of this vessel.
Description détaillée de modes de réalisation  Detailed description of embodiments
Par convention, les termes « supérieur », « inférieur », « dessus », et « dessous » sont utilisés pour définir une position relative d’un élément ou d’une partie d’un élément par rapport à un autre dans une direction dirigée de la cuve 2 vers le pont supérieur 9 du navire 1 .  By convention, the terms "superior", "inferior", "above", and "below" are used to define a relative position of one element or part of one element over another in a directed direction from the tank 2 to the upper deck 9 of the ship 1.
Sur la figure 1 est représenté un navire 1 équipé d’une installation de stockage et de transport de fluide cryogénique, notamment du gaz naturel liquéfié, qui comporte une pluralité de cuves 2 étanches et thermiquement isolantes. Chaque cuve 2 est associée à un mât de dégazage 4 qui est prévu sur un pont supérieur 9 du navire 1 et permettant l’échappement du gaz en phase vapeur lors d’une surpression à l’intérieur de la cuve 2 associée. A l’arrière du navire 1 est prévu un compartiment machine 3 qui comporte classiquement une turbine à vapeur à alimentation mixte apte à fonctionner soit par combustion de gazole, soit par combustion de gaz d’évaporation provenant des cuves 2. In Figure 1 is shown a vessel 1 equipped with a cryogenic fluid storage and transport facility, including liquefied natural gas, which comprises a plurality of sealed and thermally insulating tanks 2. Each tank 2 is associated with a degassing mast 4 which is provided on an upper deck 9 of the vessel 1 and allowing the escape of the gas in the vapor phase during an overpressure inside the associated tank 2. At the rear of the ship 1 is provided a machine compartment 3 which conventionally comprises a steam turbine with mixed feed capable of operating either by combustion of diesel fuel or by combustion of evaporation gas from the tanks 2.
Les cuves 2 présentent une dimension longitudinale s’étendant selon la direction longitudinale du navire 1 . Chaque cuve 2 est bordée au niveau de chacune de ses extrémités longitudinales par une paire de cloisons transversales 5 délimitant un espace intercalaire étanche, connu sous le terme de « cofferdam » 6.  The tanks 2 have a longitudinal dimension extending along the longitudinal direction of the ship 1. Each tank 2 is lined at each of its longitudinal ends by a pair of transverse partitions 5 delimiting a sealed spacer space, known as "cofferdam" 6.
Les cuves sont ainsi séparées les unes des autres par un cofferdam 6 transversal. On observe ainsi que les cuves 2 sont chacune ménagées à l’intérieur d’une structure porteuse qui est constituée, d’une part, par la double coque 7 du navire 1 1 et, d’autre part par l’une des cloisons transversales 5 de chacun des cofferdams 6 bordant la cuve 2.  The tanks are thus separated from each other by a transverse cofferdam 6. It is thus observed that the tanks 2 are each formed inside a supporting structure which is constituted, on the one hand, by the double hull 7 of the vessel 1 1 and, on the other hand, by one of the transverse partitions. 5 of each of the cofferdams 6 bordering the tank 2.
La figure 2 représente de manière schématisée une conduite 14 permettant de définir un passage d’évacuation de la phase vapeur du fluide cryogénique de l’intérieur vers l’extérieur de la cuve 2, la conduite 14 traversant successivement la cuve 2, le pont intermédiaire 8 du navire 1 et le pont supérieur 9 du navire 1.  FIG. 2 schematically represents a pipe 14 making it possible to define a passage for discharging the vapor phase of the cryogenic fluid from the inside to the outside of the tank 2, the pipe 14 passing successively through the tank 2, the intermediate bridge 8 of the ship 1 and the upper deck 9 of the ship 1.
La cuve 2 étanche et thermiquement isolante présente une paroi de plafond attachée au pont intermédiaire 8, la paroi comportant dans le sens d’une épaisseur de la paroi depuis l’extérieur vers l’intérieur de la cuve 2 : une barrière thermiquement isolante secondaire 13, une membrane d’étanchéité secondaire 12, une barrière thermiquement isolante primaire 1 1 et une membrane d’étanchéité primaire 10.  The sealed and thermally insulating tank 2 has a ceiling wall attached to the intermediate bridge 8, the wall comprising in the direction of a thickness of the wall from the outside to the inside of the tank 2: a secondary heat-insulating barrier 13 , a secondary sealing membrane 12, a primary heat-insulating barrier 11 and a primary sealing membrane 10.
La conduite 14 est formée d’une portion inférieure 15 et d’une portion supérieure 16. La portion inférieure 15 est formée à partir d’un alliage de fer et de nickel dont le coefficient de dilatation est typiquement compris entre 1 ,2.106 et 2.10-6 K 1, ou dans un alliage de fer à forte teneur en manganèse dont le coefficient de dilatation est typiquement de l’ordre de 7.106 K 1, soit un faible coefficient de dilatation thermique. La portion inférieure 15 a une première extrémité située à l’intérieur de la cuve 2 et une deuxième extrémité situé à l’extérieur de la cuve 2. The pipe 14 is formed of a lower portion 15 and an upper portion 16. The lower portion 15 is formed from an alloy of iron and nickel whose expansion coefficient is typically between 1, 2 × 10 6 and 2.10 -6 K 1 , or in an iron alloy with a high manganese content whose expansion coefficient is typically of the order of 7.10 6 K 1 , ie a low coefficient of thermal expansion. The lower portion 15 has a first end located inside the tank 2 and a second end located outside the tank 2.
La portion supérieure 16 est formée à partir d’acier inoxydable et est soudée par une première extrémité à la deuxième extrémité de la portion inférieure 15 de manière à créer une continuité de la conduite 14. La deuxième extrémité de la portion supérieure 16 est reliée à une canalisation du navire 1. La portion supérieure 16 présente une épaisseur de paroi plus importante que la portion inférieure 15. The upper portion 16 is formed from stainless steel and is welded at a first end to the second end of the lower portion 15 of in order to create a continuity of the pipe 14. The second end of the upper portion 16 is connected to a channel of the ship 1. The upper portion 16 has a greater wall thickness than the lower portion 15.
La portion inférieure 15 de la conduite 14 passe tout d’abord au travers de la membrane d’étanchéité primaire 10 et de la barrière thermiquement isolante primaire 1 1. La membrane d’étanchéité primaire 10 est soudée tout autour de la portion inférieure 15 de manière étanche pour garantir la continuité de l’étanchéité de la membrane d’étanchéité primaire 10.  The lower portion 15 of the pipe 14 passes firstly through the primary waterproofing membrane 10 and the primary heat-insulating barrier 1 1. The primary waterproofing membrane 10 is welded all around the lower portion 15 of the sealed way to guarantee the continuity of the tightness of the primary waterproofing membrane 10.
Une gaine 21 entoure la conduite 14 avec un espacement dans une direction radiale et fixée à la portion supérieure 16 de la conduite 14. La gaine s’étend de la portion supérieure 16 au moins jusqu’à la membrane d’étanchéité secondaire 12. La membrane d’étanchéité secondaire 12 est soudée tout autour de la gaine 21 de manière étanche pour garantir la continuité de l’étanchéité de la membrane d’étanchéité secondaire 12. La conduite 14 traverse donc la membrane d’étanchéité secondaire 12 et la barrière thermiquement isolante secondaire 13 par l’intermédiaire de la gaine 21.  A sheath 21 surrounds the pipe 14 with a spacing in a radial direction and fixed to the upper portion 16 of the pipe 14. The sheath extends from the upper portion 16 at least as far as the secondary sealing membrane 12. secondary sealing membrane 12 is welded around the sheath 21 in a sealed manner to ensure the continuity of the sealing of the secondary sealing membrane 12. The pipe 14 therefore passes through the secondary sealing membrane 12 and the heat barrier secondary insulation 13 through the sheath 21.
La portion inférieure 15 est donc soudée à la portion supérieure 16 à l’intérieur de la gaine 21 , de manière que la gaine 21 garantisse l’étanchéité et l’étanchéité de la membrane secondaire en cas de rupture de la portion inférieure 15, par exemple au niveau de la soudure.  The lower portion 15 is thus welded to the upper portion 16 inside the sheath 21, so that the sheath 21 ensures the sealing and sealing of the secondary membrane in case of rupture of the lower portion 15, by example at the welding.
La portion inférieure 15 joue donc le rôle d’une partie de la membrane d’étanchéité primaire 10 alors que la gaine 21 joue le rôle d’une partie de la membrane d’étanchéité secondaire 12. Ainsi il y a toujours deux couches de membranes, même au niveau de la conduite 14.  The lower portion 15 therefore acts as part of the primary sealing membrane 10 while the sheath 21 acts as part of the secondary sealing membrane 12. Thus there are always two layers of membranes , even at the level of the pipe 14.
La conduite 14 traverse ensuite le pont intermédiaire 8 du navire 1 au niveau d’un orifice de pont intermédiaire 27. L’orifice de pont intermédiaire 27 présente un diamètre supérieur au diamètre extérieur de la gaine 21 de manière à ce qu’il y ait un jeu de liaison permettant au pont intermédiaire 8 de se déformer sans entraîner de déformation de la gaine 21 et de la conduite 14.  The pipe 14 then passes through the intermediate bridge 8 of the ship 1 at an intermediate bridge orifice 27. The intermediate bridge orifice 27 has a diameter greater than the outside diameter of the sheath 21 so that there is a connecting clearance allowing the intermediate bridge 8 to deform without causing deformation of the sheath 21 and the pipe 14.
Le pont intermédiaire 8 comprend sur sa surface supérieure un surbau 22. Le surbau 22 comprend une partie supérieure 23 et une partie latérale 24 reliant la partie supérieure 23 au pont intermédiaire 8. La portion supérieure 16 de la conduite 14 passe au travers de la partie supérieure 23 du surbau 22. La portion supérieure 16 de la conduite 14 est soudée tout autour de la partie supérieure 23 du surbau 22 de manière étanche. The intermediate bridge 8 comprises on its upper surface a coaming 22. The coaming 22 comprises an upper portion 23 and a lateral portion 24 connecting the upper portion 23 of the intermediate bridge 8. The upper portion 16 of the pipe 14 passes through the upper part 23 of the coaming 22. The upper portion 16 of the pipe 14 is welded all around the upper part 23 of the coaming 22 so waterproof.
La conduite 14 traverse ensuite l’espace situé entre le pont intermédiaire 8 et le pont supérieur 9 nommé entrepont où la conduite est revêtu d’un manchon isolant 26 pour que les températures basses du gaz cryogénique contenu dans la conduite 14 ne causent pas une fuite thermique élevée dans l’entrepont.  The conduit 14 then passes through the space between the intermediate bridge 8 and the upper deck 9 called steerage where the pipe is coated with an insulating sleeve 26 so that the low temperatures of the cryogenic gas contained in the pipe 14 do not cause a leak high thermal in the tween.
La conduite 14 traverse enfin le pont supérieur 9 du navire 1 au niveau d’un orifice de pont supérieur 28. L’orifice de pont supérieur 28 présente un diamètre supérieur au diamètre extérieur de la conduite 14 de manière à ce qu’il y ait un jeu de liaison permettant au pont supérieur 9 de se déformer sans entraîner de déformation de la conduite 14.  The pipe 14 finally crosses the upper deck 9 of the ship 1 at an upper deck opening 28. The upper deck opening 28 has a diameter greater than the outside diameter of the pipe 14 so that there is a connecting set allowing the upper bridge 9 to deform without causing deformation of the pipe 14.
La conduite 14 comporte un compensateur en accordéon 25 sur la deuxième extrémité de la portion supérieure 16 distante de la portion inférieure 15. Le compensateur assure la fixation de la conduite 14 à une surface supérieure du pont supérieur 9 du navire 1. Le compensateur en accordéon 25 présente des ondulations configurées pour autoriser la contraction thermique de la conduite 14 notamment de la portion supérieure 16 qui est en acier inoxydable, un matériau qui a un coefficient de dilation élevé par rapport à l’alliage de la portion inférieure 15.  The pipe 14 comprises an accordion compensator 25 on the second end of the upper portion 16 remote from the lower portion 15. The compensator ensures the attachment of the pipe 14 to an upper surface of the upper deck 9 of the ship 1. The accordion compensator 25 has corrugations configured to allow thermal contraction of the pipe 14 including the upper portion 16 which is stainless steel, a material that has a high coefficient of expansion relative to the alloy of the lower portion 15.
Les figures 3 et 4 représentent des détails agrandies III et IV de la figure 2. Figures 3 and 4 show enlarged details III and IV of Figure 2.
La figure 3 permet de distinguer la fixation de la membrane d’étanchéité primaire 10 à la conduite 14 et la fixation de la membrane d’étanchéité secondaire 12 à la gaine 21. En effet, la fixation de la membrane d’étanchéité primaire 10 à la conduite 14 est réalisée à l’aide d’un anneau à collerette 17 muni d’une base et d’une collerette. La collerette de l’anneau 17 est soudée à la conduite 14 et la base de l’anneau 17 est soudée à la membrane d’étanchéité primaire 10 ce qui permet de réaliser une fixation étanche. FIG. 3 makes it possible to distinguish the fastening of the primary sealing membrane 10 to the pipe 14 and the fixing of the secondary waterproofing membrane 12 to the sheath 21. Indeed, the fixing of the primary waterproofing membrane 10 to the pipe 14 is made using a collar ring 17 provided with a base and a flange. The flange of the ring 17 is welded to the pipe 14 and the base of the ring 17 is welded to the primary waterproofing membrane 10 which allows a tight fixing.
De la même manière, la fixation de la membrane d’étanchéité secondaire 12 à la gaine 21 est réalisée à l’aide d’un anneau à collerette 17 muni d’une base et d’une collerette. La collerette de l’anneau 17 est soudée à la gaine 21 et la base de l’anneau 17 est soudée à la membrane d’étanchéité secondaire 12 ce qui permet de réaliser une fixation étanche. In the same way, the attachment of the secondary sealing membrane 12 to the sheath 21 is carried out using a collar ring 17 provided with a base and a flange. The flange of the ring 17 is welded to the sheath 21 and the base of the ring 17 is welded to the secondary sealing membrane 12 which allows a sealed fastening.
La base de l’anneau à collerette 17 peut être notamment de forme annulaire plate comprenant un diamètre intérieur et un diamètre extérieur. La collerette de l’anneau à collerette 17 fait saillie à partir du diamètre intérieur de la base de l’anneau à collerette 17. La base et la collerette de l’anneau à collerette présentent une épaisseur de 1 ,5 mm supérieure aux épaisseurs des membranes d’étanchéité primaire et secondaire 10, 12 de 0,7 mm.  The base of the collar ring 17 may in particular be of flat annular shape comprising an inner diameter and an outer diameter. The flange of the collar ring 17 projects from the inside diameter of the base of the collar ring 17. The base and flange of the collar ring have a thickness of 1.5 mm greater than the thicknesses of the flanges. primary and secondary waterproofing membranes 10, 12 of 0.7 mm.
La figure 4 permet de distinguer la jonction entre la portion inférieure 15 et la portion supérieure 16 de la conduite 14 ainsi que la fixation de la gaine 21 à la portion supérieure 16. En effet, la fixation par soudure de la deuxième extrémité de la portion inférieure 15 et de la première extrémité de la portion supérieure 16 de la conduite 14 se fait à épaisseur égal des deux portions 15, 16 de la conduite 14. Pour cela, l’épaisseur de la première extrémité de la portion supérieure 16 diminue, par exemple de manière linéaire, de l’épaisseur de la portion supérieure 16 vers l’épaisseur de la portion inférieure 15 de manière à faciliter le soudage de ces portions 15, 16 et d’améliorer la tenue de la fixation.  FIG. 4 makes it possible to distinguish the junction between the lower portion 15 and the upper portion 16 of the pipe 14 as well as the fastening of the sheath 21 to the upper portion 16. Indeed, the welding attachment of the second end of the portion 15 and the first end of the upper portion 16 of the pipe 14 is of equal thickness of the two portions 15, 16 of the pipe 14. For this, the thickness of the first end of the upper portion 16 decreases, by linear example, the thickness of the upper portion 16 to the thickness of the lower portion 15 so as to facilitate the welding of these portions 15, 16 and improve the strength of the fastener.
La fixation de la gaine 21 à la portion supérieure 16 est réalisée par soudage tout autour de la portion supérieure 16 juste après la première extrémité de la portion supérieure 16 de manière à ce que la gaine 21 soit fixée à la portion supérieure 16 en un lieu où son épaisseur est maximale mais également proche de la première extrémité de ia portion supérieure 16 pour limiter au maximum la longueur de la gaine 21 où celle-ci n’est pas nécessaire pour jouer le rôle de membrane d’étanchéité secondaire 12.  The fixing of the sheath 21 to the upper portion 16 is performed by welding all around the upper portion 16 just after the first end of the upper portion 16 so that the sheath 21 is fixed to the upper portion 16 at a location where its thickness is maximum but also close to the first end of the upper portion 16 to limit as much as possible the length of the sheath 21 where it is not necessary to act as a secondary sealing membrane 12.
Les figures 5 et 6 représentent des vues schématiques des membranes d’étanchéités primaire 10 et secondaire 12 ainsi que des barrières thermiquement isolantes primaire 1 1 et secondaire 13. Les membranes d’étanchéités 10, 12 et les barrières thermiquement isolantes 1 1 , 13 sont réalisées selon la technologie N096 qui est notamment décrite dans le document WO2012072906 A1.  FIGS. 5 and 6 show schematic views of the primary and secondary sealing membranes 12 as well as the primary and secondary heat-insulating barriers 11 and 13. The sealing membranes 10, 12 and the thermally insulating barriers 11, 13 are carried out according to technology N096 which is described in particular in document WO2012072906 A1.
Ainsi, les barrières thermiquement isolantes 11 , 13 sont par exemple formées par des caissons 18 isolants comportant un panneau de fond et un panneau de couvercle parallèles, espacés selon la direction d’épaisseur du caisson 18 isolant, des éléments porteurs 19 s’étendant selon la direction d’épaisseur, optionnellement des cloisons périphériques, et une garniture calorifuge logée à l’intérieur des caisses isolantes. Les panneaux de fond et de couvercle, les cloisons périphériques et les éléments porteurs 19 sont par exemple réalisés en bois par exemple du contreplaqué ou en matériau thermoplastique composite. La garniture calorifuge peut être constituée de laine de verre, d’ouate ou d’une mousse polymère, telle que de la mousse de polyuréthane, de la mousse de polyéthylène ou de la mousse de polychlorure de vinyle ou d’un matériau granulaire ou pulvérulent - tel que la perlite, la vermiculite ou la laine de verre - ou un matériau nanoporeux de type aérogel. Par ailleurs, les membranes d’étanchéité primaire 10 et secondaire 12 comportent une nappe continue de virures 20 métalliques à bords relevés, lesdites virures 20 étant soudées par leurs bords relevés sur des supports de soudure parallèles maintenus sur les caissons 18 isolants. Les virures 20 métalliques sont, par exemple, réalisées en Invar ® : c’est-à-dire un alliage de fer et de nickel dont le coefficient de dilatation est typiquement compris entre 1 ,2.10 e et 2.10 6 K 1, ou dans un alliage de fer à forte teneur en manganèse dont le coefficient de dilatation est typiquement de l’ordre de 7.106 K 1. Thus, the thermally insulating barriers 11, 13 are for example formed by insulating boxes 18 comprising a bottom panel and a panel parallel covers, spaced in the direction of thickness of the insulating casing 18, the supporting elements 19 extending in the thickness direction, optionally the peripheral walls, and a heat insulating lining housed inside the insulating boxes. The bottom and lid panels, the peripheral partitions and the support elements 19 are for example made of wood, for example plywood or composite thermoplastic material. The heat-insulating lining may consist of glass wool, wadding or polymer foam, such as polyurethane foam, polyethylene foam or polyvinyl chloride foam or granular or powdery material - such as perlite, vermiculite or glass wool - or a nanoporous material of the airgel type. In addition, the primary and secondary sealing membranes 12 comprise a continuous sheet of metal strakes with raised edges, said strakes being welded by their raised edges to parallel welding supports held on the insulating housings. The metal strakes 20 are, for example, made of Invar ®: that is to say an alloy of iron and nickel whose expansion coefficient is typically between 1, 2.10 e and 2.10 6 K 1 , or in a high manganese iron alloy whose expansion coefficient is typically of the order of 7.10 6 K 1 .
Les figures 5 et 6 permettent de distinguer où la conduite 14 traverse les membranes d’étanchéités 10, 12 et les barrières thermiquement isolante 1 1 , 13. En effet, il est préférable pour ne pas fragiliser la structure du caisson 18 d’éviter que la conduite 14 ne traverse le caisson sur les extrémités du caisson 18. Préférablement, la conduite 14 traverse la barrière thermiquement isolante primaire 1 1 et la barrière thermiquement isolante secondaire 13 dans une zone centrale du caisson 18 entre une pluralité d’éléments porteurs 19.  Figures 5 and 6 distinguish where the pipe 14 passes through the sealing membranes 10, 12 and thermally insulating barriers 1 1, 13. Indeed, it is preferable not to weaken the structure of the box 18 to avoid that the pipe 14 does not pass through the caisson on the ends of the caisson 18. Preferably, the pipe 14 passes through the primary thermally insulating barrier 1 1 and the secondary thermally insulating barrier 13 in a central zone of the caisson 18 between a plurality of support elements 19.
Pour faciliter la fixation étanche de la membrane d’étanchéité primaire 10 et la conduite 14 et la fixation étanche de la membrane d’étanchéité secondaire 12 et la gaine 21 , il est préférable d’éviter que la conduite 14 traverse les membranes d’étanchéités au niveau des bords relevés des virures 20. En effet, la zone où les bords sont relevés, est géométriquement complexe et est déjà sujette à la soudure liant deux virures adjacentes et une aile de support. C’est pourquoi la conduite 14 traverse les membranes d’étanchéités 10, 12 dans une zone plane d’une virure 20 entre deux bords relevés. To facilitate the tight fixing of the primary waterproofing membrane 10 and the pipe 14 and the sealing connection of the secondary sealing membrane 12 and the sheath 21, it is preferable to prevent the pipe 14 from passing through the sealing membranes. at the level of the raised edges of the strakes 20. Indeed, the area where the edges are raised, is geometrically complex and is already subject to the bonding bonding two adjacent strakes and a support wing. That's why driving 14 crosses the sealing membranes 10, 12 in a flat zone of a strake 20 between two raised edges.
Les virures 20 de la membrane d’étanchéité primaire 10 et de la membrane d’étanchéité secondaire 12 traversées par la conduite 14 comprennent une portion renforcée 32 de manière à conserver une continuité des membranes d’étanchéités primaire et secondaire. En effet, la portion renforcée 32 représente un tronçon de la virure 20 traversé par la conduite 14.  The strakes 20 of the primary sealing membrane 10 and the secondary sealing membrane 12 traversed by the pipe 14 comprise a reinforced portion 32 so as to maintain continuity of the primary and secondary sealing membranes. Indeed, the reinforced portion 32 represents a portion of the strake 20 traversed by the pipe 14.
La portion renforcée 32 a une épaisseur supérieure au reste de la virure 20, par exemple une épaisseur de 1 ,5 mm en comparaison à une virure d’épaisseur 0,7 mm. La portion renforcée 32 comprend une zone plane entre deux bords relevés longitudinaux. La conduite 14 traverse la portion renforcée 32 de la membrane d’étanchéité primaire 10 et la portion renforcée 32 de la membrane d’étanchéité secondaire 12 par la zone plane. La gaine 21 traverse la portion renforcée 32 de la membrane d’étanchéité secondaire 12 également par la zone plane.  The reinforced portion 32 has a thickness greater than the rest of the strake 20, for example a thickness of 1.5 mm compared to a 0.7 mm thick strake. The reinforced portion 32 comprises a flat area between two longitudinal raised edges. The conduit 14 passes through the reinforced portion 32 of the primary sealing membrane 10 and the reinforced portion 32 of the secondary sealing membrane 12 by the flat area. The sheath 21 passes through the reinforced portion 32 of the secondary sealing membrane 12 also through the flat zone.
La figure 7 représente une cuve 2 étanche et thermiquement isolante remplie de gaz liquéfié et transportée par un navire 1 , le navire ayant quinze degrés de gîte à cause par exemple d’une avarie.  FIG. 7 represents a sealed and thermally insulating tank 2 filled with liquefied gas and transported by a ship 1, the vessel having fifteen degrees of heel due to, for example, damage.
Dans un cas normal d’utilisation, avec un navire ayant zéro degré de gîte, la cuve 2 évacue le gaz liquéfié qui s’évapore pour éviter de générer des surpressions à l’intérieur de la cuve 2 par un dôme gaz 29 traversant la paroi de plafond de la cuve 2 en son centre.  In a normal case of use, with a vessel having zero degree of heel, the tank 2 evacuates the liquefied gas which evaporates to avoid generating overpressure inside the tank 2 by a gas dome 29 passing through the wall ceiling of the tank 2 in the center.
Dans le cas d’une avarie susmentionnée, avec un navire ayant quinze degrés de gîte, le dôme gaz 29 est complètement immergé dans le gaz liquéfié et ne remplit plus son rôle d’évacuation du gaz liquéfié évaporé. Pour éviter que la surpression endommage la cuve 2, il est placé dans la cuve 2 traversant la paroi de plafond deux conduites 14 situées aux extrémités de la paroi de plafond et de part et d’autre du dôme gaz 29. Les conduites 14 sont alors reliées vers le collecteur principal de gaz 30 du navire 1 qui achemine le gaz vers le compartiment moteur 3 et/ou vers une unité de reliquéfaction. Les conduites 14 sont également reliées à des vannes de surpression 31 qui s’ouvrent si la pression est trop importante, redirigeant ainsi une partie du gaz vers les mâts de dégazage 4. De manière préférentielle, les conduites 14 sont reliées au collecteur principal de gaz 30 et aux vannes de surpression 31 via le dôme gaz 29 à l’extérieur de la double coque 7. In the case of an aforementioned damage, with a vessel having fifteen degrees of heel, the gas dome 29 is completely immersed in the liquefied gas and no longer fulfills its role of evacuation of the evaporated liquefied gas. In order to prevent the overpressure damaging the tank 2, two ducts 14 situated at the ends of the ceiling wall and on either side of the gas dome 29 are placed in the tank 2 passing through the ceiling wall 29. The ducts 14 are then connected to the main gas manifold 30 of the ship 1 which conveys the gas to the engine compartment 3 and / or to a reliquefaction unit. The lines 14 are also connected to pressure valves 31 which open if the pressure is too high, thus redirecting a portion of the gas to the degassing rods 4. Preferably, the lines 14 are connected to the main gas manifold 30 and the overpressure valves 31 via the gas dome 29 outside the double shell 7.
D’autres détails quant au nombre et à la position des conduites d’évacuation du gaz peuvent être trouvés dans la publication WO2016120540 A1.  Further details as to the number and position of the gas discharge pipes can be found in WO2016120540 A1.
En référence à la figure 8, une vue écorchée d’un navire méthanier 1 montre une cuve étanche et isolée 2 de forme générale prismatique montée dans la double coque 7 du navire 1.  Referring to Figure 8, a cutaway view of a LNG vessel 1 shows a sealed and insulated tank 2 of generally prismatic shape mounted in the double hull 7 of the ship 1.
De manière connue en soi, des canalisations de chargement/déchargement 40 disposées sur le pont supérieur 9 du navire 1 peuvent être raccordées, au moyen de connecteurs appropriées, à un terminal maritime ou portuaire pour transférer une cargaison de gaz liquéfié depuis ou vers la cuve 2.  In a manner known per se, loading / unloading lines 40 arranged on the upper deck 9 of the ship 1 can be connected, by means of appropriate connectors, to a marine or port terminal to transfer a cargo of liquefied gas from or to the tank 2.
La figure 8 représente un exemple de terminal maritime comportant un poste de chargement et de déchargement 42, une conduite sous-marine 43 et une installation à terre 44. Le poste de chargement et de déchargement 42 est une installation fixe off-shore comportant un bras mobile 41 et une tour 45 qui supporte le bras mobile 41. Le bras mobile 41 porte un faisceau de tuyaux flexibles isolés 46 pouvant se connecter aux canalisations de chargement/déchargement 40. Le bras mobile 41 orientable s'adapte à tous les gabarits de méthaniers. Une conduite de liaison non représentée s'étend à l'intérieur de la tour 45. Le poste de chargement et de déchargement 42 permet le chargement et le déchargement du méthanier 1 depuis ou vers l'installation à terre 44. Celle-ci comporte des cuves de stockage de gaz liquéfié 47 et des conduites de liaison 48 reliées par la conduite sous-marine 43 au poste de chargement ou de déchargement 42. La conduite sous-marine 43 permet le transfert du gaz liquéfié entre le poste de chargement ou de déchargement 42 et l'installation à terre 44 sur une grande distance, par exemple 5 km, ce qui permet de garder le navire méthanier 1 à grande distance de la côte pendant les opérations de chargement et de déchargement.  FIG. 8 represents an example of a marine terminal comprising a loading and unloading station 42, an underwater pipe 43 and an onshore installation 44. The loading and unloading station 42 is a fixed off-shore installation comprising an arm mobile 41 and a tower 45 which supports the movable arm 41. The movable arm 41 carries a bundle of insulated flexible pipes 46 that can connect to the loading / unloading pipes 40. The movable arm 41 can be adapted to all gauges LNG carriers . A connecting pipe (not shown) extends inside the tower 45. The loading and unloading station 42 allows the loading and unloading of the LNG carrier 1 from or to the shore installation 44. This includes liquefied gas storage tanks 47 and connecting lines 48 connected by the underwater line 43 to the loading or unloading station 42. The underwater line 43 allows the transfer of the liquefied gas between the loading or unloading station 42 and the onshore installation 44 for a great distance, for example 5 km, which makes it possible to keep the LNG ship 1 at a great distance from the coast during the loading and unloading operations.
Pour engendrer la pression nécessaire au transfert du gaz liquéfié, on met en oeuvre des pompes embarquées dans le navire 1 et/ou des pompes équipant l'installation à terre 44 et/ou des pompes équipant le poste de chargement et de déchargement 42. In order to generate the pressure necessary for the transfer of the liquefied gas, pumps on board the vessel 1 and / or pumps fitted with the onshore installation 44 and / or pumps equipping the loading and unloading station 42.
Bien que l'invention ait été décrite en liaison avec plusieurs modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention.  Although the invention has been described in connection with several particular embodiments, it is obvious that it is not limited thereto and that it comprises all the technical equivalents of the means described and their combinations if they are within the scope of the invention.
L’usage du verbe « comporter », « comprendre » ou « inclure » et de ses formes conjuguées n’exclut pas la présence d’autres éléments ou d’autres étapes que ceux énoncés dans une revendication.  The use of the verb "to include", "to understand" or "to include" and its conjugated forms does not exclude the presence of other elements or steps other than those set out in a claim.
Dans les revendications, tout signe de référence entre parenthèses ne saurait être interprété comme une limitation de la revendication.  In the claims, any reference sign in parentheses can not be interpreted as a limitation of the claim.

Claims

REVENDICATIONS
1 . Installation de stockage et de transport d’un fluide cryogénique embarquée sur un navire (1 ), l’installation comportant : 1. Installation for storing and transporting a cryogenic fluid onboard a ship (1), the installation comprising:
- une cuve (2) étanche et thermiquement isolante destinée au stockage du fluide cryogénique dans un état d’équilibre diphasique liquide-vapeur, la cuve (2) présentant une paroi de plafond comportant dans le sens d’une épaisseur de la paroi depuis l’extérieur vers l’intérieur de la cuve (2) une barrière thermiquement isolante primaire (1 1 ) et une membrane d’étanchéité primaire (10) destinée à être en contact avec le fluide cryogénique ;  a sealed and thermally insulating tank (2) intended for storage of the cryogenic fluid in a state of two-phase liquid-vapor equilibrium, the tank (2) having a ceiling wall comprising in the direction of a thickness of the wall since exterior to the interior of the vessel (2) a primary thermally insulating barrier (1 1) and a primary sealing membrane (10) for contacting the cryogenic fluid;
- une conduite (14) étanche pénétrant à travers la paroi de plafond de la cuve (2) de sorte à définir un passage d’évacuation de la phase vapeur du fluide cryogénique de l’intérieur vers l’extérieur de la cuve (2), la conduite (14) comportant une portion inférieure (15) dont une première extrémité est située à l’intérieur de la paroi de plafond de la cuve (2) et une deuxième extrémité est située à l’extérieur de la paroi de plafond de la cuve (2) dans une direction d’épaisseur de la paroi de plafond, et une portion supérieure (16) fixée à la deuxième extrémité de la portion inférieure (15) ; dans laquelle la portion inférieure (15) est composée d’un alliage à faible coefficient de dilatation thermique,  a sealed pipe (14) penetrating through the ceiling wall of the tank (2) so as to define a passage for discharging the vapor phase of the cryogenic fluid from the inside to the outside of the tank (2) , the pipe (14) having a lower portion (15) having a first end located inside the ceiling wall of the tank (2) and a second end is located outside the ceiling wall of the vessel (2) in a thickness direction of the ceiling wall, and an upper portion (16) attached to the second end of the lower portion (15); in which the lower portion (15) is composed of an alloy with a low coefficient of thermal expansion,
et dans laquelle la membrane d’étanchéité primaire (10) est fixée de manière étanche à la portion inférieure (15) de la conduite (14) autour de la conduite (14). and wherein the primary waterproofing membrane (10) is sealingly attached to the lower portion (15) of the pipe (14) around the pipe (14).
2. Installation selon la revendication 1 , dans laquelle la portion inférieure (15) de la conduite (14) et la membrane d’étanchéité primaire (10) sont composées d’un alliage fer-nickel dont le coefficient de dilatation thermique est compris entre 1 ,2 et 2,0 x 10-6 K 1. 2. Installation according to claim 1, wherein the lower portion (15) of the pipe (14) and the primary sealing membrane (10) are composed of an iron-nickel alloy whose thermal expansion coefficient is between 1, 2 and 2.0 x 10 -6 K 1 .
3. Installation selon la revendication 1 ou la revendication 2, dans laquelle la portion inférieure (15) est soudée de manière étanche à la membrane d’étanchéité primaire (10) par l’intermédiaire d’un anneau à collerette (17).  3. Installation according to claim 1 or claim 2, wherein the lower portion (15) is sealingly welded to the primary sealing membrane (10) via a collar ring (17).
4. Installation selon l’une quelconque des revendications précédentes, dans laquelle la paroi de plafond de la cuve (2) comprend en outre dans le sens de l’épaisseur de la paroi à l’extérieur de la barrière thermiquement isolante primaire (1 1 ), une barrière thermiquement isolante secondaire (13) et une membrane d’étanchéité secondaire (12). 4. Installation according to any one of the preceding claims, wherein the ceiling wall of the vessel (2) further comprises in the direction of the thickness of the wall outside the primary thermally insulating barrier. (1 1), a secondary heat-insulating barrier (13) and a secondary sealing membrane (12).
5. Installation selon la revendication 4, dans laquelle la barrière thermiquement isolante primaire (1 1 ) et la barrière thermiquement isolante secondaire (13) sont constituées chacune d’une pluralité de caissons (18) isolants, la conduite (14) traversant de part en part l’un des caissons (18) de la pluralité de caissons (18) de chacune des barrières thermiquement isolantes primaire et secondaire.  5. Installation according to claim 4, wherein the primary thermally insulating barrier (1 1) and the secondary thermally insulating barrier (13) each consist of a plurality of insulating caissons (18), the pipe (14) passing through apart from one of the boxes (18) of the plurality of boxes (18) of each of the primary and secondary thermally insulating barriers.
6. Installation selon la revendication 4 ou 5, dans laquelle la membrane d’étanchéité primaire (10) et/ou la membrane d’étanchéité secondaire (12) comprennent une pluralité de virures (20) allongées à bords relevés soudées bord à bord dans le sens longitudinal de la virure, chaque virure (20) comprenant une zone plane entre deux bords relevés longitudinaux, la conduite (14) traversant la membre d’étanchéité primaire et/ou la membrane d’étanchéité secondaire (12) par la zone plane d’une virure (20) allongée.  6. Installation according to claim 4 or 5, wherein the primary sealing membrane (10) and / or the secondary sealing membrane (12) comprise a plurality of stretches (20) elongate with raised edges welded edge to edge in the longitudinal direction of the strake, each strake (20) comprising a planar zone between two longitudinal raised edges, the pipe (14) passing through the primary sealing member and / or the secondary sealing membrane (12) through the flat zone an elongated strake (20).
7. Installation selon la revendication 6, dans laquelle la virure (20) de la membrane d’étanchéité primaire (10) et/ou secondaire (12) comprend une portion renforcée (32), la portion renforcée (32) ayant une épaisseur supérieure au reste de la virure (20) et comprenant une zone plane entre deux bords relevés longitudinaux, la conduite (14) traversant la zone plane de la portion renforcée (32).  7. Installation according to claim 6, wherein the strake (20) of the primary (10) and / or secondary (12) sealing membrane comprises a reinforced portion (32), the reinforced portion (32) having a greater thickness the remainder of the strake (20) and comprising a flat area between two longitudinal raised edges, the pipe (14) passing through the flat area of the reinforced portion (32).
8. Installation selon l’une quelconque des revendications 4 à 7, dans laquelle l’installation comprend une gaine (21 ) entourant la conduite (14) avec un espacement dans une direction radiale et fixée à la portion supérieure (16) de la conduite (14), la gaine (21 ) s’étendant de la portion supérieure (16) au moins jusqu’à la membrane d’étanchéité secondaire (12), et la membrane d’étanchéité secondaire 8. Installation according to any one of claims 4 to 7, wherein the installation comprises a sheath (21) surrounding the pipe (14) with a spacing in a radial direction and fixed to the upper portion (16) of the pipe (14), the sheath (21) extending from the upper portion (16) at least to the secondary sealing membrane (12), and the secondary sealing membrane
(12) étant fixée de manière étanche à la gaine (21 ) tout autour de la gaine (21 ). (12) being sealed to the sheath (21) around the sheath (21).
9. Installation selon la revendication 8, dans laquelle la gaine (21 ) est soudée à la membrane d’étanchéité secondaire (12) par l’intermédiaire d’un anneau à collerette (17). 9. Installation according to claim 8, wherein the sheath (21) is welded to the secondary sealing membrane (12) via a collar ring (17).
10. Installation selon la revendication 6 et la revendication 3 et/ou la revendication 9, dans laquelle le ou les anneaux à collerette (17) ont une épaisseur supérieure aux virures (20). 10. Installation according to claim 6 and claim 3 and / or claim 9, wherein the one or more flanged rings (17) have a thickness greater than the strakes (20).
1 1. Navire (1 ) comportant une installation (1 ) selon l’une quelconque des revendications 1 à 10, la paroi de plafond étant attachée à une surface inférieure d’un pont intermédiaire (8) du navire (1 ).  1 1. Ship (1) comprising an installation (1) according to any one of claims 1 to 10, the ceiling wall being attached to a lower surface of an intermediate bridge (8) of the ship (1).
12. Navire (1 ) selon la revendication 1 1 , dans laquelle la conduite (14) comporte un compensateur en accordéon (25) sur une extrémité de la portion supérieure (16) distante de la portion inférieure (15), le compensateur (25) étant configuré pour assurer la fixation de la conduite (14) à une surface supérieure d’un pont supérieur (9) du navire (1 ), le compensateur (25) présentant des ondulations configurées pour autoriser la contraction thermique de la conduite (14).  12. Ship (1) according to claim 1 1, wherein the pipe (14) comprises an accordion compensator (25) on one end of the upper portion (16) remote from the lower portion (15), the compensator (25). ) being configured to secure the line (14) to an upper surface of an upper deck (9) of the ship (1), the compensator (25) having corrugations configured to allow thermal contraction of the line (14). ).
13. Navire (1 ) selon la revendication 1 1 ou la revendication 12, dans laquelle la conduite (14) comprend un manchon isolant (26) entourant une partie de la portion supérieure (16) de la conduite (14) et situé entre le pont intermédiaire (8) du navire (1 ) et un pont supérieur (9) d’un navire (1 ).  The vessel (1) according to claim 11 or claim 12, wherein the conduit (14) comprises an insulating sleeve (26) surrounding a portion of the upper portion (16) of the conduit (14) and located between the intermediate bridge (8) of the ship (1) and an upper deck (9) of a ship (1).
14. Navire (1 ) selon la revendication 13, dans lequel le pont intermédiaire (8) et le pont supérieur (9) comprennent un orifice (27, 28), l’orifice (27, 28) ayant un diamètre supérieur à un diamètre extérieur de la portion supérieure (16) de la conduite (14), la conduite (14) traversant le pont intermédiaire (8) et le pont supérieur (9) par l’orifice de pont intermédiaire (27) et l’orifice de pont supérieur (28) respectivement.  The vessel (1) according to claim 13, wherein the intermediate bridge (8) and the upper bridge (9) comprise an orifice (27,28), the orifice (27,28) having a diameter greater than a diameter. outside the upper portion (16) of the pipe (14), the pipe (14) passing through the intermediate bridge (8) and the upper bridge (9) through the intermediate bridge port (27) and the bridge port higher (28) respectively.
15. Navire (1 ) selon la revendication 14, dans lequel le pont intermédiaire (8) comprend un surbau (22) sur une surface supérieure du pont intermédiaire (8), le surbau (22) entourant l’orifice de pont intermédiaire (27) et étant traversé par la conduite (14), et dans lequel la conduite (14) est fixée au surbau (22).  The vessel (1) according to claim 14, wherein the intermediate bridge (8) comprises a coaming (22) on an upper surface of the intermediate bridge (8), the coaming (22) surrounding the intermediate bridge port (27). ) and being traversed by the pipe (14), and wherein the pipe (14) is fixed to the overbeam (22).
16. Procédé de chargement ou déchargement d’un navire (1 ) selon l’une quelconque des revendications 11 à 15, dans lequel on achemine un fluide cryogénique à travers des canalisations isolées (40, 43, 46, 48) depuis ou vers une installation de stockage flottante ou terrestre (44) vers ou depuis une cuve (2) du navire (1 ). 16. A method of loading or unloading a ship (1) according to any one of claims 11 to 15, wherein a cryogenic fluid is conveyed through insulated pipes (40, 43, 46, 48) from or to a floating or land storage facility (44) to or from a vessel (2) of the vessel (1).
17. Système de transfert pour un fluide cryogénique, le système comportant un navire (1 ) selon l’une quelconque des revendications 1 1 à 15, des canalisations isolées (40, 43, 46, 48) agencées de manière à relier la cuve (2) installée dans la double coque (7) du navire (1 ) à une installation de stockage flottante ou terrestre (44) et une pompe pour entraîner un flux de fluide cryogénique à travers les canalisations isolées depuis ou vers l’installation de stockage flottante ou terrestre vers ou depuis la cuve (2) du navire (1 ). 17. Transfer system for a cryogenic fluid, the system comprising a ship (1) according to any one of claims 1 1 to 15, insulated pipes (40, 43, 46, 48) arranged to connect the vessel ( 2) installed in the double hull (7) of the vessel (1) at a floating or land storage facility (44) and a pump for driving a flow of cryogenic fluid through the isolated pipes to or from the floating storage facility or terrestrial to or from the vessel (2) of the vessel (1).
EP19710045.6A 2018-02-20 2019-02-12 System for storing and transporting a cryogenic fluid on a ship Withdrawn EP3755939A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1851447A FR3078135B1 (en) 2018-02-20 2018-02-20 INSTALLATION FOR THE STORAGE AND TRANSPORT OF A CRYOGENIC FLUID ON BOARD ON A SHIP
PCT/FR2019/050301 WO2019162594A2 (en) 2018-02-20 2019-02-12 System for storing and transporting a cryogenic fluid on a ship

Publications (1)

Publication Number Publication Date
EP3755939A2 true EP3755939A2 (en) 2020-12-30

Family

ID=62222906

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19710045.6A Withdrawn EP3755939A2 (en) 2018-02-20 2019-02-12 System for storing and transporting a cryogenic fluid on a ship

Country Status (7)

Country Link
US (1) US11407478B2 (en)
EP (1) EP3755939A2 (en)
JP (1) JP7219772B2 (en)
KR (1) KR102596193B1 (en)
CN (1) CN111788429B (en)
FR (1) FR3078135B1 (en)
WO (1) WO2019162594A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3130931B1 (en) * 2021-12-17 2023-12-22 Gaztransport Et Technigaz Liquefied gas storage installation comprising a tank and a dome structure

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE758051A (en) * 1969-10-31 1971-04-01 Conch Int Methane Ltd LIQUEFIED GAS STORAGE DEVICE
JP4578084B2 (en) * 2003-10-02 2010-11-10 東京瓦斯株式会社 Low temperature liquefied gas piping structure
US8770234B2 (en) 2007-09-14 2014-07-08 Bhp Billiton Petroleum Pty. Limited Hose
KR20110026945A (en) 2009-09-09 2011-03-16 대우조선해양 주식회사 Structure for installing a pipe of a lng pump tower
FR2961580B1 (en) * 2010-06-17 2012-07-13 Gaztransport Et Technigaz WATERPROOF AND INSULATED TANK WITH SUPPORT FOOT
FR2968284B1 (en) 2010-12-01 2013-12-20 Gaztransp Et Technigaz SEAL BARRIER FOR A TANK WALL
EP2466186A1 (en) * 2010-12-16 2012-06-20 Air Products and Chemicals, Inc. A process for filling a gas storage container
FR2984454B1 (en) * 2011-12-20 2015-04-03 Gaztransp Et Technigaz TANK WALL COMPRISING A CONDUIT
FR2991430A1 (en) * 2012-05-31 2013-12-06 Gaztransp Et Technigaz Method for sealing secondary sealing barrier of fluidtight and thermally insulated tank of methane tanker ship utilized to transport liquefied natural gas, involves injecting polymerizable fluid until area of interior surface of stopper
FR3002515B1 (en) * 2013-02-22 2016-10-21 Gaztransport Et Technigaz TANK WALL COMPRISING A CROSSING ELEMENT
FR3019520B1 (en) 2014-04-08 2016-04-15 Gaztransport Et Technigaz WATERPROOF AND THERMALLY INSULATED TANK IN A FLOATING WORK
CN105570665B (en) 2014-10-10 2018-01-05 南通中集能源装备有限公司 Filling tank system peculiar to vessel and the LNG filling landing stage with the tank system
FR3032258B1 (en) * 2015-01-30 2017-07-28 Gaztransport Et Technigaz STORAGE AND TRANSPORTATION INSTALLATION OF A CRYOGENIC FLUID EMBEDDED ON A SHIP
KR102348463B1 (en) * 2015-08-31 2022-01-07 대우조선해양 주식회사 Liquefied gas cargo tank and carrier with the cargo tank
FR3052843B1 (en) * 2016-06-15 2018-07-06 Gaztransport Et Technigaz GAS DOME STRUCTURE FOR A SEALED AND THERMALLY INSULATING TANK

Also Published As

Publication number Publication date
JP7219772B2 (en) 2023-02-08
JP2021514327A (en) 2021-06-10
CN111788429A (en) 2020-10-16
KR102596193B1 (en) 2023-10-31
US20200398943A1 (en) 2020-12-24
KR20200122357A (en) 2020-10-27
WO2019162594A3 (en) 2019-10-31
US11407478B2 (en) 2022-08-09
RU2020126271A (en) 2022-03-21
FR3078135B1 (en) 2021-01-15
WO2019162594A2 (en) 2019-08-29
CN111788429B (en) 2022-03-29
FR3078135A1 (en) 2019-08-23

Similar Documents

Publication Publication Date Title
EP3250849B1 (en) Apparatus for storing and transporting a cryogenic fluid on-board a ship
EP3472509B1 (en) Gas dome structure for a sealed, thermally insulated vessel
WO2019155154A1 (en) Facility for storing and transporting a liquefied gas
WO2019239048A1 (en) Thermally insulating sealed tank
WO2020193665A1 (en) Thermally insulating sealed tank
WO2017174938A1 (en) Thermally-insulating sealed tank
WO2019239071A1 (en) Sealed and thermally insulating vessel having continuous corrugations in the liquid dome
WO2021140218A1 (en) Storage facility for liquefied gas
WO2018122498A1 (en) Sealed and thermally insulating tank for storing a fluid
WO2019162594A2 (en) System for storing and transporting a cryogenic fluid on a ship
WO2021233712A1 (en) Storage facility for liquefied gas
WO2021228751A1 (en) Liquid dome of a storage tank for liquefied gas comprising an opening provided with an additional hatch
EP4031798A1 (en) Sealed and thermally insulating tank
FR3111411A1 (en) Liquid dome of a storage tank for liquefied gas
WO2019239053A1 (en) Fluid-tight vessel provided with an undulating joint element
EP4019388B1 (en) Vessel comprising a tank
WO2021099424A1 (en) Facility for storing a liquefied gas
WO2023036769A1 (en) Storage facility for liquefied gas
EP4083494A1 (en) Storage installation for liquefied gas
WO2023001678A1 (en) Storage installation for liquefied gas
WO2021233986A1 (en) Liquid dome of a storage tank for liquefied gas
WO2022106692A1 (en) Liquid dome of a storage tank for liquefied gas
FR3070673B1 (en) FLOATING WORK COMPRISING A TANK CAPABLE OF CONTAINING LIQUEFIED COMBUSTIBLE GAS
FR3135126A1 (en) Tank wall crossed by a sealed fluid evacuation pipe
EP4198375A1 (en) Liquefied gas storage facility comprising a vessel and a dome structure

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200911

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230324

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20230804