EP3746725B1 - Erzeugung von flüssiggas in einem gasspeicher - Google Patents

Erzeugung von flüssiggas in einem gasspeicher Download PDF

Info

Publication number
EP3746725B1
EP3746725B1 EP19701598.5A EP19701598A EP3746725B1 EP 3746725 B1 EP3746725 B1 EP 3746725B1 EP 19701598 A EP19701598 A EP 19701598A EP 3746725 B1 EP3746725 B1 EP 3746725B1
Authority
EP
European Patent Office
Prior art keywords
gas
natural gas
liquefied
stored
natural
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19701598.5A
Other languages
English (en)
French (fr)
Other versions
EP3746725A1 (de
Inventor
Burkhard Lenth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Innogy SE
Original Assignee
Innogy SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Innogy SE filed Critical Innogy SE
Publication of EP3746725A1 publication Critical patent/EP3746725A1/de
Application granted granted Critical
Publication of EP3746725B1 publication Critical patent/EP3746725B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0045Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0201Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0204Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a single flow SCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0232Coupling of the liquefaction unit to other units or processes, so-called integrated processes integration within a pressure letdown station of a high pressure pipeline system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/06Splitting of the feed stream, e.g. for treating or cooling in different ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/40Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/90Processes or apparatus involving steps for recycling of process streams the recycled stream being boil-off gas from storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration

Definitions

  • Exemplary embodiments of the invention relate to the production of liquid gas in a gas storage facility.
  • liquid gas is traded as a bridging technology for decarbonization.
  • Liquid gas is mentioned as a possible replacement for diesel fuel, especially in long-distance transport. If liquid gas gains acceptance as an alternative fuel to diesel, for heavy goods traffic or for shipping (especially inland shipping), a technical supply concept would be desirable.
  • the natural gas is converted into liquid natural gas under high pressure and free from impurities.
  • the object of the present subject matter is to provide a solution for being able to produce liquid gas as cost-effectively as possible.
  • a differential pressure of about 55 bar is required to convert natural gas as a feedstock into liquid gas by means of an expansion.
  • This differential pressure is regularly already known as the difference between the natural gas stored in the gas reservoir and a pipeline of a transport network for transporting the natural gas, e.g. B. to consumers present.
  • the existing pressure difference in a gas storage facility is used.
  • the method according to the first aspect can be carried out by a device (for example a device for generating liquid gas).
  • the method according to the first aspect may alternatively be performed by multiple devices, e.g. B. a device for cleaning natural gas and another device for generating liquid gas are carried out together.
  • the one or more Devices are set up according to the invention for executing and/or controlling the method according to the first aspect of the invention or comprise respective means for executing and/or controlling the steps of the method according to the first aspect of the invention.
  • the respective devices can correspondingly have respective means for execution and/or control of the steps carried out by the respective device (e.g. device for cleaning natural gas or another device for generating liquid gas).
  • the respective device e.g. device for cleaning natural gas or another device for generating liquid gas.
  • an apparatus arranged to carry out and/or control the method according to the first aspect of the invention or respective means for carrying out and/or controlling the steps of the method is disclosed according to the first aspect of the invention.
  • either all steps of the method can be controlled, or all steps of the method can be carried out, or one or more steps can be controlled and one or more steps can be carried out.
  • One or more of the means can also be executed and/or controlled by the same entity.
  • one or more of the means can be formed by one or more processors.
  • a system which comprises one or more devices which are set up for executing and/or controlling the method according to the first aspect of the invention or means for executing and /or control the steps of the method according to the first aspect of the invention. Either all steps of the Method are controlled, or all steps of the method are executed, or one or more steps are controlled and one or more steps are executed.
  • expansion is understood to mean a relaxation of natural gas, with the natural gas being at least under less pressure after the expansion than before the expansion.
  • liquefied gas is understood to mean in particular liquefied natural gas, also referred to as liquid natural gas (LNG). In particular, this does not include the so-called liquefied petroleum gas (LPG), which is often used by cars, for example. B. can be used as fuel by a corresponding conversion of the vehicle.
  • LNG liquid natural gas
  • LPG liquefied petroleum gas
  • a “gas storage facility” is understood to mean a natural gas storage facility.
  • Such natural gas reservoirs are in particular large and, according to the invention, underground storage systems with which, for example, seasonal fluctuations in demand are possible by withdrawing natural gas previously stored in the reservoir.
  • the gas network is, for example, a transport network in which natural gas with a predefined pressure of z. B. is transported about 30 bar.
  • a sufficient pressure difference (differential pressure ⁇ p; also referred to as delta p) between the natural gas that is stored in the gas storage facility and the gas network, into which the stored natural gas can be withdrawn from the gas storage facility, in order to generate liquid gas (LNG) in such gas storage facilities as part of the withdrawal.
  • Liquid gas produced can also be stored at least temporarily.
  • the amount of energy that was used to increase the pressure before storing natural gas in the gas storage facility is not completely lost when the gas is withdrawn into the gas network (e.g. transport network), since at carrying out the method according to the first aspect of the invention, this amount of energy is used or utilized for the production of liquid gas (LNG).
  • the gas network e.g. transport network
  • the generation of liquid gas is based on the knowledge that the pressure difference, e.g. B. in caverns of large gas storage facilities or when outsourced to the transport network for the production of liquefied natural gas.
  • a gas storage facility with, for example, two caverns with different pressures (e.g. 50 bar and 200 bar) or a cavern or storage facility in porous rock (e.g. 200 bar) with a connection to the natural gas transport network (e.g. 30-50 bar) can be used objectively, for example.
  • the Joule-Thompson effect can be used to generate cold and thus reduce the temperature of the natural gas.
  • This resulting expansion energy is objectively at least partially used in the rearrangement or outsourcing of natural gas to produce liquefied natural gas (LNG). Since such a rearrangement and/or expansion into the transport network is carried out during regular operation of the gas storage facility, the liquefied gas can consequently be produced particularly cost-effectively.
  • the pressure reduction takes place in order to have a so-called constant system within the framework of the production of liquid gas, so that the method in which liquid gas is produced as a result can always be carried out with the one or more devices.
  • the pressure reduction may be necessary, for example, because the prevailing pressure in the gas storage facility (e.g. cavern pressure) changes over the course of the year. This can happen, for example, as a result of external and naturally occurring environmental influences.
  • gas reservoirs designed as cavern reservoirs are subject to such pressure fluctuations.
  • the pressure reduction can be carried out, for example, by means of a pressure control valve, an expander, or a vortex tube, to name just a few non-limiting examples.
  • the purification of the natural gas can include drying of the natural gas.
  • Such drying of the natural gas changes the natural gas in such a way that water contained in the natural gas is sometimes removed from the natural gas.
  • the natural gas can be cleaned and dried in a single step, for example.
  • the cleaning and the drying of the natural gas can each be separate steps of the method according to the first aspect of the invention.
  • the cleaning and the drying of the natural gas can be carried out by a single device, or alternatively by two separate devices.
  • the order of the steps can be changed, for example. Accordingly, for example, the natural gas can be cleaned first and then dried. Alternatively, for example, the natural gas can be dried first and then cleaned.
  • the cleaning and/or drying of the natural gas stored in the gas reservoir includes or is carried out, for example, by systems that have components such as As water and carbon dioxide, which complicate the production of liquid gas, withdraw the natural gas. This enables stable subsequent production of the liquefied gas.
  • natural gas is passed to a second heat exchanger for cooling by heat exchanging a second portion of the cooled and condensed natural gas, the second portion being made into liquefied gas by subcooling in the second heat exchanger and subsequent expansion; and wherein the cooling of the cleaned natural gas takes place in the first heat exchanger with an expanded part of the cleaned natural gas, the expansion taking place by means of a differential pressure which is applied when the natural gas stored in the gas reservoir is stored.
  • the cold is generated, for example, by means of pre-cooling and natural gas expansion.
  • a differential pressure of at least 50 to 55, 51 to 54, 52 to 53, preferably at least 55 bar is required in order to be able to produce liquid gas particularly inexpensively with this method according to the first aspect of the invention.
  • This differential pressure can be found in underground storage - as explained above.
  • the generation of the liquefied gas takes place, for example, in such a way that there is no negative impact on normal storage operation.
  • an existing gas storage facility can take on new tasks in liquid gas generation in addition to its previous tasks in the gas network.
  • the expansion through which the liquefied gas is generated is such, for example, that the natural gas is cooled after the expansion in such a way that it is in its State of aggregation changes and accordingly changes from a gaseous state to a liquid state.
  • This change of physical state which is necessary for the production of liquid gas, takes place at a temperature of around -160°C.
  • the cooling of the natural gas to reach this temperature takes place at least partially by means of the expansion. It is envisaged that this differential pressure will already arise when storing natural gas in the gas storage facility.
  • An embodiment according to the first aspect provides that the production of the liquefied gas is carried out essentially simultaneously with a withdrawal of natural gas stored in the gas storage facility.
  • the liquid gas is generated, for example, based on natural gas stored in the gas storage facility, which is intended to be released into the gas network, for example, to compensate for fluctuations in consumption in the gas network.
  • the usual operation of the gas storage used to generate the liquid gas is consequently not disturbed.
  • a further configuration according to the first aspect provides that the liquefied gas is generated after passing through at least two heat exchangers, with a Joule-Thompson expansion of the natural gas being carried out in particular.
  • the liquid gas is generated by a total of two heat exchangers.
  • the liquid gas that is generated is stored at least temporarily in a liquid gas storage facility.
  • Liquid gas that is generated can in particular be stored at least temporarily. After this temporary storage, at least the boil-off gas (BOG) produced during storage must be removed from the storage facility.
  • the BOG can be used to refuel CNG (Compressed Natural Gas) vehicles or fed back into the gas grid. Accordingly, liquid gas produced should be consumed continuously, since this same boil-off gas is produced during storage.
  • CNG Compressed Natural Gas
  • the cold required to generate the liquefied gas is generated at least partially based on the natural gas that is to be stored on the one hand and is to be generated from the liquefied gas on the other.
  • the cold required is at least partially also obtained based on the natural gas that is to be stored on the one hand and is to be generated from the liquid gas on the other (by a corresponding conversion of at least part of the second part of the cooled natural gas).
  • the energy required for generation which is required in particular for cooling the natural gas, is such that the natural gas changes its physical state from gaseous to liquid, as a result of which liquid gas is generated.
  • An embodiment according to the first aspect provides that the first part of the cooled natural gas can be discharged into a gas network after a pressure reduction.
  • the reduction in pressure ensures in particular that cold occurs. This cold is used, for example, to produce liquid gas.
  • a pressure reduction is also required in order to be able to withdraw natural gas that is stored in the gas storage facility into a pipeline of the gas network.
  • the natural gas stored in the gas reservoir is brought to the pressure that is present in a gas network into which the natural gas is to be withdrawn, for example by the pressure reduction.
  • the storage of the liquefied gas produced causes a quantity of natural gas to escape (e.g. escape), the quantity of natural gas that emerges from the liquefied gas reservoir due to the heating of the stored liquefied gas being usable for further use.
  • a quantity of natural gas to escape e.g. escape
  • the quantity of natural gas that emerges from the liquefied gas reservoir due to the heating of the stored liquefied gas being usable for further use.
  • boil-off gas When storing LPG, the temperature of the stored LPG increases. This increase in temperature of the stored liquefied gas leads to an escape of at least part of the stored liquefied gas, which is also referred to as so-called boil-off gas (BOG).
  • BOG boil-off gas
  • boil-off gas deflagrating instead of leaving this boil-off gas unused, for example by the boil-off gas deflagrating, it can be used for further use, for example.
  • This amount of natural gas that escapes (or evaporates) from a storage facility in which the generated liquid gas is stored can, for example, be subject to further use.
  • this vaporized natural gas can be discharged into the gas network after a pressure adjustment that is sometimes required (e.g. by compression).
  • natural gas vaporized from a liquid gas storage facility generally has a lower pressure than the pressure that prevails in the gas network connected to the gas storage facility, which includes the liquid gas storage facility. Accordingly, it may be necessary to compress the natural gas in order to be able to withdraw this natural gas into the gas network.
  • a further embodiment according to the first aspect provides that the quantity of natural gas can be fed (or is fed) to a third heat exchanger for heating natural gas for further use.
  • the third heat exchanger heats natural gas, for example, before the natural gas stored in the gas reservoir is withdrawn into the gas network or into a pipeline of the gas network.
  • the third heat exchanger for example, z. B. connected via an interface to the gas network or the pipeline of the gas network.
  • An embodiment according to the first aspect provides that a quantity of liquid gas can be used as fuel for further use.
  • the amount of liquid gas in a corresponding (z. B. mobile) storage, z. B. in the manner of a tank so that the amount of gasified liquid gas from this mobile tank can be fed to an engine as fuel to be needed.
  • This amount can be used for vehicles (e.g. trucks, locomotives, ships, just to name a few non-limiting examples).
  • the boil-off gas can also be used, for example, as a fuel for transport.
  • Underground storage facilities also referred to as underground gas storage (UGS] are gas storage facilities, whereby natural gas can be stored in natural or artificial cavities under the earth's surface using such underground storage facilities.
  • gas storage facilities are, for example, aquifer and pore storage facilities, cavern storage facilities or tube storage facilities.
  • Tubular storage facilities are medium-sized Natural gas storage to compensate for fluctuations in demand. Tube storage systems are used, for example, to cover daily consumption peaks, as they have high feed-in and feed-out capacities.
  • the one device or the multiple devices that carry out and/or control the method according to the first aspect are arranged within the gas storage facility, which is designed as an underground storage facility.
  • the one device or the multiple devices are arranged, for example, between the interface via which the gas storage facility can withdraw stored natural gas (e.g. into a pipeline) and the interface via which natural gas stored in the gas storage facility can be withdrawn from the supply . Further details on this can be found in the "Detailed description of some exemplary embodiments of the invention" section.
  • a further configuration according to the first aspect provides that the cooling is carried out at least partially by cooling the natural gas using a refrigeration system.
  • the first part of the cooled natural gas is subjected to a pressure increase by means of a compressor.
  • the pressure of the natural gas can be increased by means of the compressor.
  • a pressure that is too low can arise, for example, from the fact that during the evaporation of the liquid gas, during which the natural gas is heated (its temperature is increased by storage), it expands too much. This can be the case, for example, if the cold required to generate the liquid gas for cooling the natural gas could not yet be fully generated by expansion of the natural gas. Accordingly, in this case, a further expansion of the natural gas can take place in order to generate the cold required to produce the liquefied gas.
  • a fourth heat exchanger heats the first part of the cooled natural gas for compression by the compressor and/or for discharging the first part of the cooled natural gas into the gas network.
  • the pressure of the natural gas to the gas network or to a pipeline connected to the gas storage facility into which the natural gas is withdrawn can be increased, for example, by means of the fourth heat exchanger, the temperature of the natural gas to be withdrawn.
  • This also indirectly causes a change in the pressure under which the natural gas is, so that the pressure of the natural gas to be withdrawn is or is subsequently adjusted to the pressure of the gas network or pipeline by heating.
  • One device is, for example, a single device.
  • the method according to the first aspect of the invention is carried out and/or controlled by a plurality of devices (i.e. at least two devices, e.g. each designed as plant parts).
  • One of the multiple devices is designed and/or includes such means, for example, to clean natural gas (e.g. natural gas cleaning system), and another device of the multiple devices is designed and/or includes such means, for example, to produce liquid gas (e.g B. a liquid gas production plant).
  • FIG. 1 shows a schematic representation of an embodiment of a system for carrying out the method according to the invention.
  • the system 100 comprises a gas reservoir 110, a device for natural gas purification 120, a device for generating liquid gas 130, and an optional device for storing or storing the generated liquid gas 140.
  • the devices 120 and 130 comprised by the system 100 are in particular devices according to the second aspect of the present invention.
  • natural gas is withdrawn from gas storage 110 .
  • the natural gas to be withdrawn is cleaned by the natural gas cleaning system 120 .
  • liquid gas is then generated by the device 130, the cleaned natural gas being cooled by supplying cold (cooling the cleaned natural gas), whereby the cleaned natural gas changes the aggregate state from gaseous to liquid, thereby producing liquid gas (LNG).
  • the liquid gas produced can then optionally be stored or stored in a corresponding liquid gas storage facility.
  • Natural gas, that was not used to produce LPG is fed into a gas network (in 1 not shown) with which the gas storage device 110 is connected.
  • the natural gas not used to generate liquid gas can be stored again in the gas reservoir 110 . For this purpose it may be necessary for the natural gas to be compressed for storage in the gas reservoir 110 .
  • FIG. 6 shows a schematic representation of a further embodiment of a system for carrying out the method according to the invention.
  • the system 600 includes - analogous to the system 100 according to 1 - A gas storage 610 (here an underground storage, which is designed as a cavern with a pressure of about 85 to 200 bar), a device for natural gas purification and natural gas drying 620, and a device for generating liquid gas 630.
  • the system 600 also includes a device for preheating natural gas and pressure reduction 615, a memory 640 for storing or storing the liquid gas produced, and a connection to a pipeline 650 of a gas network (z. B. a transport network).
  • a natural gas measurement can optionally be carried out by a corresponding device for natural gas measurement 660.
  • the device for generating liquid gas is encompassed by the gas reservoir 610 in such a way that liquid gas can be generated in particular as part of the withdrawal of natural gas stored in the gas reservoir 610 .
  • the existing differential pressure between the natural gas stored in the gas storage facility 610 and the required pressure of the natural gas for withdrawal into the gas network or into the pipeline 650 of the gas network is used to supply cold to the natural gas via an expansion of the natural gas, so that as a result, liquefied natural gas (LNG) is produced.
  • LNG liquefied natural gas
  • the device 630 for generating liquid gas comprises five heat exchangers 630-1 to 630-5, a first Joule-Thompson expansion 630-8, a second Joule-Thompson expansion 630-9, a third Joule-Thompson expansion 630-10, a Refrigeration system 630-6, as well as a compressor 630-7.
  • the device for preheating 615 includes a heat exchanger by means of which the natural gas taken from the gas reservoir 610 is preheated. After preheating, a first Joule-Thompson expansion takes place, during which the pressure of the natural gas is reduced, e.g. B. from 200 bar in the stored state in the gas storage 610 to about 85 bar after performing the Joule-Thompson expansion.
  • the natural gas can then be cleaned in the device 620 for cleaning natural gas.
  • the natural gas (or the volume or mass flow of the natural gas) is divided, with a first part of the natural gas being routed to a heat exchanger 630-2 and a second part of the natural gas being routed to a heat exchanger 630-1 will.
  • a larger proportion of the mass flow (e.g. 75%) of the natural gas is sent as the first part (to the heat exchanger 630-2), and a smaller proportion (e.g. 25%) as the second part (to the heat exchanger 630-1 ) divided
  • the second part of the natural gas is cooled by means of the heat exchanger 630-1, the natural gas condensing a temperature after cooling.
  • the refrigeration used by heat exchanger 630-1 to cool the second portion of the split natural gas is based at least in part on the first portion of the split natural gas.
  • the first portion of the split natural gas is pre-cooled by heat exchanger 630-2 and 630-4. That part of the natural gas from which the energy for cooling is obtained by the heat exchanger 630-2 or 630-4 can be routed via the natural gas measurement 660, for example, into the pipeline 650, since the energy required for cooling is generated by an expansion of the in the heat exchanger 630-2, as well as 630-4 introduced natural gas is related.
  • the expansion means that the natural gas has a pressure of around 30 bar, for example, so that it can be fed into the pipeline.
  • the mass flow m passing through the system 600 is indicated, which is initially generated by a pressure quantity control 615-3.
  • the result is a mass flow m with constant pressure.
  • the mass flow m then runs through the natural gas cleaning system 620, which in the present case also performs natural gas drying.
  • This mass flow m is divided into the mass flows m1 (about 25% of the total mass flow m) and m2 (about 75% of the total mass flow m).
  • the mass flow m2 serves as the first cooling for m1.
  • the mass flow m2 is pre-cooled by the heat exchangers 630-2 and 630-4 and brought to a low temperature by a refrigeration system. Due to the subsequent natural gas expansion 630-9, the cooled natural gas is used to cool the mass flow m1 in the heat exchanger 630-1. Thereafter, the mass flow m2 is further heated via the heat exchanger 630 - 2 and conducted to the gas cleaning system in order to serve as regeneration in the natural gas cleaning system 620 . From there, the mass flow m2 is supplied to the gas network 650 via a natural gas measurement 660 .
  • the mass flow m1 cooled in the heat exchanger 630-1 condenses and is divided into the mass flows m3 (about 15% of the total mass flow m) and m4 (about 10% of the total mass flow m).
  • the mass flow m4 continues to decrease cooled by expansion 630-10 and is used for the second cooling of the mass flow m3.
  • the mass flow m4 After being heated in the heat exchanger 630-3, the mass flow m4 is admixed with the BOG and heated via the heat exchanger 630-4 and brought to the required pipeline pressure by means of a compressor. From there, the mass flow m4 is fed to the gas network 650 via a natural gas measurement.
  • the mass flow m3 is cooled down to the required liquid gas (LNG) temperature by the expansion 630-8 and then stored.
  • the LNG can e.g. B. for LNG refueling, the BOG can be used for CNG refueling.
  • a Joule-Thompson expansion 630-10 takes place based on another part of the natural gas that has already passed through the heat exchanger 630-1 Has.
  • the energy generated by this Joule-Thompson expansion 630-10 is used by the heat exchanger 630-3 to further cool the natural gas introduced into the heat exchanger 630-3.
  • the natural gas After passing through the heat exchanger 630-3, the natural gas usually does not yet have the temperature required for generating liquid gas (LNG), so that a further Joule-Thompson expansion 630-8 of the natural gas increases its temperature reduced in such a way that liquid gas is then generated.
  • This generated liquid gas can be stored in the liquid gas store 640, for example.
  • Boil-off gas is produced during storage or storage of the liquid gas produced in the liquid gas storage facility 640 6 denoted by the abbreviation BOG.
  • this BOG can continue to be used; in the present case, for example, it can be introduced or fed into the pipeline 650 of the gas network after passing through the compressor 630-7.
  • LNG production For the production of liquefied gas (LNG production), refrigeration is required in particular, with around 85% of the natural gas, for example, on which the production of liquefied gas is based, being used for the production of refrigeration. The remaining approximately 15% (25% divided into 10% and 15%) of the natural gas is converted into liquefied gas. It is particularly advantageous that the natural gas quantities used for cold production (e.g. the approximately 85%) are not lost, but are used further because these are stored in the gas network after the cold production, for example. From there, the natural gas can, for example, be stored again in the gas storage facility from which the natural gas used to generate the liquid gas was originally stored.
  • the natural gas quantities used for cold production e.g. the approximately 85%
  • the natural gas can, for example, be stored again in the gas storage facility from which the natural gas used to generate the liquid gas was originally stored.
  • the prevailing temperatures and pressures of the natural gas that it has after passing through a device (610 to 660) included in the system can 6 in each case by a corresponding indication attached to the respective device in 6 is shown, can be removed. These details of temperatures and pressures are also to be understood as disclosed in connection with all aspects of the present invention.
  • Figure 2a shows a schematic representation of a first part of the 6 shown embodiment of a system according to the invention.
  • Figure 2b shows the according Figure 2a shown part of the system, being opposite Figure 2a after the pressure reduction, a heat exchanger is arranged, which uses at least part of the gas before the pressure reduction for the corresponding heat exchange.
  • the first serves to generate a constant mass flow. After the natural gas has been cleaned and dried, the pressure is reduced a second time, during which cold is produced as a result of relaxation (expansion).
  • a second mass flow is available, which is derived after cleaning and cooled and condensed via a heat exchanger.
  • FIG 3 shows a schematic representation of a second part of the 6 shown embodiment of a system for performing the method according to the invention, which is based on in 2 part shown has been expanded.
  • FIG. 4 shows a schematic representation of a third part of the 6 shown embodiment of a system for performing the method according to the invention, which is based on in 3 part shown has been expanded.
  • the mass flow condensed by the second derived mass flow is then expanded via a fourth pressure reduction.
  • the resulting cold of -160 °C is reached and liquid gas (LNG) can then be stored.
  • the BOG can e.g. B. be used for CNG refueling or stored back in the gas storage.
  • figure 5 shows a schematic representation of a fourth part of the 6 shown embodiment of a system for performing the method according to the invention, which is based on in 4 part shown has been expanded.
  • a refrigeration system is provided in the withdrawal line.
  • This refrigeration system can also Application of energy sometimes necessary to start the method according to the first aspect of the invention, which is carried out by the system 600.
  • Flowchart 700 shows a flow chart of an embodiment of a part of the method according to the invention.
  • Flowchart 700 is performed by devices 120 and 130, for example 1 carried out and/or controlled.
  • a gas storage facility e.g. a gas storage facility designed as an underground storage facility, e.g. gas storage facility 110 according to 1 , stored natural gas.
  • liquid gas is generated based on the cleaned natural gas.
  • Liquid gas can be generated, for example, by means of the device for generating liquid gas 130 1 carried out and/or controlled.
  • the liquid gas is generated as part of the withdrawal of natural gas stored in the gas storage facility into a gas network connected to the gas storage facility, with the withdrawal covering, for example, a corresponding requirement of the gas network.
  • An expansion of the natural gas stored in the gas reservoir is required for withdrawal, the pressure of the natural gas stored in the gas reservoir being reduced. In the present case, this is used to use at least part of the natural gas stored in the gas reservoir to produce liquid gas.
  • the liquid gas produced is stored, e.g. B. a storage of the liquid gas in a separate memory, which is for example included in the gas storage.
  • the generated liquid gas or at least part of the generated liquid gas can be stored or stored in a container that is transportable.
  • the transportable container can be transported, for example, by means of a truck or a train.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

    Gebiet
  • Beispielhafte Ausführungsformen der Erfindung betreffen die Erzeugung von Flüssiggas in einem Gasspeicher.
  • Hintergrund
  • In Europa wird in den kommenden Jahren ein Zuwachs an Flüssiggas erwartet. In den Medien wird Flüssiggas als Brückentechnologie bei der Dekarbonisierung gehandelt. Besonders im Fernverkehr wird Flüssiggas als möglicher Ersatz für Dieselkraftstoffe genannt. Sofern Flüssiggas als Alternativkraftstoff zum Diesel, für den Schwerlastverkehr oder auch für die Schifffahrt (insbesondere die Binnenschifffahrt) an Akzeptanz gewinnt, wäre ein technisches Versorgungskonzept wünschenswert.
  • Flexible Versorgung diverser Kundengruppen (z. B. Binnenschifffahrt, Tankstellen für den Schwerlastverkehr, um nur einige nicht-limitierende Beispiele zu nennen) mit Flüssiggas als Brennstoff wäre wünschenswert, wobei insbesondere wegfallende Erdgasmengen in Gasnetzen und Handel reduziert werden könnten.
  • Die konventionelle Erzeugung von Flüssiggas ist sehr energieintensiv. Wesentlicher Kostentreiber sind die Betriebskosten. Bedingt durch die Kosten findet Flüssiggas als Energieträger bisher nur in ausgewählten Nischen Anwendung.
  • Des Weiteren ist bekannt, dass bei der Auslagerung von Erdgas in einem Gasspeicher entstehende Kälte kostenintensiv und ungenutzt vernichtet wird.
  • In dem Artikel der Autoren Rathmann et al. mit dem Titel "Which Liquefaction process suits best for LNG-Peakshaving" ist u.a. ausgeführt, dass im Gebiet von Gasversorgungsnetzen, sogenannte Peakshaving Kraftwerke eine legitime Rolle spielen, um Spitzenlasten abzufangen und die Verfügbarkeit der Bereitstellung von Gas unterstützen können. Der Nutzen hängt von einer Vielzahl von Parametern ab, deren korrekte Auswahl auf den Verflüssigungsprozess von Gas einen Einfluss hat. Die D1 offenbart einen Gasexpansionsprozess mit einem überlagerten Zyklus, der dasjenige Zyklusgas, das nicht als natürliches Gas zur Verfügung steht, ausgleicht, indem dieses mittels eines Kompressors komprimiert wird. Der Kompressor komprimiert das Gas auf den gleichen Druck des dem Kraftwerk zugeführten Gases. Die US 3 182 461 A offenbart die Verteilung von Erdgas und insbesondere die Wiederherstellung eines Teils des Gases als Flüssigkeit durch eine geeignete Umwandlung der inhärenten Energie des Gases in der Pipeline.
  • Die US 6 085 547 A offenbart ein Verfahren gemäß dem Oberbegriff von Anspruch 1.
  • Das Erdgas wird unter hohem Druck und frei von Verunreinigungen in flüssiges Erdgas umgewandelt.
  • Es wäre wünschenswert, eine Lösung bereitstellen zu können, um Flüssiggas kostenoptimiert erzeugen zu können.
  • Zusammenfassung einiger beispielhafter Ausführungsformen der Erfindung
  • Vor dem Hintergrund dieses Standes der Technik liegt dem vorliegenden Gegenstand die Aufgabe zugrunde, eine Lösung bereitzustellen, um Flüssiggas möglichst kostengünstig erzeugen zu können.
  • Diese Aufgabe wird gelöst durch ein Verfahren mit den Merkmalen des Anspruchs 1.
  • Gemäß einem ersten Aspekt der Erfindung wird ein Verfahren zur Erzeugung von Flüssiggas, durchgeführt durch eine oder mehrere Vorrichtungen beschrieben, das Verfahren umfassend:
    • Reduzierung eines Drucks von in einem Gasspeicher gespeicherten Erdgas, wobei nach der Reduzierung das Erdgas einen vorbestimmten konstanten Druck aufweist;
    • Reinigung von in dem Gasspeicher gespeicherten und entspannten Erdgas; und
    • Erzeugung von Flüssiggas basierend auf dem gereinigten Erdgas, wobei die Erzeugung des Flüssiggases im Rahmen der Ausspeicherung von in dem Gasspeicher gespeicherten Erdgas in ein mit dem Gasspeicher verbundenes Gasnetz durchgeführt wird, und
    • der Gasspeicher ein Untergrundgasspeicher ist
    • wobei
      • die eine oder mehreren Vorrichtungen zur Ausführung und/oder Steuerung des Verfahrens eingerichtet sind oder jeweilige Mittel zur Ausführung und/oder Steuerung der Schritte des Verfahrens umfassen,
      • dadurch gekennzeichnet, dass die eine oder mehreren Vorrichtungen
      • die das Verfahren durchführen und/oder steuern innerhalb des Untergrundgasspeichers angeordnet sind.
  • Benötigt wird ein Differenzdruck von etwa 55 bar, um Erdgas als Ausgangsmaterial in Flüssiggas durch eine Expansion umzuwandeln. Dieser Differenzdruck ist regelmäßig bereits als Unterschied von in dem Gasspeicher gespeicherten Erdgas und einer Pipeline eines Transportnetzes zum Transport des Erdgases z. B. zu Verbrauchern vorhanden. Um Flüssiggas kostenoptimiert erzeugen zu können, wird folglich die bestehende Druckdifferenz in einem Gasspeicher genutzt.
  • Das Verfahren gemäß dem ersten Aspekt kann erfindungsgemäß von einer Vorrichtung (z. B. Vorrichtung zur Erzeugung von Flüssiggas) durchgeführt werden. Das Verfahren gemäß dem ersten Aspekt kann alternativ dazu von mehreren Vorrichtungen, z. B. einer Vorrichtung zur Reinigung von Erdgas und einer weiteren Vorrichtung zur Erzeugung von Flüssiggas zusammen durchgeführt werden. Die eine oder mehreren Vorrichtungen sind erfindungsgemäß zur Ausführung und/oder Steuerung des Verfahrens gemäß dem ersten Aspekt der Erfindung eingerichtet oder umfassen jeweilige Mittel zur Ausführung und/oder Steuerung der Schritte des Verfahrens gemäß dem ersten Aspekt der Erfindung.
  • Für den Fall, dass das Verfahren gemäß dem ersten Aspekt der Erfindung von einer oder mehreren Vorrichtungen (z. B. Vorrichtung zur Reinigung von Erdgas und einer weiteren Vorrichtung zur Erzeugung von Flüssiggas) zusammen durchgeführt wird, können die jeweiligen Vorrichtungen entsprechend jeweilige Mittel zur Ausführung und/oder Steuerung der jeweils von der entsprechenden Vorrichtung (z. B. Vorrichtung zur Reinigung von Erdgas oder einer weiteren Vorrichtung zur Erzeugung von Flüssiggas) durchgeführten Schritte umfassen. Beispielsweise werden von einer der Vorrichtungen nicht alle Schritte des Verfahrens gemäß dem ersten Aspekt der Erfindung durchgeführt.
  • Gemäß einem zweiten beispielhaften Aspekt der Erfindung, der nicht Gegenstand der vorliegenden Ansprüche ist, wird eine Vorrichtung offenbart, die zur Ausführung und/oder Steuerung des Verfahrens nach dem ersten Aspekt der Erfindung eingerichtet oder jeweilige Mittel zur Ausführung und/oder Steuerung der Schritte des Verfahrens gemäß dem ersten Aspekt der Erfindung umfasst. Dabei können entweder alle Schritte des Verfahrens gesteuert werden, oder alle Schritte des Verfahrens ausgeführt werden, oder ein oder mehrere Schritte gesteuert und ein oder mehrere Schritte ausgeführt werden. Ein oder mehrere der Mittel können auch durch die gleiche Einheit ausgeführt und/oder gesteuert werden. Beispielsweise können ein oder mehrere der Mittel durch einen oder mehrere Prozessoren gebildet sein.
  • Gemäß einem dritten beispielhaften Aspekt der Erfindung, der nicht Gegenstand der vorliegenden Ansprüche ist, wird ein System offenbart, das eine oder mehrere Vorrichtungen umfasst, die eingerichtet sind zur Ausführung und/oder Steuerung des Verfahrens gemäß dem ersten Aspekt der Erfindung oder Mittel zur Ausführung und/oder Steuerung der Schritte des Verfahrens gemäß dem ersten Aspekt der Erfindung aufweisen. Dabei können entweder alle Schritte des Verfahrens gesteuert werden, oder alle Schritte des Verfahrens ausgeführt werden, oder ein oder mehrere Schritte gesteuert und ein oder mehrere Schritte ausgeführt werden.
  • Diese drei Aspekte der vorliegenden Erfindung weisen u. a. die nachfolgend beschriebenen - teilweise beispielhaften - Eigenschaften auf.
  • Unter dem Begriff "Expansion" wird gegenständlich eine Entspannung von Erdgas verstanden, wobei nach der Expansion das Erdgas zumindest unter geringerem Druck steht als vor der Expansion.
  • Unter dem Begriff "Flüssiggas" wird gegenständlich insbesondere Flüssigerdgas, auch mit Liquid Natural Gas (LNG) bezeichnet, verstanden. Insbesondere fällt hierrunter nicht das sogenannte Liquified Petroleum Gas (LPG), das beispielsweise häufig von PKWs z. B. durch eine entsprechende Umrüstung des Fahrzeugs als Brennstoff nutzbar ist.
  • Unter einem "Gasspeicher" wird gegenständlich ein Erdgasspeicher verstanden.
  • Derartige Erdgasspeicher sind insbesondere große, und erfindungsgemäß unterirdische Speicheranlagen, mit denen beispielsweise jahreszeitliche Bedarfsschwankungen durch ein Ausspeichern von zuvor in dem Speicher eingespeichertem Erdgas möglich ist.
  • Das Gasnetz ist beispielsweise ein Transportnetz, in dem Erdgas mit einem vordefinierten Druck von z. B. etwa 30 bar transportiert wird.
  • In einem Gasspeicher liegt insbesondere ein ausreichender Druckunterschied (Differenzdruck Δp; auch mit delta p bezeichnet) zwischen dem Erdgas, das in dem Gasspeicher gespeichert ist und dem Gasnetz, in das gespeichertes Erdgas von dem Gasspeicher ausgespeichert werden kann, vor, um eine Erzeugung von Flüssiggas (LNG) in derartigen Gasspeichern im Rahmen der Ausspeicherung durchführen zu können.
  • Derart ist es möglich, Flüssiggas durch eine Gasexpansion in einem Gasspeicher zu erzeugen. Erzeugtes Flüssiggas kann zudem zumindest temporär gelagert werden.
  • Diejenige Energiemenge, die zur Druckerhöhung vor der Einspeicherung von Erdgas in den Gasspeicher (z. B. ein als Kaverne ausgebildeter Untergrundspeicher) aufgewendet wurde, geht bei einem Ausspeichern des Gases in das Gasnetz (z. B. Transportnetz) nicht gänzlich verloren, da bei einem Durchführen des Verfahrens nach dem ersten Aspekt der Erfindung diese Energiemenge, für die Erzeugung von Flüssiggas (LNG) eingesetzt bzw. genutzt wird.
  • Der Erzeugung von Flüssiggas, insbesondere durch eine Expansion von Erdgas, das in einem Gasspeicher gespeichert ist, liegt die Erkenntnis zugrunde, dass der Druckunterschied, z. B. in Kavernen großer Gasspeicher oder bei der Auslagerung ins Transportnetz zur Erzeugung von Flüssigerdgas nutzbar ist. Ein Gasspeicher mit beispielsweise zwei Kavernen mit unterschiedlichen Drücken (z. B. 50 bar und 200 bar) oder eine Kaverne bzw. Speicher im Porengestein (z. B. 200 bar) mit einem Anschluss an das Erdgastransportnetz (z. B. 30-50 bar) kann beispielsweise gegenständlich genutzt werden. Bei der Expansion (d.h. Entspannung) von der einen in die andere Kaverne oder in das Erdgastransportnetz kann der Joule-Thompson Effekt zur Erzeugung von Kälte und damit der Reduzierung der Temperatur des Erdgases genutzt werden. Diese dabei entstehende Expansionsenergie wird bei der Umlagerung oder Auslagerung von Erdgas gegenständlich zumindest teilweise dazu genutzt, Flüssiggas (LNG) herzustellen. Da eine derartige Umlagerung und/oder Expansion in das Transportnetz im regelmäßigen Betrieb des Gasspeichers durchgeführt wird, kann folglich das Flüssiggas insbesondere kostengünstig erzeugt werden.
  • Die Druckreduzierung erfolgt, um ein sogenanntes konstantes System im Rahmen der Erzeugung von Flüssiggas vorliegen zu haben, so dass stets mit der einen oder den mehreren Vorrichtungen das Verfahren, bei dem als Ergebnis Flüssiggas erzeugt ist, durchgeführt werden kann. Die Druckreduzierung kann beispielsweise erforderlich sein, da sich der herrschende Druck in dem Gasspeicher (z. B. Kavernendruck) im Laufe des Jahres verändert. Dies kann beispielsweise durch äußere und natürlich bedingte Umwelteinflüsse geschehen. Insbesondere unterliegen als Kavernenspeicher ausgebildete Gasspeicher derartigen Druckschwankungen. Die Druckreduzierung kann beispielsweise mittels eines Druckregelventil, eines Expanders, oder eines Wirbelrohrs durchgeführt werden, um nur einige nicht-limitierende Beispiele zu nennen. Die Reinigung des Erdgases kann eine Trocknung des Erdgases umfassen. Eine derartige Trocknung des Erdgases verändert das Erdgas derart, dass mitunter von dem Erdgas umfasstes Wasser aus dem Erdgas rausgebracht wird. Die Reinigung und die Trocknung des Erdgases können beispielsweise in einem einzigen Schritt erfolgen. Alternativ können die Reinigung und die Trocknung des Erdgases jeweils separate Schritte des Verfahrens nach dem ersten Aspekt der Erfindung sein. Entsprechend kann die Reinigung und die Trocknung des Erdgases von einer einzigen Vorrichtung, oder alternativ von zwei separaten Vorrichtungen durchgeführt werden. Für den Fall, dass die Reinigung und die Trocknung des Erdgases als Schritte getrennt voneinander durchgeführt werden, kann die Reihenfolge der Schritte beispielsweise verändert werden. Entsprechend kann beispielsweise zuerst die Reinigung des Erdgases erfolgen, und anschließend dessen Trocknung. Alternativ kann beispielsweise zuerst die Trocknung des Erdgases erfolgen, und anschließend dessen Reinigung.
  • Die Reinigung und/oder die Trocknung des in dem Gasspeicher gespeicherten Erdgases umfasst oder wird beispielsweise von Anlagen durchgeführt, die Komponenten wie z. B. Wasser und Kohlendioxid, welche die Erzeugung von Flüssiggas erschweren, dem Erdgas entziehen. Dies ermöglicht eine stabile anschließende Erzeugung des Flüssiggases.
  • Gemäß einer weiteren Ausgestaltung gemäß dem ersten Aspekt umfasst das Verfahren ferner:
    • Kühlen des gereinigten Erdgases zur Erzeugung des Flüssiggases, wobei das Kühlen des gereinigten Erdgases mittels eines ersten Wärmetauschers erfolgt und dabei kondensiert, und wobei ein erster Teil des gekühlten und kondensierten
  • Erdgases an einen zweiten Wärmetauscher geleitet wird zur Kühlung mittels eines Wärmetauschs eines zweiten Teils des gekühlten und kondensierten Erdgases, wobei aus dem zweiten Teil durch Unterkühlung im zweiten Wärmetauscher und anschließender Expansion Flüssiggas erzeugt wird; und
    wobei das Kühlen des gereinigten Erdgases im ersten Wärmetauscher mit einem expandierten Teil des gereinigten Erdgases erfolgt, wobei die Expansion mittels eines Differenzdrucks, der bei einem Einspeichern des in dem Gasspeicher gespeicherten Erdgases aufgebracht wird, erfolgt.
  • Die Kälteerzeugung erfolgt beispielsweise mittels einer Vorkühlung und Erdgasexpansion. Zur Erzeugung des Flüssiggases, wird ein Differenzdruck von mindestens 50 bis 55, 51 bis 54, 52 bis 53, bevorzugt mindestens 55 bar benötigt, um mit diesem Verfahren nach dem ersten Aspekt der Erfindung insbesondere kostengünstig Flüssiggas erzeugen zu können. Dieser Differenzdruck kann bei Untergrundspeichern - wie vorstehend ausgeführt - vorgefunden werden.
  • Die Erzeugung des Flüssiggases findet beispielsweise derart statt, dass kein negativer Einfluss auf den gewöhnlichen Speicherbetrieb stattfindet.
  • Außer der Stellfläche für die nachzurüstende Vorrichtung bzw. Vorrichtungen (z. B.
  • Anlagen und/oder Komponenten) findet im Gegensatz zur konventionellen Flüssiggas Produktion kein weiterer Landschaftsverbrauch statt.
  • Mit der Flüssiggas-Erzeugung im Untergrundspeicher kann ein bestehender Gasspeicher zusätzlich zu seinen bisherigen Aufgaben im Gasnetz noch neue Aufgaben in der Flüssiggas-Erzeugung übernehmen.
  • Die Expansion, durch die das Flüssiggas erzeugt wird, ist beispielsweise derart, dass das Erdgas nach der Expansion derart gekühlt ist, dass es sich in seinem Aggregatzustand verändert und entsprechend von einem gasförmigen Zustand in einem flüssigen Zustand wechselt. Diese Aggregatszustandsänderung, die zur Erzeugung des Flüssiggases notwendig ist, erfolgt etwa bei einer Temperatur von - 160°C. Die Kühlung des Erdgases zur Erreichung dieser Temperatur erfolgt zumindest teilweise mittels der Expansion. Es ist vorgesehen, dass dieser Differenzdruck bereits bei der Einspeicherung von Erdgas in den Gasspeicher entsteht. Durch die Verlagerung der Erzeugung des Flüssiggases in einen Prozess der Ausspeicherung von Erdgas aus dem Gasspeicher kann die bereits aufgewendete Energie, um Erdgas bei einem gegenüber dem Gasnetz erhöhten Druck in dem Gasspeicher komprimiert (d.h. im Volumen verringert) einspeichern zu können, zur Erzeugung von Flüssiggas verwendet werden. Diese Energie würde ansonsten bei einer gewöhnlichen Ausspeicherung von Erdgas aus dem Gasspeicher durch die Expansion des Erdgases zur Angleichung des Drucks, den das Erdgas in dem Gasspeicher aufweist, zu dem Druck des Gasnetzes, ungenutzt vernichtet werden.
  • Eine Ausgestaltung gemäß dem ersten Aspekt sieht vor, dass die Erzeugung des Flüssiggases im Wesentlichen simultan zu einer Ausspeicherung von in dem Gasspeicher gespeicherten Erdgas durchgeführt wird.
  • Die Erzeugung des Flüssiggases erfolgt beispielsweise basierend auf in dem Gasspeicher gespeichertem Erdgas, das beispielsweise zur Ausgleichung von Verbrauchsschwankungen in dem Gasnetz in das Gasnetz ausgespeichert werden soll. Der gewöhnliche Betrieb des zur Erzeugung des Flüssiggases verwendeten Gasspeichers wird folglich nicht gestört.
  • Eine weitere Ausgestaltung gemäß dem ersten Aspekt sieht vor, dass das Flüssiggas nach Durchlaufen von zumindest zwei Wärmetauschern, wobei insbesondere eine Joule-Thompson Expansion des Erdgases durchführt, erzeugt ist.
  • Insbesondere wird das Flüssiggas durch insgesamt zwei Wärmetauscher erzeugt.
  • Bei der Joule-Thompson Expansion erfolgt eine Temperaturänderung des Erdgases, das zur Erzeugung von Flüssiggas verwendet wird, bei einer Druckminderung. In der Folge bei Unterschreiten einer vorbestimmten Temperatur (etwa -160°C) bleibt das Erdgas verflüssigt, wodurch das Flüssiggas (LNG) erzeugt ist
  • In einer Ausgestaltung gemäß allen Aspekten ist das erzeugte Flüssiggas in einem Flüssiggasspeicher zumindest temporär gespeichert.
  • Erzeugtes Flüssiggas kann insbesondere zumindest temporär gelagert werden. Nach dieser temporärer Speicherung muss zumindest bei der Lagerung entstehendes Boil-Off-Gas (BOG) aus dem Speicher weggeschafft werden. Das BOG kann zur Betankung von CNG (Compressed Natural Gas)-Fahrzeugen verwendet oder ins Gasnetz zurückgespeist werden. Entsprechend sollte erzeugtes Flüssiggas kontinuierlich verbraucht werden, da bei Lagerung eben dieses Boil-Off-Gas entsteht.
  • In einer weiteren Ausgestaltung gemäß dem ersten Aspekt wird zur Erzeugung des Flüssiggases benötigte Kälte zumindest teilweise basierend auf demjenigen Erdgas erzeugt, das zum einen ausgespeichert werden soll, und zum anderen aus dem Flüssiggas erzeugt werden soll.
  • Entsprechend wird benötigte Kälte zumindest teilweise ebenfalls basierend auf demjenigen Erdgas gewonnen, das zum einen ausgespeichert werden soll, und zum anderen aus dem Flüssiggas erzeugt werden soll (durch eine entsprechende Umwandlung zumindest eines Teils des zweiten Teils des gekühlten Erdgases). Entsprechend wird die zur Erzeugung notwendige Energie, die insbesondere zum Kühlen des Erdgases benötigt wird, so dass das Erdgas seinen Aggregatzustand von gasförmig in flüssig ändert, wodurch Flüssiggas erzeugt wird.
  • Eine Ausgestaltung gemäß dem ersten Aspekt sieht vor, dass der erste Teil des gekühlten Erdgases nach einer Druckreduzierung in ein Gasnetz ausspeicherbar ist. Die Druckreduzierung sorgt insbesondere dafür, dass Kälte entsteht. Diese Kälte wird beispielsweise genutzt um Flüssiggas zu erzeugen. Eine Druckreduzierung ist zudem erforderlich, um Erdgas, das in dem Gasspeicher gespeichert ist, in eine Pipeline des Gasnetzes ausspeichern zu können. Das in dem Gasspeicher gespeicherte Erdgas wird beispielsweise durch die Druckreduzierung auf den Druck gebracht, der in einem Gasnetz vorliegt, in das das Erdgas ausgespeichert werden soll.
  • In einer Ausgestaltung gemäß dem ersten Aspekt bedingt die Speicherung des erzeugten Flüssiggases ein Austreten (z. B. entweichen) einer Menge von Erdgas, wobei die Menge von Erdgas, die durch Erwärmung des gespeicherten Flüssiggases aus dem Flüssiggasspeicher austritt, zur weiteren Nutzung nutzbar ist.
  • Bei der Lagerung von Flüssiggas erhöht sich die Temperatur des gelagerten Flüssiggases. Diese Temperaturerhöhung des gelagerten Flüssiggases führt zu einem Entweichen zumindest eines Teils des gelagerten Flüssiggases, das auch als sogenanntes Boil-Off-Gas (BOG) bezeichnet wird.
  • Anstatt dieses Boil-Off-Gas ungenutzt zu lassen, beispielsweise indem das Boil-Off-Gas verpufft, kann dieses beispielsweise zur weiteren Nutzung nutzbar sein.
  • Diese Menge von Erdgas, die aus einem Speicher, in dem das erzeugte Flüssiggas gespeichert ist, entweicht (bzw. verdampft), kann beispielsweise einer weiteren Nutzung unterliegen. Beispielsweise kann nach einer mitunter erforderlichen Druckanpassung (z. B. durch eine Kompression) dieses verdampfte Erdgas in das Gasnetz ausgespeichert werden. Dabei weist aus einem Flüssiggasspeicher verdampftes Erdgas in der Regel einen geringeren Druck auf, als derjenige Druck, der in dem an den Gasspeicher, der den Flüssiggasspeicher umfasst, angeschlossenen Gasnetz herrscht. Entsprechend kann eine Kompression des Erdgases notwendig sein, um dieses Erdgas in das Gasnetz ausspeichern zu können.
  • Entsprechend sieht eine weitere Ausgestaltung gemäß dem ersten Aspekt vor, dass die Menge von Erdgas zur weiteren Nutzung einem dritten Wärmetauscher zur Erwärmung von Erdgas zuführbar ist (bzw. zugeführt wird).
  • Der dritte Wärmetauscher erwärmt beispielsweise Erdgas vor einer Ausspeicherung des in dem Gasspeicher gespeicherten Erdgases in das Gasnetz bzw. in eine Pipeline des Gasnetzes. Entsprechend ist der dritte Wärmetauscher beispielsweise, z. B. über eine Schnittstelle mit dem Gasnetz bzw. der Pipeline des Gasnetzes verbunden.
  • Eine Ausgestaltung gemäß dem ersten Aspekt sieht vor, dass eine Menge von Flüssiggas zur weiteren Nutzung als Brennstoff nutzbar ist.
  • Hierzu kann beispielsweise die Menge von Flüssiggas in einem entsprechenden (z. B. mobilen) Speicher, z. B. nach der Art eines Tanks, gespeichert werden, so dass die Menge von vergastem Flüssiggas aus diesem mobilen Tank als zu brauchender Brennstoff einem Motor zuführbar ist. Diese Menge kann beispielsweise für Fahrzeuge (z. B. LKW, Lokomotive, Schiffe, um nur einige nicht-limitierende Beispiele zu nennen) genutzt werden.
  • Das Boil-Off-Gas kann beispielsweise ferner als Brennstoff für den Verkehr eingesetzt werden.
  • Untergrundspeicher, auch als Underground Gas Storage (UGS] bezeichnet, sind Gasspeicher, wobei Erdgas in natürlichen oder künstlichen Hohlräumen unter der Erdoberfläche mittels derartiger Untergrundspeicher gespeichert werden kann. Derartige Gasspeicher sind beispielsweise Aquifer- und Porenspeicher, Kavernenspeicher oder auch Röhrenspeicher. Röhrenspeicher sind mittelgroße Erdgasspeicher für den Ausgleich von Bedarfsschwankungen. Röhrenspeicher werden beispielsweise zum Abdecken von täglichen Abnahmespitzen verwendet, da sie über hohe Aus- und Einspeiseleistungen verfügen.
  • In dem Untergrundspeicher liegt ein ausreichender Druckunterschied (zwischen dem Erdgas, das in dem Untergrundspeicher gespeichert ist und dem Gasnetz, in das gespeichertes Erdgas von dem Untergrundspeicher aus gespeichert werden kann), vor, um eine Erzeugung von Flüssiggas (LNG) in derartigen Gasspeichern durchführen zu können.
  • Die eine Vorrichtung oder die mehreren Vorrichtungen, die das Verfahren nach dem ersten Aspekt durchführen und/oder steuern, sind innerhalb des Gasspeichers, der als Untergrundspeicher ausgebildet ist, angeordnet. Die eine Vorrichtung oder die mehreren Vorrichtungen sind beispielsweise zwischen der Schnittstelle, über die der Gasspeicher gespeichertes Erdgas ausspeichern kann (z. B. in eine Pipeline), und der Schnittstelle, über die in dem Gasspeicher gespeichertes Erdgas aus der Bevorratung ausgespeichert werden kann, angeordnet. Weitere Details hierzu sind dem Abschnitt "Detaillierte Beschreibung einiger beispielhafter Ausführungsformen der Erfindung" zu entnehmen.
  • Eine weitere Ausgestaltung gemäß dem ersten Aspekt sieht vor, dass das Kühlen zumindest teilweise durch ein Kühlen des Erdgases durch eine Kälteanlage durchgeführt wird.
  • In einer Ausgestaltung gemäß dem ersten Aspekt unterliegt der erste Teil des gekühlten Erdgases mittels eines Kompressors einer Druckerhöhung.
  • Für den Fall, dass eine Menge des Erdgases, auf der zumindest teilweise basierend die Erzeugung des Flüssiggases durchgeführt wird, zur Ausspeicherung aus dem Gasspeicher in den Gasspeicher einen zu geringen Druck aufweist, kann mittels des Kompressors der Druck des Erdgases erhöht werden. Ein zu geringer Druck kann beispielsweise dadurch entstehen, dass während der Verdampfung des Flüssiggases, bei der das Erdgas erwärmt wird (in seiner Temperatur durch die Lagerung erhöht wird), zu stark expandiert. Dies kann beispielsweise der Fall sein, wenn die zur Erzeugung des Flüssiggases benötigte Kälte zum Kühlen des Erdgases noch nicht vollständig durch Expansion des Erdgases erzeugt werden konnte. Entsprechend kann in diesem Fall eine weitere Expansion des Erdgases stattfinden, um diese benötigte Kälte zur Erzeugung des Flüssiggases zu erzeugen.
  • In einer weiteren Ausgestaltung gemäß dem ersten Aspekt erwärmt ein vierter Wärmetauscher den ersten Teil des gekühlten Erdgases für eine Kompression durch den Kompressor und/oder für ein Ausspeichern von dem ersten Teil des gekühlten Erdgases in das Gasnetz.
  • Insbesondere um den Druck des Erdgases an das Gasnetz bzw. an eine mit dem Gasspeicher verbundene Pipeline, in die das Erdgas ausgespeichert wird, kann beispielsweise mittels des vierten Wärmetauschers die Temperatur des auszuspeichernden Erdgases erhöht werden. Dies bedingt mittelbar ebenfalls eine Änderung des Drucks, unter dem das Erdgas steht, so dass entsprechend in der Folge durch das Erwärmen der Druck des auszuspeichernden Erdgases an denjenigen Druck des Gasnetzes bzw. der Pipeline angepasst wird bzw. ist.
  • Die eine Vorrichtung ist beispielsweise eine einzelne Vorrichtung. Alternativ wird das Verfahren nach dem ersten Aspekt der Erfindung von mehreren Vorrichtungen (d.h. mindestens zwei Vorrichtungen, z. B. jeweils ausgebildet als Anlagenteile) durchgeführt und/oder gesteuert. Eine der mehreren Vorrichtungen ist beispielsweise derart ausgebildet und/oder umfasst derartige Mittel, um eine Erdgasreinigung (z. B. Erdgasreinigungsanlage) auszuführen, und eine weitere Vorrichtung der mehreren Vorrichtungen ist beispielsweise derart ausgebildet und/oder umfasst derartige Mittel, um eine Flüssiggaserzeugung (z. B. eine Flüssiggaserzeugungsanlage) auszuführen.
  • Die Vorrichtung zur Erzeugung von Flüssiggas kann beispielsweise eine oder mehrere der folgenden Komponenten i) bis viii) umfassen:
    1. i) Einen oder mehrere Wärmetauscher;
    2. ii) Einen oder mehrere Druckminderer;
    3. iii) Einen oder mehrere Druckerhöher (z. B. Kompressor, oder ein Druckerhöher mit Kühler);
    4. iv) Eine oder mehrere Kälteanlagen;
    5. v) Eine oder mehrere Speicher zur Speicherung (z. B. Lagerung) von erzeugtem Flüssiggas;
    6. vi) Eine oder mehrere Schnittstelle zur Ausspeicherung von während der Erzeugung des Flüssiggases verwendetem Erdgas in ein Gasnetz (z. B. Verteilnetz, und/oder Transportnetz);
    7. vii) Einen oder mehrere Reinigungsanlagen; und
    8. viii) eine oder mehrere Trocknungsanlagen
  • Ein möglicher, grundsätzlicher Aufbau einer Vorrichtung zur Erzeugung von Flüssiggas in einem als Untergrundspeicher ausgeführten Gasspeicher kann beispielsweise wie folgt ausgestaltet sein:
    Um z. B. den Untergrundspeicher für die Erzeugung von Flüssiggas insbesondere vollständig zu ertüchtigen, sollten folgende Anlagen und Komponenten installiert werden:
    • Eine erste Druckreduzierung ist zu errichten oder eine vorhandene zu nutzen
    • Eine Erdgasreinigungs- und eine optionale Trocknungsanlage, die z. B. von der Erdgasreinigungsanlage umfasst ist,] ist zu errichten;
    • Eine Verflüssigungsanlage ist zu errichten;
    • Ein Behälter für die Lagerung von LNG ist aufzustellen;
    • Eine Abfüllanlage ist aufzubauen (der Einsatz einer mobilen LNG Tankstelle und/ oder CNG-Tankstelle ist optional möglich); und
    • Schließlich sind Verrohrungen und Steuerung, auch der bestehenden Komponenten anzupassen.
  • Entsprechend verfügen beispielsweise heutige Untergrundspeicher bereits über zumindest einen Teil der nötigen Infrastruktur.
  • Die zuvor in dieser Beschreibung beschriebenen beispielhaften Ausgestaltungen sollen auch in allen Kombinationen miteinander offenbart verstanden werden. Insbesondere sollen beispielhafte Ausgestaltungen in Bezug auf die unterschiedlichen Aspekten offenbart verstanden werden.
  • Insbesondere sollen durch die vorherige oder folgende Beschreibung von Verfahrensschritten gemäß bevorzugter Ausführungsformen eines Verfahrens auch entsprechende Mittel zur Durchführung der Verfahrensschritte durch bevorzugte Ausführungsformen einer Vorrichtung offenbart sein. Ebenfalls soll durch die Offenbarung von Mitteln einer Vorrichtung zur Durchführung eines Verfahrensschrittes auch der entsprechende Verfahrensschritt offenbart sein. Weitere vorteilhafte beispielhafte Ausgestaltungen sind der folgenden detaillierten Beschreibung einiger beispielhafter Ausführungsformen, insbesondere in Verbindung mit den Figuren, zu entnehmen. Die Figuren sollen jedoch nur dem Zwecke der Verdeutlichung, nicht aber zur Bestimmung des Schutzbereiches dienen. Die Figuren sind nicht maßstabsgetreu und sollen lediglich das allgemeine Konzept beispielhaft widerspiegeln. Insbesondere sollen Merkmale, die in den Figuren enthalten sind, keineswegs als notwendiger Bestandteil erachtet werden.
  • Kurze Beschreibung der Figuren
  • In der Zeichnung zeigt
  • Fig. 1
    eine schematische Darstellung eines Ausführungsbeispiels eines Systems Z zur Durchführung des Verfahrens gemäß der Erfindung;
    Fig. 2a,
    b jeweils eine schematische Darstellung eines ersten Teils des gemäß Fig. 6 gezeigten Ausführungsbeispiels eines Systems zur Durchführung des Verfahrens gemäß der Erfindung;
    Fig. 3
    eine schematische Darstellung eines zweiten Teils des gemäß Fig. 6 gezeigten Ausführungsbeispiels eines Systems zur Durchführung des Verfahrens gemäß der Erfindung, welches basierend auf dem in Fig. 2 gezeigten Teils erweitert wurde;
    Fig. 4
    eine schematische Darstellung eines dritten Teils des gemäß Fig. 6 gezeigten Ausführungsbeispiels eines Systems zur Durchführung des Verfahrens gemäß der Erfindung, welches basierend auf dem in Fig. 3 gezeigten Teils erweitert wurde;
    Fig. 5
    eine schematische Darstellung eines vierten Teils des gemäß Fig. 6 gezeigten Ausführungsbeispiels eines Systems zur Durchführung des Verfahrens gemäß der Erfindung, welches basierend auf dem in Fig. 4 gezeigten Teils erweitert wurde;
    Fig. 6
    eine schematische Darstellung eines weiteren Ausführungsbeispiels eines Systems zur Durchführung des Verfahrens gemäß der Erfindung; und
    Fig. 7
    ein Flussdiagramm eines Ausführungsbeispiels eines Verfahrens gemäß der Erfindung.
    Detaillierte Beschreibung einiger beispielhafter Ausführungsformen der Erfindung
  • Fig. 1 zeigt eine schematische Darstellung eines Ausführungsbeispiels eines Systems zur Durchführung des Verfahrens gemäß der Erfindung.
  • Das System 100 umfasst einen Gasspeicher 110, eine Vorrichtung zur Erdgasreinigung 120, eine Vorrichtung zur Erzeugung von Flüssiggas 130, und eine optionale Vorrichtung zur Speicherung bzw. Lagerung des erzeugten Flüssiggases 140.
  • Die von dem System 100 umfassten Vorrichtungen 120 und 130 sind insbesondere jeweils Vorrichtungen nach dem zweiten Aspekt der vorliegenden Erfindung.
  • In beispielhaften Ausführungsformen der Erfindung wird Erdgas von dem Gasspeicher 110 ausgespeichert. Das auszuspeichernde Erdgas wird von der Erdgasreinigung 120 gereinigt. Auf Basis des gereinigten Erdgases wird anschließend von der Vorrichtung 130 Flüssiggas erzeugt, wobei das gereinigte Erdgas durch ein Zuführen von Kälte (Kühlen des gereinigten Erdgases) gekühlt wird, wodurch das gereinigte Erdgas den Aggregatzustand von gasförmig in flüssig wechselt, wodurch Flüssiggas (LNG) erzeugt wird. Anschließend kann das erzeugte Flüssiggas optional in einem entsprechenden Flüssiggasspeicher gelagert bzw. gespeichert werden. Erdgas, dass nicht zur Erzeugung von Flüssiggas verwendet wurde, wird in ein Gasnetz (in Fig. 1 nicht dargestellt), mit dem der Gasspeicher 110 verbunden ist, ausgespeichert. Alternativ kann in einer nicht erfindungsgemäßen Ausgestaltung das nicht zur Erzeugung von Flüssiggas verwendete Erdgas erneut in den Gasspeicher 110 eingespeichert werden. Hierzu kann es erforderlich sein, dass das Erdgas zur Einspeicherung in den Gasspeicher 110 komprimiert werden muss.
  • Fig. 6 zeigt eine schematische Darstellung eines weiteren Ausführungsbeispiels eines Systems zur Durchführung des Verfahrens gemäß der Erfindung.
  • Das System 600 umfasst - analog zu dem System 100 gemäß Fig. 1 - einen Gasspeicher 610 (vorliegend einen Untergrundspeicher, der als Kaverne ausgebildet ist mit einem Druck von etwa 85 bis 200 bar), eine Vorrichtung zur Erdgasreinigung und einer Erdgastrocknung 620, sowie eine Vorrichtung zur Erzeugung von Flüssiggas 630. Das System 600 umfasst ferner eine Vorrichtung zur Vorwärmung von Erdgas und Druckreduzierung 615, einen Speicher 640 zur Speicherung bzw. Lagerung des erzeugten Flüssiggases, sowie einen Anschluss an eine Pipeline 650 eines Gasnetzes (z. B. ein Transportnetz). Vor der Ausspeicherung von Erdgas in die Pipeline 650 kann optional eine Erdgasmessung von einer entsprechenden Vorrichtung zur Erdgasmessung 660 durchgeführt werden.
  • Die Vorrichtung zur Erzeugung von Flüssiggas ist derart von dem Gasspeicher 610 umfasst, dass insbesondere im Rahmen der Ausspeicherung von in dem Gasspeicher 610 gespeichertem Erdgas eine Erzeugung von Flüssiggas durchführbar ist. Dafür wird der vorliegende Differenzdruck, der zwischen dem in dem Gasspeicher 610 gespeicherten Erdgas und dem benötigten Druck des Erdgases für die Ausspeicherung in das Gasnetz bzw. in die Pipeline 650 des Gasnetzes dazu genutzt, über eine Expansion des Erdgases dem Erdgas Kälte zuzuführen, so dass in der Folge Flüssiggas (LNG) erzeugt wird.
  • Die Vorrichtung 630 zur Erzeugung von Flüssiggas umfasst vorliegend fünf Wärmetauscher 630-1 bis 630-5, eine erste Joule-Thompson Expansion 630-8, eine zweite Joule-Thompson Expansion 630-9, eine dritte Joule-Thompson Expansion 630-10, eine Kälteanlage 630-6, sowie einen Kompressor 630-7.
  • Die Vorrichtung zur Vorwärmung 615 umfasst einen Wärmetauscher mittels dem aus dem Gasspeicher 610 entnommenes Erdgas vorgewärmt wird. Nach der Vorwärmung erfolgt eine erste Joule-Thompson Expansion, wobei das Erdgas in seinem Druck reduziert wird, z. B. von 200 bar in dem eingespeicherten Zustand in dem Gasspeicher 610 auf etwa 85 bar nach dem Durchführen des Joule-Thompson Expansion.
  • Anschließend kann das Erdgas in der Vorrichtung 620 zur Erdgasreinigung gereinigt werden.
  • Im Rahmen der Erdgasreinigung wird vorliegend folgendes durchgeführt:
    • Erdgasreinigung/Erdgastrocknung u. a. Wasserstoff und Kohlendioxid werden adsorbiert,
  • Nach der Erdgasreinigung und der Erdgastrocknung 620 erfolgt eine Aufteilung des Erdgases (bzw. des Volumen- bzw. Massenstroms des Erdgases), wobei ein erster Teil des Erdgases an einen Wärmetauscher 630-2 und ein zweiter Teil des Erdgases an einen Wärmetauscher 630-1 geleitet werden. Dabei wird vorliegend größere Anteil des Massenstroms (z. B. 75 %) des Erdgases als erster Teil (zu dem Wärmetauscher 630-2), und kleinerer Anteil (z. B. 25 %) als zweiter Teil (zu dem Wärmetauscher 630-1) aufgeteilt Der zweite Teil des Erdgases wird mittels des Wärmetauschers 630-1 gekühlt, wobei das Erdgas nach der Kühlung eine Temperatur kondensiert. Die von dem Wärmetauscher 630-1 verwendete Kälte zum Kühlen des zweiten Teils des aufgeteilten Erdgases basiert zumindest teilweise auf dem ersten Teil des aufgeteilten Erdgases.
  • Der erste Teil des aufgeteilten Erdgases wird mittels des Wärmetauschers 630-2 und 630-4 vorgekühlt. Derjenige Teil des Erdgases, aus welchem die Energie zum Kühlen durch den Wärmetauscher 630-2 bzw. 630-4 bezogen wird, kann über die Erdgasmessung 660 beispielsweise in die Pipeline 650 geführt werden, da durch bei dem Kühlen notwendige Energie durch eine Expansion des in die Wärmetauscher 630-2, sowie 630-4 eingeleiteten Erdgases bezogen wird. Die Expansion führt dazu, dass das Erdgas beispielsweise einen Druck von etwa 30 bar aufweist, so dass es in die Pipeline eingespeist werden kann.
  • In der Fig. 6 ist zudem der das System 600 durchlaufende Massenstrom m angegeben, der zunächst durch eine Druckmengenregelung 615-3 erzeugt wird. Im Ergebnis liegt ein Massenstrom m mit konstantem Druck vor.
  • Danach durchläuft der Massenstrom m die Erdgasreinigungsanlage 620, die vorliegend zudem eine Erdgastrocknung durchführt.
  • Dieser Massenstrom m teilt sich in die Massenströme m1 (etwa 25% des gesamten Massenstroms m) und m2 (etwa 75% des gesamten Massenstroms m) auf. Dabei dient der Massenstrom m2 als erste Kühlung für m1. Der Massenstrom m2 wird durch die Wärmetauscher 630-2 und 630-4 vorgekühlt und durch eine Kälteanlage auf niedrige Temperatur gebracht. Durch die nachfolgende Erdgasexpansion 630-9 wird das gekühlte Erdgas zur Kühlung des Massenstroms m1 im Wärmetauscher 630-1 verwendet. Danach wird der Massenstrom m2 weiter über den Wärmetauscher 630-2 erwärmt und zur Gasreinigung geführt, um als Regeneration in der Erdgasreinigungsanlage 620 zu dienen. Von dort wird der Massenstrom m2 dem Gasnetz 650 über eine Erdgasmessung 660 umfasst, zugeführt.
  • Der im Wärmetauscher 630-1 gekühlte Massenstrom m1 kondensiert und teilt sich in die Massenströme m3 (etwa 15% des gesamten Massenstroms m) und m4 (etwa 10% des gesamten Massenstroms m) auf. Der Massenstrom m4 wird weiter herunter gekühlt durch Expansion 630-10 und dient der zweiten Kühlung des Massenstroms m3.
  • Der Massenstrom m4 wird nach der Erwärmung im Wärmetauscher 630-3 das BOG beigemischt und über den Wärmetauscher 630-4 erwärmt und mittels eines Kompressors auf den erforderlichen Pipelinedruck gebracht. Von dort wird der Massenstrom m4 dem Gasnetz 650 über eine Erdgasmessung zugeführt.
  • Der Massenstrom m3 wird nach dem Kühlen im Wärmetauscher 630-3 durch die Expansion 630-8 auf die erforderliche Flüssiggas (LNG) Temperatur herunter gekühlt und danach gelagert. Das LNG kann z. B. zur LNG-Betankung, das BOG zur CNG-Betankung genutzt werden.
  • Nach Durchlaufen des Wärmetauschers 630-4 wird derjenige Teil des Erdgases mittels der Kälteanlage 630-6, die ihre Energie zum Kühlen beispielsweise aus einer externen Energiequelle (z. B. Propylen) bezieht, weiter gekühlt. Dies wird vorliegend mittels des Wärmetauschers 630-5, der mit der Kälteanlage 630-6 verbunden ist, durchgeführt. Dieses derart gekühlte Erdgas wird nach einer Expansion in den Wärmetauscher 630-1 eingeleitet, wodurch, wie oben bereits ausgeführt, der zweite Teil des aufgeteilten Erdgases gekühlt werden kann.
  • Um die zur Erzeugung von Flüssiggas (LNG) benötigte Temperatur von etwa -160°C durch Kühlen des Erdgases erreichen zu können, erfolgt eine Joule-Thompson Expansion 630-10 basierend auf einem weiteren Teil des Erdgases, das den Wärmetauscher 630-1 bereits durchlaufen hat. Die durch diese Joule-Thompson Expansion 630-10 erzeugte Energie wird seitens des Wärmetauschers 630-3 genutzt, um das in den Wärmetauscher 630-3 eingeleitete Erdgas weiter zu kühlen. Nach den Durchlaufen des Wärmetauschers 630-3 weist in der Regel das Erdgas noch nicht ganz die zur Erzeugung von Flüssiggas (LNG) notwendige Temperatur auf, so dass eine weitere Joule-Thompson Expansion 630-8 des Erdgases dieses in der Temperatur derart verringert, dass anschließend Flüssiggas erzeugt ist. Dieses erzeugte Flüssiggas kann beispielsweise in dem Flüssiggasspeicher 640 gespeichert werden.
  • Bei der Lagerung bzw. Speicherung des erzeugten Flüssiggases in dem Flüssiggasspeicher 640 entsteht Boil-Off-Gas, in Fig. 6 mit der Abkürzung BOG bezeichnet. Wie der Fig. 6 zu entnehmen ist, kann dieses BOG weiter genutzt werden, vorliegend kann dieses beispielsweise nach einem Durchlaufen des Kompressors 630-7 in die Pipeline 650 des Gasnetzes eingeleitet bzw. eingespeist werden.
  • Im Rahmen der Erzeugung des Flüssiggases wird vorliegend folgendes durchgeführt:
    • Nach der Erzeugung des Flüssiggases, wird das erzeugte Flüssiggas (LNG) gelagert. Diese Lagerung kann beispielsweise derart erfolgen, dass ein LKW bzw. ein entsprechend ausgebildeter und von dem LKW transportierter Behälter als Speicher genutzt wird. Derart kann das erzeugte Flüssiggas (LNG) transportiert werden, z. B. zur weiteren Verwendung. Der zum Transport verwendete Behälter muss dicht und isoliert sein. Der Behälter ist beispielsweise ein passiver Behälter, der also insbesondere keine aktive Kühlung des gespeicherten Flüssiggases durchführt. Dies ermöglicht insbesondere eine flexible Versorgung von diversen Kundengruppen.
  • Für die Erzeugung von Flüssiggas (LNG Produktion) wird insbesondere Kälte benötigt, wobei beispielsweise etwa 85% des Erdgases, auf dem basierend die Erzeugung des Flüssiggases durchgeführt wird, für die Kälteproduktion eingesetzt wird. Die übrigen etwa 15% (25% aufgeteilt in 10 % und 15 %) des Erdgases werden in Flüssiggas umgewandelt Vorteilhaft ist insbesondere, dass die zur Kälteproduktion verwendete Erdgasmengen (z. B. die etwa 85%) nicht verloren gehen, sondern weiter verwendet werden können, da diese beispielsweise nach der Kälteproduktion in das Gasnetz ausgespeichert werden. Von dort aus kann das Erdgas beispielsweise wieder in den Gasspeicher, von dem zur Erzeugung des Flüssiggases verwendete Erdgas ursprünglich eingelagert war, eingespeichert werden.
  • Die herrschenden Temperaturen und Drücke des Erdgases, das dieses jeweils nach dem Durchlaufen einer von dem System umfassten Vorrichtung (610 bis 660) aufweist, können Fig. 6 jeweils durch eine entsprechende Angabe, die an der jeweiligen Vorrichtung in Fig. 6 dargestellt ist, entnommen werden. Diese Angaben von Temperaturen und Drücken sollen ebenfalls im Zusammenhang mit allen Aspekten der vorliegenden Erfindung als offenbart verstanden werden.
  • Die in den Fig. 2a bis 5 verwendeten Bezugszeichen entsprechen den in der Fig. 6 verwendeten Bezugszeichen. Es versteht sich, dass dies nicht einschränkend für den Gegenstand ist Sämtliche von den in den Fig. 2a bis 5 gezeigten und von den jeweiligen Systemen gemäß der Fig. 2a bis 5 verwendeten Entitäten (z. B. Vorwärmung 615, Erdgasreinigung und -trocknung 620, Flüssiggaserzeugung 630) können jeweils sowohl untereinander gemäß der Fig. 2a bis 5 als auch als von den Entitäten der Fig. 6 unabhängig sein. Die in den Fig. 2a bis 6 schematisch dargestellten Entitäten können sich beispielsweise gleichen, und entsprechend nicht dieselben sein.
  • Fig. 2a zeigt eine schematische Darstellung eines ersten Teils des gemäß Fig. 6 gezeigten Ausführungsbeispiels eines Systems gemäß der Erfindung. Fig. 2b zeigt den gemäß Fig. 2a dargestellten Teil des Systems, wobei gegenüber Fig. 2a nach der Druckreduktion ein Wärmetauscher angeordnet, der zumindest einen Teil des Gases vor der Druckreduktion zum entsprechendes Wärmetausch verwendet.
  • Im Ausspeicherstrang sind zwei Druckreduzierungen vorgesehen. Die erste dient dazu, einen konstanten Massenstrom zu erzeugen. Nach der Erdgasreinigung und - trocknung erfolgt die zweite Druckreduzierung, bei der durch die Entspannung (Expansion) Kälte entsteht.
  • Gegenüber Fig. 2a ist in Fig. 2b ein zweiter Massenstrom vorhanden, der nach der Reinigung abgeleitet und über einen Wärmetauscher abgekühlt wird und kondensiert.
  • Fig. 3 zeigt eine schematische Darstellung eines zweiten Teils des gemäß Fig. 6 gezeigten Ausführungsbeispiels eines Systems zur Durchführung des Verfahrens gemäß der Erfindung, welches basierend auf dem in Fig. 2 gezeigten Teils erweitert wurde.
  • Der kondensierte Massenstrom wird nach der Kühlung und Kondensierung (vgl. Fig. 2b) erneut aufgeteilt, wobei der abgeleitete Massenstrom durch eine dritte Druckreduzierung weiter abgekühlt wird.
  • Hierbei entsteht wiederrum Kälte, die über einen Wärmetauscher, der das Flüssiggas (LNG) erzeugen soll, ausgetauscht wird. Danach wird der Massenstrom über einen weiteren Wärmetauscher geführt, der als Vorkühlung für den Massenstrom im Ausspeicherstrang dient. Über einen Kompressor wird dieser Massenstrom wieder auf Pipelinedruck gebracht
  • Fig. 4 zeigt eine schematische Darstellung eines dritten Teils des gemäß Fig. 6 gezeigten Ausführungsbeispiels eines Systems zur Durchführung des Verfahrens gemäß der Erfindung, welches basierend auf dem in Fig. 3 gezeigten Teils erweitert wurde.
  • Der durch den zweiten abgeleiteten Massenstrom kondensierte Massenstrom wird dann über eine vierte Druckreduzierung entspannt. Die dabei entstehende Kälte von - 160 °C ist erreicht und Flüssiggas (LNG) kann anschließend gelagert werden.
  • Das BOG kann z. B. für die CNG-Betankung genutzt werden oder wieder in den Gasspeicher eingespeichert werden.
  • Fig. 5 zeigt eine schematische Darstellung eines vierten Teils des gemäß Fig. 6 gezeigten Ausführungsbeispiels eines Systems zur Durchführung des Verfahrens gemäß der Erfindung, welches basierend auf dem in Fig. 4 gezeigten Teils erweitert wurde.
  • Um die Flüssiggaserzeugung anfahren zu können und stabil zu halten, ist eine Kälteanlage im Ausspeicherstrang vorgesehen. Diese Kälteanlage kann ferner zum Aufbringen einer mitunter notwendigen Energie zum Starten des Verfahrens nach dem ersten Aspekt der Erfindung, das von dem System 600 durchgeführt wird, verwendet werden.
  • Fig. 7 zeigt ein Flussdiagramm eines Ausführungsbeispiels eines Teils des Verfahrens gemäß der Erfindung. Das Flussdiagramm 700 wird beispielsweise von den Vorrichtungen 120 und 130 nach Fig. 1 durchgeführt und/oder gesteuert.
  • In einem ersten Schritt 701 erfolgt eine Reinigung von in einem Gasspeicher (z. B. ein als Untergrundspeicher ausgebildeter Gasspeicher, z. B. Gasspeicher 110 nach Fig. 1, gespeichertes Erdgas.
  • In einem zweiten Schritt 702 erfolgt eine Erzeugung von Flüssiggas basierend auf dem gereinigten Erdgas. Die Erzeugung von Flüssiggas kann beispielsweise mittels der Vorrichtung zur Erzeugung von Flüssiggas 130 nach Fig. 1 durchgeführt und/oder gesteuert werden. Die Erzeugung des Flüssiggases erfolgt im Rahmen der Ausspeicherung von in dem Gasspeicher gespeicherten Erdgas in ein mit dem Gasspeicher verbundenes Gasnetz, wobei die Ausspeicherung beispielsweise einen entsprechenden Bedarf des Gasnetzes deckt. Zur Ausspeicherung ist eine Expansion des in dem Gasspeicher gespeicherten Erdgases erforderlich, wobei das in dem Gasspeicher gespeicherte Erdgas in seinem Druck reduziert wird. Dies wird vorliegend dazu genutzt, zumindest einen Teil des in dem Gasspeicher gespeicherten Erdgases zur Erzeugung von Flüssiggas zu nutzen.
  • In einem optionalen dritten Schritt 703 erfolgt eine Speicherung des erzeugten Flüssiggases, z. B. eine Lagerung des Flüssiggases in einem separaten Speicher, der beispielsweise von dem Gasspeicher umfasst ist. Alternativ oder zusätzlich kann das erzeugte Flüssiggas bzw. zumindest ein Teil des erzeugten Flüssiggases in einem Behälter gespeichert bzw. gelagert werden, der transportabel ist. Der transportable Behälter kann beispielsweise mittels eines LKWs oder eines Zugs transportiert werden.
  • Die in dieser Spezifikation beschriebenen Ausführungsbeispiele der vorliegenden Erfindung und die diesbezüglich jeweils angeführten optionalen Merkmale und Eigenschaften sollen auch in allen Kombinationen miteinander offenbart verstanden werden. Insbesondere soll auch die Beschreibung eines von einem Ausführungsbeispiel umfassten Merkmals - sofern nicht explizit gegenteilig erklärt - vorliegend nicht so verstanden werden, dass das Merkmal für die Funktion des Ausführungsbeispiels unerlässlich oder wesentlich ist. Die Verfahrensschritte können auf verschiedene Art und Weise implementiert werden, so ist eine Implementierung in Software (durch Programmanweisungen), Hardware oder eine Kombination von beidem zur Implementierung der Verfahrensschritte denkbar.
  • In den Patentansprüchen verwendete Begriffe wie "umfassen", "aufweisen", "beinhalten", "enthalten" und dergleichen schließen weitere Elemente oder Schritte nicht aus. Unter die Formulierung "zumindest teilweise" fallen sowohl der Fall "teilweise" als auch der Fall "vollständig". Die Formulierung "und/oder" soll dahingehend verstanden werden, dass sowohl die Alternative als auch die Kombination offenbart sein soll, also "A und/oder B" bedeutet "(A) oder (B) oder (A und B)". Die Verwendung des unbestimmten Artikels schließt eine Mehrzahl nicht aus. Eine einzelne Vorrichtung kann die Funktionen mehrerer in den Patentansprüchen genannten Einheiten bzw. Vorrichtungen ausführen. In den Patentansprüchen angegebene Bezugszeichen sind nicht als Beschränkungen der eingesetzten Mittel und Schritte anzusehen.

Claims (11)

  1. Verfahren zur Erzeugung von Flüssiggas, durchgeführt von einer oder mehreren Vorrichtungen (110, 120, 130, 610, 620, 630), umfassend:
    - Reduzierung eines Drucks von in einem Gasspeicher (110, 610) gespeicherten Erdgas, wobei nach der Reduzierung das Erdgas einen vorbestimmten konstanten Druck aufweist;
    - Reinigung von in dem Gasspeicher (110, 610) gespeichertem und entspanntem Erdgas; und
    - Erzeugung von Flüssiggas basierend auf dem gereinigten Erdgas, wobei die Erzeugung des Flüssiggases im Rahmen der Ausspeicherung von in dem Gasspeicher (110, 610) gespeicherten Erdgas in ein mit dem Gasspeicher (110, 610) verbundenes Gasnetz (650) durchgeführt wird, und
    der Gasspeicher (110, 610) ein Untergrundgasspeicher ist,
    wobei
    die eine oder mehreren Vorrichtungen (110, 120, 130, 610, 620, 630) zur Ausführung und/oder Steuerung des Verfahrens eingerichtet sind oder jeweilige Mittel zur Ausführung und/oder Steuerung der Schritte des Verfahrens umfassen, dadurch gekennzeichnet, dass die eine oder mehreren Vorrichtungen, die das Verfahren durchführen und/oder steuern innerhalb des Untergrundgasspeichers (110, 610) angeordnet sind.
  2. Verfahren nach Anspruch 1, ferner umfassend:
    - Kühlen des gereinigten Erdgases zur Erzeugung des Flüssiggases, wobei das Kühlen des gereinigten Erdgases (m1) mittels eines ersten Wärmetauschers (630-1), erfolgt und dabei kondensiert, und wobei ein erster Teil des gekühlten und kondensierten Erdgases an einen zweiten Wärmetauscher (630-3) geleitet wird zur Kühlung mittels eines Wärmetauschs eines zweiten Teils des gekühlten und kondensierten Erdgases, wobei aus dem zweiten Teil durch Unterkühlung im zweiten Wärmetauscher (630-3) und anschließender Expansion Flüssiggas erzeugt wird; und
    wobei das Kühlen des gereinigten Erdgases (m1) im ersten Wärmetauscher (630-1) mit einem expandierten Teil des gereinigten Erdgases erfolgt, wobei die Expansion (630-8)mittels eines Differenzdrucks, der bei einem Einspeichern des in dem Gasspeicher (110, 610) gespeicherten Erdgases aufgebracht wird, erfolgt.
  3. Verfahren nach Anspruch 2, wobei die Erzeugung des Flüssiggases im Wesentlichen simultan zu einer Ausspeicherung von in dem Gasspeicher (110, 610) gespeicherten Erdgas durchgeführt wird.
  4. Verfahren nach einem der Ansprüche 2 bis 3, wobei das Flüssiggas nach Durchlaufen von zumindest zwei Wärmetauschern (630-1, 630-3), wobei insbesondere eine Joule-Thompson Expansion (630-10) des Erdgases durchführt, erzeugt ist.
  5. Verfahren nach einem der Ansprüche 2 bis 4, wobei das erzeugte Flüssiggas in einem Flüssiggasspeicher (140, 640) zumindest temporär gespeichert ist.
  6. Verfahren nach einem der Ansprüche 2 bis 5, wobei zur Erzeugung des Flüssiggases benötigte Kälte zumindest teilweise basierend auf demjenigen Erdgas, das zum einen ausgespeichert werden soll, und zum anderen aus dem Flüssiggas erzeugt werden soll erzeugt wird.
  7. Verfahren nach einem der Ansprüche 3 bis 6, wobei der erste Teil (m1) des gekühlten Erdgases nach einer Druckreduzierung (630-8) in ein Gasnetz (650) ausspeicherbar ist.
  8. Verfahren nach einem der Ansprüche 5 bis 7, wobei die Speicherung des erzeugten Flüssiggases ein Austreten einer Menge von Erdgas bedingt, wobei die Menge von Erdgas, die durch Erwärmung des gespeicherten Flüssiggases aus dem Flüssiggasspeicher (140, 640) austritt, zur weiteren Nutzung nutzbar ist.
  9. Verfahren nach Anspruch 8, wobei die Menge von Erdgas zur weiteren Nutzung einem dritten Wärmetauscher (630-4) zur Erwärmung von Erdgas zuführbar ist.
  10. Verfahren nach einem der Ansprüche 2 bis 9, wobei das Kühlen zumindest teilweise durch ein Kühlen des Erdgases durch eine Kälteanlage (630-6) durchgeführt wird.
  11. Verfahren nach einem der Ansprüche 3 bis 10, wobei der erste Teil (m1) des gekühlten Erdgases mittels eines Kompressors (630-7) einer Druckerhöhung unterliegt.
EP19701598.5A 2018-01-29 2019-01-18 Erzeugung von flüssiggas in einem gasspeicher Active EP3746725B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018101946.7A DE102018101946A1 (de) 2018-01-29 2018-01-29 Erzeugung von Flüssiggas in einem Gasspeicher
PCT/EP2019/051269 WO2019145230A1 (de) 2018-01-29 2019-01-18 Erzeugung von flüssiggas in einem gasspeicher

Publications (2)

Publication Number Publication Date
EP3746725A1 EP3746725A1 (de) 2020-12-09
EP3746725B1 true EP3746725B1 (de) 2022-05-18

Family

ID=65228522

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19701598.5A Active EP3746725B1 (de) 2018-01-29 2019-01-18 Erzeugung von flüssiggas in einem gasspeicher

Country Status (4)

Country Link
EP (1) EP3746725B1 (de)
DE (1) DE102018101946A1 (de)
DK (1) DK3746725T3 (de)
WO (1) WO2019145230A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020123406A1 (de) * 2020-09-08 2022-03-10 Ontras Gastransport Gmbh Gasentspannungsanlage

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060075777A1 (en) * 2004-10-13 2006-04-13 Howard Henry E Method for producing liquefied natural gas

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3182461A (en) * 1961-09-19 1965-05-11 Hydrocarbon Research Inc Natural gas liquefaction and separation
US6085547A (en) * 1998-09-18 2000-07-11 Johnston; Richard P. Simple method and apparatus for the partial conversion of natural gas to liquid natural gas
FR2893627B1 (fr) * 2005-11-18 2007-12-28 Total Sa Procede pour l'ajustement du pouvoir calorifique superieur du gaz dans la chaine du gnl.
WO2016023098A1 (en) * 2014-08-15 2016-02-18 1304338 Alberta Ltd. A method of removing carbon dioxide during liquid natural gas production from natural gas at gas pressure letdown stations
CN106766669B (zh) * 2016-11-29 2019-05-17 重庆耐德工业股份有限公司 一种用于高压射流天然气液化的脱烃工艺及其***

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060075777A1 (en) * 2004-10-13 2006-04-13 Howard Henry E Method for producing liquefied natural gas

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MILLER R T: "Liquid natural gas storage", JOURNAL OF METALS,, vol. 23, no. 10, 1 October 1971 (1971-10-01), pages 34 - 37, XP001277424 *
WENZEL L A: "LNG PEAKSHAVING PLANTS-A COMPARISON OF CYCLES", A COLLECTION OF INVITED PAPERS AND CONTRIBUTED PAPERS PRESENTED AT NATIONAL TECHNICAL MEETINGS DURING 1973 AND 1974; 1973 CRYOGENIC ENGINEERING CONFERENCE, GEORGIA INSTITUTE OF TECHNOLOGY, ATLANTA, GEORGIA, AUGUST 8 - 10, 1973; ISBN 0-306-38020-4; IN, vol. 20, 1 January 1975 (1975-01-01), pages 90 - 102, XP001277374, ISBN: 978-0-306-38020-4 *

Also Published As

Publication number Publication date
DE102018101946A1 (de) 2019-08-01
EP3746725A1 (de) 2020-12-09
WO2019145230A1 (de) 2019-08-01
DK3746725T3 (da) 2022-07-04

Similar Documents

Publication Publication Date Title
DE69627687T2 (de) Verflüssigungsapparat
EP1360084B1 (de) Tankstelle für wasserstoff
EP2148127A2 (de) Speichervorrichtung für komprimierte Medien und Verfahren zum Betanken von Fahrzeugen
DE102013214786A1 (de) Tank
EP1920185A1 (de) Speicherbehälter für kryogene medien
DE1960515B1 (de) Verfahren und Vorrichtung zum Verfluessigen eines Gases
DE102007011742A1 (de) Verfahren zum Befüllen eines für ein tiefkaltes Speichermedium, insbesondere Wasserstoff, vorgesehenen Druckspeichers
EP3746725B1 (de) Erzeugung von flüssiggas in einem gasspeicher
DE102005023036A1 (de) Wasserstoffspeicher und Verfahren zur Wasserstoffspeicherung
DE10142757C1 (de) Betankungseinrichtung und Verfahren zur Betankung von kryokraftstoffbetriebenen Fahrzeugen
EP2569571B1 (de) Wasserstoffinfrastruktur
EP2565514A1 (de) Verfahren und Vorrichtung zum Nachfüllen eines Speichertanks
WO2010127671A2 (de) Verfahren zur speicherung von und speicher für technische gase
WO2008000103A1 (de) Strassentransportfähige anlage zum verflüssigen und zwischenspeichern von erdgas und betanken von fahrzeugen damit
DE202013101593U1 (de) Vorrichtung zur Gasversorgung
DE102013010414B4 (de) Rückverflüssigung von Boil-Off-Gasen
WO2014153583A1 (de) Vorrichtung zur speicherung von energie
DE102013210750A1 (de) Vorrichtung zur Gasversorgung
DE102010010108B4 (de) Verfahren zur Speicherung von und Speicher für Erdgas
DE102011081673A1 (de) Verfahren und Anlage zur Regasifizierung von Flüssigerdgas
EP3146181B1 (de) Betriebsverfahren für eine kraftwerksanlage mit notbrennstoffsystem
DE102005038270A1 (de) Verfahren zur Gewinnung von verdichtetem gasförmigen Wasserstoff und flüssigem Sauerstoff
DE102022205134B3 (de) Druckaufbausystem und Druckaufbauverfahren zum Entnehmen eines Druckgases aus einer Speichervorrichtung zur Aufbewahrung eines Flüssiggases
DE102019108381A1 (de) Druckbehälter, Kraftfahrzeug und Verfahren
DE19916563A1 (de) Verfahren zum Umfüllen niedrig siedender Flüssigkeiten

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200623

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210713

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

INTC Intention to grant announced (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20220202

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019004411

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1493377

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220615

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20220630

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220919

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220818

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220819

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019004411

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

26N No opposition filed

Effective date: 20230221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230118

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240123

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20240122

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240118

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240119

Year of fee payment: 6

Ref country code: GB

Payment date: 20240124

Year of fee payment: 6

Ref country code: CH

Payment date: 20240202

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240124

Year of fee payment: 6

Ref country code: DK

Payment date: 20240123

Year of fee payment: 6

Ref country code: BE

Payment date: 20240122

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518