EP3740449B1 - Dispositif et procédé pour l'installation et la manutention d'un module d'une station de traitement sous-marin - Google Patents

Dispositif et procédé pour l'installation et la manutention d'un module d'une station de traitement sous-marin Download PDF

Info

Publication number
EP3740449B1
EP3740449B1 EP19703405.1A EP19703405A EP3740449B1 EP 3740449 B1 EP3740449 B1 EP 3740449B1 EP 19703405 A EP19703405 A EP 19703405A EP 3740449 B1 EP3740449 B1 EP 3740449B1
Authority
EP
European Patent Office
Prior art keywords
module
hydraulic
piston
controlled
lowering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19703405.1A
Other languages
German (de)
English (en)
Other versions
EP3740449A1 (fr
Inventor
Raymond Hallot
Fabrice BACATI
Thomas DELAPLACE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saipem SA
Original Assignee
Saipem SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saipem SA filed Critical Saipem SA
Publication of EP3740449A1 publication Critical patent/EP3740449A1/fr
Application granted granted Critical
Publication of EP3740449B1 publication Critical patent/EP3740449B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C1/00Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith for transmitting lifting forces to articles or groups of articles
    • B66C1/10Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith for transmitting lifting forces to articles or groups of articles by mechanical means
    • B66C1/62Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith for transmitting lifting forces to articles or groups of articles by mechanical means comprising article-engaging members of a shape complementary to that of the articles to be handled
    • B66C1/66Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith for transmitting lifting forces to articles or groups of articles by mechanical means comprising article-engaging members of a shape complementary to that of the articles to be handled for engaging holes, recesses, or abutments on articles specially provided for facilitating handling thereof
    • B66C1/663Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith for transmitting lifting forces to articles or groups of articles by mechanical means comprising article-engaging members of a shape complementary to that of the articles to be handled for engaging holes, recesses, or abutments on articles specially provided for facilitating handling thereof for containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C1/00Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith for transmitting lifting forces to articles or groups of articles
    • B66C1/10Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith for transmitting lifting forces to articles or groups of articles by mechanical means
    • B66C1/101Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith for transmitting lifting forces to articles or groups of articles by mechanical means for containers
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • E21B41/0007Equipment or details not covered by groups E21B15/00 - E21B40/00 for underwater installations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/36Arrangement of ship-based loading or unloading equipment for floating cargo

Definitions

  • the present invention relates to the general field of underwater processing of fluids occurring during the production of hydrocarbons, for example oil and gas, or the exploitation of mining resources at great depths from underwater production wells. .
  • subsea processing In the context of hydrocarbon production, it is generally necessary to treat production effluents and/or injection fluids (such as, for example, seawater). For this purpose, it is known to use underwater processing stations, called “subsea processing", in which the fluids are treated in equipment placed directly on the seabed instead of being located on the platforms of production as is usually the case. These subsea treatment stations have many economic advantages, notably in that they avoid having to transport fluids to the surface. More generally, these subsea processing stations can help unlock the exploitation of new fields that were previously difficult to exploit.
  • the architecture of the treatment station typically consists of a structural base on which the different modules are placed and connected.
  • the assembly formed by the base and the modules constitutes the complete treatment station. It is also necessary to connect the modules to each other and/or to the structural base if the fluids to be treated pass through them between the different modules (the structural base of the station is then called "flowbase”), these connections being made by means of vertical or horizontal connectors.
  • shock absorbers Another known solution for cushioning the impact of the modules of a station when they land on the base of the station consists of placing shock absorbers under the module during its landing, these shock absorbers being in the form of hydraulic cylinders powered by the surrounding sea water.
  • the feet of these shock absorbers (which are formed by the rod of the cylinders) return to their chamber by chasing the sea water outwards.
  • seawater passes through specific sized orifices and the landing energy of the module is dissipated via the pressure loss of the water leaving the chamber as the actuator rods sink.
  • WO2011/099867 discloses a device comprising the features of the preamble of claim 1.
  • the main aim of the present invention is therefore to propose a device for the installation and maintenance of a module of an underwater processing station which does not present the aforementioned drawbacks.
  • the hydraulic system of the device comprises hydraulic cylinders fixed to the frame and the piston of which is brought into contact or connected with the feet and having two functions: a function of damping impacts during the landing of the module on the base of the station during which the piston moves between its extended position (first mechanical stop) and its intermediate position (hydraulic stop), and a controlled descent function in which the piston can move between its intermediate position and its retracted position ( second mechanical stop).
  • a controlled descent function in which the piston can move between its intermediate position and its retracted position
  • the device according to the invention is thus remarkable in particular in that it provides a decoupling between the damping stroke and the controlled descent stroke of the pistons of the hydraulic cylinders unlike the shock absorber devices of the prior art in which these two phases are implemented at the same time.
  • the damping during landing of the module is carried out without risk of contact between the faces of the vertical connectors, whatever the number of impacts.
  • the descent into the final position of the module is carried out independently of the movements of the installation and maintenance boat and can therefore be perfectly controlled.
  • the device according to the invention thus makes it possible to minimize the risks linked to the installation of modules equipped with vertical connectors.
  • the use of multi-stage hydraulic cylinders makes it possible to implement these functions in a compact and lightest manner possible.
  • the device according to the invention can make it possible to reassemble the module to carry out maintenance operations on the connectors (changing joints for example) without using the winch of the maintenance boat.
  • the device according to the invention can be recovered from the surface after the installation of a module, which allows its maintenance to be carried out for the next operation.
  • each hydraulic cylinder may have, at one end located inside the body of the cylinder, an opening communicating with the first chamber and a collar coming into sealed contact with an internal wall of the cylinder body.
  • each hydraulic cylinder can be provided with a finger projecting inside the first chamber, the finger having an external diameter corresponding substantially to the internal diameter of the piston so as to cooperate with the opening of the piston to form the hydraulic stop corresponding to the intermediate position of the piston.
  • the finger advantageously comprises a conduit for evacuating the hydraulic circuit of controlled descent which opens inside the piston when the latter is in the intermediate position so as to allow the piston to be moved between the intermediate position and the retracted position.
  • each hydraulic cylinder may comprise surfaces against which the flange of the piston is able to come into contact to form the first and the second mechanical stop.
  • Each hydraulic cylinder may further include a guide rod connecting the finger to the piston and a spring mounted around the guide rod to assist in deployment of the piston.
  • each hydraulic cylinder can be supplied with hydraulic fluid by a hydraulic rise circuit.
  • the hydraulic circuit for raising each hydraulic cylinder may include grooves made in an external wall of the piston which open outside the device and open into the second chamber.
  • the damping and controlled descent circuits each comprise a valve which is able to be controlled by an underwater vehicle remotely controlled from the surface, and a non-return valve in parallel with the valve to allow the increase of the incoming fluid flow during cylinder deployment.
  • the damping and controlled descent circuits each comprise at least one pressure limiting valve downstream of the hydraulic cylinders.
  • the damping and controlled descent circuits can be supplied with sea water.
  • the method further comprises, during a lifting phase of the module, a step of pumping the fluid to inject it into the damping and controlled descent circuits to deploy the respective pistons of the hydraulic cylinders of the device.
  • the method further comprises, during a surface recovery phase of the device after installation of the module on the base of the underwater treatment station, closing the controlled descent circuit and opening mechanical connections between the device and the module in order to raise the device to the surface using a winch an installation and maintenance boat.
  • the invention applies to the maintenance of modules making up an underwater processing station used in the context of the production of hydrocarbons or the exploitation of mining resources at great depths for the treatment of production effluents and/or injection fluids (such as seawater).
  • FIG. 1 represents a device 2 according to a (non-limiting) embodiment of the invention which is used to carry out such maintenance.
  • the device 2 comprises a frame 4 which is intended to be fixed (temporarily or permanently) on the upper face of a module 6 of the underwater processing station.
  • the frame 4 of the device comprises a structure 8, for example of rectangular shape, on which are mounted devices for fixing to the module and on which are also mounted fasteners 10 to allow the slings 12 attached to the end to be fixed. a cable moved by a winch from the maintenance boat.
  • the module 6 of the underwater processing station comprises feet 14 (four in number) which slide in sheaths (here integrated into the module but which can alternatively be integrated into the frame of the device) and which are intended to come into contact with the base of the underwater processing station (called “flowbase” in English) during the landing of the module.
  • the vertical forces exerted on the feet 14 by the base of the station during landing of the module are transmitted to the pistons of the cylinders.
  • the frame 4 of the device also includes a hydraulic system 16 which is intended to ensure damping and controlled descent of the module onto the base of the station.
  • This hydraulic system 16 comprises a plurality of hydraulic cylinders 18 which are each intended to be connected to one of the feet 14 of the module.
  • the hydraulic system comprises four hydraulic cylinders 18 positioned at the four corners of the structure 8 of the frame, these cylinders being in contact with the feet 14 which slide through the sheaths along the module.
  • FIG. 2 represents an example of architecture of the hydraulic system 16 equipping the device according to the invention.
  • this hydraulic system 16 comprises four hydraulic cylinders 18. These hydraulic cylinders are double-stage cylinders which are supplied with fluid (typically sea water) by two independent hydraulic circuits, namely the same circuit. damping 22 (for all the cylinders) and the same controlled descent circuit 24 (for all the cylinders).
  • the damping circuit 22 comprises, downstream of each hydraulic cylinder (in the direction of flow of the fluid towards a common exhaust 26), a pressure limiting valve 28.
  • These valves have the particular function of limiting the pressure in the chambers of the hydraulic cylinders by releasing only the necessary fluid flow. This makes it possible to obtain a damping force on the cylinders (directly linked to the pressure in the chambers of the cylinders) which is constant at the start of the damping phase and thus to avoid any too sudden deceleration at the start. Of course, this function could be obtained thanks to the same pressure limiting valve common to all the hydraulic cylinders of the damping circuit.
  • the damping circuit 22 also comprises, downstream of the pressure limiting valves 28, a valve 30 which is common to all of the hydraulic cylinders and which is capable of being controlled by a remote-controlled underwater vehicle (or ROV for “Remote Operated Vehicle”, not shown in the figures) from the surface.
  • a remote-controlled underwater vehicle or ROV for “Remote Operated Vehicle”, not shown in the figures
  • the damping circuit 22 Downstream of the valve 30, the damping circuit 22 further comprises a restriction orifice 32 which makes it possible to define the profile of the damping phase of the device. More precisely, this restriction orifice 32 is calibrated to control the desired damping and therefore the final impact speed.
  • a non-return valve 34 is also added in the damping circuit in parallel with the valve 30 and the restriction orifice 32 to make it possible to increase the flow of fluid entering the chambers during the deployment of the cylinders (phase of rearming the device).
  • damping circuit 22 Downstream, the damping circuit 22 ends with an exhaust 26 which is common with the controlled descent circuit 24.
  • a filter 36 can be added upstream of the common exhaust 26 in order to prevent the introduction of solid particles or organisms into the hydraulic circuits.
  • the controlled descent circuit 24 comprises, downstream of the four hydraulic cylinders, a pressure limiting valve 38. This valve is common for all of the hydraulic cylinders and makes it possible to increase the safety of the device in the event of an accidental rise in pressure. in the controlled descent circuit.
  • the controlled descent circuit 24 also comprises, downstream of the pressure limiting valve 38, a valve 40 which is common to all of the hydraulic cylinders and which is capable of being controlled by the remotely controlled underwater vehicle from the surface .
  • the control of this valve 40 will be detailed later.
  • the controlled descent circuit Downstream of the valve 40, the controlled descent circuit further comprises a restriction orifice 42 which makes it possible to control the exhaust flow of the controlled descent circuit and therefore the descent speed of the module during the descent phase of the device.
  • a non-return valve 44 is also added in the controlled descent circuit in parallel with the valve 40 and the restriction orifice 42 to allow the return flow of the fluid to be increased and to assist in the exit of the cylinders in reducing hydraulic pressure losses.
  • Each hydraulic cylinder 18 of the hydraulic system 16 of the device according to the invention is a double-stage cylinder. It comprises in particular a cylinder body 46 which is secured (temporarily or permanently) to the frame of the device, and a piston 48 whose free end 50 is intended to be brought into contact (by being connected or by simple support) with one of the feet of the module.
  • the piston 48 is movable inside the cylinder body 46 and separates the internal volume of the cylinder body into a first chamber 52 and a second chamber (see the Figures 4B to 4D ) which are waterproof relative to each other.
  • the piston 48 At its end located inside the body of the cylinder (opposite to its free end 50), the piston 48 has an opening 56 which communicates with the descent chamber 52, as well as a collar 58 which comes into sealed contact with an internal wall of the cylinder body during movement of the piston inside it.
  • the collar 58 is able to come into mechanical abutment against surfaces provided in the body of the cylinder.
  • the cylinder body comprises a lower surface 60 against which the flange 58 of the piston comes into contact to form a first mechanical stop corresponding to an deployed position of the piston (case of figures 3 And 4A ).
  • the cylinder body comprises an upper surface 62 against which the flange 58 of the piston comes into contact to form a second mechanical stop corresponding to a retracted position of the piston (case of the figure 4D ).
  • the cylinder body 46 of the hydraulic cylinder is here substantially cylindrical and it is provided with a cylindrical finger 64 projecting inside the first chamber 52.
  • This finger is centered on an axis of revolution at an intermediate position of the piston located between the deployed position and the retracted position.
  • each hydraulic cylinder 18 of the hydraulic system of the device according to the invention is supplied with fluid by the damping circuit 22 and the controlled descent circuit 24.
  • the body of the cylinder 46 has, at the level of its upper surface 62, one or more evacuation conduits 66 opening into the descent chamber 52 and opening towards the damping circuit 22 described above.
  • the damping circuit makes it possible to move the piston of the cylinder between the first mechanical stop and the hydraulic stop.
  • the cylinder body comprises an evacuation conduit 68 opening into the first chamber 52 and opening towards the controlled descent circuit 24.
  • the descent circuit controlled allows the piston to be moved between the hydraulic stop and the second mechanical stop.
  • the device according to the invention is mounted on the module and connected to the installation and maintenance boat on the surface via the cable of a winch.
  • the winch unwinds the cable to lower the module towards the base of the underwater processing station.
  • valve 30 of the damping circuit 22 is open and the valve 40 of the controlled descent circuit is closed on the surface on board the installation and maintenance boat in order to cushion the impacts of the module on the base of the station, in particular due to the swell which can generate several.
  • the second chamber 54 is filled with sea water, for example by passing through grooves 70 made in an external wall of the piston which open to the outside of the device and which open into the second bedroom (see Figure 5 ).
  • the end of the damping phase is defined by the moment when the finger 64 of the body of the cylinder blocks the opening 56 of the piston ( figure 4C ). From this position of the piston, the water present inside the piston (in the secondary chamber 72 created during the passage of the Figure 4B to 4C by the movement of the piston and shown on the figure 4C ), can no longer escape, which stops the retraction of the piston (it is thus at a hydraulic stop in its intermediate position).
  • the pressure in the damping circuit drops below the value defined by the pressure limiting valves 28.
  • the pressure in the cylinders and the hydraulic circuit is limited by the valves 28 which thus also limit the maximum deceleration seen by the module. When the module has slowed down sufficiently, the pressure in the cylinders falls and the valves 28 close, the end of the damping and the associated deceleration decrease from the valve pressure plate to fall to zero when the module has reached constant speed desired, this before the hydraulic stop.
  • the finger 64 can present at its free end a chamfer 64a in order to smooth the stopping of the piston in the intermediate position. It will also be noted that the dimensioning of the restriction orifice 32 of the damping circuit makes it possible to control the desired damping during this phase and to control the final impact speed of the piston before it stops in the intermediate position.
  • the module takes off again.
  • the hydraulic system of the device i.e. the pistons redeploy
  • the guide rod 76 can be formed of two pierced and hollow rods sliding one inside the other, namely a rod 76a fixed to the finger 64 and another rod 76b fixed to the piston 48 .
  • non-return valve 34 of the damping circuit makes it possible to increase the return flow of water in the circuit and therefore also to help in the redeployment of the pistons by reducing hydraulic pressure losses.
  • the installation and maintenance boat's winch cable is slackened and the module is no longer tied to the boat movements. It is then in intermediate position, the cylinders being at hydraulic stop.
  • the remote-controlled underwater vehicle then connects to the hydraulic system of the device to open the valve 40 of the controlled descent circuit by keeping the valve 30 of the damping circuit 22 open ( figure 4D ). This action makes it possible to release the water contained in the secondary chamber 72 in order to control the final descent of the module.
  • the water present in the secondary chamber 72 is expelled towards the controlled descent circuit by taking the evacuation conduit 68 made in the finger 64, while the water present in the first chamber 52 continues to be driven towards the damping circuit via the evacuation conduits 66.
  • the restriction orifice 42 of the controlled descent circuit makes it possible to control the exhaust flow and therefore the descent speed of the module.
  • the final height position of the module is determined by the stops of the connectors and the module itself.
  • the total length of the cylinder can therefore be designed so that the second mechanical stop defined by the upper bearing 62 “arrives” after the stop of the connectors during the descent of the module into the final position.
  • the remotely controlled underwater vehicle can close the connectors between the module and the base of the device. He then carries out tests to verify the tightness of the connectors. In the event of poor sealing, he can intervene directly on these connectors to change the seals for example.
  • the pumped water passing through the check valves of the two circuits, and as the valves 30, 40 are closed the module remains in the high position even when the remotely controlled underwater vehicle stops pumping the water. In this way, a remote-controlled underwater vehicle makes it possible to maneuver the module and change the connector joints.
  • the remotely operated underwater vehicle returns to open the valves of the hydraulic circuits and the module goes back down to the low position.
  • the device can be recovered.
  • the valve 40 of the controlled descent circuit is closed, then the mechanical connections between the device and the module are opened (these may be hydraulic cylinders which release the lifting lugs for example, actuated by the ROV) .
  • the device is therefore no longer connected to the module.
  • the installation and maintenance boat can then rewind the cable of its winch and the device can be recovered on the surface while the module remains in place on the base of the station.
  • the method may further comprise a phase of recovery of the module on the surface with the device recovered on the surface.
  • This recovery phase includes the successive stages of lowering the device underwater from the surface by the installation and handling boat, to the module, mechanical fixing of the device to the module, closing of the valve of the circuit controlled descent, pumping the fluid to inject it into the damping circuits and controlled descent to deploy the respective pistons of the hydraulic cylinders of the device and reassemble the module in the intermediate position, on the hydraulic stop, and recovery of the module and of the device using the winch of the installation and maintenance boat.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Earth Drilling (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Manipulator (AREA)
  • Actuator (AREA)

Description

    Arrière-plan de l'invention
  • La présente invention se rapporte au domaine général du traitement sous-marin de fluides intervenant lors de la production d'hydrocarbures, par exemple de pétrole et de gaz, ou l'exploitation de ressources minières à grandes profondeurs issus de puits de production sous-marins.
  • Dans le cadre de la production d'hydrocarbures, il est généralement nécessaire de procéder au traitement des effluents de production et/ou des fluides d'injection (tels que par exemple l'eau de mer). A cet effet, il est connu de recourir à des stations de traitement sous-marin, dites de « subsea processing », dans lesquelles les fluides sont traités dans des équipements placés directement sur le fond marin au lieu d'être situés sur les plateformes de production comme cela est habituellement le cas. Ces stations de traitement sous-marin présentent de nombreux avantages économiques, notamment en ce qu'ils permettent d'éviter d'avoir à acheminer les fluides à la surface. De manière plus générale, ces stations de traitement sous-marin peuvent contribuer à débloquer l'exploitation de nouveaux champs auparavant difficilement exploitables.
  • Toutefois, cette solution de traitement sous-marin pose certains problèmes. En particulier, ces stations peuvent nécessiter des interventions pour des opérations de maintenance pour lesquelles il est alors nécessaire de remonter des équipements de la station à la surface. Afin de permettre la réalisation de ces opérations de maintenance à l'aide de bateaux de maintenance classiques et de ne pas avoir besoin de recourir à des bateaux de développement de champs qui sont onéreux et peu disponibles, il peut être nécessaire de subdiviser les stations de traitement sous-marins en plusieurs sous-ensembles appelés « modules » contenant chacun une partie des équipements de la station. De la sorte, chacun de ces modules est suffisamment léger pour être remonté à la surface au moyen d'un bateau d'intervention et de maintenance classique.
  • Avec cette solution, l'architecture de la station de traitement se compose typiquement d'une base structurelle sur laquelle sont posés et connectés les différents modules. L'ensemble formé par la base et les modules constitue la station de traitement complète. Il est également nécessaire de connecter les modules entre eux et/ou avec la base structurelle si les fluides à traiter transitent par elles entre les différents modules (la base structurelle de la station est alors appelée « flowbase »), ces connexions étant réalisées au moyen de connecteurs verticaux ou horizontaux.
  • L'installation d'un module sur la base structurelle d'une telle station de traitement sous-marin, est généralement réalisée au moyen d'un treuil du bateau de maintenance qui assure la descente du module vers le fond marin. Lors de cette installation, il convient d'éviter les impacts trop importants afin de ne pas abimer les modules et la base. Dans le cadre d'une connexion verticale (pour le transit des fluides), ce risque est encore plus important. En effet, lors de l'impact, les faces ou d'autres éléments des connecteurs verticaux du module et de la base structurelle pourraient être endommagées, ce qui nécessiterait de remplacer ces éléments critiques et onéreux afin de prévenir toute fuite dans la mer d'effluents lors de l'exploitation de la station de traitement. De plus, la vitesse d'atterrissage sur la base de la station de traitement sous-marin (appelée « flowbase » en anglais) du module est fortement dépendante des états de la mer en surface lors de l'installation et la dynamique du système est amplifiée avec la profondeur d'installation.
  • Afin de réduire l'impact des modules à leur atterrissage sur la base de la station de traitement sous-marin, il est connu de recourir à des systèmes directement installés sur les treuils des bateaux de maintenance permettant de découpler les mouvements du module lors de la descente des mouvements de surface du bateau. Cependant, ces systèmes de découplage ont leurs limites et peuvent être défaillants.
  • Une autre solution connue pour amortir l'impact des modules d'une station à leur atterrissage sur la base de la station consiste à placer des amortisseurs sous le module lors de son atterrissage, ces amortisseurs se présentant sous forme de vérins hydrauliques alimentés par l'eau de mer environnante. Lorsque le module atterrit, les pieds de ces amortisseurs (qui sont formés par la tige des vérins) rentrent dans leur chambre en chassant l'eau de mer vers l'extérieur. Pour sortir, l'eau de mer passe au travers d'orifices de tailles spécifiques et l'énergie d'atterrissage du module est dissipée via la perte de charge de l'eau sortant de la chambre lorsque les tiges des vérins s'enfoncent.
  • Cette solution qui est fonctionnelle et relativement efficace pour amortir l'impact du module lors de son atterrissage présente cependant certains inconvénients. Notamment, dans le cas de connecteurs verticaux, ces amortisseurs n'empêchent pas l'impact entre deux faces des connecteurs verticaux, ils ne font que le ralentir. Il en résulte que la vitesse d'impact finale n'est pas parfaitement contrôlée et dépend des mouvements du bateau de maintenance en surface (qui dictent la vitesse initiale d'impact). De plus, s'il existe une différence d'amortissement entre plusieurs vérins, cela conduit à induire un déséquilibre du module lors de l'atterrissage vu que chacun des amortisseurs fonctionne de façon indépendante. En outre, ces amortisseurs sont dimensionnés et installés pour chaque module particulier, ce qui les rend difficiles (voire impossibles) à être réutilisés pour d'autres modules. Enfin, les opérations de maintenance sur les connecteurs (changement de joint par exemple) sont dépendantes du treuil du bateau et donc de ses mouvements dus à la houle. Le module doit en effet être remonté à l'aide du treuil afin que le ou les robots d'intervention sous-marins (dits ROV) puisse intervenir sur les connecteurs. Ces opérations induisent donc une répétition du risque pour les connecteurs verticaux.
  • WO2011/099867 divulgue un dispositif comprenant les caractéristiques du préambule de la revendication 1.
  • Objet et résumé de l'invention
  • La présente invention a donc pour but principal de proposer un dispositif pour l'installation et la maintenance d'un module d'une station de traitement sous-marin qui ne présente pas les inconvénients précités.
  • Conformément à l'invention, ce but est atteint grâce à un dispositif pour l'installation et la manutention d'un module d'une station de traitement sous-marin, comprenant un cadre destiné à être fixé à un module, et un système hydraulique destiné à assurer un amortissement et une descente contrôlée du module sur la base de la station, le système hydraulique comprenant une pluralité de vérins hydrauliques destinés à être connectés chacun à un pied_apte à venir en contact avec une base de la station de traitement sous-marin, chaque vérin hydraulique comprenant :
    • un corps de vérin solidaire du cadre ; et
    • un piston destiné à être mis en contact avec un pied et mobile en translation à l'intérieur du corps de vérin entre une première butée mécanique correspondant à une position déployée du piston et une seconde butée mécanique correspondant à une position rétractée du piston, le piston séparant le volume interne du corps de vérin en une première chambre et une seconde chambre qui sont étanches l'une par rapport à l'autre ;
    • la première chambre de chaque vérin hydraulique étant alimentée en fluide hydraulique par deux circuits hydrauliques indépendants comprenant un circuit d'amortissement apte à déplacer le piston entre sa position déployée et une position intermédiaire située entre la position déployée et la position rétractée et définie par une butée hydraulique, et un circuit de descente contrôlée apte à déplacer le piston entre la position intermédiaire et sa position rétractée.
  • Le système hydraulique du dispositif selon l'invention comprend des vérins hydrauliques fixés au cadre et dont le piston est mis en contact ou connecté avec les pieds et présentant deux fonctions : une fonction d'amortissement des impacts lors de l'atterrissage du module sur la base de la station pendant laquelle le piston se déplace entre sa position déployée (première butée mécanique) et sa position intermédiaire (butée hydraulique), et une fonction de descente contrôlée dans laquelle le piston peut se déplacer entre sa position intermédiaire et sa position rétractée (seconde butée mécanique). Ces fonctions sont mises en oeuvre au moyen de deux circuits hydrauliques indépendants, à savoir un circuit d'amortissement et un circuit de descente contrôlée pour l'ensemble des vérins hydrauliques.
  • Le dispositif selon l'invention est ainsi remarquable notamment en ce qu'il prévoit un découplage entre la course d'amortissement et la course de descente contrôlée des pistons des vérins hydrauliques contrairement aux dispositifs à amortisseurs de l'art antérieur dans lesquels ces deux phases sont mises en oeuvre en même temps. De la sorte, l'amortissement lors de l'atterrissage du module s'effectue sans risque de contact entre les faces des connecteurs verticaux, quel que soit le nombre d'impacts. La descente en position finale du module est réalisée indépendamment des mouvements du bateau d'installation et de maintenance et peut donc être parfaitement contrôlée. Le dispositif selon l'invention permet ainsi de minimiser les risques liés à l'installation de modules équipés de connecteurs verticaux. Par ailleurs, le recours à des vérins hydrauliques multi-étages permet de mettre en oeuvre ces fonctions d'une manière compacte et la plus légère possible.
  • De plus, le dispositif selon l'invention peut permettre de remonter le module pour effectuer des opérations de maintenance sur les connecteurs (changement de joint par exemple) sans utiliser le treuil du bateau de maintenance. Enfin, contrairement aux dispositifs à amortisseurs de l'art antérieur, le dispositif selon l'invention peut être récupéré en surface après l'installation d'un module, ce qui permet d'effectuer sa maintenance pour la prochaine opération.
  • Le piston de chaque vérin hydraulique peut présenter, au niveau d'une extrémité située à l'intérieur du corps du vérin, une ouverture communiquant avec la première chambre et une collerette venant en contact étanche avec une paroi interne du corps de vérin.
  • Dans ce cas, le corps de vérin de chaque vérin hydraulique peut être muni d'un doigt faisant saillie à l'intérieur de la première chambre, le doigt ayant un diamètre externe correspondant sensiblement au diamètre interne du piston de manière à coopérer avec l'ouverture du piston pour former la butée hydraulique correspondant à la position intermédiaire du piston. Le doigt comprend avantageusement un conduit d'évacuation du circuit hydraulique de descente contrôlée qui débouche à l'intérieur du piston lorsque celui-ci se trouve dans la position intermédiaire de manière à permettre de déplacer le piston entre la position intermédiaire et la position rétractée.
  • Par ailleurs, l'intérieur du corps de vérin de chaque vérin hydraulique peut comprendre des portées contre lesquelles la collerette du piston est apte à venir en contact pour former la première et la seconde butée mécanique.
  • Chaque vérin hydraulique peut comprendre en outre une tige de guidage reliant le doigt au piston et un ressort monté autour de la tige de guidage pour aider au déploiement du piston.
  • La seconde chambre de chaque vérin hydraulique peut être alimentée en fluide hydraulique par un circuit hydraulique de montée. Dans ce cas, le circuit hydraulique de montée de chaque vérin hydraulique peut comprendre des rainures pratiquées dans une paroi externe du piston qui s'ouvrent à l'extérieur du dispositif et débouchent dans la seconde chambre.
  • De préférence, les circuits d'amortissement et de descente contrôlée comprennent chacun une vanne qui est apte à être pilotée par un véhicule sous-marin téléguidé depuis la surface, et un clapet anti-retour en parallèle de la vanne pour permettre d'augmenter le débit de fluide entrant lors du déploiement des vérins.
  • De préférence également, les circuits d'amortissement et de descente contrôlée comprennent chacun au moins une soupape de limitation de pression en aval des vérins hydrauliques. Les circuits d'amortissement et de descente contrôlée peuvent être alimentés en eau de mer.
  • L'invention a également pour objet un procédé d'installation et de manutention d'un module d'une station de traitement sous-marin, dans lequel le cadre d'un dispositif tel que défini précédemment est attaché sur un module, le procédé comprenant, lors des phases de descente et d'atterrissage du module sur une base de la station de traitement sous-marin, les étapes de :
    • déploiement des pistons respectifs des vérins hydrauliques du dispositif, d'ouverture du circuit d'amortissement et de fermeture du circuit de descente contrôlée pour amortir les impacts du module sur la base de la station ; et
    • une fois que le module a atterri sur la base de la station, l'ouverture du circuit de descente contrôlée en maintenant le circuit d'amortissement ouvert pour permettre la descente finale de la station du module sur la base de la station.
  • De préférence, le procédé comprend en outre, lors d'une phase de relevage du module, une étape de pompage du fluide pour l'injecter dans les circuits d'amortissement et de descente contrôlée pour déployer les pistons respectifs des vérins hydrauliques du dispositif.
  • De préférence également, le procédé comprend en outre, lors d'une phase de récupération en surface du dispositif après installation du module sur la base de la station de traitement sous-marin, la fermeture du circuit de descente contrôlée et l'ouverture de connexions mécaniques entre le dispositif et le module afin de procéder au relevage en surface du dispositif à l'aide d'un treuil d'un bateau d'installation et de maintenance.
  • De préférence encore, le procédé comprend en outre une phase de récupération du module en surface avec le dispositif récupéré en surface, la phase de récupération comprenant les étapes de :
    • descente du dispositif sous l'eau depuis la surface par le bateau d'installation et de manutention, jusqu'au module ;
    • fixation mécanique du dispositif au module ;
    • fermeture de la vanne du circuit de descente contrôlée ;
    • pompage du fluide pour l'injecter dans les circuits d'amortissement et de descente contrôlée pour déployer les pistons respectifs des vérins hydrauliques du dispositif et remonter le module en position intermédiaire, sur la butée hydraulique ; et
    • récupération du module et du dispositif à l'aide du treuil du bateau d'installation et de maintenance.
    Brève description des dessins
  • D'autres caractéristiques et avantages de la présente invention ressortiront de la description faite ci-dessous, en référence aux dessins annexés qui en illustrent des exemples de réalisation dépourvus de tout caractère limitatif. Sur les figures :
    • la figure 1 est une vue en perspective d'un dispositif selon l'invention monté sur un module d'une station de traitement sous-marin ;
    • la figure 2 illustre un exemple d'architecture de circuits hydrauliques du dispositif de la figure 1 ;
    • la figure 3 montre de façon schématique un exemple de réalisation d'un vérin hydraulique du dispositif de la figure 1 ;
    • les figures 4A à 4D montrent les différentes positions du vérin de la figure 3 selon les fonctions du dispositif ;
    • la figure 5 est une vue en perspective d'un vérin hydraulique du dispositif selon une variante de réalisation de l'invention ; et
    • la figure 6 est une vue en coupe selon VI-VI de la figure 5.
    Description détaillée de l'invention
  • L'invention s'applique à la maintenance de modules composant une station de traitement sous-marin utilisée dans le cadre de la production d'hydrocarbures ou l'exploitation de ressources minières à grandes profondeurs pour le traitement des effluents de production et/ou des fluides d'injection (tels que l'eau de mer).
  • La figure 1 représente un dispositif 2 selon un mode de réalisation (non limitatif) de l'invention qui est utilisé pour réaliser une telle maintenance.
  • Le dispositif 2 selon l'invention comprend un cadre 4 qui est destiné à être fixé (de façon temporaire ou permanente) sur la face supérieure d'un module 6 de la station de traitement sous-marin.
  • Plus précisément, le cadre 4 du dispositif comprend une structure 8, par exemple de forme rectangulaire, sur laquelle sont montés des dispositifs de fixation au module et sur laquelle sont également montés des attaches 10 pour permettre de fixer les élingues 12 attachées à l'extrémité d'un câble mu par un treuil du bateau de maintenance.
  • Le module 6 de la station de traitement sous-marin comprend des pieds 14 (au nombre de quatre) qui coulissent dans des fourreaux (ici intégrés au module mais pouvant être de façon alternative intégrés au cadre du dispositif) et qui sont destinés à venir en contact avec la base de la station de traitement sous-marin (appelée « flowbase » en anglais) lors de l'atterrissage du module. De cette manière, les efforts verticaux exercés sur les pieds 14 par la base de la station lors de l'atterrissage du module sont transmis aux pistons des vérins.
  • Le cadre 4 du dispositif comprend également un système hydraulique 16 qui est destiné à assurer un amortissement et une descente contrôlée du module sur la base de la station.
  • Ce système hydraulique 16 comprend une pluralité de vérins hydrauliques 18 qui sont chacun destinés à être connectés à l'un des pieds 14 du module. Ainsi, sur l'exemple de réalisation de la figure 1, le système hydraulique comprend quatre vérins hydrauliques 18 positionnés au niveau des quatre coins de la structure 8 du cadre, ces vérins étant en contact avec les pieds 14 qui coulissent à travers les fourreaux le long du module.
  • La figure 2 représente un exemple d'architecture du système hydraulique 16 équipant le dispositif selon l'invention.
  • Comme indiqué précédemment, ce système hydraulique 16 comprend quatre vérins hydrauliques 18. Ces vérins hydrauliques sont des vérins à double étages qui sont alimentés en fluide (typiquement de l'eau de mer) par deux circuits hydrauliques indépendants, à savoir un même circuit d'amortissement 22 (pour l'ensemble des vérins) et un même circuit de descente contrôlée 24 (pour l'ensemble des vérins).
  • Le circuit d'amortissement 22 comprend, en aval de chaque vérin hydraulique (dans le sens d'écoulement du fluide vers un échappement commun 26), une soupape de limitation de pression 28. Ces soupapes ont notamment pour fonction de limiter la pression dans les chambres des vérins hydrauliques en libérant seulement le débit de fluide nécessaire. Ceci permet d'obtenir un effort d'amortissement des vérins (directement lié à la pression dans les chambres des vérins) qui soit constant au début de la phase d'amortissement et ainsi d'éviter toute décélération trop brutale au départ. Bien entendu, cette fonction pourrait être obtenue grâce à une même soupape de limitation de pression commune à l'ensemble des vérins hydrauliques du circuit d'amortissement.
  • Le circuit d'amortissement 22 comprend également, en aval des soupapes de limitation de pression 28, une vanne 30 qui est commune à l'ensemble des vérins hydrauliques et qui est apte à être pilotée par un véhicule sous-marin téléguidé (ou ROV pour « Remote Operated Vehicle », non représenté sur les figures) depuis la surface. Le pilotage de cette vanne 30 sera détaillé ultérieurement.
  • En aval de la vanne 30, le circuit d'amortissement 22 comprend encore un orifice de restriction 32 qui permet de définir le profil de la phase d'amortissement du dispositif. Plus précisément, cet orifice de restriction 32 est calibré pour contrôler l'amortissement souhaité et donc la vitesse finale d'impact.
  • Un clapet anti-retour 34 est également ajouté dans le circuit d'amortissement en parallèle de la vanne 30 et de l'orifice de restriction 32 pour permettre d'augmenter le débit de fluide entrant dans les chambres lors du déploiement des vérins (phase de réarmement du dispositif).
  • En aval, le circuit d'amortissement 22 se termine par un échappement 26 qui est commun avec le circuit de descente contrôlée 24. Un filtre 36 peut être ajouté en amont de l'échappement commun 26 afin d'empêcher l'introduction de particules solides ou d'organismes dans les circuits hydrauliques.
  • Le circuit de descente contrôlée 24 comprend, en aval des quatre vérins hydrauliques, une soupape de limitation de pression 38. Cette soupape est commune pour l'ensemble des vérins hydrauliques et permet d'augmenter la sécurité du dispositif en cas de montée accidentelle en pression dans le circuit de descente contrôlée.
  • Le circuit de descente contrôlée 24 comprend également, en aval de la soupape de limitation de pression 38, une vanne 40 qui est commune à l'ensemble des vérins hydrauliques et qui est apte à être pilotée par le véhicule sous-marin téléguidé depuis la surface. Le pilotage de cette vanne 40 sera détaillé ultérieurement.
  • En aval de la vanne 40, le circuit de descente contrôlée comprend encore un orifice de restriction 42 qui permet de contrôler le débit d'échappement du circuit de descente contrôlée et donc la vitesse de descente du module lors de la phase de descente du dispositif.
  • Un clapet anti-retour 44 est également ajouté dans le circuit de descente contrôlée en parallèle de la vanne 40 et de l'orifice de restriction 42 pour permettre d'augmenter le débit de retour du fluide et d'aider à la sortie des vérins en diminuant les pertes de charge hydrauliques.
  • En liaison avec les figures 3, 5 et 6, on décrira maintenant des exemples de réalisation d'un vérin hydraulique 18 équipant le système hydraulique 16 du dispositif selon l'invention.
  • Chaque vérin hydraulique 18 du système hydraulique 16 du dispositif selon l'invention est un vérin à double étage. Il comprend notamment un corps de vérin 46 qui est solidaire (de façon temporaire ou permanente) du cadre du dispositif, et un piston 48 dont l'extrémité libre 50 est destinée à être mise en contact (en étant connectée ou par appui simple) avec l'un des pieds du module.
  • Le piston 48 est mobile à l'intérieur du corps de vérin 46 et sépare le volume interne du corps de vérin en une première chambre 52 et une seconde chambre (voir les figures 4B à 4D) qui sont étanches l'une par rapport à l'autre.
  • Au niveau de son extrémité située à l'intérieur du corps du vérin (opposée à son extrémité libre 50), le piston 48 présente une ouverture 56 qui communique avec la chambre de descente 52, ainsi qu'une collerette 58 qui vient en contact étanche avec une paroi interne du corps de vérin lors du déplacement du piston à l'intérieur de celui-ci.
  • Lors du déplacement du piston 48 à l'intérieur du corps du vérin, la collerette 58 est apte à venir en butée mécanique contre des portées ménagées dans le corps du vérin.
  • Plus précisément, dans sa partie inférieure, le corps de vérin comprend une portée inférieure 60 contre laquelle la collerette 58 du piston vient en contact pour former une première butée mécanique correspondant à une position déployée du piston (cas des figures 3 et 4A).
  • Dans sa partie supérieure opposée, le corps de vérin comprend une portée supérieure 62 contre laquelle la collerette 58 du piston vient en contact pour former une seconde butée mécanique correspondant à une position rétractée du piston (cas de la figure 4D).
  • Par ailleurs, le corps de vérin 46 du vérin hydraulique est ici sensiblement cylindrique et il est muni d'un doigt cylindrique 64 faisant saillie à l'intérieur de la première chambre 52.
  • Ce doigt est centré sur un axe de révolution X-X du vérin et présente un diamètre externe D qui est sensiblement égal au diamètre interne d de l'ouverture 56 pratiqué à l'extrémité du piston 48. Il permet de définir une butée hydraulique du piston correspondant à une position intermédiaire du piston située entre la position déployée et la position rétractée.
  • Comme détaillé précédemment, chaque vérin hydraulique 18 du système hydraulique du dispositif selon l'invention est alimenté en fluide par le circuit d'amortissement 22 et le circuit de descente contrôlée 24.
  • A cet effet, le corps du vérin 46 présente, au niveau de sa portée supérieure 62, un ou plusieurs conduits d'évacuation 66 s'ouvrant dans la chambre de descente 52 et débouchant vers le circuit d'amortissement 22 décrit précédemment. Le circuit d'amortissement permet de déplacer le piston du vérin entre la première butée mécanique et la butée hydraulique.
  • De même, au niveau du doigt 64, le corps de vérin comprend un conduit d'évacuation 68 s'ouvrant dans la première chambre 52 et débouchant vers le circuit de descente contrôlée 24. Le circuit de descente contrôlée permet de déplacer le piston entre la butée hydraulique et la seconde butée mécanique.
  • En liaison avec les figures 4A à 4D, on décrira maintenant le fonctionnement du dispositif selon l'invention.
  • Lors de l'installation d'un module de la station de traitement sous-marin, il est nécessaire de descendre celui-ci vers le fond marin. A cet effet, le dispositif selon l'invention est monté sur le module et relié au bateau d'installation et de maintenance en surface par l'intermédiaire du câble d'un treuil. Le treuil déroule le câble pour descendre le module vers la base de la station de traitement sous-marin.
  • Lors de cette phase de descente et d'atterrissage du module sur la base de la station, les pistons 48 respectifs des vérins hydrauliques 18 du dispositif sont en position déployée comme représenté sur les figures 3, 4A et 6 (la collerette 58 du piston vient en contact contre la portée inférieure 60 du corps de vérin).
  • De plus, avant la descente du module, la vanne 30 du circuit d'amortissement 22 est ouverte et la vanne 40 du circuit de descente contrôlée est fermée en surface à bord du bateau d'installation et de maintenance afin d'amortir les impacts du module sur la base de la station, notamment dus à la houle qui peut en générer plusieurs.
  • Lors de l'impact des pieds du module sur la base de la station, l'énergie du module en mouvement vient pousser sur les pieds reliés mécaniquement à l'extrémité libre 50 des pistons des vérins hydrauliques. Ceci a pour effet de chasser l'eau présente dans la première chambre 52 vers le circuit d'amortissement en empruntant les conduits d'évacuation 66 au fur et à mesure que le piston se rétracte à l'intérieur du corps du vérin.
  • Parallèlement, au cours de cette phase d'amortissement, la seconde chambre 54 se remplit d'eau de mer, par exemple en transitant par des rainures 70 pratiquées dans une paroi externe du piston qui s'ouvrent à l'extérieur du dispositif et qui débouchent dans la seconde chambre (voir la figure 5).
  • La fin de la phase d'amortissement est définie par le moment où le doigt 64 du corps du vérin vient boucher l'ouverture 56 du piston (figure 4C). A partir de cette position du piston, l'eau présente à l'intérieur du piston (dans la chambre secondaire 72 créée lors du passage de la figure 4B à 4C par le déplacement du piston et représentée sur la figure 4C), ne peut plus s'échapper, ce qui arrête la rétractation du piston (celui-ci se trouve ainsi en butée hydraulique dans sa position intermédiaire). A la fin de la phase d'amortissement (en amont de la seconde butée mécanique), la pression dans le circuit d'amortissement redescend en dessous de la valeur définie par les soupapes de limitation de pression 28. Au début de l'amortissement, la pression dans les vérins et le circuit hydraulique est limitée par les soupapes 28 qui limitent ainsi également la décélération maximale vue par le module. Quand le module a suffisamment ralenti, la pression dans les vérins retombe et les soupapes 28 se referment, la fin de l'amortissement et la décélération associée diminuent depuis le plateau de pression des soupapes pour tomber à zéro quand le module a atteint la vitesse constante souhaitée, ce avant la butée hydraulique.
  • On notera que le doigt 64 peut présenter au niveau de son extrémité libre un chanfrein 64a afin de lisser l'arrêt du piston en position intermédiaire. On notera également que le dimensionnement de l'orifice de restriction 32 du circuit d'amortissement permet de contrôler l'amortissement souhaité lors de cette phase et de contrôler la vitesse finale d'impact du piston avant son arrêt en position intermédiaire.
  • On notera encore qu'après un impact, il est possible qu'à cause de la houle, le module redécolle. Dans ce cas, il est nécessaire que le système hydraulique du dispositif se réarme (c'est-à-dire que les pistons se redéployent) pour amortir un nouvel impact. A cet effet, comme représenté sur la figure 6, il peut être prévu de positionner un ressort 74 autour d'une tige de guidage 76 reliant le doigt 64 au piston 48, ce ressort permet d'aider au déploiement du piston. On notera que la tige de guidage 76 peut être formée de deux tiges percées et creuses et coulissant l'une à l'intérieur de l'autre, à savoir une tige 76a fixée au doigt 64 et une autre tige 76b fixée sur le piston 48.
  • Par ailleurs, le clapet anti-retour 34 du circuit d'amortissement permet d'augmenter le débit de retour d'eau dans le circuit et donc d'aider également au redéploiement des pistons en diminuant les pertes de charge hydrauliques.
  • Une fois que le module a complètement atterri sur la base de la station de traitement sous-marin, le câble du treuil du bateau d'installation et de maintenance est détendu et le module n'est plus lié aux mouvements du bateau. Il est alors en position intermédiaire, les vérins étant en butée hydraulique.
  • Le véhicule sous-marin téléguidé se connecte alors au système hydraulique du dispositif pour ouvrir la vanne 40 du circuit de descente contrôlée en maintenant ouverte la vanne 30 du circuit d'amortissement 22 (figure 4D). Cette action permet de libérer l'eau contenue dans la chambre secondaire 72 afin de contrôler la descente finale du module.
  • Au cours de cette phase de contrôle de la descente, l'eau présente dans la chambre secondaire 72 est chassée vers le circuit de descente contrôlée en empruntant le conduit d'évacuation 68 pratiqué dans le doigt 64, tandis que l'eau présente dans la première chambre 52 continue à être chassée vers le circuit d'amortissement en empruntant les conduits d'évacuation 66.
  • On notera que l'orifice de restriction 42 du circuit de descente contrôlée permet de contrôler le débit d'échappement et donc la vitesse de descente du module. La position finale en hauteur du module est déterminée par les butées des connecteurs et du module lui-même. La longueur totale du vérin peut donc être pensée pour que la seconde butée mécanique définie par la portée supérieure 62 « arrive » après la butée des connecteurs lors de la descente du module en position finale.
  • On notera également qu'une fois que le module est arrivé en position finale, le véhicule sous-marin téléguidé peut fermer les connecteurs entre le module et la base du dispositif. Il effectue alors des tests de vérification d'étanchéité des connecteurs. En cas de mauvaise étanchéité, il peut intervenir directement sur ces connecteurs pour changer les joints d'étanchéité par exemple. A cet effet, il suffit que le véhicule sous-marin téléguidé ferme les deux vannes 30 et 40 des circuits hydrauliques 22 et 24, se connecte à l'échappement 26 des circuits hydrauliques 22, 24 et pompe l'eau dans ces circuits pour faire déployer les pistons des vérins et ainsi remonter le module en position haute. L'eau pompée passant par les clapets anti-retour des deux circuits, et comme les vannes 30, 40 sont fermées, le module reste en position haute même quand le véhicule sous-marin téléguidé arrête de pomper l'eau. De la sorte, un véhicule sous-marin téléguidé permet de manoeuvrer le module et de changer les joints des connecteurs. Une fois l'intervention de maintenance terminée, le véhicule sous-marin téléguidé revient ouvrir les vannes des circuits hydrauliques et le module redescend en position basse.
  • On notera également qu'une fois que le module a été installé et est en position finale sur la base de la station de traitement sous-marin, et que les tests ont montré qu'il n'y avait pas besoin d'intervention supplémentaire sur les connecteurs, le dispositif peut être récupéré. A cet effet, la vanne 40 du circuit de descente contrôlée est fermée, puis les connexions mécaniques entre le dispositif et le module sont ouvertes (il peut s'agir de vérins hydrauliques qui libèrent les oreilles de levage par exemple, actionnées par le ROV). Le dispositif n'est ainsi plus connecté au module. Le bateau d'installation et de maintenance peut alors rembobiner le câble de son treuil et le dispositif être récupéré en surface tandis que le module reste en place sur la base de la station.
  • Enfin, on notera qu'une fois le dispositif récupéré en surface, le procédé peut comprendre en outre une phase de récupération du module en surface avec le dispositif récupéré en surface. Cette phase de récupération comprend les étapes successives de descente du dispositif sous l'eau depuis la surface par le bateau d'installation et de manutention, jusqu'au module, de fixation mécanique du dispositif au module, de fermeture de la vanne du circuit de descente contrôlée, de pompage du fluide pour l'injecter dans les circuits d'amortissement et de descente contrôlée pour déployer les pistons respectifs des vérins hydrauliques du dispositif et remonter le module en position intermédiaire, sur la butée hydraulique, et de récupération du module et du dispositif à l'aide du treuil du bateau d'installation et de maintenance.

Claims (15)

  1. Dispositif (2) pour l'installation et la manutention d'un module d'une station de traitement sous-marin, comprenant un cadre (4) destiné à être fixé à un module (6), et un système hydraulique (16) destiné à assurer un amortissement et une descente contrôlée du module sur la base de la station, le système hydraulique comprenant une pluralité de vérins hydrauliques (18) destinés à être connectés chacun à un pied apte à venir en contact avec une base de la station de traitement sous-marin,
    caractérisé en ce que chaque vérin hydraulique comprend:
    un corps de vérin (46) solidaire du cadre (4) ; et
    un piston (48) destiné à être mis en contact avec un pied (14) et mobile en translation à l'intérieur du corps de vérin entre une première butée mécanique correspondant à une position déployée du piston et une seconde butée mécanique correspondant à une position rétractée du piston, le piston séparant le volume interne du corps de vérin en une première chambre (52) et une seconde chambre (54) qui sont étanches l'une par rapport à l'autre ;
    la première chambre (52) de chaque vérin hydraulique étant alimentée en fluide hydraulique par deux circuits hydrauliques indépendants comprenant un circuit d'amortissement (22) apte à déplacer le piston entre sa position déployée et une position intermédiaire située entre la position déployée et la position rétractée et définie par une butée hydraulique, et un circuit de descente contrôlée (24) apte à déplacer le piston entre la position intermédiaire et sa position rétractée.
  2. Dispositif selon la revendication 1, dans lequel le piston de chaque vérin hydraulique (18) présente, au niveau d'une extrémité située à l'intérieur du corps du vérin, une ouverture (56) communiquant avec la première chambre (52) et une collerette (58) venant en contact étanche avec une paroi interne du corps de vérin.
  3. Dispositif selon la revendication 2, dans lequel le corps de vérin de chaque vérin hydraulique est muni d'un doigt faisant saillie à l'intérieur de la première chambre, le doigt ayant un diamètre externe correspondant sensiblement au diamètre interne du piston de manière à coopérer avec l'ouverture du piston pour former la butée hydraulique correspondant à la position intermédiaire du piston.
  4. Dispositif selon la revendication 3, dans lequel le doigt comprend un conduit d'évacuation (68) du circuit hydraulique de descente contrôlée (24) qui débouche à l'intérieur du piston lorsque celui-ci se trouve dans la position intermédiaire de manière à permettre de déplacer le piston entre la position intermédiaire et la position rétractée.
  5. Dispositif selon l'une quelconque des revendications 2 à 4, dans lequel l'intérieur du corps de vérin de chaque vérin hydraulique comprend des portées (60, 62) contre lesquelles la collerette (58) du piston est apte à venir en contact pour former la première et la seconde butée mécanique.
  6. Dispositif selon l'une quelconque des revendications 3 à 5, dans lequel chaque vérin hydraulique (18) comprend en outre une tige de guidage (76) reliant le doigt (64) au piston (48) et un ressort (74) monté autour de la tige de guidage pour aider au déploiement du piston.
  7. Dispositif selon l'une quelconque des revendications 1 à 6, dans lequel la seconde chambre (54) de chaque vérin hydraulique est alimentée en fluide hydraulique par un circuit hydraulique de montée.
  8. Dispositif selon la revendication 7, dans lequel le circuit hydraulique de montée de chaque vérin hydraulique comprend des rainures (70) pratiquées dans une paroi externe du piston qui s'ouvrent à l'extérieur du dispositif et débouchent dans la seconde chambre (54).
  9. Dispositif selon l'une quelconque des revendications 1 à 8, dans lequel les circuits d'amortissement (22) et de descente contrôlée (24) comprennent chacun :
    une vanne (30, 40) qui est apte à être pilotée par un véhicule sous-marin téléguidé depuis la surface ; et
    un clapet anti-retour (34, 44) en parallèle de la vanne (30, 40) pour permettre d'augmenter le débit de fluide entrant lors du déploiement des vérins.
  10. Dispositif selon l'une quelconque des revendications 1 à 9, dans lequel les circuits (22) d'amortissement et de descente contrôlée (24) comprennent chacun au moins une soupape de limitation de pression (28, 38) en aval des vérins hydrauliques (18).
  11. Dispositif selon l'une quelconque des revendications 1 à 10, dans lequel les circuits d'amortissement et de descente contrôlée sont alimentés en eau de mer.
  12. Procédé d'installation et de manutention d'un module d'une station de traitement sous-marin utilisant un dispositif selon l'une quelconque des revendications 1 à 11, dans lequel le cadre (4) du dispositif est attaché sur un module, le procédé comprenant, lors des phases de descente et d'atterrissage du module sur une base de la station de traitement sous-marin, les étapes de :
    déploiement des pistons respectifs des vérins hydrauliques du dispositif, d'ouverture du circuit d'amortissement et de fermeture du circuit de descente contrôlée pour amortir les impacts du module sur la base de la station ; et
    une fois que le module a atterri sur la base de la station, l'ouverture du circuit de descente contrôlée en maintenant le circuit d'amortissement ouvert pour permettre la descente finale du module à vitesse contrôlée sur la base de la station.
  13. Procédé selon la revendication 12, comprenant en outre, lors d'une phase de relevage du module, une étape de pompage du fluide pour l'injecter dans les circuits d'amortissement et de descente contrôlée pour déployer les pistons respectifs des vérins hydrauliques du dispositif.
  14. Procédé selon l'une des revendications 12 et 13, comprenant en outre, lors d'une phase de récupération en surface du dispositif après installation du module sur la base de la station de traitement sous-marin, la fermeture du circuit de descente contrôlée et l'ouverture de connexions mécaniques entre le dispositif et le module afin de procéder au relevage en surface du dispositif à l'aide d'un treuil d'un bateau d'installation et de maintenance.
  15. Procédé selon la revendication 14, comprenant en outre une phase de récupération du module en surface avec le dispositif récupéré en surface, la phase de récupération comprenant les étapes de :
    descente du dispositif sous l'eau depuis la surface par le bateau d'installation et de manutention, jusqu'au module ;
    fixation mécanique du dispositif au module ;
    fermeture de la vanne du circuit de descente contrôlée ;
    pompage du fluide pour l'injecter dans les circuits d'amortissement et de descente contrôlée pour déployer les pistons respectifs des vérins hydrauliques du dispositif et remonter le module en position intermédiaire, sur la butée hydraulique ; et
    récupération du module et du dispositif à l'aide du treuil du bateau d'installation et de maintenance.
EP19703405.1A 2018-01-18 2019-01-15 Dispositif et procédé pour l'installation et la manutention d'un module d'une station de traitement sous-marin Active EP3740449B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1850415A FR3076826B1 (fr) 2018-01-18 2018-01-18 Dispositif et procede pour l'installation et la manutention d'un module d'une station de traitement sous-marin
PCT/FR2019/050076 WO2019141933A1 (fr) 2018-01-18 2019-01-15 Dispositif et procédé pour l'installation et la manutention d'un module d'une station de traitement sous-marin

Publications (2)

Publication Number Publication Date
EP3740449A1 EP3740449A1 (fr) 2020-11-25
EP3740449B1 true EP3740449B1 (fr) 2023-11-22

Family

ID=62143332

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19703405.1A Active EP3740449B1 (fr) 2018-01-18 2019-01-15 Dispositif et procédé pour l'installation et la manutention d'un module d'une station de traitement sous-marin

Country Status (5)

Country Link
US (1) US11148913B2 (fr)
EP (1) EP3740449B1 (fr)
BR (1) BR112020013690A2 (fr)
FR (1) FR3076826B1 (fr)
WO (1) WO2019141933A1 (fr)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2094856B (en) * 1981-01-28 1984-12-19 Southeastern Drilling Services Slip assembly for subsea template
US6120009A (en) * 1998-04-16 2000-09-19 The Boeing Company Shock strut with managed damping and force characteristics
KR100418498B1 (ko) * 2002-01-04 2004-02-14 한근조 크레인 스프레더용 충격흡수장치.
JP4838021B2 (ja) * 2006-03-13 2011-12-14 三井造船株式会社 コンテナクレーン
DE102009015971A1 (de) * 2009-04-02 2010-10-07 Linde Material Handling Gmbh Containerstapler
NO341320B1 (no) * 2010-02-09 2017-10-09 Offshore Tech Partner As Støtdempingsanordning på lastbærer
GB2496608B (en) * 2011-11-15 2014-06-18 Subsea 7 Ltd Launch and recovery techniques for submersible vehicles and other payloads
US9650855B2 (en) * 2013-03-15 2017-05-16 Safestack Technology L.L.C. Riser disconnect package for lower marine riser package, and annular-release flex-joint assemblies
GB2529481C (en) * 2014-08-22 2020-03-18 Subsea 7 Ltd Subsea dynamic load absorber
CN104444756B (zh) * 2014-10-29 2016-08-24 刘洋 一种分段缓速卸放装置

Also Published As

Publication number Publication date
EP3740449A1 (fr) 2020-11-25
FR3076826B1 (fr) 2020-01-31
FR3076826A1 (fr) 2019-07-19
US20210070588A1 (en) 2021-03-11
US11148913B2 (en) 2021-10-19
WO2019141933A1 (fr) 2019-07-25
BR112020013690A2 (pt) 2020-12-01

Similar Documents

Publication Publication Date Title
EP1073823B1 (fr) Procede et dispositif de liaison fond-surface par conduite sous-marine installee a grande profondeur
US6022421A (en) Method for remotely launching subsea pigs in response to wellhead pressure change
CA2714637C (fr) Support flottant comprenant un touret equipe d'une bouee d'amarrage de conduites de liaison fond/surface deconnectable
FR2584449A1 (fr) Ensemble superieur pour tube prolongateur marin, joint coulissant auto-tensionneur, joint de palier de rotation, conduit tubulaire, navire et procede les utilisant
FR2679293A1 (fr) Dispositif d'actionnement associe a une garniture de forage et comportant un circuit hydrostatique en fluide de forage, methode d'actionnement et leur application.
US8162061B2 (en) Subsea inflatable bridge plug inflation system
FR2694973A1 (fr) Vanne de sûreté pour train de tubes souterrain commandée depuis la surface.
EP0096636A1 (fr) Système d'exploitation des fluides d'un gisement
KR101675186B1 (ko) 수중 유정을 봉쇄하는 방법 및 상기 방법을 실행하는 장치
EP0307266B1 (fr) Procédé et dispositif pour manoeuvrer des équipements spécialisés d'intervention dans un puits foré ayant au moins une section fortement inclinée par rapport à la verticale
US5883303A (en) Apparatus and method for pigging, flooding, and pressure testing pipelines
US20120090850A1 (en) Apparatuses and methods for closing and reopening a pipe
FR2660403A1 (fr) Conduite tubulaire flexible d'abandon, dispositif et procede utilisant une telle conduite.
EP2125503B1 (fr) Dispositif de decoupe et ouverture/fermeture d'un orifice dans une paroi au fond de la mer
EP3635180B1 (fr) Procédé de mise a l'eau
EP3740449B1 (fr) Dispositif et procédé pour l'installation et la manutention d'un module d'une station de traitement sous-marin
EP1449763B1 (fr) Procédé et installation de récupération d'effluents en mer à l'aide d'un réservoir navette
FR2946007A1 (fr) Systeme de recuperation et de traction d'un objet immerge, notamment une mine aquatique.
EP3446957B1 (fr) Barge à systèmes de piles pour l'échouage et l'amortissement des effets de la houle
FR2772826A1 (fr) Procede et outil pour traiter au moins la paroi d'une zone critique d'un trou de forage
FR2989106A1 (fr) Procede de positionnement d'un ensemble de fond au fond d'une etendue d'eau, et dispositif associe
WO2016181101A1 (fr) Bâti pour dispositif de collecte d'énergie marine
FR2667116A1 (fr) Dispositif de pompage d'un fluide polyphasique.
EP4101806A1 (fr) Equipement sous-marin pour la mise en tension de lignes d'ancrage d'une structure offshore et procédé d'installation d'un tel équipement
WO2006123045A2 (fr) Installation de pompage de liquide en fond de puits

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200720

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230517

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: B63B 21/50 20060101ALI20230606BHEP

Ipc: B66C 1/66 20060101ALI20230606BHEP

Ipc: B66C 1/10 20060101AFI20230606BHEP

INTG Intention to grant announced

Effective date: 20230623

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019041824

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20231122

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231229

Year of fee payment: 6

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1633670

Country of ref document: AT

Kind code of ref document: T

Effective date: 20231122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240322

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240223

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240222

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240322

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20240108

Year of fee payment: 6

Ref country code: CY

Payment date: 20231124

Year of fee payment: 6

Ref country code: GB

Payment date: 20240119

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240108

Year of fee payment: 6

Ref country code: NO

Payment date: 20231228

Year of fee payment: 6

Ref country code: IT

Payment date: 20240111

Year of fee payment: 6

Ref country code: FR

Payment date: 20240123

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122