EP3740160A2 - Inductance mode deployment sensors for transcatheter valve system - Google Patents

Inductance mode deployment sensors for transcatheter valve system

Info

Publication number
EP3740160A2
EP3740160A2 EP19703603.1A EP19703603A EP3740160A2 EP 3740160 A2 EP3740160 A2 EP 3740160A2 EP 19703603 A EP19703603 A EP 19703603A EP 3740160 A2 EP3740160 A2 EP 3740160A2
Authority
EP
European Patent Office
Prior art keywords
electromagnetic permeability
transition
coupler
lumen
inductive coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19703603.1A
Other languages
German (de)
French (fr)
Inventor
Michael J. Kane
Kevin Robert Poppe
Stephen J. BURKE
Daniel J. Foster
Peter James KEOGH
Bradley S. Swehla
Christopher Jay Scheff
Laura Kathryn IRVINE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boston Scientific Scimed Inc
Original Assignee
Boston Scientific Scimed Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boston Scientific Scimed Inc filed Critical Boston Scientific Scimed Inc
Publication of EP3740160A2 publication Critical patent/EP3740160A2/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/962Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve
    • A61F2/966Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve with relative longitudinal movement between outer sleeve and prosthesis, e.g. using a push rod
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2427Devices for manipulating or deploying heart valves during implantation
    • A61F2/243Deployment by mechanical expansion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2427Devices for manipulating or deploying heart valves during implantation
    • A61F2/2439Expansion controlled by filaments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0043Catheters; Hollow probes characterised by structural features
    • A61M25/005Catheters; Hollow probes characterised by structural features with embedded materials for reinforcement, e.g. wires, coils, braids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00039Electric or electromagnetic phenomena other than conductivity, e.g. capacity, inductivity, Hall effect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00743Type of operation; Specification of treatment sites
    • A61B2017/00778Operations on blood vessels
    • A61B2017/00783Valvuloplasty
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00876Material properties magnetic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00982General structural features
    • A61B2017/00991Telescopic means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/08Accessories or related features not otherwise provided for
    • A61B2090/0807Indication means
    • A61B2090/0811Indication means for the position of a particular part of an instrument with respect to the rest of the instrument, e.g. position of the anvil of a stapling instrument
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2427Devices for manipulating or deploying heart valves during implantation
    • A61F2/2436Deployment by retracting a sheath
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/9517Instruments specially adapted for placement or removal of stents or stent-grafts handle assemblies therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2002/9505Instruments specially adapted for placement or removal of stents or stent-grafts having retaining means other than an outer sleeve, e.g. male-female connector between stent and instrument
    • A61F2002/9511Instruments specially adapted for placement or removal of stents or stent-grafts having retaining means other than an outer sleeve, e.g. male-female connector between stent and instrument the retaining means being filaments or wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/962Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve
    • A61F2/966Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve with relative longitudinal movement between outer sleeve and prosthesis, e.g. using a push rod
    • A61F2002/9665Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve with relative longitudinal movement between outer sleeve and prosthesis, e.g. using a push rod with additional retaining means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0014Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0096Markers and sensors for detecting a position or changes of a position of an implant, e.g. RF sensors, ultrasound markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0096Markers and sensors for detecting a position or changes of a position of an implant, e.g. RF sensors, ultrasound markers
    • A61F2250/0098Markers and sensors for detecting a position or changes of a position of an implant, e.g. RF sensors, ultrasound markers radio-opaque, e.g. radio-opaque markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M2025/0004Catheters; Hollow probes having two or more concentrically arranged tubes for forming a concentric catheter system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M2025/09058Basic structures of guide wires
    • A61M2025/09083Basic structures of guide wires having a coil around a core
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0021Catheters; Hollow probes characterised by the form of the tubing

Definitions

  • the present disclosure pertains to medical devices, and methods for manufacturing medical devices. More particularly, the present disclosure pertains to medical delivery devices with position detection.
  • intracorporeal medical devices have been developed for medical use, for example, intravascular use. Some of these devices include guidewires, catheters, and the like. These devices are manufactured by any one of a variety of different manufacturing methods and may be used according to any one of a variety of methods. Of the known medical devices and methods, each has certain advantages and disadvantages. There is an ongoing need to provide alternative medical devices as well as alternative methods for manufacturing and using medical devices.
  • An example of the disclosure is a delivery system for an implantable medical device.
  • the delivery system includes an outer shaft defining an outer shaft lumen and an inner shaft that is translatable within the outer shaft lumen, the inner shaft defining a lumen extending through the inner shaft.
  • An actuation mechanism extends through the lumen and includes a coupler, a force translation rod that extends proximally from the coupler and a plurality of push pull rods that extend distally from the coupler and that releasably couple to the implantable medical device.
  • the force translation rod includes a transition in electromagnetic permeability.
  • An inductive coil is disposed relative to the force translation rod and is positioned to detect a change in inductance resulting from the transition in electromagnetic permeability passing through the inductive coil.
  • the transition in electromagnetic permeability may be positioned a distance from the coupler such that a detected change in inductance indicates a relative position of the coupler relative to the inductive coil.
  • a portion of the force translation rod distal of the transition in electromagnetic permeability may be formed of a material having a first electromagnetic permeability and a portion of the force translation rod proximal of the transition in electromagnetic permeability may be formed of a material having a second electromagnetic permeability different from the first electromagnetic permeability.
  • the force transition rod may be formed of a material having a low electromagnetic permeability material and the transition in electromagnetic permeability may include an inset band of a high electromagnetic permeability material.
  • the force transition rod may include Nitinol as a low electromagnetic permeability material and stainless steel as a high electromagnetic permeability material.
  • the inductive coil may have a constant windings pitch.
  • the inductive coil may have a non-constant windings pitch in order to provide increased sensitivity to small movements of the transition in electromagnetic permeability relative to the inductive coil.
  • the inductive coil may be disposed relative to the inner shaft.
  • the inductive coil may be electrically coupled with a first coupling coil that is disposed relative to the inner shaft, at or near a proximal region of the delivery system, and may be magnetically coupled with a second coupling coil that is disposed about the outer shaft.
  • the delivery catheter for delivering an implantable medical device.
  • the delivery catheter includes an outer shaft and an inner shaft that is slidingly disposed within the outer shaft and that defines a lumen extending through the inner shaft, with the implantable medical device securable relative to the inner shaft.
  • a force translation rod extends through the lumen of the inner shaft and includes a first section formed of a material having a low electromagnetic permeability and a second section formed of a material having a high electromagnetic permeability such that a transition in electromagnetic permeability exists between the first section and the second section.
  • An inductive coil is disposed relative to the force translation rod and is positioned to detect a change in inductance resulting from the transition in electromagnetic permeability passing through the inductive coil.
  • the transition in electromagnetic permeability may be positioned a known distance from where the implantable medical device is secured relative to the inner shaft.
  • the force translation rod may extend distally to a coupler, and a plurality of push pull rods may extend distally from the coupler, and the transition in electromagnetic permeability may be positioned a known distance from the coupler.
  • the inductive coil may have a constant windings pitch.
  • the inductive coil may be disposed relative to the inner shaft.
  • the inductive coil may be electrically coupled with a first coupling coil that is disposed relative to the inner shaft, at or near a proximal region of the delivery catheter, and may be magnetically coupled with a second coupling coil that is disposed about the outer shaft.
  • the delivery system includes a shaft defining a lumen and an actuation mechanism that extends through the lumen.
  • the actuation member includes a coupler, a force translation rod that extends proximally from the coupler and a plurality of push pull rods that extend distally from the coupler and that releasably couple to the implantable medical device.
  • the force translation rod includes a transition in electromagnetic permeability.
  • An inductive coil is disposed relative to the force translation rod and is positioned to detect a change in inductance resulting from the transition in electromagnetic permeability passing through the inductive coil.
  • the transition in electromagnetic permeability may be positioned a distance from the coupler such that a detected change in inductance indicates a relative position of the coupler relative to the inductive coil.
  • a portion of the force translation rod distal of the transition in electromagnetic permeability may be formed of a material having a first electromagnetic permeability and a portion of the force translation rod proximal of the transition in electromagnetic permeability may be formed of a material having an electromagnetic permeability different from the first electromagnetic permeability.
  • the force transition rod may be formed of a material having a low electromagnetic permeability material and the transition in electromagnetic permeability may include an inset band of a high electromagnetic permeability material.
  • the inductive coil may be electrically coupled with a first coupling coil that is disposed relative to the inner shaft, at or near a proximal region of the delivery system, and may be magnetically coupled with a second coupling coil that is disposed about the outer shaft.
  • FIG. 1 is a side view of an example medical device system
  • FIG. 2 is a partial cross-sectional view of a portion of an example medical device delivery system
  • FIG. 3 is a partial cross-sectional view of a portion of an example medical device delivery system
  • FIG. 4 is a partial cross-sectional view of a portion of the catheter shaft shown in FIGS. 1-3;
  • FIG. 5 is a cross-sectional view along line 5-5 of FIG. 4;
  • FIG. 6 is a cross-sectional view along line 6-6 of FIG. 4;
  • FIG. 7 is a partial cross-sectional view of a portion of an example medical device delivery system
  • FIG. 8A through FIG. 8C are side views of a portion of an example medical device delivery system
  • FIG. 8D is a graphical representation of operation of the example medical device delivery system of FIG. 8A through FIG. 8C;
  • FIG. 9A is a side view views of a portion of an example medical device delivery system
  • FIG. 9B is a graphical representation of operation of the example medical device delivery system of FIG. 9 A;
  • FIG. 10 is a side view of a portion of an example medical device delivery system.
  • FIG. 11 is a side view of a portion of an example medical device delivery system
  • references in the specification to “an embodiment”, “some embodiments”,“other embodiments”, etc. indicate that the embodiment described may include one or more particular features, structures, and/or characteristics. However, such recitations do not necessarily mean that all embodiments include the particular features, structures, and/or characteristics. Additionally, when particular features, structures, and/or characteristics are described in connection with one embodiment, it should be understood that such features, structures, and/or characteristics may also be used connection with other embodiments whether or not explicitly described unless clearly stated to the contraiy.
  • Some relatively common medical conditions may include or be the result of inefficiency, ineffectiveness, or complete failure of one or more of the valves within the heart.
  • failure of the aortic valve or the mitral valve can have a serious effect on a human and could lead to serious health condition and/or death if not dealt with properly.
  • Treatment of defective heart valves poses other challenges in that the treatment often requires the repair or outright replacement of the defective valve.
  • Such therapies may be highly invasive to the patient.
  • medical devices that may be used for delivering a medical device to a portion of the cardiovascular system in order to diagnose, treat, and/or repair the system.
  • At least some of the medical devices disclosed herein may be used to deliver and implant a replacement heart valve (e.g., a replacement aortic valve, replacement mitral valve, etc.).
  • a replacement heart valve e.g., a replacement aortic valve, replacement mitral valve, etc.
  • the devices disclosed herein may deliver the replacement heart valve percutaneously and, thus, may be much less invasive to the patient.
  • the devices disclosed herein may also provide a number of additional desirable features and benefits as described in more detail below.
  • FIG. 1 The figures illustrate selected components and/or arrangements of a medical device system 10, shown schematically in FIG. 1 for example. It should be noted that in any given figure, some features of the medical device system 10 may not be shown, or may be shown schematically, for simplicity. Additional details regarding some of the components of the medical device system 10 may be illustrated in other figures in greater detail.
  • a medical device system 10 may be used to deliver and/or deploy a variety of medical devices to a number of locations within the anatomy.
  • the medical device system 10 may include a replacement heart valve delivery system (e.g., a replacement aortic valve delivery system) that can be used for percutaneous delivery of a medical implant 16, such as a replacement/prosthetic heart valve.
  • a replacement heart valve delivery system e.g., a replacement aortic valve delivery system
  • the medical device system 10 may also be used for other interventions including valve repair, valvuloplasty, delivery of an implantable medical device (e.g., such as a stent, graft, etc.), and the like, or other similar interventions.
  • an implantable medical device e.g., such as a stent, graft, etc.
  • the medical device system 10 may generally be described as a catheter system that includes an outer sheath 12, an inner catheter 14 (a portion of which is shown in FIG. 1 in phantom line) extending at least partially through a lumen of the outer sheath 12, and a medical implant 16 (e.g. , a replacement heart valve implant) which may be coupled to the inner catheter 14 and disposed within a lumen of the outer sheath 12 during delivery of the medical implant 16.
  • a medical device handle 17 may be disposed at a proximal end of the outer sheath 12 and/or the inner catheter 14 and may include one or more actuation mechanisms associated therewith.
  • a tubular member e.g., the outer sheath 12, the inner catheter 14, etc.
  • the medical device handle 17 may be designed to manipulate the position of the outer sheath 12 relative to the inner catheter 14 and/or aid in the deployment of the medical implant 16.
  • the medical device system 10 may be advanced percutaneously through the vasculature to a position adjacent to an area of interest and/or a treatment location.
  • the medical device system 10 may be advanced through the vasculature to a position adjacent to a defective native valve (e.g., aortic valve, mitral valve, etc.).
  • the medical implant 16 may be generally disposed in an elongated and low profile“delivery” configuration within the lumen and/or a distal end of the outer sheath 12, as seen schematically in FIG. 1 for example. Once positioned, the outer sheath 12 may be retracted relative to the medical implant 16 and/or the inner catheter 14 to expose the medical implant 16. In some instances, the medical implant 16 may be self-expanding such that exposure of the medical implant 16 may deploy the medical implant 16.
  • the medical implant 16 may be expanded/deployed using the medical device handle 17 in order to translate the medical implant 16 into a generally shortened and larger profile “deployed” configuration suitable for implantation within the anatomy.
  • the inner catheter or components thereof may be coupled to medical implant 16 whereby actuation of the inner catheter 14 relative to the outer sheath 12 and/or the medical implant 16 may deploy the medical device 16 within the anatomy.
  • the medical device system 10 may be disconnected, detached, and/or released from the medical implant 16 and the medical device system 10 can be removed from the vasculature, leaving the medical implant 16 in place in a“released” configuration.
  • an implantable medical device e.g., the medical implant 16
  • portions of the medical device system 10 may be required to be advanced through tortuous and/or narrow body lumens. Therefore, it may be desirable to utilize components and design medical delivery systems (e.g., such as the medical device system 10 and/or other medical devices) that reduce the profile of portions of the medical device while maintaining sufficient strength (compressive, torsional, etc.) and flexibility of the system as a whole.
  • FIG. 2 illustrates the medical device system 10 in a partially deployed configuration.
  • the outer sheath 12 of the medical device system 10 has been retracted in a proximal direction to a position proximal of the medical implant 16.
  • the outer sheath 12 has been retracted (e.g., pulled back) in a proximal direction such that it uncovers the medical device implant 16 from a compact, low-profile delivery position to a partially deployed position.
  • the medical device implant 16 may be designed to self-expand once released from under the outer sheath 12. However, as shown in FIG. 2, the medical device system 10 may be designed such that the implant 16 may be restricted from expanding fully in the radial direction. For example, FIG. 2 shows medical device implant 16 having a partially deployed position denoted as a length“Li.”
  • FIG. 2 further illustrates that in some examples, the implant 16 may include one or more support members 22 coupled to the proximal end 18 of the implant 16. Further, FIG. 2 illustrates that in some examples, the implant 16 may include one or more translation members 24 coupled to the distal end 20 of the implant 16. Additionally, in some examples (such as that illustrated in FIG. 2), the translation members 24 and support members 22 may work together to maintain the implant in a partially deployed position after the outer sheath has been retracted to uncover the implant 16. For example, FIG.
  • FIG. 2 illustrates that the support members 22 may be designed such that the distal end of each of the support members may be coupled to the proximal end of the implant 16 and that the proximal end of each of the support members 22 may be coupled to the distal end of the inner catheter 14.
  • FIG. 2 illustrates that the proximal ends of the support members 22 may be attached to a containment fitting 28 which is rigidly fixed to the distal end of the inner catheter 14.
  • the support members 22 may be designed to limit the proximal movement of the proximal end 18 of the implant 16 relative to the distal end of the inner catheter 14.
  • the translation members 24 may be designed to translate in a distal- to-proximal direction such that the translation of the translation members (via operator manipulation at the handle, for example) may“pull” the distal end 20 of the implant closer to the proximal end 18 of the implant 16.
  • FIG. 3 illustrates the distal-to-proximal translation of the translation members 24.
  • the implant 16 may both foreshorten (along the longitudinal axis of the implant 16) and also expand radially outward.
  • the foreshortening and radial expansion of implant 16 can be seen by comparing the shape and position of the implant 16 in FIG. 2 to the shape and position of the implant 16 in FIG. 3.
  • the position of the implant 16 shown in FIG. 3 may be described as a fully deployed positioned of the implant 16 (versus the partially deployed positioned of the implant 16 shown in FIG. 2).
  • FIG. 3 depicts the length of the fully deployed implant 16 as L2, whereby the distance L2 is less than the distance Li shown in FIG. 2
  • the translation members 24 may be designed to be able extend in a proximal -to-distal direction such that they elongate (e.g., lengthen) the implant 16 (along its longitudinal axis).
  • implant 16 may be able to shift between a partially deployed position (shown in FIG. 2) and a fully deployed position (shown in FIG. 3) through the translation (either proximal or distal) of the translation members 24 along the longitudinal axis as the support members 22 limit the movement of the proximal end 18 of the implant 16.
  • an operator may be able to manipulate the translation members 24 via the handle member 17.
  • the handle 17 may include an actuation member designed to control the translation of the translation members 24.
  • FIG. 2 illustrates that the handle member 17 may be coupled to the translation members 24 via an actuation shaft 30 and a coupling member 28.
  • FIG. 2 illustrates that the proximal ends of the translation members 24 may be coupled to a distal end of the coupling member 28.
  • FIG. 2 further illustrates that a distal end of actuation shaft 30 may be coupled to the proximal end of the coupling member 28.
  • the actuation shaft 30 may extend within the entire length of the inner shaft 14 from the coupling member 28 to the handle member 17.
  • the inner shaft 14 may also be referred to as an inner member or liner 14.
  • the liner 14 may include a number of different features shown in the figures described herein.
  • the liner may include a lumen 25.
  • the translation members 24, coupler 28, actuation shaft 30, guidewire lumen 34 (described below), and grouping coil 32 (described below) may be disposed within the lumen 25.
  • the inner liner 14 may vary in form.
  • the inner liner 14 may include a single lumen, multiple lumens, or lack a lumen.
  • FIG. 2 and FIG. 3 illustrate the translation of translation members 24 in a distal-to-proximal direction (which shortens and radially expands the implant 16, as described above).
  • FIG. 3 further illustrates that translation of the translation members 24 in a distal-to-proximal direction is accomplished by translation of the actuation shaft 30 and coupling member 28 within the lumen 25 of the inner catheter 14.
  • the actuation shaft 30 is retracted (e.g., pulled proximally within lumen 25 of the inner catheter 14), it retracts the coupling member 28 proximally, which, in turn, retracts the translation members 24 in a proximal direction.
  • medical device system 10 may include a component designed to limit and/or prevent the translation members 24 from twisting around each other within the lumen 25 of the inner catheter 14.
  • FIG. 2 and FIG. 3 illustrate a grouping coil 32 wound around the translation members 24 such that the grouping coil maintains the translation members 24 in a substantially liner configuration (and thereby limits and/or prevents the translation members 24 from twisting within lumen 25) as the translation members 24 are translated through the lumen 25 of the inner catheter 14.
  • FIG. 2 and FIG. 3 further illustrate that the proximal end of the grouping coil 32 may be positioned adjacent the distal end of the coupling member 28 and that the distal end of the grouping coil 32 may be positioned adjacent the distal end of the inner catheter 14.
  • the distal end of the grouping coil 32 may be prevented from extending distally beyond the distal end of the inner catheter 14 by the containment fitting 29. In other words, the distal end of the grouping coil 32 may contact the containment fitting 29.
  • the grouping coil 32 may be positioned within the lumen 25 of the inner catheter 14 such that the grouping coil 32 may elongate and shorten (e.g., a length of the grouping coil may adjust) within the lumen 25 of the inner catheter 14.
  • the grouping coil 32 may elongate while continuing to group and/or contain the translation members 24 in a substantially linear configuration.
  • FIG. 2 and FIG. 3 further illustrate that the medical device system 10 may include a tubular guidewire member 34 extending within the lumen 25 of the inner catheter 14.
  • the tubular guidewire member 34 may be designed to permit a guidewire to extend and translate therein. Further, the tubular guidewire member 34 may extend from the handle member 17, through the lumen 25 of the inner member 14, through the implant 16 and terminate at a nosecone 36. Additionally the tubular guidewire member 34 may include a lumen (not shown in FIG. 2 or FIG. 3) that permits a guidewire to be advanced therein. In other words, the medical device 10 may be advanced to a target site within a body over a guidewire extending within the lumen of the tubular guidewire member 34.
  • FIG. 4 illustrates a cross-section of a portion of the medical device system 10 described with respect to FIGS. 1-3.
  • FIG. 4 illustrates the actuation shaft 30 coupled to coupler 28, translation members 24 coupled to coupler 28 and grouping coil 32 (the distal end of which is positioned adjacent the containment fitting 29, as described above) wound around the translation members 24.
  • FIG. 4 further illustrates that the outer surface 37 of the grouping coil 32 may contact both the inner surface 46 of the inner catheter 14 and the outer surface 44 of the guidewire member 34. Therefore, it can be further appreciated that the outer diameter (and therefore the inner diameter) of the grouping coil 32 may remain constant as the grouping coil lengthens or shortens as the coupler 28 translates within the lumen 25 of the inner catheter 14.
  • the medical device system 10 may be designed such that both the proximal end and the distal end of the grouping coil 32 may not be fixedly attached to adjacent structures (e.g., may not be attached to the coupling member 28 and/or the containment fitting 29). It can be appreciated that by not attaching either end of the grouping coil 32 to any adjacent structures (e.g., the coupling member 28 and/or the containment fitting 29), the grouping coil 32 is permitted to twist freely while lengthening or shortening within the lumen 25. This freedom of movement allows the grouping coil 32 to maintain an inner diameter which tightly groups (e.g., contains) the translation members 24 to each other as that translate linearly within the lumen 25 of inner catheter 14.
  • FIG. 4 further illustrates that coupler 28 may be positioned within the lumen 25 of the inner catheter 14 such that the bottom surface 45 of the coupler 28 is adjacent to the outer surface 44 of the guidewire member 34.
  • the coupler 28 may be designed such that it is not rigidly fixed to the guidewire member 34, and therefore, may translate relative to the guidewire member 34.
  • the coupler 28 may be designed such that it is rigidly fixed to the guidewire member 34, and therefore, translation of coupler 28 (which itself may occur via translation of the actuation shaft 30) may also translate both the guidewire member 34 and the translation members 24.
  • an operator manipulating the actuation shaft 30 via handle 17 may translate both the translation members 24 and the guidewire member 34 together such that distal or proximal translation of either the translation members 24 or the guidewire member 34 will translate both the translation members 24 or the guidewire member 34 a correspondingly equal amount.
  • the same effect may be achieved by coupling the guidewire member 34 and the actuation shaft 30 anywhere along medical device system 10, including coupling the guidewire member 34 and the actuation shaft 30 to one another in the handle member 17. It can be appreciated that the guidewire member 34 and the actuation shaft 30 may be coupled together in more than one location along medical device system 10.
  • the nosecone 36 may be desirable for the nosecone 36 to translate in a proximal direction as the implantable medical device 16 shifts from a collapsed configuration to a fully deployed configuration (as shown in FIGS. 1-3). It can be appreciated from the above discussion that because the nosecone 36 is connected to the distal end of the guidewire member 34, that as the guidewire member 34 translates with the translation members 24 (via the coupler 28 and actuation shaft 30), the nosecone 36 with correspondingly translate in a proximal direction as the translational members act to shift the implantable medical device 16 from a collapsed to a fully deployed configuration.
  • FIG. 4 further illustrates that in some instances actuation shaft 30 may include an actuation rod 40 positioned within the lumen of a coil member 38. Similar to that described above with respect to the grouping coil 32, the outer surface of the coil member 38 may contact both the inner surface 46 of the inner catheter 14 and the outer surface 44 of the guidewire member 34. It can be appreciated that the outer surface of the coil member 38 may reduce the frictional forces of actuation shaft 30 along the inner surface 46 of the inner catheter 14 as compared to the frictional forces that would be present if the actuation shaft 30 did not include a coil member.
  • coil member 38 provides both“point to point” contacts along the inner surface 46 of the inner member 14 in addition to increasing the ease with which the actuation shaft flexes/bends within the lumen 25 of inner catheter 14. These properties reduce the overall surface friction between the outer surface of actuation shaft 30 and the inner surface 46 of inner catheter 14 (as compared to a solid rod of similar proportions). The reduction in friction may further reduce the likelihood of the actuation shaft 30 to store and release energy in the form of a“backlash” effect. It is contemplated that the coil member 38 may be extend along a portion of or the entire length of the actuation rod 40. Further, the actuation rod 40 may extend from the proximal end of the coupler 28 to the handle member 17. Additionally, the above described functional characteristics of the coil member 38 are not intended to be limiting. For example, it is contemplated that the coil member 38 may be utilized to conduct electricity along a portion thereof (e g., along the surface or other portion of coil member 38).
  • FIG. 4 further illustrates that in some examples guidewire member 34 may include areinforcmg coil embedded with its tubular wall.
  • FIG. 4 shows coil 48 positioned with the wall of guidewire member 34. Coil 48 may provide additional strength and flexibility to the guidewire member 34.
  • FIG. 4 illustrates the lumen 42 of the guidewire member 34. It can be appreciated that a guidewire (not shown) may extend with the lumen 42 of the guidewire member 34.
  • FIG. 5 illustrates a cross-sectional view along line 5-5 of FIG. 4.
  • the inner catheter 14 may include one or more tension resistance members 50a/50b.
  • the tension resistance members 50a/50b may take the form of a wire (e.g., a metallic wire), a braid, cable, stranded cable, a composite structure, or the like.
  • the tension resistance members 50a/50b are both metallic wires.
  • the tension resistance members 50a/50b are both metallic braids.
  • the braids may further include an axial wire made from a suitable polymer or metal (e.g., aramid).
  • the tension resistance members 50a/50b may be made from the same materials and/or have the same configuration. Alternatively, the tension resistance members 50a/50b may be different from one another. Furthermore, while FIG. 2 illustrates that the inner catheter 14 includes two tension resistance members 50a/50b, this is not intended to be limiting. Other numbers of tension resistance members 50a/50b are contemplated such as one, three, four, five, six, seven, or more.
  • FIG. 5 further illustrates that the shape of the lumen 25 of the inner catheter 14 may be designed to limit twisting of the actuation shaft 30 and the guidewire member 34.
  • lumen 25 may be non-circular.
  • the shape of the lumen 25 may be ovular, square, rectangular, etc. It can be appreciated that as the inner catheter 14 rotates within the lumen of the outer member 12, the shape of the lumen 25 may force both the actuation shaft 30 and the guidewire member 34 to maintain the respective spatial relationship as depicted in FIG. 5. In other words, the shape of the lumen 25 forces the actuation shaft 30 and the guidewire member 34 to remain in their positions relative to one another independent of the bending, rotating, flexing, etc. of the inner catheter 14.
  • FIG. 5 also illustrates the actuation shaft 30 and the guidewire member positioned adjacent one another within lumen 25.
  • actuation shaft 30 may include an actuation rod 40 positioned within the lumen of a coil member 38.
  • FIG. 5 shows guidewire member 34.
  • the guidewire member 34 may include a reinforcing coil 48 embedded with its tubular wall.
  • FIG. 5 shows coil 48 positioned with the wall of guidewire member 34. Coil 48 may provide additional strength and flexibility to the guidewire member 34.
  • FIG. 5 illustrates the lumen 42 of the guidewire member 34.
  • FIG. 6 illustrates a cross-sectional view along line 6-6 of FIG. 4.
  • FIG. 4 shows grouping coil 32, coupler 28 and guidewire member 34 positioned within lumen 25. Additionally, FIG. 6 shows that the grouping coil 32 may surround three translational members 24 positioned therein.
  • the translational members 24 may be spaced equidistance from one another. For example, the translational members 24 may be spaced at substantially 120 degree angles relative to one another. Further, while FIG. 6 shows three translational members 24, it is contemplated that more or less than three translational members 24 may be utilized within medical device system 10.
  • medical device system 10 may include 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more translational members 24.
  • FIG. 6 illustrates that inner catheter 14 may include one or more tension resistance members 50a/50b.
  • the tension resistance members 50a/50b may take the form of a wire (e.g., a metallic wire), a braid, cable, stranded cable, a composite structure, or the like. Further, FIG. 6 illustrates that tension resistance members 50a/50b may be positioned opposite one another on either side of lumen 25.
  • FIG. 5 shows guidewire member 34.
  • the guidewire member 34 may include a reinforcing coil 48 embedded with its tubular wall.
  • FIG. 5 shows coil 48 positioned with the wall of guidewire member 34. Coil 48 may provide additional strength and flexibility to the guidewire member 34.
  • FIG. 5 illustrates the lumen 42 of the guidewire member 34.
  • FIG. 6 further illustrates the coupler 28 including the bottom surface 45 (described above). As illustrated, the bottom surface 45 is shaped to mate with the outer surface the guidewire member 34. For example, in some examples, the bottom surface 45 may include a curved portion which mates with the radius defined by the outer surface 44 of the guidewire member 34. As described above, the bottom surface 45 of the coupler 28 may or may not be rigidly fixed to the guidewire member 34.
  • FIG. 7 illustrates a detailed view of a portion of the medical device system 10 shown in FIG. 6. Further, FIG. 7 illustrates a cross-sectional view of coupler 28.
  • Coupler 28 may include a base member 65, a first cap 67 and a second cap 69.
  • First cap 67 and second cap 69 may be separate components from base member 65. Further, first cap 67 and second cap 69 may be attached to base member 65 via welding or any other suitable process.
  • a portion of the actuation rod 40 may extend into a portion of coupler 28 and thereby contact both base member 65 and first cap 67.
  • portions of the translational members 24 may extend into a portion of coupler 28 and thereby contact both base member 65 and first cap 69.
  • base member 65 may include one or more projections 60 that mate with one or more recess 61 in the actuation rod 40.
  • base member 65 may include one or more projections 62 that mate with one or more recesses 63 in the translational members 24.
  • engaging a respective projection with a recess portion may limit translational movement of both the actuation rod 40 and the translational members 24 relative to the coupler.
  • engagement of a respective projection with a recess portion may prevent both the actuation rod 40 and the translational members 24 from translating independently of the coupler 28 (and one another).
  • the engagement of a respective projection with a recess portion may permit the actuation rod 40 to spin/swivel on its own longitudinal axis.
  • coupler 28 may permit dissimilar materials to be engaged because they are mechanically“trapped” and preferentially oriented within coupler 28.
  • the coupler 28 may be defined as a“swivel.”
  • FIGS. 8A-8C show a portion of an example medical delivery device 80. It will be appreciated that some features and elements of the medical delivery device 80 may not be illustrated for clarity purposes.
  • the medical delivery device 80 includes an inner rod 82 that is slidingly disposed within an outer sheath 84.
  • the inner rod 82 may be considered as representing the actuation rod 40 and the outer sheath 84 may be considered as representing a portion of the inner catheter 14 discussed with respect to previous drawings.
  • the outer sheath 84 includes an electrically insulating layer. In some instances, the outer sheath 84 may represent or be a portion of the coil member 38 extending through the lumen 25.
  • the inner rod 82 may include a first section 86 that is formed of a material having a first electromagnetic permeability, a second section 88 that is formed of a material having a second electromagnetic permeability that is different from the first electromagnetic permeability, and an intervening transition in electromagnetic permeability 90. While the first section 86 is labeled as being formed of a material with low electromagnetic permeability and the second section 88 is labeled as being formed of a material with high electromagnetic permeability, this is just an example. In some cases, the low electromagnetic permeability material and the high electromagnetic permeability material may be reversed from what is shown, for example. In some instances, the relative length of the first section 86 and the second section 88 may vary. In some cases, the first section 86 may have a longer or even substantially longer length than the second section 88. In some cases, the second section 88 may have a longer length than the first section 86. These are just examples.
  • the medical delivery device 80 includes an inductive coil 92 that is disposed relative to the outer sheath 84.
  • the inductive coil 92 is formed of a wire 94 that forms a number of windings around the outer sheath 84.
  • the wire 94 has free ends 94a, 94b that extend proximally to the handle 17 as shown in FIG. 1 so that an electrical signal inductively generated in the inductive coil 92 and carried by the wire 94 may be sent to a measurement circuit, for example.
  • the transition in electromagnetic permeability 90 will create a change in the induced current caused by the inner rod 82 moving through the inductive coil 92. As seen in FIG.
  • FIG. 8A is a graphical representation of how changes in electromagnetic permeability can be seen, assuming that the first section 86 is formed (as labeled) of a low electromagnetic permeability material and the second section 88 is formed of a high electromagnetic permeability material.
  • the induced current is relatively low. This is labeled as region 8A in FIG. 8D.
  • the transition in electromagnetic permeability 90 is passing through the inductive coil 92, as shown in FIG. 8B, the induced current increases. This is labeled as region 8B in FIG. 8D.
  • the transition in electromagnetic permeability 90 has passed completely through the inductive coil 92, and hence only the second section 88 (formed of a high electromagnetic permeability material) is within the inductive coil 92, the induced current is at a maximum. This is labeled as region 8C in FIG. 8D.
  • the material with a low electromagnetic permeability may be a nickel -titanium alloy such as Nitinol, and the material with a high electromagnetic permeability may be a stainless steel, but this is merely an example. Some stainless steels are relatively low in electromagnetic permeability.
  • a change in inductance may be detected.
  • there are other electromagnetic properties that are related to inductance that may also be detected and/or measured.
  • Magnetic reluctance is an example of such a property.
  • circuit-related properties include resonant frequency, Q factor, impulse response, decay time, phase shift, amplitude response, spectral filtering response, impedance, reactance, admittance, suceptance, step response and combinations thereof.
  • FIG. 9 A shows a portion of an example medical delivery device 100. It will be appreciated that some features and elements of the medical delivery device 100 may not be illustrated for clarity purposes.
  • the medical delivery device 100 includes an inner rod 102 that is slidingly disposed within an outer sheath 104.
  • the inner rod 102 may be considered as representing the actuation rod 40 and the outer sheath 104 may be considered as representing a portion of the inner catheter 14 discussed with respect to previous drawings.
  • the outer sheath 104 includes an electrically insulating layer. In some instances, the outer sheath 104 may represent or be a portion of the coil member 38 extending through the lumen 25.
  • the medical delivery device 100 includes an inductive coil 92 that is disposed relative to the outer sheath 84.
  • the inductive coil 92 is formed of a wire 94 that forms a number of windings around the outer sheath 84.
  • the wire 94 has free ends 94a, 94b that extend proximally to the handle 17 as shown in FIG. 1 so that an electrical signal inductively generated in the inductive coil 92 and carried by the wire 94 may be sent to a measurement circuit, for example.
  • the inner rod 102 may be formed of a material having a particular electromagnetic permeability.
  • the inner rod 102 may include a first section 106 formed of a first material and a second section 108 that is formed of a different material.
  • the first section 106 may have a lower or higher electromagnetic permeability than the second section 108.
  • the first section 106 and the second section 108 may be formed of the same material, and thus may have the same electromagnetic permeability.
  • the inner rod 102 may include an inset ring 110 that is formed of a material having a very high electromagnetic permeability.
  • the inset ring 110 may, for example, be formed of ferrite or mu-metal.
  • FIG. 8D As the inner rod 102 translates relative to the outer sheath 104, and the inset ring 110 passes through the inductive coil 92, it will be appreciated that, relative to what was shown in FIG. 8D, there will be a steeper transition in the induced coil, as can be seen for example in FIG. 9B, which is a graphical representation.
  • FIG. 10 shows a portion of an example medical delivery device 120. It will be appreciated that some features and elements of the medical delivery device 120 may not be illustrated for clarity purposes.
  • the medical delivery device 120 includes an inner rod 102 that is slidingly disposed within an outer sheath 104.
  • the inner rod 102 may be considered as representing the actuation rod 40 and the outer sheath 104 may be considered as representing a portion of the inner catheter 14 discussed with respect to previous drawings.
  • the outer sheath 104 includes an electrically insulating layer. In some instances, the outer sheath 104 may represent or be a portion of the coil member 38 extending through the lumen 25.
  • the medical delivery device 120 includes an inductive coil 122 that is disposed relative to the outer sheath 104.
  • the inductive coil 122 is formed of a wire 94 that forms a number of windings around the outer sheath 84 and includes free ends 94a, 94b that can extend proximally to the handle 17.
  • the inductive coil 122 has a variable windings pitch, varying from a relatively wider pitch at a distal end 122a of the inductive coil 122 to a relatively narrower pitch at a proximal end 122b of the inductive coil 122.
  • having a variable pitch enables an extended range and extended precision while also enabling improved signal to noise (S/N) values.
  • FIG. 11 shows a portion of an example medical delivery device 130. It will be appreciated that some features and elements of the medical delivery device 130 may not be illustrated for clarity purposes.
  • the medical delivery device 130 includes an inner rod 132 that is slidingly disposed within an outer sheath 134.
  • the inner rod 132 may be considered as representing the actuation rod 40 and the outer sheath 134 may be considered as representing a portion of the inner catheter 14 discussed with respect to previous drawings.
  • the outer sheath 134 includes an electrically insulating layer. In some instances, the outer sheath 134 may represent or be a portion of the coil member 38 extending through the lumen 25.
  • the inner rod 132 may be formed of a material having a particular electromagnetic permeability.
  • the inner rod 132 may include a first section 136 formed of a first material and a second section 138 that is formed of a different material.
  • the first section 136 may have a lower or higher electromagnetic permeability than the second section 138.
  • the first section 136 and the second section 138 may be formed of the same material, and thus may have the same electromagnetic permeability.
  • the inner rod 132 may include an mset ring 140 that is formed of a material having a very high electromagnetic permeability.
  • the inset ring 140 may, for example, be formed of ferrite or mu-metal.
  • the medical delivery device 130 includes an inductive coil 150 that is disposed relative to the outer sheath 134. As the inner rod 132 passes through the outer sheath 134, and the inset ring 140 passes through the inductive coil 150, an electrical current is induced within the inductive coil 150. It will be appreciated that a wire 154 forming the inductive coil 150 extends proximally and forms a first coupling coil 152, thus any induced current flowing through the inductive coil 150 also flows through the first coupling coil 152.
  • a second coupling coil 156 may be disposed about a sheath 154 that may, for example, represent the outer sheath 12 (FIG. 1).
  • the second coupling coil 156 may electromagnetically couple with the first coupling coil 152, and thus the electric current induced by the inset ring 140 passing through the inductive coil 150 may be transmitted to a position exterior to the medical delivery device 130.
  • the second coupling coil 156 may be secured to the sheath 154.
  • the second coupling coil 156 may be temporarily clamped to the sheath 154 when needed.
  • the materials that can be used for the various components of the medical devices and/or system 10 disclosed herein may include those commonly associated with medical devices. However, this is not intended to limit the devices and methods described herein, as the discussion may be applied to other components of the medical devices and/or systems 10 disclosed herein including the various shafts, liners, components described relative thereto.
  • the medical device 10 may be made from a metal, metal alloy, polymer (some examples of which are disclosed below), a metal-polymer composite, ceramics, combinations thereof, and the like, or other suitable material.
  • suitable polymers may include polytetrafluoroethylene (PTFE), ethylene tetrafluoroethylene (ETFE), fluorinated ethylene propylene (FEP), polyoxymethylene (POM, for example, DELRIN® available from DuPont), polyether block ester, polyurethane (for example, Polyurethane 85A), polypropylene (PP), polyvinylchloride (PVC), poly ether-ester (for example, ARNITEL® available fromDSM Engineering Plastics), ether or ester based copolymers (for example, butylene/poly(alkylene ether) phthalate and/or other polyester elastomers such as HYTREL® available from DuPont), polyamide (for example, DURETHAN® available from Bayer or CRISTAMID® available from Elf Atochem), elastomeric polyamides, block polyamide/ethers, polyether block amide (PEBA, for example available under the trade name PEBAX®), ethylene vinyl a
  • suitable metals and metal alloys include stainless steel, such as 304V, 304L, and 316LV stainless steel; mild steel; nickel-titanium alloy such as linear-elastic and/or super-elastic nitinol; other nickel alloys such as nickel-chromium-molybdenum alloys (e.g., UNS: N06625 such as INCONEL® 625, UNS: N06022 such as HASTELLOY® C-22®, UNS: N10276 such as HASTELLOY® C276®, other HASTELLOY® alloys, and the like), nickel-copper alloys (e.g., UNS: N04400 such as MONEL® 400, NICKEL VAC® 400, NICORROS® 400, and the like), nickel-cobalt-chromium-molybdenum alloys (e.g., UNS: R30035 such as MP35-N® and the like), nickel-molybdenum alloys
  • portions or all of the medical device 10 may also be doped with, made of, or otherwise include a radiopaque material.
  • Radiopaque materials are understood to be materials capable of producing a relatively bright image on a fluoroscopy screen or another imaging technique during a medical procedure. This relatively bright image aids the user of the medical device 10 in determining its location.
  • Some examples of radiopaque materials can include, but are not limited to, gold, platinum, palladium, tantalum, tungsten alloy, polymer material loaded with a radiopaque filler, and the like. Additionally, other radiopaque marker bands and/or coils may also be incorporated into the design of the medical device 10 to achieve the same result.
  • a degree of Magnetic Resonance Imaging (MRI) compatibility is imparted into the medical device 10.
  • the medical device 10 may include a material that does not substantially distort the image and create substantial artifacts (e.g., gaps in the image). Certain ferromagnetic materials, for example, may not be suitable because they may create artifacts in an MRI image.
  • the medical device 10 may also be made from a material that the MRI machine can image.
  • Some materials that exhibit these characteristics include, for example, tungsten, cobalt-chromium-molybdenum alloys (e.g., UNS: R30003 such as ELGILOY®, PHYNOX®, and the like), nickel-cobalt-chromium- molybdenum alloys (e.g., UNS: R30035 such as MP35-N® and the like), nitinol, and the like, and others.
  • cobalt-chromium-molybdenum alloys e.g., UNS: R30003 such as ELGILOY®, PHYNOX®, and the like
  • nickel-cobalt-chromium- molybdenum alloys e.g., UNS: R30035 such as MP35-N® and the like
  • nitinol and the like, and others.

Abstract

A delivery system for an implantable medical device includes an outer shaft defining an outer shaft lumen and an inner shaft translatable within the outer shaft lumen, the inner shaft defining a lumen extending through the inner shaft. An actuation mechanism extends through the lumen and includes a coupler, a force translation rod that extends proximally from the coupler and a plurality of push pull rods that extend distally from the coupler and that releasably couple to the implantable medical device. The force translation rod includes a transition in electromagnetic permeability. The delivery system includes an inductive coil disposed relative to the force translation rod and positioned to detect a change in inductance resulting from the transition in electromagnetic permeability passing through the inductive coil.

Description

INDUCTANCE MODE DEPLOYMENT SENSORS FOR TRANSCATHETER VALVE SYSTEM
Cross-Reference To Related Applications
[0001] This application claims the benefit of priority under 35 U.S.C. §119 to U.S.
Provisional Application Serial No. 62/619,352, filed January 19, 2018, the entirety of which is incorporated herein by reference.
Technical Field
[0002] The present disclosure pertains to medical devices, and methods for manufacturing medical devices. More particularly, the present disclosure pertains to medical delivery devices with position detection.
Background
[0003] A wide variety of intracorporeal medical devices have been developed for medical use, for example, intravascular use. Some of these devices include guidewires, catheters, and the like. These devices are manufactured by any one of a variety of different manufacturing methods and may be used according to any one of a variety of methods. Of the known medical devices and methods, each has certain advantages and disadvantages. There is an ongoing need to provide alternative medical devices as well as alternative methods for manufacturing and using medical devices.
Brief Summary
[0004] This disclosure provides design, material, manufacturing method, and use alternatives for medical devices. An example of the disclosure is a delivery system for an implantable medical device. The delivery system includes an outer shaft defining an outer shaft lumen and an inner shaft that is translatable within the outer shaft lumen, the inner shaft defining a lumen extending through the inner shaft. An actuation mechanism extends through the lumen and includes a coupler, a force translation rod that extends proximally from the coupler and a plurality of push pull rods that extend distally from the coupler and that releasably couple to the implantable medical device. The force translation rod includes a transition in electromagnetic permeability. An inductive coil is disposed relative to the force translation rod and is positioned to detect a change in inductance resulting from the transition in electromagnetic permeability passing through the inductive coil.
[0005] Alternatively or additionally to any of the embodiments above, the transition in electromagnetic permeability may be positioned a distance from the coupler such that a detected change in inductance indicates a relative position of the coupler relative to the inductive coil.
[0006] Alternatively or additionally to any of the embodiments above, a portion of the force translation rod distal of the transition in electromagnetic permeability may be formed of a material having a first electromagnetic permeability and a portion of the force translation rod proximal of the transition in electromagnetic permeability may be formed of a material having a second electromagnetic permeability different from the first electromagnetic permeability.
[0007] Alternatively or additionally to any of the embodiments above, the force transition rod may be formed of a material having a low electromagnetic permeability material and the transition in electromagnetic permeability may include an inset band of a high electromagnetic permeability material.
[0008] Alternatively or additionally to any of the embodiments above, the force transition rod may include Nitinol as a low electromagnetic permeability material and stainless steel as a high electromagnetic permeability material.
[0009] Alternatively or additionally to any of the embodiments above, the inductive coil may have a constant windings pitch.
[0010] Alternatively or additionally to any of the embodiments above, the inductive coil may have a non-constant windings pitch in order to provide increased sensitivity to small movements of the transition in electromagnetic permeability relative to the inductive coil.
[0011] Alternatively or additionally to any of the embodiments above, the inductive coil may be disposed relative to the inner shaft.
[0012] Alternatively or additionally to any of the embodiments above, the inductive coil may be electrically coupled with a first coupling coil that is disposed relative to the inner shaft, at or near a proximal region of the delivery system, and may be magnetically coupled with a second coupling coil that is disposed about the outer shaft.
[0013] Another example of the disclosure is a delivery catheter for delivering an implantable medical device. The delivery catheter includes an outer shaft and an inner shaft that is slidingly disposed within the outer shaft and that defines a lumen extending through the inner shaft, with the implantable medical device securable relative to the inner shaft. A force translation rod extends through the lumen of the inner shaft and includes a first section formed of a material having a low electromagnetic permeability and a second section formed of a material having a high electromagnetic permeability such that a transition in electromagnetic permeability exists between the first section and the second section. An inductive coil is disposed relative to the force translation rod and is positioned to detect a change in inductance resulting from the transition in electromagnetic permeability passing through the inductive coil.
[0014] Alternatively or additionally to any of the embodiments above, the transition in electromagnetic permeability may be positioned a known distance from where the implantable medical device is secured relative to the inner shaft.
[0015] Alternatively or additionally to any of the embodiments above, the force translation rod may extend distally to a coupler, and a plurality of push pull rods may extend distally from the coupler, and the transition in electromagnetic permeability may be positioned a known distance from the coupler.
[0016] Alternatively or additionally to any of the embodiments above, the inductive coil may have a constant windings pitch.
[0017] Alternatively or additionally to any of the embodiments above, the inductive coil may be disposed relative to the inner shaft.
[0018] Alternatively or additionally to any of the embodiments above, the inductive coil may be electrically coupled with a first coupling coil that is disposed relative to the inner shaft, at or near a proximal region of the delivery catheter, and may be magnetically coupled with a second coupling coil that is disposed about the outer shaft.
[0019] Another example of the disclosure is a delivery system for an implantable medical device. The delivery system includes a shaft defining a lumen and an actuation mechanism that extends through the lumen. The actuation member includes a coupler, a force translation rod that extends proximally from the coupler and a plurality of push pull rods that extend distally from the coupler and that releasably couple to the implantable medical device. The force translation rod includes a transition in electromagnetic permeability. An inductive coil is disposed relative to the force translation rod and is positioned to detect a change in inductance resulting from the transition in electromagnetic permeability passing through the inductive coil. [0020] Alternatively or additionally to any of the embodiments above, the transition in electromagnetic permeability may be positioned a distance from the coupler such that a detected change in inductance indicates a relative position of the coupler relative to the inductive coil.
[0021] Alternatively or additionally to any of the embodiments above, a portion of the force translation rod distal of the transition in electromagnetic permeability may be formed of a material having a first electromagnetic permeability and a portion of the force translation rod proximal of the transition in electromagnetic permeability may be formed of a material having an electromagnetic permeability different from the first electromagnetic permeability.
[0022] Alternatively or additionally to any of the embodiments above, the force transition rod may be formed of a material having a low electromagnetic permeability material and the transition in electromagnetic permeability may include an inset band of a high electromagnetic permeability material.
[0023] Alternatively or additionally to any of the embodiments above, the inductive coil may be electrically coupled with a first coupling coil that is disposed relative to the inner shaft, at or near a proximal region of the delivery system, and may be magnetically coupled with a second coupling coil that is disposed about the outer shaft.
[0024] The above summary of some embodiments is not intended to describe each disclosed embodiment or every implementation of the present disclosure. The Figures, and Detailed Description, which follow, more particularly exemplify these embodiments.
Brief Description of the Drawings
[0025] The disclosure may be more completely understood in consideration of the following detailed description in connection with the accompanying drawings, in which:
[0026] FIG. 1 is a side view of an example medical device system;
[0027] FIG. 2 is a partial cross-sectional view of a portion of an example medical device delivery system;
[0028] FIG. 3 is a partial cross-sectional view of a portion of an example medical device delivery system;
[0029] FIG. 4 is a partial cross-sectional view of a portion of the catheter shaft shown in FIGS. 1-3; [0030] FIG. 5 is a cross-sectional view along line 5-5 of FIG. 4;
[0031] FIG. 6 is a cross-sectional view along line 6-6 of FIG. 4;
[0032] FIG. 7 is a partial cross-sectional view of a portion of an example medical device delivery system;
[0033] FIG. 8A through FIG. 8C are side views of a portion of an example medical device delivery system;
[0034] FIG. 8D is a graphical representation of operation of the example medical device delivery system of FIG. 8A through FIG. 8C;
[0035] FIG. 9A is a side view views of a portion of an example medical device delivery system;
[0036] FIG. 9B is a graphical representation of operation of the example medical device delivery system of FIG. 9 A;
[0037] FIG. 10 is a side view of a portion of an example medical device delivery system; and
[0038] FIG. 11 is a side view of a portion of an example medical device delivery system
[0039] While the disclosure is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the disclosure to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the disclosure.
Detailed Description
[0040] For the following defined terms, these definitions shall be applied, unless a different definition is given in the claims or elsewhere in this specification.
[0041] All numeric values are herein assumed to be modified by the term“about”, whether or not explicitly indicated. The term“about” generally refers to a range of numbers that one of skill in the art would consider equivalent to the recited value (e.g., having the same function or result). In many instances, the terms“about” may include numbers that are rounded to the nearest significant figure. [0042] The recitation of numerical ranges by endpoints includes all numbers within that range (e.g. 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5).
[0043] As used in this specification and the appended claims, the singular forms“a”,“an”, and“the” include plural referents unless the content clearly dictates otherwise. As used in this specification and the appended claims, the term“or” is generally employed in its sense including“and/or” unless the content clearly dictates otherwise.
[0044] It is noted that references in the specification to “an embodiment”, “some embodiments”,“other embodiments”, etc., indicate that the embodiment described may include one or more particular features, structures, and/or characteristics. However, such recitations do not necessarily mean that all embodiments include the particular features, structures, and/or characteristics. Additionally, when particular features, structures, and/or characteristics are described in connection with one embodiment, it should be understood that such features, structures, and/or characteristics may also be used connection with other embodiments whether or not explicitly described unless clearly stated to the contraiy.
[0045] The following detailed description should be read with reference to the drawings in which similar elements in different drawings are numbered the same. The drawings, which are not necessarily to scale, depict illustrative embodiments and are not intended to limit the scope of the invention.
[0046] Diseases and/or medical conditions that impact the cardiovascular system are prevalent throughout the world. Traditionally, treatment of the cardiovascular system was often conducted by directly accessing the impacted part of the system. For example, treatment of a blockage in one or more of the coronary arteries was traditionally treated using coronary arteiy bypass surgery. As can be readily appreciated, such therapies are rather invasive to the patient and require significant recovery times and/or treatments. More recently, less invasive therapies have been developed, for example, where a blocked coronary artery could be accessed and treated via a percutaneous catheter (e g., angioplasty). Such therapies have gained wide acceptance among patients and clinicians.
[0047] Some relatively common medical conditions may include or be the result of inefficiency, ineffectiveness, or complete failure of one or more of the valves within the heart. For example, failure of the aortic valve or the mitral valve can have a serious effect on a human and could lead to serious health condition and/or death if not dealt with properly. Treatment of defective heart valves poses other challenges in that the treatment often requires the repair or outright replacement of the defective valve. Such therapies may be highly invasive to the patient. Disclosed herein are medical devices that may be used for delivering a medical device to a portion of the cardiovascular system in order to diagnose, treat, and/or repair the system. At least some of the medical devices disclosed herein may be used to deliver and implant a replacement heart valve (e.g., a replacement aortic valve, replacement mitral valve, etc.). In addition, the devices disclosed herein may deliver the replacement heart valve percutaneously and, thus, may be much less invasive to the patient. The devices disclosed herein may also provide a number of additional desirable features and benefits as described in more detail below.
[0048] The figures illustrate selected components and/or arrangements of a medical device system 10, shown schematically in FIG. 1 for example. It should be noted that in any given figure, some features of the medical device system 10 may not be shown, or may be shown schematically, for simplicity. Additional details regarding some of the components of the medical device system 10 may be illustrated in other figures in greater detail. A medical device system 10 may be used to deliver and/or deploy a variety of medical devices to a number of locations within the anatomy. In at least some embodiments, the medical device system 10 may include a replacement heart valve delivery system (e.g., a replacement aortic valve delivery system) that can be used for percutaneous delivery of a medical implant 16, such as a replacement/prosthetic heart valve. This, however, is not intended to be limiting as the medical device system 10 may also be used for other interventions including valve repair, valvuloplasty, delivery of an implantable medical device (e.g., such as a stent, graft, etc.), and the like, or other similar interventions.
[0049] The medical device system 10 may generally be described as a catheter system that includes an outer sheath 12, an inner catheter 14 (a portion of which is shown in FIG. 1 in phantom line) extending at least partially through a lumen of the outer sheath 12, and a medical implant 16 (e.g. , a replacement heart valve implant) which may be coupled to the inner catheter 14 and disposed within a lumen of the outer sheath 12 during delivery of the medical implant 16. In some embodiments, a medical device handle 17 may be disposed at a proximal end of the outer sheath 12 and/or the inner catheter 14 and may include one or more actuation mechanisms associated therewith. In other words, a tubular member (e.g., the outer sheath 12, the inner catheter 14, etc.) may extend distally from the medical device handle 17. In general, the medical device handle 17 may be designed to manipulate the position of the outer sheath 12 relative to the inner catheter 14 and/or aid in the deployment of the medical implant 16. [0050] In use, the medical device system 10 may be advanced percutaneously through the vasculature to a position adjacent to an area of interest and/or a treatment location. For example, in some embodiments, the medical device system 10 may be advanced through the vasculature to a position adjacent to a defective native valve (e.g., aortic valve, mitral valve, etc.). Alternative approaches to treat a defective aortic valve and/or other heart valve(s) are also contemplated with the medical device system 10. During delivery, the medical implant 16 may be generally disposed in an elongated and low profile“delivery” configuration within the lumen and/or a distal end of the outer sheath 12, as seen schematically in FIG. 1 for example. Once positioned, the outer sheath 12 may be retracted relative to the medical implant 16 and/or the inner catheter 14 to expose the medical implant 16. In some instances, the medical implant 16 may be self-expanding such that exposure of the medical implant 16 may deploy the medical implant 16. Alternatively, the medical implant 16 may be expanded/deployed using the medical device handle 17 in order to translate the medical implant 16 into a generally shortened and larger profile “deployed” configuration suitable for implantation within the anatomy. For example, in some instances the inner catheter (or components thereof) may be coupled to medical implant 16 whereby actuation of the inner catheter 14 relative to the outer sheath 12 and/or the medical implant 16 may deploy the medical device 16 within the anatomy. When the medical implant 16 is suitably deployed within the anatomy, the medical device system 10 may be disconnected, detached, and/or released from the medical implant 16 and the medical device system 10 can be removed from the vasculature, leaving the medical implant 16 in place in a“released” configuration.
[0051] It can be appreciated that during delivery and/or deployment of an implantable medical device (e.g., the medical implant 16), portions of the medical device system 10 may be required to be advanced through tortuous and/or narrow body lumens. Therefore, it may be desirable to utilize components and design medical delivery systems (e.g., such as the medical device system 10 and/or other medical devices) that reduce the profile of portions of the medical device while maintaining sufficient strength (compressive, torsional, etc.) and flexibility of the system as a whole.
[0052] FIG. 2 illustrates the medical device system 10 in a partially deployed configuration. As illustrated in FIG. 2, the outer sheath 12 of the medical device system 10 has been retracted in a proximal direction to a position proximal of the medical implant 16. In other words, the outer sheath 12 has been retracted (e.g., pulled back) in a proximal direction such that it uncovers the medical device implant 16 from a compact, low-profile delivery position to a partially deployed position.
[0053] In at least some examples contemplated herein, the medical device implant 16 may be designed to self-expand once released from under the outer sheath 12. However, as shown in FIG. 2, the medical device system 10 may be designed such that the implant 16 may be restricted from expanding fully in the radial direction. For example, FIG. 2 shows medical device implant 16 having a partially deployed position denoted as a length“Li.”
[0054] FIG. 2 further illustrates that in some examples, the implant 16 may include one or more support members 22 coupled to the proximal end 18 of the implant 16. Further, FIG. 2 illustrates that in some examples, the implant 16 may include one or more translation members 24 coupled to the distal end 20 of the implant 16. Additionally, in some examples (such as that illustrated in FIG. 2), the translation members 24 and support members 22 may work together to maintain the implant in a partially deployed position after the outer sheath has been retracted to uncover the implant 16. For example, FIG. 2 illustrates that the support members 22 may be designed such that the distal end of each of the support members may be coupled to the proximal end of the implant 16 and that the proximal end of each of the support members 22 may be coupled to the distal end of the inner catheter 14. For example, FIG. 2 illustrates that the proximal ends of the support members 22 may be attached to a containment fitting 28 which is rigidly fixed to the distal end of the inner catheter 14. It can be further appreciated that in some instances, the support members 22 may be designed to limit the proximal movement of the proximal end 18 of the implant 16 relative to the distal end of the inner catheter 14.
[0055] Additionally, the translation members 24 may be designed to translate in a distal- to-proximal direction such that the translation of the translation members (via operator manipulation at the handle, for example) may“pull” the distal end 20 of the implant closer to the proximal end 18 of the implant 16.
[0056] For example, FIG. 3 illustrates the distal-to-proximal translation of the translation members 24. It can be appreciated that if the support members 22 limit the proximal movement of the proximal end 18 of the implant 16 while the translation members 24 are translated proximally, the implant 16 may both foreshorten (along the longitudinal axis of the implant 16) and also expand radially outward. The foreshortening and radial expansion of implant 16 can be seen by comparing the shape and position of the implant 16 in FIG. 2 to the shape and position of the implant 16 in FIG. 3. The position of the implant 16 shown in FIG. 3 may be described as a fully deployed positioned of the implant 16 (versus the partially deployed positioned of the implant 16 shown in FIG. 2). Further, FIG. 3 depicts the length of the fully deployed implant 16 as L2, whereby the distance L2 is less than the distance Li shown in FIG. 2
[0057] Additionally, it can be appreciated that the translation members 24 may be designed to be able extend in a proximal -to-distal direction such that they elongate (e.g., lengthen) the implant 16 (along its longitudinal axis). In other words, implant 16 may be able to shift between a partially deployed position (shown in FIG. 2) and a fully deployed position (shown in FIG. 3) through the translation (either proximal or distal) of the translation members 24 along the longitudinal axis as the support members 22 limit the movement of the proximal end 18 of the implant 16.
[0058] It should be noted that the above description and illustrations regarding the arrangement, attachment features and operation of the support members 22 and the translation members 24 as they engage and function relative to the implant 16 is schematic. It can be appreciated that the design (e.g., arrangement, attachment features, operation, etc.) of the both support member 22 and the translation members 24 as they relate and function relative to the implant 16 may vary. For example, it is possible to design, arrange and operate the translation members 24 and the support members 22 in a variety of ways to achieve the partial and full deployment configurations of the implant 16.
[0059] In some examples, an operator may be able to manipulate the translation members 24 via the handle member 17. For example, the handle 17 may include an actuation member designed to control the translation of the translation members 24. FIG. 2 illustrates that the handle member 17 may be coupled to the translation members 24 via an actuation shaft 30 and a coupling member 28. For example, as will be described in greater detail below, FIG. 2 illustrates that the proximal ends of the translation members 24 may be coupled to a distal end of the coupling member 28. Additionally, FIG. 2 further illustrates that a distal end of actuation shaft 30 may be coupled to the proximal end of the coupling member 28. Further, while not shown in FIG 2, it can be appreciated that the actuation shaft 30 may extend within the entire length of the inner shaft 14 from the coupling member 28 to the handle member 17.
[0060] For purposes of discussion herein, the inner shaft 14 may also be referred to as an inner member or liner 14. The liner 14 may include a number of different features shown in the figures described herein. For example, the liner may include a lumen 25. Further, the translation members 24, coupler 28, actuation shaft 30, guidewire lumen 34 (described below), and grouping coil 32 (described below) may be disposed within the lumen 25. These are just examples. The inner liner 14 may vary in form. For example, the inner liner 14 may include a single lumen, multiple lumens, or lack a lumen.
[0061] As described above, FIG. 2 and FIG. 3 illustrate the translation of translation members 24 in a distal-to-proximal direction (which shortens and radially expands the implant 16, as described above). However, FIG. 3 further illustrates that translation of the translation members 24 in a distal-to-proximal direction is accomplished by translation of the actuation shaft 30 and coupling member 28 within the lumen 25 of the inner catheter 14. For example, as the actuation shaft 30 is retracted (e.g., pulled proximally within lumen 25 of the inner catheter 14), it retracts the coupling member 28 proximally, which, in turn, retracts the translation members 24 in a proximal direction.
[0062] In some instances it may be desirable to maintain translation members 24 in a substantially linear configuration as they are translated within the lumen 25 of the inner catheter 14. In some examples, therefore, medical device system 10 may include a component designed to limit and/or prevent the translation members 24 from twisting around each other within the lumen 25 of the inner catheter 14. For example, FIG. 2 and FIG. 3 illustrate a grouping coil 32 wound around the translation members 24 such that the grouping coil maintains the translation members 24 in a substantially liner configuration (and thereby limits and/or prevents the translation members 24 from twisting within lumen 25) as the translation members 24 are translated through the lumen 25 of the inner catheter 14.
[0063] FIG. 2 and FIG. 3 further illustrate that the proximal end of the grouping coil 32 may be positioned adjacent the distal end of the coupling member 28 and that the distal end of the grouping coil 32 may be positioned adjacent the distal end of the inner catheter 14. In particular, the distal end of the grouping coil 32 may be prevented from extending distally beyond the distal end of the inner catheter 14 by the containment fitting 29. In other words, the distal end of the grouping coil 32 may contact the containment fitting 29.
[0064] It can be further appreciated that the grouping coil 32 may be positioned within the lumen 25 of the inner catheter 14 such that the grouping coil 32 may elongate and shorten (e.g., a length of the grouping coil may adjust) within the lumen 25 of the inner catheter 14. For example, as the coupling member 28 is translated in a proximal direction (shown in FIG. 3 as compared to FIG. 2), the grouping coil may elongate while continuing to group and/or contain the translation members 24 in a substantially linear configuration.
[0065] FIG. 2 and FIG. 3 further illustrate that the medical device system 10 may include a tubular guidewire member 34 extending within the lumen 25 of the inner catheter 14. The tubular guidewire member 34 may be designed to permit a guidewire to extend and translate therein. Further, the tubular guidewire member 34 may extend from the handle member 17, through the lumen 25 of the inner member 14, through the implant 16 and terminate at a nosecone 36. Additionally the tubular guidewire member 34 may include a lumen (not shown in FIG. 2 or FIG. 3) that permits a guidewire to be advanced therein. In other words, the medical device 10 may be advanced to a target site within a body over a guidewire extending within the lumen of the tubular guidewire member 34.
[0066] FIG. 4 illustrates a cross-section of a portion of the medical device system 10 described with respect to FIGS. 1-3. In particular, as described above, FIG. 4 illustrates the actuation shaft 30 coupled to coupler 28, translation members 24 coupled to coupler 28 and grouping coil 32 (the distal end of which is positioned adjacent the containment fitting 29, as described above) wound around the translation members 24. FIG. 4 further illustrates that the outer surface 37 of the grouping coil 32 may contact both the inner surface 46 of the inner catheter 14 and the outer surface 44 of the guidewire member 34. Therefore, it can be further appreciated that the outer diameter (and therefore the inner diameter) of the grouping coil 32 may remain constant as the grouping coil lengthens or shortens as the coupler 28 translates within the lumen 25 of the inner catheter 14.
[0067] Additionally, it can be appreciated that the medical device system 10 may be designed such that both the proximal end and the distal end of the grouping coil 32 may not be fixedly attached to adjacent structures (e.g., may not be attached to the coupling member 28 and/or the containment fitting 29). It can be appreciated that by not attaching either end of the grouping coil 32 to any adjacent structures (e.g., the coupling member 28 and/or the containment fitting 29), the grouping coil 32 is permitted to twist freely while lengthening or shortening within the lumen 25. This freedom of movement allows the grouping coil 32 to maintain an inner diameter which tightly groups (e.g., contains) the translation members 24 to each other as that translate linearly within the lumen 25 of inner catheter 14.
[0068] FIG. 4 further illustrates that coupler 28 may be positioned within the lumen 25 of the inner catheter 14 such that the bottom surface 45 of the coupler 28 is adjacent to the outer surface 44 of the guidewire member 34. In some examples, the coupler 28 may be designed such that it is not rigidly fixed to the guidewire member 34, and therefore, may translate relative to the guidewire member 34. In other examples, the coupler 28 may be designed such that it is rigidly fixed to the guidewire member 34, and therefore, translation of coupler 28 (which itself may occur via translation of the actuation shaft 30) may also translate both the guidewire member 34 and the translation members 24. In other words, it can be appreciated that in instances where the coupler 28 is rigidly fixed to the guidewire member 34, an operator manipulating the actuation shaft 30 via handle 17 may translate both the translation members 24 and the guidewire member 34 together such that distal or proximal translation of either the translation members 24 or the guidewire member 34 will translate both the translation members 24 or the guidewire member 34 a correspondingly equal amount. Further, it can be appreciated the same effect may be achieved by coupling the guidewire member 34 and the actuation shaft 30 anywhere along medical device system 10, including coupling the guidewire member 34 and the actuation shaft 30 to one another in the handle member 17. It can be appreciated that the guidewire member 34 and the actuation shaft 30 may be coupled together in more than one location along medical device system 10.
[0069] In some instances, it may be desirable for the nosecone 36 to translate in a proximal direction as the implantable medical device 16 shifts from a collapsed configuration to a fully deployed configuration (as shown in FIGS. 1-3). It can be appreciated from the above discussion that because the nosecone 36 is connected to the distal end of the guidewire member 34, that as the guidewire member 34 translates with the translation members 24 (via the coupler 28 and actuation shaft 30), the nosecone 36 with correspondingly translate in a proximal direction as the translational members act to shift the implantable medical device 16 from a collapsed to a fully deployed configuration.
[0070] FIG. 4 further illustrates that in some instances actuation shaft 30 may include an actuation rod 40 positioned within the lumen of a coil member 38. Similar to that described above with respect to the grouping coil 32, the outer surface of the coil member 38 may contact both the inner surface 46 of the inner catheter 14 and the outer surface 44 of the guidewire member 34. It can be appreciated that the outer surface of the coil member 38 may reduce the frictional forces of actuation shaft 30 along the inner surface 46 of the inner catheter 14 as compared to the frictional forces that would be present if the actuation shaft 30 did not include a coil member. For example, coil member 38 provides both“point to point” contacts along the inner surface 46 of the inner member 14 in addition to increasing the ease with which the actuation shaft flexes/bends within the lumen 25 of inner catheter 14. These properties reduce the overall surface friction between the outer surface of actuation shaft 30 and the inner surface 46 of inner catheter 14 (as compared to a solid rod of similar proportions). The reduction in friction may further reduce the likelihood of the actuation shaft 30 to store and release energy in the form of a“backlash” effect. It is contemplated that the coil member 38 may be extend along a portion of or the entire length of the actuation rod 40. Further, the actuation rod 40 may extend from the proximal end of the coupler 28 to the handle member 17. Additionally, the above described functional characteristics of the coil member 38 are not intended to be limiting. For example, it is contemplated that the coil member 38 may be utilized to conduct electricity along a portion thereof (e g., along the surface or other portion of coil member 38).
[0071] FIG. 4 further illustrates that in some examples guidewire member 34 may include areinforcmg coil embedded with its tubular wall. For example, FIG. 4 shows coil 48 positioned with the wall of guidewire member 34. Coil 48 may provide additional strength and flexibility to the guidewire member 34. Additionally, FIG. 4 illustrates the lumen 42 of the guidewire member 34. It can be appreciated that a guidewire (not shown) may extend with the lumen 42 of the guidewire member 34.
[0072] FIG. 5 illustrates a cross-sectional view along line 5-5 of FIG. 4. As indicated above, the inner catheter 14 may include a number of features. For example, the inner catheter 14 may include one or more tension resistance members 50a/50b. The tension resistance members 50a/50b may take the form of a wire (e.g., a metallic wire), a braid, cable, stranded cable, a composite structure, or the like. In one example, the tension resistance members 50a/50b are both metallic wires. In another instance, the tension resistance members 50a/50b are both metallic braids. The braids may further include an axial wire made from a suitable polymer or metal (e.g., aramid). The tension resistance members 50a/50b may be made from the same materials and/or have the same configuration. Alternatively, the tension resistance members 50a/50b may be different from one another. Furthermore, while FIG. 2 illustrates that the inner catheter 14 includes two tension resistance members 50a/50b, this is not intended to be limiting. Other numbers of tension resistance members 50a/50b are contemplated such as one, three, four, five, six, seven, or more.
[0073] FIG. 5 further illustrates that the shape of the lumen 25 of the inner catheter 14 may be designed to limit twisting of the actuation shaft 30 and the guidewire member 34. For example, FIG. 5 illustrates that lumen 25 may be non-circular. For example, the shape of the lumen 25 may be ovular, square, rectangular, etc. It can be appreciated that as the inner catheter 14 rotates within the lumen of the outer member 12, the shape of the lumen 25 may force both the actuation shaft 30 and the guidewire member 34 to maintain the respective spatial relationship as depicted in FIG. 5. In other words, the shape of the lumen 25 forces the actuation shaft 30 and the guidewire member 34 to remain in their positions relative to one another independent of the bending, rotating, flexing, etc. of the inner catheter 14.
[0074] Additionally, FIG. 5 also illustrates the actuation shaft 30 and the guidewire member positioned adjacent one another within lumen 25. As described above, actuation shaft 30 may include an actuation rod 40 positioned within the lumen of a coil member 38. Additionally, FIG. 5 shows guidewire member 34. The guidewire member 34 may include a reinforcing coil 48 embedded with its tubular wall. For example, FIG. 5 shows coil 48 positioned with the wall of guidewire member 34. Coil 48 may provide additional strength and flexibility to the guidewire member 34. Additionally, FIG. 5 illustrates the lumen 42 of the guidewire member 34.
[0075] FIG. 6 illustrates a cross-sectional view along line 6-6 of FIG. 4. FIG. 4 shows grouping coil 32, coupler 28 and guidewire member 34 positioned within lumen 25. Additionally, FIG. 6 shows that the grouping coil 32 may surround three translational members 24 positioned therein. The translational members 24 may be spaced equidistance from one another. For example, the translational members 24 may be spaced at substantially 120 degree angles relative to one another. Further, while FIG. 6 shows three translational members 24, it is contemplated that more or less than three translational members 24 may be utilized within medical device system 10. For example, medical device system 10 may include 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more translational members 24.
[0076] Additionally, FIG. 6 illustrates that inner catheter 14 may include one or more tension resistance members 50a/50b. The tension resistance members 50a/50b may take the form of a wire (e.g., a metallic wire), a braid, cable, stranded cable, a composite structure, or the like. Further, FIG. 6 illustrates that tension resistance members 50a/50b may be positioned opposite one another on either side of lumen 25.
[0077] Additionally, FIG. 5 shows guidewire member 34. The guidewire member 34 may include a reinforcing coil 48 embedded with its tubular wall. For example, FIG. 5 shows coil 48 positioned with the wall of guidewire member 34. Coil 48 may provide additional strength and flexibility to the guidewire member 34. Additionally, FIG. 5 illustrates the lumen 42 of the guidewire member 34. [0078] FIG. 6 further illustrates the coupler 28 including the bottom surface 45 (described above). As illustrated, the bottom surface 45 is shaped to mate with the outer surface the guidewire member 34. For example, in some examples, the bottom surface 45 may include a curved portion which mates with the radius defined by the outer surface 44 of the guidewire member 34. As described above, the bottom surface 45 of the coupler 28 may or may not be rigidly fixed to the guidewire member 34.
[0079] FIG. 7 illustrates a detailed view of a portion of the medical device system 10 shown in FIG. 6. Further, FIG. 7 illustrates a cross-sectional view of coupler 28. Coupler 28 may include a base member 65, a first cap 67 and a second cap 69. First cap 67 and second cap 69 may be separate components from base member 65. Further, first cap 67 and second cap 69 may be attached to base member 65 via welding or any other suitable process.
[0080] As shown, a portion of the actuation rod 40 may extend into a portion of coupler 28 and thereby contact both base member 65 and first cap 67. Similarly, portions of the translational members 24 may extend into a portion of coupler 28 and thereby contact both base member 65 and first cap 69. It can be appreciated from FIG. 7 that base member 65 may include one or more projections 60 that mate with one or more recess 61 in the actuation rod 40. Similarly, it can be appreciated from FIG. 7 that base member 65 may include one or more projections 62 that mate with one or more recesses 63 in the translational members 24. It can further be appreciated that engaging a respective projection with a recess portion (in both the actuation rod 40 and the translational members 24) may limit translational movement of both the actuation rod 40 and the translational members 24 relative to the coupler. In other words, engagement of a respective projection with a recess portion (in both the actuation rod 40 and the translational members 24) may prevent both the actuation rod 40 and the translational members 24 from translating independently of the coupler 28 (and one another). However, it can be further appreciated that the engagement of a respective projection with a recess portion (in both the actuation rod 40 and the translational members 24) may permit the actuation rod 40 to spin/swivel on its own longitudinal axis. Additionally, it can be appreciated that coupler 28 (including base member 65, first cap 67 and second cap 69) may permit dissimilar materials to be engaged because they are mechanically“trapped” and preferentially oriented within coupler 28. In some instances, the coupler 28 may be defined as a“swivel.”
[0081] In some cases, it can be beneficial to have an indication of relative position of the actuation rod 40, and thus an indication of the relative position of the coupler 28 and the translational members 24, as this can provide an indication of the relative position of the medical implant 16. FIGS. 8A-8C show a portion of an example medical delivery device 80. It will be appreciated that some features and elements of the medical delivery device 80 may not be illustrated for clarity purposes. The medical delivery device 80 includes an inner rod 82 that is slidingly disposed within an outer sheath 84. In some cases, the inner rod 82 may be considered as representing the actuation rod 40 and the outer sheath 84 may be considered as representing a portion of the inner catheter 14 discussed with respect to previous drawings. In some cases, the outer sheath 84 includes an electrically insulating layer. In some instances, the outer sheath 84 may represent or be a portion of the coil member 38 extending through the lumen 25.
[0082] In some cases, as illustrated, the inner rod 82 may include a first section 86 that is formed of a material having a first electromagnetic permeability, a second section 88 that is formed of a material having a second electromagnetic permeability that is different from the first electromagnetic permeability, and an intervening transition in electromagnetic permeability 90. While the first section 86 is labeled as being formed of a material with low electromagnetic permeability and the second section 88 is labeled as being formed of a material with high electromagnetic permeability, this is just an example. In some cases, the low electromagnetic permeability material and the high electromagnetic permeability material may be reversed from what is shown, for example. In some instances, the relative length of the first section 86 and the second section 88 may vary. In some cases, the first section 86 may have a longer or even substantially longer length than the second section 88. In some cases, the second section 88 may have a longer length than the first section 86. These are just examples.
[0083] The medical delivery device 80 includes an inductive coil 92 that is disposed relative to the outer sheath 84. The inductive coil 92 is formed of a wire 94 that forms a number of windings around the outer sheath 84. The wire 94 has free ends 94a, 94b that extend proximally to the handle 17 as shown in FIG. 1 so that an electrical signal inductively generated in the inductive coil 92 and carried by the wire 94 may be sent to a measurement circuit, for example. As the inner rod 82 moves distally relative to the outer sheath 84, the transition in electromagnetic permeability 90 will create a change in the induced current caused by the inner rod 82 moving through the inductive coil 92. As seen in FIG. 8A, the transition in electromagnetic permeability 90 is proximal of the inductive coil 92. In FIG. 8B, the transition in electromagnetic permeability 90 is disposed within the inductive coil 92. In FIG. 8C, the transition in electromagnetic permeability 90 has passed completely through the inductive coil 92 and is now distal of the inductive coil 92. [0084] FIG. 8D is a graphical representation of how changes in electromagnetic permeability can be seen, assuming that the first section 86 is formed (as labeled) of a low electromagnetic permeability material and the second section 88 is formed of a high electromagnetic permeability material. When the transition in electromagnetic permeability 90 remains proximal of the inductive coil 92, as shown in FIG. 8A, the induced current is relatively low. This is labeled as region 8A in FIG. 8D. When the transition in electromagnetic permeability 90 is passing through the inductive coil 92, as shown in FIG. 8B, the induced current increases. This is labeled as region 8B in FIG. 8D. Once the transition in electromagnetic permeability 90 has passed completely through the inductive coil 92, and hence only the second section 88 (formed of a high electromagnetic permeability material) is within the inductive coil 92, the induced current is at a maximum. This is labeled as region 8C in FIG. 8D. In some cases, the material with a low electromagnetic permeability may be a nickel -titanium alloy such as Nitinol, and the material with a high electromagnetic permeability may be a stainless steel, but this is merely an example. Some stainless steels are relatively low in electromagnetic permeability.
[0085] In some cases, as described, a change in inductance may be detected. In some instances, there are other electromagnetic properties that are related to inductance that may also be detected and/or measured. Magnetic reluctance is an example of such a property. Examples of circuit-related properties include resonant frequency, Q factor, impulse response, decay time, phase shift, amplitude response, spectral filtering response, impedance, reactance, admittance, suceptance, step response and combinations thereof.
[0086] FIG. 9 A shows a portion of an example medical delivery device 100. It will be appreciated that some features and elements of the medical delivery device 100 may not be illustrated for clarity purposes. The medical delivery device 100 includes an inner rod 102 that is slidingly disposed within an outer sheath 104. In some cases, the inner rod 102 may be considered as representing the actuation rod 40 and the outer sheath 104 may be considered as representing a portion of the inner catheter 14 discussed with respect to previous drawings. In some cases, the outer sheath 104 includes an electrically insulating layer. In some instances, the outer sheath 104 may represent or be a portion of the coil member 38 extending through the lumen 25. The medical delivery device 100 includes an inductive coil 92 that is disposed relative to the outer sheath 84. The inductive coil 92 is formed of a wire 94 that forms a number of windings around the outer sheath 84. The wire 94 has free ends 94a, 94b that extend proximally to the handle 17 as shown in FIG. 1 so that an electrical signal inductively generated in the inductive coil 92 and carried by the wire 94 may be sent to a measurement circuit, for example.
[0087] In some cases, as illustrated, the inner rod 102 may be formed of a material having a particular electromagnetic permeability. In some instances, the inner rod 102 may include a first section 106 formed of a first material and a second section 108 that is formed of a different material. The first section 106 may have a lower or higher electromagnetic permeability than the second section 108. In some cases, the first section 106 and the second section 108 may be formed of the same material, and thus may have the same electromagnetic permeability. In some cases, the inner rod 102 may include an inset ring 110 that is formed of a material having a very high electromagnetic permeability. The inset ring 110 may, for example, be formed of ferrite or mu-metal. As the inner rod 102 translates relative to the outer sheath 104, and the inset ring 110 passes through the inductive coil 92, it will be appreciated that, relative to what was shown in FIG. 8D, there will be a steeper transition in the induced coil, as can be seen for example in FIG. 9B, which is a graphical representation.
[0088] FIG. 10 shows a portion of an example medical delivery device 120. It will be appreciated that some features and elements of the medical delivery device 120 may not be illustrated for clarity purposes. The medical delivery device 120 includes an inner rod 102 that is slidingly disposed within an outer sheath 104. In some cases, the inner rod 102 may be considered as representing the actuation rod 40 and the outer sheath 104 may be considered as representing a portion of the inner catheter 14 discussed with respect to previous drawings. In some cases, the outer sheath 104 includes an electrically insulating layer. In some instances, the outer sheath 104 may represent or be a portion of the coil member 38 extending through the lumen 25. The medical delivery device 120 includes an inductive coil 122 that is disposed relative to the outer sheath 104. The inductive coil 122 is formed of a wire 94 that forms a number of windings around the outer sheath 84 and includes free ends 94a, 94b that can extend proximally to the handle 17. In some cases, as shown, the inductive coil 122 has a variable windings pitch, varying from a relatively wider pitch at a distal end 122a of the inductive coil 122 to a relatively narrower pitch at a proximal end 122b of the inductive coil 122. In some cases, having a variable pitch enables an extended range and extended precision while also enabling improved signal to noise (S/N) values.
[0089] FIG. 11 shows a portion of an example medical delivery device 130. It will be appreciated that some features and elements of the medical delivery device 130 may not be illustrated for clarity purposes. The medical delivery device 130 includes an inner rod 132 that is slidingly disposed within an outer sheath 134. In some cases, the inner rod 132 may be considered as representing the actuation rod 40 and the outer sheath 134 may be considered as representing a portion of the inner catheter 14 discussed with respect to previous drawings. In some cases, the outer sheath 134 includes an electrically insulating layer. In some instances, the outer sheath 134 may represent or be a portion of the coil member 38 extending through the lumen 25.
[0090] In some cases, as illustrated, the inner rod 132 may be formed of a material having a particular electromagnetic permeability. In some instances, the inner rod 132 may include a first section 136 formed of a first material and a second section 138 that is formed of a different material. The first section 136 may have a lower or higher electromagnetic permeability than the second section 138. In some cases, the first section 136 and the second section 138 may be formed of the same material, and thus may have the same electromagnetic permeability. In some cases, the inner rod 132 may include an mset ring 140 that is formed of a material having a very high electromagnetic permeability. The inset ring 140 may, for example, be formed of ferrite or mu-metal.
[0091] In some instances, as shown, the medical delivery device 130 includes an inductive coil 150 that is disposed relative to the outer sheath 134. As the inner rod 132 passes through the outer sheath 134, and the inset ring 140 passes through the inductive coil 150, an electrical current is induced within the inductive coil 150. It will be appreciated that a wire 154 forming the inductive coil 150 extends proximally and forms a first coupling coil 152, thus any induced current flowing through the inductive coil 150 also flows through the first coupling coil 152. A second coupling coil 156 may be disposed about a sheath 154 that may, for example, represent the outer sheath 12 (FIG. 1). In some cases, the second coupling coil 156 may electromagnetically couple with the first coupling coil 152, and thus the electric current induced by the inset ring 140 passing through the inductive coil 150 may be transmitted to a position exterior to the medical delivery device 130. In some instances, the second coupling coil 156 may be secured to the sheath 154. In some cases, the second coupling coil 156 may be temporarily clamped to the sheath 154 when needed.
[0092] The materials that can be used for the various components of the medical devices and/or system 10 disclosed herein may include those commonly associated with medical devices. However, this is not intended to limit the devices and methods described herein, as the discussion may be applied to other components of the medical devices and/or systems 10 disclosed herein including the various shafts, liners, components described relative thereto. [0093] The medical device 10 may be made from a metal, metal alloy, polymer (some examples of which are disclosed below), a metal-polymer composite, ceramics, combinations thereof, and the like, or other suitable material. Some examples of suitable polymers may include polytetrafluoroethylene (PTFE), ethylene tetrafluoroethylene (ETFE), fluorinated ethylene propylene (FEP), polyoxymethylene (POM, for example, DELRIN® available from DuPont), polyether block ester, polyurethane (for example, Polyurethane 85A), polypropylene (PP), polyvinylchloride (PVC), poly ether-ester (for example, ARNITEL® available fromDSM Engineering Plastics), ether or ester based copolymers (for example, butylene/poly(alkylene ether) phthalate and/or other polyester elastomers such as HYTREL® available from DuPont), polyamide (for example, DURETHAN® available from Bayer or CRISTAMID® available from Elf Atochem), elastomeric polyamides, block polyamide/ethers, polyether block amide (PEBA, for example available under the trade name PEBAX®), ethylene vinyl acetate copolymers (EVA), silicones, polyethylene (PE), high density polyethylene (HDPE), polyester, Marlex high-density polyethylene, Marlex low-density polyethylene, linear low density polyethylene (for example REXELL®), ultra-high molecular weight 1UHMW) polyethylene, polypropylene, polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polytrimethylene terephthalate, polyethylene naphthalate (PEN), polyetheretherketone (PEEK), polyimide (PI), polyetherimide (PEI), polyphenylene sulfide (PPS), polyphenylene oxide (PPO), poly paraphenylene terephthalamide (for example, KEVLAR®), polysulfone, nylon, nylon-l2 (such as GRILAMID® available from EMS American Grilon), perfluoro(propyl vinyl ether) (PFA), ethylene vinyl alcohol, polyolefin, polystyrene, epoxy, polyvinylidene chloride (PVdC), poly(styrene-Z -isobutylene-h-styrene) (for example, SIBS and/or SIBS 50A), polycarbonates, ionomers, biocompatible polymers, other suitable materials, or mixtures, combinations, copolymers thereof, polymer/metal composites, and the like. In some embodiments the sheath can be blended with a liquid crystal polymer (LCP).
[0094] Some examples of suitable metals and metal alloys include stainless steel, such as 304V, 304L, and 316LV stainless steel; mild steel; nickel-titanium alloy such as linear-elastic and/or super-elastic nitinol; other nickel alloys such as nickel-chromium-molybdenum alloys (e.g., UNS: N06625 such as INCONEL® 625, UNS: N06022 such as HASTELLOY® C-22®, UNS: N10276 such as HASTELLOY® C276®, other HASTELLOY® alloys, and the like), nickel-copper alloys (e.g., UNS: N04400 such as MONEL® 400, NICKEL VAC® 400, NICORROS® 400, and the like), nickel-cobalt-chromium-molybdenum alloys (e.g., UNS: R30035 such as MP35-N® and the like), nickel-molybdenum alloys (e.g., UNS: N10665 such as HASTELLOY® ALLOY B2®), other nickel-chromium alloys, other nickel-molybdenum alloys, other nickel-cobalt alloys, other nickel-iron alloys, other nickel-copper alloys, other nickel-tungsten or tungsten alloys, and the like; cobalt-chromium alloys; cobalt-chromium- molybdenum alloys (e.g., UNS: R30003 such as ELGILOY®, PHYNOX®, and the like); platinum enriched stainless steel; titanium; combinations thereof; and the like; or any other suitable material.
[0095] In at least some embodiments, portions or all of the medical device 10 may also be doped with, made of, or otherwise include a radiopaque material. Radiopaque materials are understood to be materials capable of producing a relatively bright image on a fluoroscopy screen or another imaging technique during a medical procedure. This relatively bright image aids the user of the medical device 10 in determining its location. Some examples of radiopaque materials can include, but are not limited to, gold, platinum, palladium, tantalum, tungsten alloy, polymer material loaded with a radiopaque filler, and the like. Additionally, other radiopaque marker bands and/or coils may also be incorporated into the design of the medical device 10 to achieve the same result.
[0096] In some embodiments, a degree of Magnetic Resonance Imaging (MRI) compatibility is imparted into the medical device 10. For example, the medical device 10 may include a material that does not substantially distort the image and create substantial artifacts (e.g., gaps in the image). Certain ferromagnetic materials, for example, may not be suitable because they may create artifacts in an MRI image. The medical device 10 may also be made from a material that the MRI machine can image. Some materials that exhibit these characteristics include, for example, tungsten, cobalt-chromium-molybdenum alloys (e.g., UNS: R30003 such as ELGILOY®, PHYNOX®, and the like), nickel-cobalt-chromium- molybdenum alloys (e.g., UNS: R30035 such as MP35-N® and the like), nitinol, and the like, and others.
[0097] It should be understood that this disclosure is, in many respects, only illustrative. Changes may be made in details, particularly in matters of shape, size, and arrangement of steps without exceeding the scope of the disclosure. This may include, to the extent that it is appropriate, the use of any of the features of one example embodiment being used in other embodiments. The disclosure’s scope is, of course, defined in the language in which the appended claims are expressed.

Claims

What is claimed is:
1. A delivery system for an implantable medical device, comprising:
an outer shaft defining an outer shaft lumen;
an inner shaft translatable within the outer shaft lumen;
the inner shaft defining a lumen extending through the inner shaft;
an actuation mechanism extending through the lumen, the actuation mechanism including a coupler, a force translation rod that extends proximally from the coupler and a plurality of push pull rods that extend distally from the coupler and that releasably couple to the implantable medical device;
the force translation rod including a transition in electromagnetic permeability; and an inductive coil disposed relative to the force translation rod and positioned to detect a change in inductance resulting from the transition in electromagnetic permeability passing through the inductive coil.
2. The delivery system of claim 1, wherein the transition in electromagnetic permeability is positioned a distance from the coupler such that a detected change in inductance indicates a relative position of the coupler relative to the inductive coil.
3. The delivery system of any one of claims 1 or 2, wherein a portion of the force translation rod distal of the transition in electromagnetic permeability is formed of a material having a first electromagnetic permeability and a portion of the force translation rod proximal of the transition in electromagnetic permeability is formed of a material having a second electromagnetic permeability different from the first electromagnetic permeability.
4. The delivery system of any one of claims 1 or 2, wherein the force transition rod is formed of a material having a low electromagnetic permeability material and the transition in electromagnetic permeability comprises an inset band of a high electromagnetic permeability material.
5. The delivery system of any one of claims 1 to 4, wherein the inductive coil has a non-constant windings pitch in order to provide increased sensitivity to small movements of the transition in electromagnetic permeability relative to the inductive coil.
6. A delivery catheter for delivering an implantable medical device, comprising: an outer shaft;
an inner shaft slidingly disposed within the outer shaft and defining a lumen extending through the inner shaft, the implantable medical device securable relative to the inner shaft; a force translation rod extending through the lumen of the inner shaft, the force translation rod including a first section formed of a material having a low electromagnetic permeability and a second section formed of a material having a high electromagnetic permeability such that a transition in electromagnetic permeability exists between the first section and the second section; and
an inductive coil disposed relative to the force translation rod and positioned to detect a change in inductance resulting from the transition in electromagnetic permeability passing through the inductive coil.
7. The delivery catheter of claim 6, wherein the transition in electromagnetic permeability is positioned a known distance from where the implantable medical device is secured relative to the inner shaft.
8. The delivery catheter of any one of claims 6 or 7, wherein the force translation rod extends distally to a coupler, and a plurality of push pull rods extend distally from the coupler, and the transition in electromagnetic permeability is positioned a known distance from the coupler.
9. The delivery catheter of any one of claims 6 to 8, wherein the inductive coil has a constant windings pitch.
10. The delivery catheter of any one of claims 6 to 9, wherein the inductive coil is electrically coupled with a first coupling coil that is disposed relative to the inner shaft, at or near a proximal region of the delivery catheter, and is magnetically coupled with a second coupling coil that is disposed about the outer shaft.
11. A delivery system for an implantable medical device, comprising:
a shaft defining a lumen;
an actuation mechanism extending through the lumen, the actuation mechanism including a coupler, a force translation rod that extends proximally from the coupler and a plurality of push pull rods that extend distally from the coupler and that releasably couple to the implantable medical device;
the force translation rod including a transition in electromagnetic permeability; and an inductive coil disposed relative to the force translation rod and positioned to detect a change in inductance resulting from the transition in electromagnetic permeability passing through the inductive coil.
12. The delivery system of claim 11, wherein the transition in electromagnetic permeability is positioned a distance from the coupler such that a detected change in inductance indicates a relative position of the coupler relative to the inductive coil.
13. The delivery system of any one of claims 11 or 12, wherein a portion of the force translation rod distal of the transition in electromagnetic permeability is formed of a material having a first electromagnetic permeability and a portion of the force translation rod proximal of the transition in electromagnetic permeability is formed of a material having an electromagnetic permeability different from the first electromagnetic permeability.
14. The delivery system of any one of claims 11 or 12, wherein the force transition rod is formed of a material having a low electromagnetic permeability material and the transition in electromagnetic permeability comprises an inset band of a high electromagnetic permeability material.
15. The delivery system of any one of claims 11 to 14, wherein the inductive coil is electrically coupled with a first coupling coil that is disposed relative to the inner shaft, at or near a proximal region of the delivery system, and is magnetically coupled with a second coupling coil that is disposed about the outer shaft.
EP19703603.1A 2018-01-19 2019-01-21 Inductance mode deployment sensors for transcatheter valve system Pending EP3740160A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862619352P 2018-01-19 2018-01-19
PCT/US2019/014406 WO2019144069A2 (en) 2018-01-19 2019-01-21 Inductance mode deployment sensors for transcatheter valve system

Publications (1)

Publication Number Publication Date
EP3740160A2 true EP3740160A2 (en) 2020-11-25

Family

ID=65279814

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19703603.1A Pending EP3740160A2 (en) 2018-01-19 2019-01-21 Inductance mode deployment sensors for transcatheter valve system

Country Status (4)

Country Link
US (2) US11191641B2 (en)
EP (1) EP3740160A2 (en)
JP (1) JP7055882B2 (en)
WO (1) WO2019144069A2 (en)

Family Cites Families (777)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US15192A (en) 1856-06-24 Tubular
US2682057A (en) 1951-07-24 1954-06-29 Harry A Lord Heart valve
US2701559A (en) 1951-08-02 1955-02-08 William A Cooper Apparatus for exfoliating and collecting diagnostic material from inner walls of hollow viscera
US2832078A (en) 1956-10-17 1958-04-29 Battelle Memorial Institute Heart valve
US3029819A (en) 1959-07-30 1962-04-17 J L Mcatee Artery graft and method of producing artery grafts
US3099016A (en) 1960-08-11 1963-07-30 Edwards Miles Lowell Heart valve
US3130418A (en) 1960-11-25 1964-04-28 Louis R Head Artificial heart valve and method for making same
US3113586A (en) 1962-09-17 1963-12-10 Physio Control Company Inc Artificial heart valve
US3221006A (en) 1962-11-13 1965-11-30 Eastman Kodak Co 5-amino-3-substituted-1,2,4-thiadiazole azo compounds
US3143742A (en) 1963-03-19 1964-08-11 Surgitool Inc Prosthetic sutureless heart valve
US3367364A (en) 1964-10-19 1968-02-06 Univ Minnesota Prosthetic heart valve
US3334629A (en) 1964-11-09 1967-08-08 Bertram D Cohn Occlusive device for inferior vena cava
US3365728A (en) 1964-12-18 1968-01-30 Edwards Lab Inc Upholstered heart valve having a sealing ring adapted for dispensing medicaments
GB1127325A (en) 1965-08-23 1968-09-18 Henry Berry Improved instrument for inserting artificial heart valves
US3587115A (en) 1966-05-04 1971-06-28 Donald P Shiley Prosthetic sutureless heart valves and implant tools therefor
US3445916A (en) 1967-04-19 1969-05-27 Rudolf R Schulte Method for making an anatomical check valve
US3548417A (en) 1967-09-05 1970-12-22 Ronnie G Kischer Heart valve having a flexible wall which rotates between open and closed positions
US3540431A (en) 1968-04-04 1970-11-17 Kazi Mobin Uddin Collapsible filter for fluid flowing in closed passageway
US3570014A (en) 1968-09-16 1971-03-16 Warren D Hancock Stent for heart valve
US3671979A (en) 1969-09-23 1972-06-27 Univ Utah Catheter mounted artificial heart valve for implanting in close proximity to a defective natural heart valve
US3628535A (en) 1969-11-12 1971-12-21 Nibot Corp Surgical instrument for implanting a prosthetic heart valve or the like
US3592184A (en) 1969-12-16 1971-07-13 David H Watkins Heart assist method and catheter
US3642004A (en) 1970-01-05 1972-02-15 Life Support Equipment Corp Urethral valve
US3657744A (en) 1970-05-08 1972-04-25 Univ Minnesota Method for fixing prosthetic implants in a living body
US3714671A (en) 1970-11-30 1973-02-06 Cutter Lab Tissue-type heart valve with a graft support ring or stent
US3725961A (en) 1970-12-29 1973-04-10 Baxter Laboratories Inc Prosthetic heart valve having fabric suturing element
US3755823A (en) 1971-04-23 1973-09-04 Hancock Laboratories Inc Flexible stent for heart valve
US3868956A (en) 1972-06-05 1975-03-04 Ralph J Alfidi Vessel implantable appliance and method of implanting it
US3839741A (en) 1972-11-17 1974-10-08 J Haller Heart valve and retaining means therefor
US3795246A (en) 1973-01-26 1974-03-05 Bard Inc C R Venocclusion device
US3874388A (en) 1973-02-12 1975-04-01 Ochsner Med Found Alton Shunt defect closure system
US4291420A (en) 1973-11-09 1981-09-29 Medac Gesellschaft Fur Klinische Spezialpraparate Mbh Artificial heart valve
US3983581A (en) 1975-01-20 1976-10-05 William W. Angell Heart valve stent
US3997923A (en) 1975-04-28 1976-12-21 St. Jude Medical, Inc. Heart valve prosthesis and suturing assembly and method of implanting a heart valve prosthesis in a heart
US4035849A (en) 1975-11-17 1977-07-19 William W. Angell Heart valve stent and process for preparing a stented heart valve prosthesis
CA1069652A (en) 1976-01-09 1980-01-15 Alain F. Carpentier Supported bioprosthetic heart valve with compliant orifice ring
US4084268A (en) 1976-04-22 1978-04-18 Shiley Laboratories, Incorporated Prosthetic tissue heart valve
US4056854A (en) 1976-09-28 1977-11-08 The United States Of America As Represented By The Department Of Health, Education And Welfare Aortic heart valve catheter
US5876419A (en) 1976-10-02 1999-03-02 Navius Corporation Stent and method for making a stent
US4297749A (en) 1977-04-25 1981-11-03 Albany International Corp. Heart valve prosthesis
US4233690A (en) 1978-05-19 1980-11-18 Carbomedics, Inc. Prosthetic device couplings
US4222126A (en) 1978-12-14 1980-09-16 The United States Of America As Represented By The Secretary Of The Department Of Health, Education & Welfare Unitized three leaflet heart valve
US4265694A (en) 1978-12-14 1981-05-05 The United States Of America As Represented By The Department Of Health, Education And Welfare Method of making unitized three leaflet heart valve
US4574803A (en) 1979-01-19 1986-03-11 Karl Storz Tissue cutter
GB2056023B (en) 1979-08-06 1983-08-10 Ross D N Bodnar E Stent for a cardiac valve
US4373216A (en) 1980-10-27 1983-02-15 Hemex, Inc. Heart valves having edge-guided occluders
US4326306A (en) 1980-12-16 1982-04-27 Lynell Medical Technology, Inc. Intraocular lens and manipulating tool therefor
US4339831A (en) 1981-03-27 1982-07-20 Medtronic, Inc. Dynamic annulus heart valve and reconstruction ring
US4470157A (en) 1981-04-27 1984-09-11 Love Jack W Tricuspid prosthetic tissue heart valve
US4323358A (en) 1981-04-30 1982-04-06 Vascor, Inc. Method for inhibiting mineralization of natural tissue during implantation
US4345340A (en) 1981-05-07 1982-08-24 Vascor, Inc. Stent for mitral/tricuspid heart valve
US4501030A (en) 1981-08-17 1985-02-26 American Hospital Supply Corporation Method of leaflet attachment for prosthetic heart valves
US4865600A (en) 1981-08-25 1989-09-12 Baxter International Inc. Mitral valve holder
US4425908A (en) 1981-10-22 1984-01-17 Beth Israel Hospital Blood clot filter
US4406022A (en) 1981-11-16 1983-09-27 Kathryn Roy Prosthetic valve means for cardiovascular surgery
US4423809A (en) 1982-02-05 1984-01-03 Staar Surgical Company, Inc. Packaging system for intraocular lens structures
FR2523810B1 (en) 1982-03-23 1988-11-25 Carpentier Alain ORGANIC GRAFT FABRIC AND PROCESS FOR ITS PREPARATION
SE445884B (en) 1982-04-30 1986-07-28 Medinvent Sa DEVICE FOR IMPLANTATION OF A RODFORM PROTECTION
US4484579A (en) 1982-07-19 1984-11-27 University Of Pittsburgh Commissurotomy catheter apparatus and method
IT1212547B (en) 1982-08-09 1989-11-30 Iorio Domenico INSTRUMENT FOR SURGICAL USE INTENDED TO MAKE INTERVENTIONS FOR THE IMPLANTATION OF BIOPROTESIS IN HUMAN ORGANS EASIER AND SAFER
DE3230858C2 (en) 1982-08-19 1985-01-24 Ahmadi, Ali, Dr. med., 7809 Denzlingen Ring prosthesis
US4885005A (en) 1982-11-12 1989-12-05 Baxter International Inc. Surfactant treatment of implantable biological tissue to inhibit calcification
US5215541A (en) 1982-11-12 1993-06-01 Baxter International Inc. Surfactant treatment of implantable biological tissue to inhibit calcification
US4680031A (en) 1982-11-29 1987-07-14 Tascon Medical Technology Corporation Heart valve prosthesis
GB8300636D0 (en) 1983-01-11 1983-02-09 Black M M Heart valve replacements
US4535483A (en) 1983-01-17 1985-08-20 Hemex, Inc. Suture rings for heart valves
US4834755A (en) 1983-04-04 1989-05-30 Pfizer Hospital Products Group, Inc. Triaxially-braided fabric prosthesis
US4610688A (en) 1983-04-04 1986-09-09 Pfizer Hospital Products Group, Inc. Triaxially-braided fabric prosthesis
AR229309A1 (en) 1983-04-20 1983-07-15 Barone Hector Daniel MOUNT FOR CARDIAC VALVES
US4612011A (en) 1983-07-22 1986-09-16 Hans Kautzky Central occluder semi-biological heart valve
US4531943A (en) 1983-08-08 1985-07-30 Angiomedics Corporation Catheter with soft deformable tip
US4665906A (en) 1983-10-14 1987-05-19 Raychem Corporation Medical devices incorporating sim alloy elements
US4585705A (en) 1983-11-09 1986-04-29 Dow Corning Corporation Hard organopolysiloxane release coating
US4787899A (en) 1983-12-09 1988-11-29 Lazarus Harrison M Intraluminal graft device, system and method
US5693083A (en) 1983-12-09 1997-12-02 Endovascular Technologies, Inc. Thoracic graft and delivery catheter
US4627436A (en) 1984-03-01 1986-12-09 Innoventions Biomedical Inc. Angioplasty catheter and method for use thereof
US4617932A (en) 1984-04-25 1986-10-21 Elliot Kornberg Device and method for performing an intraluminal abdominal aortic aneurysm repair
US4592340A (en) 1984-05-02 1986-06-03 Boyles Paul W Artificial catheter means
US5007896A (en) 1988-12-19 1991-04-16 Surgical Systems & Instruments, Inc. Rotary-catheter for atherectomy
US4883458A (en) 1987-02-24 1989-11-28 Surgical Systems & Instruments, Inc. Atherectomy system and method of using the same
US4979939A (en) 1984-05-14 1990-12-25 Surgical Systems & Instruments, Inc. Atherectomy system with a guide wire
DE3426300A1 (en) 1984-07-17 1986-01-30 Doguhan Dr.med. 6000 Frankfurt Baykut TWO-WAY VALVE AND ITS USE AS A HEART VALVE PROSTHESIS
US4580568A (en) 1984-10-01 1986-04-08 Cook, Incorporated Percutaneous endovascular stent and method for insertion thereof
DE3442088A1 (en) 1984-11-17 1986-05-28 Beiersdorf Ag, 2000 Hamburg HEART VALVE PROSTHESIS
SU1271508A1 (en) 1984-11-29 1986-11-23 Горьковский государственный медицинский институт им.С.М.Кирова Artificial heart valve
US4759758A (en) 1984-12-07 1988-07-26 Shlomo Gabbay Prosthetic heart valve
US4662885A (en) 1985-09-03 1987-05-05 Becton, Dickinson And Company Percutaneously deliverable intravascular filter prosthesis
GB2181057B (en) 1985-10-23 1989-09-27 Blagoveshchensk G Med Inst Prosthetic valve holder
US4733665C2 (en) 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
DE3640745A1 (en) 1985-11-30 1987-06-04 Ernst Peter Prof Dr M Strecker Catheter for producing or extending connections to or between body cavities
US4710192A (en) 1985-12-30 1987-12-01 Liotta Domingo S Diaphragm and method for occlusion of the descending thoracic aorta
SU1371700A1 (en) 1986-02-21 1988-02-07 МВТУ им.Н.Э.Баумана Prosthesis of heart valve
CH672247A5 (en) 1986-03-06 1989-11-15 Mo Vysshee Tekhnicheskoe Uchil
US4878906A (en) 1986-03-25 1989-11-07 Servetus Partnership Endoprosthesis for repairing a damaged vessel
US4777951A (en) 1986-09-19 1988-10-18 Mansfield Scientific, Inc. Procedure and catheter instrument for treating patients for aortic stenosis
IL83966A (en) 1986-09-26 1992-03-29 Schering Ag Amides of aminopolycarboxylic acids and pharmaceutical compositions containing them
US5002556A (en) 1986-11-29 1991-03-26 Terumo Kabushiki Kaisha Balloon catheter assembly
US4878495A (en) 1987-05-15 1989-11-07 Joseph Grayzel Valvuloplasty device with satellite expansion means
US4872874A (en) 1987-05-29 1989-10-10 Taheri Syde A Method and apparatus for transarterial aortic graft insertion and implantation
US4796629A (en) 1987-06-03 1989-01-10 Joseph Grayzel Stiffened dilation balloon catheter device
US4829990A (en) 1987-06-25 1989-05-16 Thueroff Joachim Implantable hydraulic penile erector
JPH088933B2 (en) 1987-07-10 1996-01-31 日本ゼオン株式会社 Catheter
US4851001A (en) 1987-09-17 1989-07-25 Taheri Syde A Prosthetic valve for a blood vein and an associated method of implantation of the valve
US5159937A (en) 1987-09-30 1992-11-03 Advanced Cardiovascular Systems, Inc. Steerable dilatation catheter
US4755181A (en) 1987-10-08 1988-07-05 Matrix Medica, Inc. Anti-suture looping device for prosthetic heart valves
US4819751A (en) 1987-10-16 1989-04-11 Baxter Travenol Laboratories, Inc. Valvuloplasty catheter and method
US4873978A (en) 1987-12-04 1989-10-17 Robert Ginsburg Device and method for emboli retrieval
JPH01290639A (en) 1988-05-17 1989-11-22 Daikin Ind Ltd Production of 1,1,1-trifluoro-2,2-dichloroethane
US4909252A (en) 1988-05-26 1990-03-20 The Regents Of The Univ. Of California Perfusion balloon catheter
US5032128A (en) 1988-07-07 1991-07-16 Medtronic, Inc. Heart valve prosthesis
US4917102A (en) 1988-09-14 1990-04-17 Advanced Cardiovascular Systems, Inc. Guidewire assembly with steerable adjustable tip
US4950227A (en) 1988-11-07 1990-08-21 Boston Scientific Corporation Stent delivery system
DE8815082U1 (en) 1988-11-29 1989-05-18 Biotronik Mess- Und Therapiegeraete Gmbh & Co Ingenieurbuero Berlin, 1000 Berlin, De
US4927426A (en) 1989-01-03 1990-05-22 Dretler Stephen P Catheter device
US4856516A (en) 1989-01-09 1989-08-15 Cordis Corporation Endovascular stent apparatus and method
US4966604A (en) 1989-01-23 1990-10-30 Interventional Technologies Inc. Expandable atherectomy cutter with flexibly bowed blades
US5425739A (en) 1989-03-09 1995-06-20 Avatar Design And Development, Inc. Anastomosis stent and stent selection system
US4994077A (en) 1989-04-21 1991-02-19 Dobben Richard L Artificial heart valve for implantation in a blood vessel
EP0474748B1 (en) 1989-05-31 1995-01-25 Baxter International Inc. Biological valvular prosthesis
US5609626A (en) 1989-05-31 1997-03-11 Baxter International Inc. Stent devices and support/restrictor assemblies for use in conjunction with prosthetic vascular grafts
US5047041A (en) 1989-08-22 1991-09-10 Samuels Peter B Surgical apparatus for the excision of vein valves in situ
US4986830A (en) 1989-09-22 1991-01-22 Schneider (U.S.A.) Inc. Valvuloplasty catheter with balloon which remains stable during inflation
US5089015A (en) 1989-11-28 1992-02-18 Promedica International Method for implanting unstented xenografts and allografts
US5002559A (en) 1989-11-30 1991-03-26 Numed PTCA catheter
US5591185A (en) 1989-12-14 1997-01-07 Corneal Contouring Development L.L.C. Method and apparatus for reprofiling or smoothing the anterior or stromal cornea by scraping
US5141494A (en) 1990-02-15 1992-08-25 Danforth Biomedical, Inc. Variable wire diameter angioplasty dilatation balloon catheter
US5238004A (en) 1990-04-10 1993-08-24 Boston Scientific Corporation High elongation linear elastic guidewire
US5037434A (en) 1990-04-11 1991-08-06 Carbomedics, Inc. Bioprosthetic heart valve with elastic commissures
DK124690D0 (en) 1990-05-18 1990-05-18 Henning Rud Andersen FAT PROTECTION FOR IMPLEMENTATION IN THE BODY FOR REPLACEMENT OF NATURAL FLEET AND CATS FOR USE IN IMPLEMENTING A SUCH FAT PROTECTION
US5085635A (en) 1990-05-18 1992-02-04 Cragg Andrew H Valved-tip angiographic catheter
US5411552A (en) 1990-05-18 1995-05-02 Andersen; Henning R. Valve prothesis for implantation in the body and a catheter for implanting such valve prothesis
US5064435A (en) 1990-06-28 1991-11-12 Schneider (Usa) Inc. Self-expanding prosthesis having stable axial length
US5122154A (en) 1990-08-15 1992-06-16 Rhodes Valentine J Endovascular bypass graft
US5197979A (en) 1990-09-07 1993-03-30 Baxter International Inc. Stentless heart valve and holder
ES1015196Y (en) 1990-09-21 1992-01-01 Rosello Barbara Mariano SURGICAL INSTRUMENT.
US5161547A (en) 1990-11-28 1992-11-10 Numed, Inc. Method of forming an intravascular radially expandable stent
US5217483A (en) 1990-11-28 1993-06-08 Numed, Inc. Intravascular radially expandable stent
US6165292A (en) 1990-12-18 2000-12-26 Advanced Cardiovascular Systems, Inc. Superelastic guiding member
US5152771A (en) 1990-12-31 1992-10-06 The Board Of Supervisors Of Louisiana State University Valve cutter for arterial by-pass surgery
US5282847A (en) 1991-02-28 1994-02-01 Medtronic, Inc. Prosthetic vascular grafts with a pleated structure
CA2103592A1 (en) 1991-03-01 1992-09-02 Terrence J. Buelna Cholangiography catheter
JPH05184611A (en) 1991-03-19 1993-07-27 Kenji Kusuhara Valvular annulation retaining member and its attaching method
US5295958A (en) 1991-04-04 1994-03-22 Shturman Cardiology Systems, Inc. Method and apparatus for in vivo heart valve decalcification
US5167628A (en) 1991-05-02 1992-12-01 Boyles Paul W Aortic balloon catheter assembly for indirect infusion of the coronary arteries
US5350398A (en) 1991-05-13 1994-09-27 Dusan Pavcnik Self-expanding filter for percutaneous insertion
US5397351A (en) 1991-05-13 1995-03-14 Pavcnik; Dusan Prosthetic valve for percutaneous insertion
IT1245750B (en) 1991-05-24 1994-10-14 Sorin Biomedica Emodialisi S R CARDIAC VALVE PROSTHESIS, PARTICULARLY FOR REPLACING THE AORTIC VALVE
US5209741A (en) 1991-07-08 1993-05-11 Endomedix Corporation Surgical access device having variable post-insertion cross-sectional geometry
US5571215A (en) 1993-02-22 1996-11-05 Heartport, Inc. Devices and methods for intracardiac procedures
US5769812A (en) 1991-07-16 1998-06-23 Heartport, Inc. System for cardiac procedures
US6866650B2 (en) 1991-07-16 2005-03-15 Heartport, Inc. System for cardiac procedures
US5370685A (en) 1991-07-16 1994-12-06 Stanford Surgical Technologies, Inc. Endovascular aortic valve replacement
CA2117088A1 (en) 1991-09-05 1993-03-18 David R. Holmes Flexible tubular device for use in medical applications
US5258042A (en) 1991-12-16 1993-11-02 Henry Ford Health System Intravascular hydrogel implant
US5756476A (en) 1992-01-14 1998-05-26 The United States Of America As Represented By The Department Of Health And Human Services Inhibition of cell proliferation using antisense oligonucleotides
US5507767A (en) 1992-01-15 1996-04-16 Cook Incorporated Spiral stent
EP0552579B1 (en) 1992-01-22 1996-01-03 Guy-Henri Muller Prosthetic implants for plastic surgery
US5489297A (en) 1992-01-27 1996-02-06 Duran; Carlos M. G. Bioprosthetic heart valve with absorbable stent
US5163953A (en) 1992-02-10 1992-11-17 Vince Dennis J Toroidal artificial heart valve stent
US5258023A (en) 1992-02-12 1993-11-02 Reger Medical Development, Inc. Prosthetic heart valve
US5683448A (en) 1992-02-21 1997-11-04 Boston Scientific Technology, Inc. Intraluminal stent and graft
JP2660101B2 (en) 1992-05-08 1997-10-08 シュナイダー・(ユーエスエイ)・インコーポレーテッド Esophageal stent and delivery device
US5332402A (en) 1992-05-12 1994-07-26 Teitelbaum George P Percutaneously-inserted cardiac valve
FR2693366B1 (en) 1992-07-09 1994-09-02 Celsa Lg Device forming a vascular prosthesis usable for the treatment of aneurysms.
US5409019A (en) 1992-10-30 1995-04-25 Wilk; Peter J. Coronary artery by-pass method
EP0637947B1 (en) 1993-01-14 2001-12-19 Meadox Medicals, Inc. Radially expandable tubular prosthesis
US5682906A (en) 1993-02-22 1997-11-04 Heartport, Inc. Methods of performing intracardiac procedures on an arrested heart
US5431676A (en) 1993-03-05 1995-07-11 Innerdyne Medical, Inc. Trocar system having expandable port
US5772609A (en) 1993-05-11 1998-06-30 Target Therapeutics, Inc. Guidewire with variable flexibility due to polymeric coatings
US5480423A (en) 1993-05-20 1996-01-02 Boston Scientific Corporation Prosthesis delivery
GB9312666D0 (en) 1993-06-18 1993-08-04 Vesely Ivan Bioprostetic heart valve
US5415633A (en) 1993-07-28 1995-05-16 Active Control Experts, Inc. Remotely steered catheterization device
US5443495A (en) 1993-09-17 1995-08-22 Scimed Lifesystems Inc. Polymerization angioplasty balloon implant device
KR970004845Y1 (en) 1993-09-27 1997-05-21 주식회사 수호메디테크 Stent for expanding a lumen
US5545209A (en) 1993-09-30 1996-08-13 Texas Petrodet, Inc. Controlled deployment of a medical device
DE69433617T2 (en) 1993-09-30 2005-03-03 Endogad Research Pty Ltd. INTRALUMINAL TRANSPLANT
US5389106A (en) 1993-10-29 1995-02-14 Numed, Inc. Impermeable expandable intravascular stent
US5713950A (en) 1993-11-01 1998-02-03 Cox; James L. Method of replacing heart valves using flexible tubes
US5480424A (en) 1993-11-01 1996-01-02 Cox; James L. Heart valve replacement using flexible tubes
EP0657147B1 (en) 1993-11-04 1999-08-04 C.R. Bard, Inc. Non-migrating vascular prosthesis
AU1091095A (en) 1993-11-08 1995-05-29 Harrison M. Lazarus Intraluminal vascular graft and method
RU2089131C1 (en) 1993-12-28 1997-09-10 Сергей Апполонович Пульнев Stent-expander
DE4401227C2 (en) 1994-01-18 1999-03-18 Ernst Peter Prof Dr M Strecker Endoprosthesis implantable percutaneously in a patient's body
US5476506A (en) 1994-02-08 1995-12-19 Ethicon, Inc. Bi-directional crimped graft
US5609627A (en) 1994-02-09 1997-03-11 Boston Scientific Technology, Inc. Method for delivering a bifurcated endoluminal prosthesis
US5443477A (en) 1994-02-10 1995-08-22 Stentco, Inc. Apparatus and method for deployment of radially expandable stents by a mechanical linkage
US5549663A (en) 1994-03-09 1996-08-27 Cordis Corporation Endoprosthesis having graft member and exposed welded end junctions, method and procedure
US5556413A (en) 1994-03-11 1996-09-17 Advanced Cardiovascular Systems, Inc. Coiled stent with locking ends
US5476510A (en) 1994-04-21 1995-12-19 Medtronic, Inc. Holder for heart valve
DE4415359C2 (en) 1994-05-02 1997-10-23 Aesculap Ag Surgical tubular shaft instrument
US6139510A (en) 1994-05-11 2000-10-31 Target Therapeutics Inc. Super elastic alloy guidewire
US5765418A (en) 1994-05-16 1998-06-16 Medtronic, Inc. Method for making an implantable medical device from a refractory metal
CA2149290C (en) 1994-05-26 2006-07-18 Carl T. Urban Optical trocar
US5824041A (en) 1994-06-08 1998-10-20 Medtronic, Inc. Apparatus and methods for placement and repositioning of intraluminal prostheses
US5728068A (en) 1994-06-14 1998-03-17 Cordis Corporation Multi-purpose balloon catheter
US5522881A (en) 1994-06-28 1996-06-04 Meadox Medicals, Inc. Implantable tubular prosthesis having integral cuffs
ES2340142T3 (en) 1994-07-08 2010-05-31 Ev3 Inc. SYSTEM TO CARRY OUT AN INTRAVASCULAR PROCEDURE.
DE4424242A1 (en) 1994-07-09 1996-01-11 Ernst Peter Prof Dr M Strecker Endoprosthesis implantable percutaneously in a patient's body
US5554185A (en) 1994-07-18 1996-09-10 Block; Peter C. Inflatable prosthetic cardiovascular valve for percutaneous transluminal implantation of same
US5545133A (en) 1994-09-16 1996-08-13 Scimed Life Systems, Inc. Balloon catheter with improved pressure source
BR9510216A (en) 1994-12-21 1997-11-04 Novo Nordisk As Process of enzymatic treatment of wool and wool material or aminal fur
US5674277A (en) 1994-12-23 1997-10-07 Willy Rusch Ag Stent for placement in a body tube
BE1009085A3 (en) 1995-02-10 1996-11-05 De Fays Robert Dr Intra-aortic prosthesis and surgical instruments for the introduction, implementation and fixing in the aortic prosthesis.
US5575818A (en) 1995-02-14 1996-11-19 Corvita Corporation Endovascular stent with locking ring
WO1996025897A2 (en) 1995-02-22 1996-08-29 Menlo Care, Inc. Covered expanding mesh stent
US5681345A (en) 1995-03-01 1997-10-28 Scimed Life Systems, Inc. Sleeve carrying stent
WO1996030073A1 (en) 1995-03-30 1996-10-03 Heartport, Inc. Endovascular cardiac venting catheter and method
DE69632776T2 (en) 1995-03-30 2005-08-25 Heartport, Inc., Redwood City SYSTEM FOR IMPLEMENTING ENDOVASCULAR INTERVENTION
US5709713A (en) 1995-03-31 1998-01-20 Cardiovascular Concepts, Inc. Radially expansible vascular prosthesis having reversible and other locking structures
US5667523A (en) 1995-04-28 1997-09-16 Impra, Inc. Dual supported intraluminal graft
US5824064A (en) 1995-05-05 1998-10-20 Taheri; Syde A. Technique for aortic valve replacement with simultaneous aortic arch graft insertion and apparatus therefor
US5534007A (en) 1995-05-18 1996-07-09 Scimed Life Systems, Inc. Stent deployment catheter with collapsible sheath
US5728152A (en) 1995-06-07 1998-03-17 St. Jude Medical, Inc. Bioresorbable heart valve support
EP0830113A1 (en) 1995-06-07 1998-03-25 St.Jude Medical, Inc Direct suture orifice for mechanical heart valve
US5571175A (en) 1995-06-07 1996-11-05 St. Jude Medical, Inc. Suture guard for prosthetic heart valve
US5716417A (en) 1995-06-07 1998-02-10 St. Jude Medical, Inc. Integral supporting structure for bioprosthetic heart valve
DE19532846A1 (en) 1995-09-06 1997-03-13 Georg Dr Berg Valve for use in heart
US5769882A (en) 1995-09-08 1998-06-23 Medtronic, Inc. Methods and apparatus for conformably sealing prostheses within body lumens
US5735842A (en) 1995-09-11 1998-04-07 St. Jude Medical, Inc. Low profile manipulators for heart valve prostheses
US5807405A (en) 1995-09-11 1998-09-15 St. Jude Medical, Inc. Apparatus for attachment of heart valve holder to heart valve prosthesis
US6193745B1 (en) 1995-10-03 2001-02-27 Medtronic, Inc. Modular intraluminal prosteheses construction and methods
US5824037A (en) 1995-10-03 1998-10-20 Medtronic, Inc. Modular intraluminal prostheses construction and methods
US6287336B1 (en) 1995-10-16 2001-09-11 Medtronic, Inc. Variable flexibility stent
US5591195A (en) 1995-10-30 1997-01-07 Taheri; Syde Apparatus and method for engrafting a blood vessel
DE19546692C2 (en) 1995-12-14 2002-11-07 Hans-Reiner Figulla Self-expanding heart valve prosthesis for implantation in the human body via a catheter system
US5861028A (en) 1996-09-09 1999-01-19 Shelhigh Inc Natural tissue heart valve and stent prosthesis and method for making the same
US5855602A (en) 1996-09-09 1999-01-05 Shelhigh, Inc. Heart valve prosthesis
US5843158A (en) 1996-01-05 1998-12-01 Medtronic, Inc. Limited expansion endoluminal prostheses and methods for their use
ATE290832T1 (en) 1996-01-05 2005-04-15 Medtronic Inc EXPANDABLE ENDOLUMINAL PROSTHESES
EP1011889B1 (en) 1996-01-30 2002-10-30 Medtronic, Inc. Articles for and methods of making stents
JPH09215753A (en) 1996-02-08 1997-08-19 Schneider Usa Inc Self-expanding stent made of titanium alloy
US6402736B1 (en) 1996-02-16 2002-06-11 Joe E. Brown Apparatus and method for filtering intravascular fluids and for delivering diagnostic and therapeutic agents
US5716370A (en) 1996-02-23 1998-02-10 Williamson, Iv; Warren Means for replacing a heart valve in a minimally invasive manner
US6402780B2 (en) 1996-02-23 2002-06-11 Cardiovascular Technologies, L.L.C. Means and method of replacing a heart valve in a minimally invasive manner
US5695498A (en) 1996-02-28 1997-12-09 Numed, Inc. Stent implantation system
US5720391A (en) 1996-03-29 1998-02-24 St. Jude Medical, Inc. Packaging and holder for heart valve prosthesis
US5891191A (en) 1996-04-30 1999-04-06 Schneider (Usa) Inc Cobalt-chromium-molybdenum alloy stent and stent-graft
US5885228A (en) 1996-05-08 1999-03-23 Heartport, Inc. Valve sizer and method of use
CA2254831C (en) 1996-05-14 2006-10-17 Embol-X, Inc. Aortic occluder with associated filter and methods of use during cardiac surgery
DE69719237T2 (en) 1996-05-23 2003-11-27 Samsung Electronics Co Ltd Flexible, self-expandable stent and method for its manufacture
US7238197B2 (en) 2000-05-30 2007-07-03 Devax, Inc. Endoprosthesis deployment system for treating vascular bifurcations
CN1166346C (en) 1996-06-20 2004-09-15 瓦斯卡泰克有限公司 Prosthetic repair of body passages
US5855601A (en) 1996-06-21 1999-01-05 The Trustees Of Columbia University In The City Of New York Artificial heart valve and method and device for implanting the same
US5843161A (en) 1996-06-26 1998-12-01 Cordis Corporation Endoprosthesis assembly for percutaneous deployment and method of deploying same
US5662671A (en) 1996-07-17 1997-09-02 Embol-X, Inc. Atherectomy device having trapping and excising means for removal of plaque from the aorta and other arteries
US5755783A (en) 1996-07-29 1998-05-26 Stobie; Robert Suture rings for rotatable artificial heart valves
US6702851B1 (en) 1996-09-06 2004-03-09 Joseph A. Chinn Prosthetic heart valve with surface modification
US6764509B2 (en) 1996-09-06 2004-07-20 Carbomedics Inc. Prosthetic heart valve with surface modification
US5800531A (en) 1996-09-30 1998-09-01 Baxter International Inc. Bioprosthetic heart valve implantation device
BR9706814A (en) 1996-10-01 1999-12-28 Numed Inc Radially expandable stent type device.
US5749890A (en) 1996-12-03 1998-05-12 Shaknovich; Alexander Method and system for stent placement in ostial lesions
NL1004827C2 (en) 1996-12-18 1998-06-19 Surgical Innovations Vof Device for regulating blood circulation.
US6206911B1 (en) 1996-12-19 2001-03-27 Simcha Milo Stent combination
US6015431A (en) 1996-12-23 2000-01-18 Prograft Medical, Inc. Endolumenal stent-graft with leak-resistant seal
EP0850607A1 (en) 1996-12-31 1998-07-01 Cordis Corporation Valve prosthesis for implantation in body channels
GB9701479D0 (en) 1997-01-24 1997-03-12 Aortech Europ Ltd Heart valve
US6241757B1 (en) 1997-02-04 2001-06-05 Solco Surgical Instrument Co., Ltd. Stent for expanding body's lumen
CA2281519A1 (en) 1997-02-19 1998-08-27 Condado Medical Devices Corporation Multi-purpose catheters, catheter systems, and radiation treatment
US6152946A (en) 1998-03-05 2000-11-28 Scimed Life Systems, Inc. Distal protection device and method
US5830229A (en) 1997-03-07 1998-11-03 Micro Therapeutics Inc. Hoop stent
US6416510B1 (en) 1997-03-13 2002-07-09 Biocardia, Inc. Drug delivery catheters that attach to tissue and methods for their use
US5817126A (en) 1997-03-17 1998-10-06 Surface Genesis, Inc. Compound stent
US5824053A (en) 1997-03-18 1998-10-20 Endotex Interventional Systems, Inc. Helical mesh endoprosthesis and methods of use
US5824055A (en) 1997-03-25 1998-10-20 Endotex Interventional Systems, Inc. Stent graft delivery system and methods of use
US5928281A (en) 1997-03-27 1999-07-27 Baxter International Inc. Tissue heart valves
US5860966A (en) 1997-04-16 1999-01-19 Numed, Inc. Method of securing a stent on a balloon catheter
US5868783A (en) 1997-04-16 1999-02-09 Numed, Inc. Intravascular stent with limited axial shrinkage
JP4083241B2 (en) 1997-04-23 2008-04-30 アーテミス・メディカル・インコーポレイテッド Bifurcated stent and distal protection system
US5957949A (en) 1997-05-01 1999-09-28 World Medical Manufacturing Corp. Percutaneous placement valve stent
US6206917B1 (en) 1997-05-02 2001-03-27 St. Jude Medical, Inc. Differential treatment of prosthetic devices
US6245102B1 (en) 1997-05-07 2001-06-12 Iowa-India Investments Company Ltd. Stent, stent graft and stent valve
US5855597A (en) 1997-05-07 1999-01-05 Iowa-India Investments Co. Limited Stent valve and stent graft for percutaneous surgery
US6162245A (en) 1997-05-07 2000-12-19 Iowa-India Investments Company Limited Stent valve and stent graft
US5911734A (en) 1997-05-08 1999-06-15 Embol-X, Inc. Percutaneous catheter and guidewire having filter and medical device deployment capabilities
US6676682B1 (en) 1997-05-08 2004-01-13 Scimed Life Systems, Inc. Percutaneous catheter and guidewire having filter and medical device deployment capabilities
US6258120B1 (en) 1997-12-23 2001-07-10 Embol-X, Inc. Implantable cerebral protection device and methods of use
US6007575A (en) 1997-06-06 1999-12-28 Samuels; Shaun Laurence Wilkie Inflatable intraluminal stent and method for affixing same within the human body
JP3645399B2 (en) 1997-06-09 2005-05-11 住友金属工業株式会社 Endovascular stent
AU8337898A (en) 1997-06-17 1999-01-04 Sante Camilli Implantable valve for blood vessels
US6635080B1 (en) 1997-06-19 2003-10-21 Vascutek Limited Prosthesis for repair of body passages
US5861024A (en) 1997-06-20 1999-01-19 Cardiac Assist Devices, Inc Electrophysiology catheter and remote actuator therefor
US5906619A (en) 1997-07-24 1999-05-25 Medtronic, Inc. Disposable delivery device for endoluminal prostheses
US6340367B1 (en) 1997-08-01 2002-01-22 Boston Scientific Scimed, Inc. Radiopaque markers and methods of using the same
US5984957A (en) 1997-08-12 1999-11-16 Schneider (Usa) Inc Radially expanded prostheses with axial diameter control
US6306164B1 (en) 1997-09-05 2001-10-23 C. R. Bard, Inc. Short body endoprosthesis
US5954766A (en) 1997-09-16 1999-09-21 Zadno-Azizi; Gholam-Reza Body fluid flow control device
US6056722A (en) 1997-09-18 2000-05-02 Iowa-India Investments Company Limited Of Douglas Delivery mechanism for balloons, drugs, stents and other physical/mechanical agents and methods of use
US5984959A (en) 1997-09-19 1999-11-16 United States Surgical Heart valve replacement tools and procedures
US5925063A (en) 1997-09-26 1999-07-20 Khosravi; Farhad Coiled sheet valve, filter or occlusive device and methods of use
US6361545B1 (en) 1997-09-26 2002-03-26 Cardeon Corporation Perfusion filter catheter
US6071308A (en) 1997-10-01 2000-06-06 Boston Scientific Corporation Flexible metal wire stent
DE69838952T2 (en) 1997-11-07 2009-01-02 Salviac Ltd. EMBOLISM PROTECTION DEVICE
US6695864B2 (en) 1997-12-15 2004-02-24 Cardeon Corporation Method and apparatus for cerebral embolic protection
WO1999030800A1 (en) 1997-12-15 1999-06-24 Domnick Hunter Limited Filter assembly
JP2002508209A (en) 1997-12-15 2002-03-19 プロリフィックス メディカル, インコーポレイテッド Vascular stent for reduction of restenosis
US6530952B2 (en) 1997-12-29 2003-03-11 The Cleveland Clinic Foundation Bioprosthetic cardiovascular valve system
ATE449581T1 (en) 1997-12-29 2009-12-15 The Cleveland Clinic Foundation SYSTEM FOR THE MINIMALLY INVASIVE INTRODUCTION OF A HEART VALVE BIOPROSTHESIS
US6096074A (en) 1998-01-27 2000-08-01 United States Surgical Stapling apparatus and method for heart valve replacement
US5944738A (en) 1998-02-06 1999-08-31 Aga Medical Corporation Percutaneous catheter directed constricting occlusion device
WO1999039648A1 (en) 1998-02-10 1999-08-12 Dubrul William R Entrapping apparatus and method for use
ES2343228T3 (en) 1998-02-10 2010-07-26 Ethicon Endo-Surgery, Inc. OCLUSION, ANCHORAGE, TENSIONING OR STEERING EQUIPMENT BY FLOW.
EP0935978A1 (en) 1998-02-16 1999-08-18 Medicorp S.A. Angioplasty and stent delivery catheter
US6623521B2 (en) 1998-02-17 2003-09-23 Md3, Inc. Expandable stent with sliding and locking radial elements
US6280467B1 (en) 1998-02-26 2001-08-28 World Medical Manufacturing Corporation Delivery system for deployment and endovascular assembly of a multi-stage stented graft
US5938697A (en) 1998-03-04 1999-08-17 Scimed Life Systems, Inc. Stent having variable properties
US7491232B2 (en) 1998-09-18 2009-02-17 Aptus Endosystems, Inc. Catheter-based fastener implantation apparatus and methods with implantation force resolution
EP0943300A1 (en) 1998-03-17 1999-09-22 Medicorp S.A. Reversible action endoprosthesis delivery device.
US6626938B1 (en) 2000-11-16 2003-09-30 Cordis Corporation Stent graft having a pleated graft member
US6776791B1 (en) 1998-04-01 2004-08-17 Endovascular Technologies, Inc. Stent and method and device for packing of same
AU3342499A (en) 1998-04-02 1999-10-25 Salviac Limited An implant comprising a support structure and a transition material made of porous plastics material
US6074418A (en) 1998-04-20 2000-06-13 St. Jude Medical, Inc. Driver tool for heart valve prosthesis fasteners
US6450989B2 (en) 1998-04-27 2002-09-17 Artemis Medical, Inc. Dilating and support apparatus with disease inhibitors and methods for use
US6319241B1 (en) 1998-04-30 2001-11-20 Medtronic, Inc. Techniques for positioning therapy delivery elements within a spinal cord or a brain
US6059827A (en) 1998-05-04 2000-05-09 Axya Medical, Inc. Sutureless cardiac valve prosthesis, and devices and methods for implanting them
DE69935716T2 (en) 1998-05-05 2007-08-16 Boston Scientific Ltd., St. Michael STENT WITH SMOOTH ENDS
US6352554B2 (en) 1998-05-08 2002-03-05 Sulzer Vascutek Limited Prosthetic tubular aortic conduit and method for manufacturing the same
US6093203A (en) 1998-05-13 2000-07-25 Uflacker; Renan Stent or graft support structure for treating bifurcated vessels having different diameter portions and methods of use and implantation
US7452371B2 (en) 1999-06-02 2008-11-18 Cook Incorporated Implantable vascular device
JP4399585B2 (en) 1998-06-02 2010-01-20 クック インコーポレイティド Multi-sided medical device
US6630001B2 (en) 1998-06-24 2003-10-07 International Heart Institute Of Montana Foundation Compliant dehyrated tissue for implantation and process of making the same
EP1097728A1 (en) 1998-07-10 2001-05-09 Shin Ishimaru Stent (or stent graft) indwelling device
US6159239A (en) 1998-08-14 2000-12-12 Prodesco, Inc. Woven stent/graft structure
US6179860B1 (en) 1998-08-19 2001-01-30 Artemis Medical, Inc. Target tissue localization device and method
US6312461B1 (en) 1998-08-21 2001-11-06 John D. Unsworth Shape memory tubular stent
US6358276B1 (en) 1998-09-30 2002-03-19 Impra, Inc. Fluid containing endoluminal stent
US6051014A (en) 1998-10-13 2000-04-18 Embol-X, Inc. Percutaneous filtration catheter for valve repair surgery and methods of use
US6475239B1 (en) 1998-10-13 2002-11-05 Sulzer Carbomedics Inc. Method for making polymer heart valves with leaflets having uncut free edges
US6254612B1 (en) 1998-10-22 2001-07-03 Cordis Neurovascular, Inc. Hydraulic stent deployment system
US6146366A (en) 1998-11-03 2000-11-14 Ras Holding Corp Device for the treatment of macular degeneration and other eye disorders
US6508803B1 (en) 1998-11-06 2003-01-21 Furukawa Techno Material Co., Ltd. Niti-type medical guide wire and method of producing the same
US6214036B1 (en) 1998-11-09 2001-04-10 Cordis Corporation Stent which is easily recaptured and repositioned within the body
US6336937B1 (en) 1998-12-09 2002-01-08 Gore Enterprise Holdings, Inc. Multi-stage expandable stent-graft
DE19857887B4 (en) 1998-12-15 2005-05-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Anchoring support for a heart valve prosthesis
US6363938B2 (en) 1998-12-22 2002-04-02 Angiotrax, Inc. Methods and apparatus for perfusing tissue and/or stimulating revascularization and tissue growth
FR2788217A1 (en) 1999-01-12 2000-07-13 Brice Letac PROSTHETIC VALVE IMPLANTABLE BY CATHETERISM, OR SURGICAL
US6736845B2 (en) 1999-01-26 2004-05-18 Edwards Lifesciences Corporation Holder for flexible heart valve
EP1154738B1 (en) 1999-01-27 2010-04-28 Medtronic, Inc. Cardiac valve procedure devices
US6896690B1 (en) 2000-01-27 2005-05-24 Viacor, Inc. Cardiac valve procedure methods and devices
WO2000044308A2 (en) 1999-02-01 2000-08-03 Board Of Regents, The University Of Texas System Woven intravascular devices and methods for making the same and apparatus for delivery of the same
JP4332658B2 (en) 1999-02-01 2009-09-16 ボード オブ リージェンツ, ザ ユニバーシティ オブ テキサス システム Braided and trifurcated stent and method for producing the same
EP1576937B1 (en) 1999-02-01 2012-10-31 Board Of Regents, The University Of Texas System Woven intravascular devices and methods for making the same and apparatus for delvery of the same
US7018401B1 (en) 1999-02-01 2006-03-28 Board Of Regents, The University Of Texas System Woven intravascular devices and methods for making the same and apparatus for delivery of the same
DE19904975A1 (en) 1999-02-06 2000-09-14 Impella Cardiotech Ag Device for intravascular heart valve surgery
US6425916B1 (en) 1999-02-10 2002-07-30 Michi E. Garrison Methods and devices for implanting cardiac valves
US20020138094A1 (en) 1999-02-12 2002-09-26 Thomas Borillo Vascular filter system
DE19907646A1 (en) 1999-02-23 2000-08-24 Georg Berg Valve for blood vessels uses flap holders and counterpart holders on stent to latch together in place and all channeled for guide wire.
US6171327B1 (en) 1999-02-24 2001-01-09 Scimed Life Systems, Inc. Intravascular filter and method
US6905743B1 (en) 1999-02-25 2005-06-14 Boston Scientific Scimed, Inc. Dimensionally stable balloons
US6743196B2 (en) 1999-03-01 2004-06-01 Coaxia, Inc. Partial aortic occlusion devices and methods for cerebral perfusion augmentation
US6231551B1 (en) 1999-03-01 2001-05-15 Coaxia, Inc. Partial aortic occlusion devices and methods for cerebral perfusion augmentation
US6673089B1 (en) 1999-03-11 2004-01-06 Mindguard Ltd. Implantable stroke treating device
IL128938A0 (en) 1999-03-11 2000-02-17 Mind Guard Ltd Implantable stroke treating device
US6319281B1 (en) 1999-03-22 2001-11-20 Kumar R. Patel Artificial venous valve and sizing catheter
US7563267B2 (en) 1999-04-09 2009-07-21 Evalve, Inc. Fixation device and methods for engaging tissue
US7147663B1 (en) 1999-04-23 2006-12-12 St. Jude Medical Atg, Inc. Artificial heart valve attachment apparatus and methods
US6309417B1 (en) 1999-05-12 2001-10-30 Paul A. Spence Heart valve and apparatus for replacement thereof
AU4713200A (en) 1999-05-12 2000-11-21 Mark Ortiz Heart valve and apparatus for replacement thereof, blood vessel leak detector and temporary pacemaker lead
US6858034B1 (en) 1999-05-20 2005-02-22 Scimed Life Systems, Inc. Stent delivery system for prevention of kinking, and method of loading and using same
US6790229B1 (en) 1999-05-25 2004-09-14 Eric Berreklouw Fixing device, in particular for fixing to vascular wall tissue
JP3755862B2 (en) 1999-05-26 2006-03-15 キヤノン株式会社 Synchronized position control apparatus and method
EP1057460A1 (en) 1999-06-01 2000-12-06 Numed, Inc. Replacement valve assembly and method of implanting same
EP1057459A1 (en) 1999-06-01 2000-12-06 Numed, Inc. Radially expandable stent
US7628803B2 (en) 2001-02-05 2009-12-08 Cook Incorporated Implantable vascular device
AU6000200A (en) 1999-07-16 2001-02-05 Biocompatibles Limited Braided stent
US6179859B1 (en) 1999-07-16 2001-01-30 Baff Llc Emboli filtration system and methods of use
US6312465B1 (en) 1999-07-23 2001-11-06 Sulzer Carbomedics Inc. Heart valve prosthesis with a resiliently deformable retaining member
US6371970B1 (en) 1999-07-30 2002-04-16 Incept Llc Vascular filter having articulation region and methods of use in the ascending aorta
US6544279B1 (en) 2000-08-09 2003-04-08 Incept, Llc Vascular device for emboli, thrombus and foreign body removal and methods of use
US6142987A (en) 1999-08-03 2000-11-07 Scimed Life Systems, Inc. Guided filter with support wire and methods of use
US6346116B1 (en) 1999-08-03 2002-02-12 Medtronic Ave, Inc. Distal protection device
US6168579B1 (en) 1999-08-04 2001-01-02 Scimed Life Systems, Inc. Filter flush system and methods of use
US6235044B1 (en) 1999-08-04 2001-05-22 Scimed Life Systems, Inc. Percutaneous catheter and guidewire for filtering during ablation of mycardial or vascular tissue
US6299637B1 (en) 1999-08-20 2001-10-09 Samuel M. Shaolian Transluminally implantable venous valve
US6187016B1 (en) 1999-09-14 2001-02-13 Daniel G. Hedges Stent retrieval device
US6829497B2 (en) 1999-09-21 2004-12-07 Jamil Mogul Steerable diagnostic catheters
IT1307268B1 (en) 1999-09-30 2001-10-30 Sorin Biomedica Cardio Spa DEVICE FOR HEART VALVE REPAIR OR REPLACEMENT.
US6371983B1 (en) 1999-10-04 2002-04-16 Ernest Lane Bioprosthetic heart valve
US6364895B1 (en) 1999-10-07 2002-04-02 Prodesco, Inc. Intraluminal filter
FR2799364B1 (en) 1999-10-12 2001-11-23 Jacques Seguin MINIMALLY INVASIVE CANCELING DEVICE
US6383171B1 (en) 1999-10-12 2002-05-07 Allan Will Methods and devices for protecting a passageway in a body when advancing devices through the passageway
AU1084101A (en) 1999-10-14 2001-04-23 United Stenting, Inc. Stents with multilayered struts
US6352708B1 (en) 1999-10-14 2002-03-05 The International Heart Institute Of Montana Foundation Solution and method for treating autologous tissue for implant operation
US6440164B1 (en) 1999-10-21 2002-08-27 Scimed Life Systems, Inc. Implantable prosthetic valve
US6585758B1 (en) 1999-11-16 2003-07-01 Scimed Life Systems, Inc. Multi-section filamentary endoluminal stent
FR2815844B1 (en) 2000-10-31 2003-01-17 Jacques Seguin TUBULAR SUPPORT FOR THE PERCUTANEOUS POSITIONING OF A REPLACEMENT HEART VALVE
US8579966B2 (en) 1999-11-17 2013-11-12 Medtronic Corevalve Llc Prosthetic valve for transluminal delivery
FR2800984B1 (en) 1999-11-17 2001-12-14 Jacques Seguin DEVICE FOR REPLACING A HEART VALVE PERCUTANEOUSLY
US7018406B2 (en) 1999-11-17 2006-03-28 Corevalve Sa Prosthetic valve for transluminal delivery
US6849085B2 (en) 1999-11-19 2005-02-01 Advanced Bio Prosthetic Surfaces, Ltd. Self-supporting laminated films, structural materials and medical devices manufactured therefrom and method of making same
US6379383B1 (en) 1999-11-19 2002-04-30 Advanced Bio Prosthetic Surfaces, Ltd. Endoluminal device exhibiting improved endothelialization and method of manufacture thereof
US7195641B2 (en) 1999-11-19 2007-03-27 Advanced Bio Prosthetic Surfaces, Ltd. Valvular prostheses having metal or pseudometallic construction and methods of manufacture
US6458153B1 (en) 1999-12-31 2002-10-01 Abps Venture One, Ltd. Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof
US6663667B2 (en) 1999-12-29 2003-12-16 Edwards Lifesciences Corporation Towel graft means for enhancing tissue ingrowth in vascular grafts
US6872226B2 (en) 2001-01-29 2005-03-29 3F Therapeutics, Inc. Method of cutting material for use in implantable medical device
US6769434B2 (en) 2000-06-30 2004-08-03 Viacor, Inc. Method and apparatus for performing a procedure on a cardiac valve
CN1404376A (en) 2000-01-27 2003-03-19 3F治疗有限公司 Prosthetic heart valve
ES2286097T7 (en) 2000-01-31 2009-11-05 Cook Biotech, Inc ENDOPROTESIS VALVES.
US6652571B1 (en) 2000-01-31 2003-11-25 Scimed Life Systems, Inc. Braided, branched, implantable device and processes for manufacture thereof
US6398807B1 (en) 2000-01-31 2002-06-04 Scimed Life Systems, Inc. Braided branching stent, method for treating a lumen therewith, and process for manufacture therefor
US6622604B1 (en) 2000-01-31 2003-09-23 Scimed Life Systems, Inc. Process for manufacturing a braided bifurcated stent
US6540782B1 (en) 2000-02-02 2003-04-01 Robert V. Snyders Artificial heart valve
US6797002B2 (en) 2000-02-02 2004-09-28 Paul A. Spence Heart valve repair apparatus and methods
US6821297B2 (en) 2000-02-02 2004-11-23 Robert V. Snyders Artificial heart valve, implantation instrument and method therefor
US6540768B1 (en) 2000-02-09 2003-04-01 Cordis Corporation Vascular filter system
US6344044B1 (en) 2000-02-11 2002-02-05 Edwards Lifesciences Corp. Apparatus and methods for delivery of intraluminal prosthesis
DE10010073B4 (en) 2000-02-28 2005-12-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Anchoring for implantable heart valve prostheses
DE10010074B4 (en) 2000-02-28 2005-04-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device for fastening and anchoring heart valve prostheses
ES2211791T3 (en) 2000-03-03 2004-07-16 Cook Incorporated ENDOVASCULAR DEVICE THAT HAS A STENT.
ES2282246T3 (en) 2000-03-10 2007-10-16 Anthony T. Don Michael VASCULAR EMBOLIA PREVENTION DEVICE USING FILTERS.
US6695865B2 (en) 2000-03-20 2004-02-24 Advanced Bio Prosthetic Surfaces, Ltd. Embolic protection device
US6468303B1 (en) 2000-03-27 2002-10-22 Aga Medical Corporation Retrievable self expanding shunt
US6454799B1 (en) 2000-04-06 2002-09-24 Edwards Lifesciences Corporation Minimally-invasive heart valves and methods of use
GB2369575A (en) 2000-04-20 2002-06-05 Salviac Ltd An embolic protection system
US6729356B1 (en) 2000-04-27 2004-05-04 Endovascular Technologies, Inc. Endovascular graft for providing a seal with vasculature
JP4726382B2 (en) 2000-05-04 2011-07-20 オレゴン ヘルス サイエンシーズ ユニバーシティー Stent graft
IL136213A0 (en) 2000-05-17 2001-05-20 Xtent Medical Inc Selectively expandable and releasable stent
US6689119B1 (en) * 2000-06-02 2004-02-10 Scimed Life Systems, Inc. Self-aligning medical device
US20050043757A1 (en) 2000-06-12 2005-02-24 Michael Arad Medical devices formed from shape memory alloys displaying a stress-retained martensitic state and method for use thereof
SE522805C2 (en) 2000-06-22 2004-03-09 Jan Otto Solem Stent Application System
US6527800B1 (en) 2000-06-26 2003-03-04 Rex Medical, L.P. Vascular device and method for valve leaflet apposition
US6676698B2 (en) 2000-06-26 2004-01-13 Rex Medicol, L.P. Vascular device with valve for approximating vessel wall
US6419696B1 (en) 2000-07-06 2002-07-16 Paul A. Spence Annuloplasty devices and related heart valve repair methods
US6572643B1 (en) 2000-07-19 2003-06-03 Vascular Architects, Inc. Endoprosthesis delivery catheter assembly and method
WO2002007795A2 (en) 2000-07-24 2002-01-31 Jeffrey Grayzel Stiffened balloon catheter for dilatation and stenting
US6773454B2 (en) 2000-08-02 2004-08-10 Michael H. Wholey Tapered endovascular stent graft and method of treating abdominal aortic aneurysms and distal iliac aneurysms
US6485501B1 (en) 2000-08-11 2002-11-26 Cordis Corporation Vascular filter system with guidewire and capture mechanism
US6572652B2 (en) 2000-08-29 2003-06-03 Venpro Corporation Method and devices for decreasing elevated pulmonary venous pressure
WO2002019951A1 (en) 2000-09-07 2002-03-14 Viacor, Inc. Fixation band for affixing a prosthetic heart valve to tissue
US6543610B1 (en) 2000-09-12 2003-04-08 Alok Nigam System for packaging and handling an implant and method of use
US7510572B2 (en) 2000-09-12 2009-03-31 Shlomo Gabbay Implantation system for delivery of a heart valve prosthesis
US6893459B1 (en) 2000-09-20 2005-05-17 Ample Medical, Inc. Heart valve annulus device and method of using same
WO2004030568A2 (en) 2002-10-01 2004-04-15 Ample Medical, Inc. Device and method for repairing a native heart valve leaflet
US6461382B1 (en) 2000-09-22 2002-10-08 Edwards Lifesciences Corporation Flexible heart valve having moveable commissures
US6602288B1 (en) 2000-10-05 2003-08-05 Edwards Lifesciences Corporation Minimally-invasive annuloplasty repair segment delivery template, system and method of use
DE10049814B4 (en) 2000-10-09 2006-10-19 Universitätsklinikum Freiburg Device for supporting surgical procedures within a vessel, in particular for minimally invasive explantation and implantation of heart valves
DE10049813C1 (en) 2000-10-09 2002-04-18 Universitaetsklinikum Freiburg Instrument for the local removal of built-up matter at an aortic valve, in a human or animal heart, is a hollow catheter with a cutting unit at the far end within a closure cap for minimum invasion
DE10049815B4 (en) 2000-10-09 2005-10-13 Universitätsklinikum Freiburg Device for local ablation of an aortic valve on the human or animal heart
DE10049812B4 (en) 2000-10-09 2004-06-03 Universitätsklinikum Freiburg Device for filtering out macroscopic particles from the bloodstream during local removal of an aortic valve on the human or animal heart
EP1326672A4 (en) 2000-10-18 2007-03-07 Nmt Medical Inc Over-the-wire interlock attachment/detachment mechanism
US6814754B2 (en) 2000-10-30 2004-11-09 Secant Medical, Llc Woven tubular graft with regions of varying flexibility
JP4180382B2 (en) 2000-11-07 2008-11-12 アーテミス・メディカル・インコーポレイテッド Tissue separation assembly and tissue separation method
US6482228B1 (en) 2000-11-14 2002-11-19 Troy R. Norred Percutaneous aortic valve replacement
US7267685B2 (en) 2000-11-16 2007-09-11 Cordis Corporation Bilateral extension prosthesis and method of delivery
US6843802B1 (en) 2000-11-16 2005-01-18 Cordis Corporation Delivery apparatus for a self expanding retractable stent
US6974476B2 (en) 2003-05-05 2005-12-13 Rex Medical, L.P. Percutaneous aortic valve
WO2002041789A2 (en) 2000-11-21 2002-05-30 Rex Medical, L.P. Percutaneous aortic valve
EP1347794A2 (en) 2000-11-27 2003-10-01 Medtronic, Inc. Stents and methods for preparing stents from wires having hydrogel coating layers thereon
US6953332B1 (en) 2000-11-28 2005-10-11 St. Jude Medical, Inc. Mandrel for use in forming valved prostheses having polymer leaflets by dip coating
US6663588B2 (en) 2000-11-29 2003-12-16 C.R. Bard, Inc. Active counterforce handle for use in bidirectional deflectable tip instruments
US6494909B2 (en) 2000-12-01 2002-12-17 Prodesco, Inc. Endovascular valve
EP1341487B1 (en) 2000-12-15 2005-11-23 Angiomed GmbH & Co. Medizintechnik KG Stent with valve
US6471708B2 (en) 2000-12-21 2002-10-29 Bausch & Lomb Incorporated Intraocular lens and additive packaging system
US20020120328A1 (en) 2000-12-21 2002-08-29 Pathak Chandrashekhar Prabhakar Mechanical heart valve packaged in a liquid
US6468660B2 (en) 2000-12-29 2002-10-22 St. Jude Medical, Inc. Biocompatible adhesives
WO2002056955A1 (en) 2001-01-18 2002-07-25 Edwards Lifesciences Corporation Arterial cannula with perforated filter lumen
AU2002255486A1 (en) 2001-01-19 2002-09-19 Walid Najib Aboul-Hosn Apparatus and method for maintaining flow through a vessel or duct
US6610077B1 (en) 2001-01-23 2003-08-26 Endovascular Technologies, Inc. Expandable emboli filter and thrombectomy device
US6863688B2 (en) 2001-02-15 2005-03-08 Spinecore, Inc. Intervertebral spacer device utilizing a spirally slotted belleville washer having radially spaced concentric grooves
US6623518B2 (en) 2001-02-26 2003-09-23 Ev3 Peripheral, Inc. Implant delivery system with interlock
US20020123755A1 (en) 2001-03-01 2002-09-05 Scimed Life Systems, Inc. Embolic protection filter delivery sheath
US6562058B2 (en) 2001-03-02 2003-05-13 Jacques Seguin Intravascular filter system
US6488704B1 (en) 2001-05-07 2002-12-03 Biomed Solutions, Llc Implantable particle measuring apparatus
EP1365702A2 (en) 2001-03-08 2003-12-03 Atritech, Inc. Atrial filter implants
US6503272B2 (en) 2001-03-21 2003-01-07 Cordis Corporation Stent-based venous valves
US6733525B2 (en) 2001-03-23 2004-05-11 Edwards Lifesciences Corporation Rolled minimally-invasive heart valves and methods of use
US7556646B2 (en) 2001-09-13 2009-07-07 Edwards Lifesciences Corporation Methods and apparatuses for deploying minimally-invasive heart valves
US6773456B1 (en) 2001-03-23 2004-08-10 Endovascular Technologies, Inc. Adjustable customized endovascular graft
US7374571B2 (en) 2001-03-23 2008-05-20 Edwards Lifesciences Corporation Rolled minimally-invasive heart valves and methods of manufacture
EP1245202B1 (en) 2001-03-27 2004-08-04 William Cook Europe ApS An aortic graft device
JP2002293678A (en) 2001-03-28 2002-10-09 Fuji Photo Film Co Ltd Method for forming image
US6911036B2 (en) 2001-04-03 2005-06-28 Medtronic Vascular, Inc. Guidewire apparatus for temporary distal embolic protection
AU2002253490A1 (en) 2001-04-17 2002-10-28 Salviac Limited A catheter
DE60222545T2 (en) 2001-04-27 2008-06-12 C.R. Bard, Inc. HANDLEBAR DESIGN FOR A MEDICAL CATHETER
US6837901B2 (en) 2001-04-27 2005-01-04 Intek Technology L.L.C. Methods for delivering, repositioning and/or retrieving self-expanding stents
DE10121210B4 (en) 2001-04-30 2005-11-17 Universitätsklinikum Freiburg Anchoring element for the intraluminal anchoring of a heart valve replacement and method for its production
US6746469B2 (en) 2001-04-30 2004-06-08 Advanced Cardiovascular Systems, Inc. Balloon actuated apparatus having multiple embolic filters, and method of use
US20050021123A1 (en) 2001-04-30 2005-01-27 Jurgen Dorn Variable speed self-expanding stent delivery system and luer locking connector
US7374560B2 (en) 2001-05-01 2008-05-20 St. Jude Medical, Cardiology Division, Inc. Emboli protection devices and related methods of use
US6716238B2 (en) 2001-05-10 2004-04-06 Scimed Life Systems, Inc. Stent with detachable tethers and method of using same
US6682558B2 (en) 2001-05-10 2004-01-27 3F Therapeutics, Inc. Delivery system for a stentless valve bioprosthesis
US6663663B2 (en) 2001-05-14 2003-12-16 M.I. Tech Co., Ltd. Stent
US6936067B2 (en) 2001-05-17 2005-08-30 St. Jude Medical Inc. Prosthetic heart valve with slit stent
US6821291B2 (en) 2001-06-01 2004-11-23 Ams Research Corporation Retrievable stent and method of use thereof
KR100393548B1 (en) 2001-06-05 2003-08-02 주식회사 엠아이텍 Stent
DE60115104T2 (en) 2001-06-08 2006-08-03 Rex Medical, L.P. VASCULAR FLAP DEVICE FOR APPROACHING THE VESSEL WALL
US7510571B2 (en) 2001-06-11 2009-03-31 Boston Scientific, Scimed, Inc. Pleated composite ePTFE/textile hybrid covering
US6818013B2 (en) 2001-06-14 2004-11-16 Cordis Corporation Intravascular stent device
GB0114918D0 (en) 2001-06-19 2001-08-08 Vortex Innovation Ltd Devices for repairing aneurysms
US7544206B2 (en) 2001-06-29 2009-06-09 Medtronic, Inc. Method and apparatus for resecting and replacing an aortic valve
FR2826863B1 (en) 2001-07-04 2003-09-26 Jacques Seguin ASSEMBLY FOR PLACING A PROSTHETIC VALVE IN A BODY CONDUIT
US7547322B2 (en) 2001-07-19 2009-06-16 The Cleveland Clinic Foundation Prosthetic valve and method for making same
FR2828091B1 (en) 2001-07-31 2003-11-21 Seguin Jacques ASSEMBLY ALLOWING THE PLACEMENT OF A PROTHETIC VALVE IN A BODY DUCT
US6755854B2 (en) 2001-07-31 2004-06-29 Advanced Cardiovascular Systems, Inc. Control device and mechanism for deploying a self-expanding medical device
FR2828263B1 (en) 2001-08-03 2007-05-11 Philipp Bonhoeffer DEVICE FOR IMPLANTATION OF AN IMPLANT AND METHOD FOR IMPLANTATION OF THE DEVICE
US6896002B2 (en) 2001-08-21 2005-05-24 Scimed Life Systems, Inc Pressure transducer protection valve
EP1427469A4 (en) 2001-08-22 2007-03-28 Hasan Semih Oktay Flexible mems actuated controlled expansion stent
US7097665B2 (en) 2003-01-16 2006-08-29 Synecor, Llc Positioning tools and methods for implanting medical devices
US20030229390A1 (en) 2001-09-17 2003-12-11 Control Delivery Systems, Inc. On-stent delivery of pyrimidines and purine analogs
US6616682B2 (en) 2001-09-19 2003-09-09 Jomed Gmbh Methods and apparatus for distal protection during a medical procedure
US20030065386A1 (en) 2001-09-28 2003-04-03 Weadock Kevin Shaun Radially expandable endoprosthesis device with two-stage deployment
US6976974B2 (en) 2002-10-23 2005-12-20 Scimed Life Systems, Inc. Rotary manifold syringe
US7172572B2 (en) 2001-10-04 2007-02-06 Boston Scientific Scimed, Inc. Manifold system for a medical device
US6790237B2 (en) 2001-10-09 2004-09-14 Scimed Life Systems, Inc. Medical stent with a valve and related methods of manufacturing
WO2003030830A2 (en) 2001-10-09 2003-04-17 Endoscopic Technologies, Inc. Method and apparatus for improved stiffness in the linkage assembly of a flexible arm
US6893460B2 (en) 2001-10-11 2005-05-17 Percutaneous Valve Technologies Inc. Implantable prosthetic valve
US6939352B2 (en) 2001-10-12 2005-09-06 Cordis Corporation Handle deployment mechanism for medical device and method
US6866669B2 (en) 2001-10-12 2005-03-15 Cordis Corporation Locking handle deployment mechanism for medical device and method
US7144363B2 (en) 2001-10-16 2006-12-05 Extensia Medical, Inc. Systems for heart treatment
US7192441B2 (en) 2001-10-16 2007-03-20 Scimed Life Systems, Inc. Aortic artery aneurysm endovascular prosthesis
AUPR847201A0 (en) 2001-10-26 2001-11-15 Cook Incorporated Endoluminal graft
GB0125925D0 (en) 2001-10-29 2001-12-19 Univ Glasgow Mitral valve prosthesis
US6712843B2 (en) 2001-11-20 2004-03-30 Scimed Life Systems, Inc Stent with differential lengthening/shortening members
US6890340B2 (en) 2001-11-29 2005-05-10 Medtronic Vascular, Inc. Apparatus for temporary intraluminal protection
US7294146B2 (en) 2001-12-03 2007-11-13 Xtent, Inc. Apparatus and methods for delivery of variable length stents
CA2759746C (en) 2001-12-05 2018-05-22 Smt Research And Development Ltd. Endovascular device for entrapment of particulate matter and method for use
US7041139B2 (en) 2001-12-11 2006-05-09 Boston Scientific Scimed, Inc. Ureteral stents and related methods
US6676668B2 (en) 2001-12-12 2004-01-13 C.R. Baed Articulating stone basket
US7189258B2 (en) 2002-01-02 2007-03-13 Medtronic, Inc. Heart valve system
US8308797B2 (en) 2002-01-04 2012-11-13 Colibri Heart Valve, LLC Percutaneously implantable replacement heart valve device and method of making same
US20030130729A1 (en) 2002-01-04 2003-07-10 David Paniagua Percutaneously implantable replacement heart valve device and method of making same
US6723116B2 (en) 2002-01-14 2004-04-20 Syde A. Taheri Exclusion of ascending/descending aorta and/or aortic arch aneurysm
US20030135162A1 (en) 2002-01-17 2003-07-17 Scimed Life Systems, Inc. Delivery and retrieval manifold for a distal protection filter
US6730377B2 (en) 2002-01-23 2004-05-04 Scimed Life Systems, Inc. Balloons made from liquid crystal polymer blends
US6911040B2 (en) 2002-01-24 2005-06-28 Cordis Corporation Covered segmented stent
US6689144B2 (en) 2002-02-08 2004-02-10 Scimed Life Systems, Inc. Rapid exchange catheter and methods for delivery of vaso-occlusive devices
US6974464B2 (en) 2002-02-28 2005-12-13 3F Therapeutics, Inc. Supportless atrioventricular heart valve and minimally invasive delivery systems thereof
ATE369088T1 (en) 2002-03-05 2007-08-15 Salviac Ltd SYSTEM FOR PROTECTION AGAINST EMBOLIA
US20030176884A1 (en) 2002-03-12 2003-09-18 Marwane Berrada Everted filter device
US7163556B2 (en) 2002-03-21 2007-01-16 Providence Health System - Oregon Bioprosthesis and method for suturelessly making same
US20030187495A1 (en) 2002-04-01 2003-10-02 Cully Edward H. Endoluminal devices, embolic filters, methods of manufacture and use
US6752828B2 (en) 2002-04-03 2004-06-22 Scimed Life Systems, Inc. Artificial valve
US7052511B2 (en) 2002-04-04 2006-05-30 Scimed Life Systems, Inc. Delivery system and method for deployment of foreshortening endoluminal devices
US20030195609A1 (en) 2002-04-10 2003-10-16 Scimed Life Systems, Inc. Hybrid stent
US7125418B2 (en) 2002-04-16 2006-10-24 The International Heart Institute Of Montana Foundation Sigmoid valve and method for its percutaneous implantation
AU2003230938A1 (en) 2002-04-16 2003-11-03 Viacor, Inc. Fixation band for affixing a prosthetic heart valve to tissue
US20030199759A1 (en) 2002-04-18 2003-10-23 Richard Merwin F. Coronary catheter with radiopaque length markers
US8721713B2 (en) 2002-04-23 2014-05-13 Medtronic, Inc. System for implanting a replacement valve
US20030199971A1 (en) 2002-04-23 2003-10-23 Numed, Inc. Biological replacement valve assembly
US20030204249A1 (en) 2002-04-25 2003-10-30 Michel Letort Endovascular stent graft and fixation cuff
WO2003092554A1 (en) 2002-05-03 2003-11-13 The General Hospital Corporation Involuted endovascular valve and method of construction
US8070769B2 (en) 2002-05-06 2011-12-06 Boston Scientific Scimed, Inc. Inverted embolic protection filter
US7141064B2 (en) 2002-05-08 2006-11-28 Edwards Lifesciences Corporation Compressed tissue for heart valve leaflets
US6830575B2 (en) 2002-05-08 2004-12-14 Scimed Life Systems, Inc. Method and device for providing full protection to a stent
CA2485285A1 (en) 2002-05-10 2003-11-20 Cordis Corporation Method of making a medical device having a thin wall tubular membrane over a structural frame
US7351256B2 (en) 2002-05-10 2008-04-01 Cordis Corporation Frame based unidirectional flow prosthetic implant
DE10221076A1 (en) 2002-05-11 2003-11-27 Ruesch Willy Gmbh stent
US20030225445A1 (en) 2002-05-14 2003-12-04 Derus Patricia M. Surgical stent delivery devices and methods
US7585309B2 (en) 2002-05-16 2009-09-08 Boston Scientific Scimed, Inc. Aortic filter
US20040117004A1 (en) 2002-05-16 2004-06-17 Osborne Thomas A. Stent and method of forming a stent with integral barbs
AU2002367970A1 (en) 2002-05-17 2003-12-02 Bionethos Holding Gmbh Medical device for the treatment of a body vessel or another tubular structure in the body
US6979290B2 (en) 2002-05-30 2005-12-27 The Board Of Trustees Of The Leland Stanford Junior University Apparatus and methods for coronary sinus access
US7264632B2 (en) 2002-06-07 2007-09-04 Medtronic Vascular, Inc. Controlled deployment delivery system
US7717934B2 (en) 2002-06-14 2010-05-18 Ev3 Inc. Rapid exchange catheters usable with embolic protection devices
US7044962B2 (en) 2002-06-25 2006-05-16 Scimed Life Systems, Inc. Implantable prosthesis with displaceable skirt
US7232452B2 (en) 2002-07-12 2007-06-19 Ev3 Inc. Device to create proximal stasis
US7166120B2 (en) 2002-07-12 2007-01-23 Ev3 Inc. Catheter with occluding cuff
US7141063B2 (en) 2002-08-06 2006-11-28 Icon Medical Corp. Stent with micro-latching hinge joints
US6969395B2 (en) 2002-08-07 2005-11-29 Boston Scientific Scimed, Inc. Electroactive polymer actuated medical devices
EP1388328A1 (en) 2002-08-07 2004-02-11 Abbott Laboratories Vascular Enterprises Limited Apparatus for delivering and deployment of an expandable stent within a blood vessel
DE10362367B3 (en) 2002-08-13 2022-02-24 Jenavalve Technology Inc. Device for anchoring and aligning prosthetic heart valves
US7041132B2 (en) 2002-08-16 2006-05-09 3F Therapeutics, Inc, Percutaneously delivered heart valve and delivery means thereof
US6863668B2 (en) 2002-08-16 2005-03-08 Edwards Lifesciences Corporation Articulation mechanism for medical devices
US7175652B2 (en) 2002-08-20 2007-02-13 Cook Incorporated Stent graft with improved proximal end
AU2003262938A1 (en) 2002-08-27 2004-03-19 Amir Belson Embolic protection device
CA2503258C (en) 2002-08-28 2011-08-16 Heart Leaflet Technologies, Inc. Method and device for treating diseased valve
JP4316503B2 (en) 2002-08-29 2009-08-19 ミトラルソリューションズ、インコーポレイテッド Implantable device for controlling an anatomical orifice or lumen
KR100442330B1 (en) 2002-09-03 2004-07-30 주식회사 엠아이텍 Stent and manufacturing method the same
WO2004021922A2 (en) 2002-09-03 2004-03-18 Morrill Richard J Arterial embolic filter deployed from catheter
US6875231B2 (en) 2002-09-11 2005-04-05 3F Therapeutics, Inc. Percutaneously deliverable heart valve
CO5500017A1 (en) 2002-09-23 2005-03-31 3F Therapeutics Inc MITRAL PROTESTIC VALVE
US20040059409A1 (en) 2002-09-24 2004-03-25 Stenzel Eric B. Method of applying coatings to a medical device
US7998163B2 (en) 2002-10-03 2011-08-16 Boston Scientific Scimed, Inc. Expandable retrieval device
US6824041B2 (en) 2002-10-21 2004-11-30 Agilent Technologies, Inc. High temperature eutectic solder ball attach
AU2003285943B2 (en) 2002-10-24 2008-08-21 Boston Scientific Limited Venous valve apparatus and method
US7481823B2 (en) 2002-10-25 2009-01-27 Boston Scientific Scimed, Inc. Multiple membrane embolic protection filter
US6814746B2 (en) 2002-11-01 2004-11-09 Ev3 Peripheral, Inc. Implant delivery system with marker interlock
WO2004041126A1 (en) 2002-11-08 2004-05-21 Jacques Seguin Endoprosthesis for vascular bifurcation
AU2003287638A1 (en) 2002-11-13 2004-06-03 Rosengart, Todd, K. Apparatus and method for cutting a heart valve
WO2004043293A2 (en) 2002-11-13 2004-05-27 Viacor, Inc. Cardiac valve procedure methods and devices
US6887266B2 (en) 2002-11-14 2005-05-03 Synecor, Llc Endoprostheses and methods of manufacture
US7527636B2 (en) 2002-11-14 2009-05-05 Medtronic Vascular, Inc Intraluminal guidewire with hydraulically collapsible self-expanding protection device
US20040098022A1 (en) 2002-11-14 2004-05-20 Barone David D. Intraluminal catheter with hydraulically collapsible self-expanding protection device
US7485143B2 (en) 2002-11-15 2009-02-03 Abbott Cardiovascular Systems Inc. Apparatuses and methods for heart valve repair
US7001425B2 (en) 2002-11-15 2006-02-21 Scimed Life Systems, Inc. Braided stent method for its manufacture
FR2847155B1 (en) 2002-11-20 2005-08-05 Younes Boudjemline METHOD FOR MANUFACTURING A MEDICAL IMPLANT WITH ADJUSTED STRUCTURE AND IMPLANT OBTAINED THEREBY
AU2003283792A1 (en) 2002-11-29 2004-06-23 Mindguard Ltd. Braided intraluminal device for stroke prevention
US7678068B2 (en) 2002-12-02 2010-03-16 Gi Dynamics, Inc. Atraumatic delivery devices
US7025791B2 (en) 2002-12-02 2006-04-11 Gi Dynamics, Inc. Bariatric sleeve
US6984242B2 (en) 2002-12-20 2006-01-10 Gore Enterprise Holdings, Inc. Implantable medical device assembly
US8551162B2 (en) 2002-12-20 2013-10-08 Medtronic, Inc. Biologically implantable prosthesis
US6945957B2 (en) 2002-12-30 2005-09-20 Scimed Life Systems, Inc. Valve treatment catheter and methods
US6830585B1 (en) 2003-01-14 2004-12-14 3F Therapeutics, Inc. Percutaneously deliverable heart valve and methods of implantation
US20040138694A1 (en) 2003-01-15 2004-07-15 Scimed Life Systems, Inc. Intravascular filtering membrane and method of making an embolic protection filter device
US7753945B2 (en) 2003-01-17 2010-07-13 Gore Enterprise Holdings, Inc. Deployment system for an endoluminal device
WO2004066876A1 (en) 2003-01-27 2004-08-12 Medtronic Vascular Connaught Improved packaging for stent delivery systems
GB2398245B (en) 2003-02-06 2007-03-28 Great Ormond Street Hospital F Valve prosthesis
US7740644B2 (en) 2003-02-24 2010-06-22 Boston Scientific Scimed, Inc. Embolic protection filtering device that can be adapted to be advanced over a guidewire
EP1605866B1 (en) 2003-03-03 2016-07-06 Syntach AG Electrical conduction block implant device
US7399315B2 (en) 2003-03-18 2008-07-15 Edwards Lifescience Corporation Minimally-invasive heart valve with cusp positioners
WO2004082536A1 (en) 2003-03-20 2004-09-30 Aortech International Plc Valve
US20060271081A1 (en) 2003-03-30 2006-11-30 Fidel Realyvasquez Apparatus and methods for valve repair
EP1610728B1 (en) 2003-04-01 2011-05-25 Cook Incorporated Percutaneously deployed vascular valves
US7530995B2 (en) 2003-04-17 2009-05-12 3F Therapeutics, Inc. Device for reduction of pressure effects of cardiac tricuspid valve regurgitation
US7175656B2 (en) 2003-04-18 2007-02-13 Alexander Khairkhahan Percutaneous transcatheter heart valve replacement
US7591832B2 (en) 2003-04-24 2009-09-22 Medtronic, Inc. Expandable guide sheath and apparatus with distal protection and methods for use
DE602004023350D1 (en) 2003-04-30 2009-11-12 Medtronic Vascular Inc Percutaneous inserted provisional valve
US6969396B2 (en) 2003-05-07 2005-11-29 Scimed Life Systems, Inc. Filter membrane with increased surface area
US7235093B2 (en) 2003-05-20 2007-06-26 Boston Scientific Scimed, Inc. Mechanism to improve stent securement
US7625364B2 (en) 2003-05-27 2009-12-01 Cardia, Inc. Flexible center connection for occlusion device
US20040243221A1 (en) 2003-05-27 2004-12-02 Fawzi Natalie V. Endovascular graft including substructure for positioning and sealing within vasculature
DE602004029159D1 (en) 2003-05-28 2010-10-28 Cook Inc
US7041127B2 (en) 2003-05-28 2006-05-09 Ledergerber Walter J Textured and drug eluting coronary artery stent
WO2005004753A1 (en) 2003-06-09 2005-01-20 3F Therapeutics, Inc. Atrioventricular heart valve and minimally invasive delivery systems thereof
US7201772B2 (en) 2003-07-08 2007-04-10 Ventor Technologies, Ltd. Fluid flow prosthetic device
AU2004253375B2 (en) 2003-07-08 2011-07-14 Ventor Technologies Ltd. Implantable prosthetic devices particularly for transarterial delivery in the treatment of aortic stenosis, and methods of implanting such devices
US7744620B2 (en) 2003-07-18 2010-06-29 Intervalve, Inc. Valvuloplasty catheter
CA2533353A1 (en) 2003-07-21 2005-02-03 The Trustees Of The University Of Pennsylvania Percutaneous heart valve
DE10334868B4 (en) 2003-07-29 2013-10-17 Pfm Medical Ag Implantable device as a replacement organ valve, its manufacturing process and basic body and membrane element for it
WO2005011534A1 (en) 2003-07-31 2005-02-10 Cook Incorporated Prosthetic valve devices and methods of making such devices
WO2005011535A2 (en) 2003-07-31 2005-02-10 Cook Incorporated Prosthetic valve for implantation in a body vessel
DE10340265A1 (en) 2003-08-29 2005-04-07 Sievers, Hans-Hinrich, Prof. Dr.med. Prosthesis for the replacement of the aortic and / or mitral valve of the heart
US20050049692A1 (en) 2003-09-02 2005-03-03 Numamoto Michael J. Medical device for reduction of pressure effects of cardiac tricuspid valve regurgitation
WO2005023358A1 (en) 2003-09-03 2005-03-17 Acumen Medical, Inc. Expandable sheath for delivering instruments and agents into a body lumen
US7993384B2 (en) 2003-09-12 2011-08-09 Abbott Cardiovascular Systems Inc. Delivery system for medical devices
US7758625B2 (en) 2003-09-12 2010-07-20 Abbott Vascular Solutions Inc. Delivery system for medical devices
US8535344B2 (en) 2003-09-12 2013-09-17 Rubicon Medical, Inc. Methods, systems, and devices for providing embolic protection and removing embolic material
EG24012A (en) 2003-09-24 2008-03-23 Wael Mohamed Nabil Lotfy Valved balloon stent
US10219899B2 (en) 2004-04-23 2019-03-05 Medtronic 3F Therapeutics, Inc. Cardiac valve replacement systems
US20050075730A1 (en) 2003-10-06 2005-04-07 Myers Keith E. Minimally invasive valve replacement system
CA2545874C (en) 2003-10-06 2012-02-21 3F Therapeutics, Inc. Minimally invasive valve replacement system
EP2361984A1 (en) 2003-10-09 2011-08-31 E. I. du Pont de Nemours and Company Gene silencing by using modified micro-RNA molecules
WO2005037338A1 (en) 2003-10-14 2005-04-28 Cook Incorporated Hydrophilic coated medical device
WO2005037142A2 (en) 2003-10-15 2005-04-28 Cook Incorporated Prosthesis deployment system retention device
US7175654B2 (en) 2003-10-16 2007-02-13 Cordis Corporation Stent design having stent segments which uncouple upon deployment
US7004176B2 (en) 2003-10-17 2006-02-28 Edwards Lifesciences Ag Heart valve leaflet locator
US7419498B2 (en) 2003-10-21 2008-09-02 Nmt Medical, Inc. Quick release knot attachment system
US7347869B2 (en) 2003-10-31 2008-03-25 Cordis Corporation Implantable valvular prosthesis
US7070616B2 (en) 2003-10-31 2006-07-04 Cordis Corporation Implantable valvular prosthesis
WO2005048883A1 (en) 2003-11-13 2005-06-02 Fidel Realyvasquez Methods and apparatus for valve repair
US6972025B2 (en) 2003-11-18 2005-12-06 Scimed Life Systems, Inc. Intravascular filter with bioabsorbable centering element
US7186265B2 (en) 2003-12-10 2007-03-06 Medtronic, Inc. Prosthetic cardiac valves and systems and methods for implanting thereof
US20050137683A1 (en) 2003-12-19 2005-06-23 Medtronic Vascular, Inc. Medical devices to treat or inhibit restenosis
US7261732B2 (en) 2003-12-22 2007-08-28 Henri Justino Stent mounted valve
EP2985006B1 (en) 2003-12-23 2019-06-19 Boston Scientific Scimed, Inc. Repositionable heart valve
US8603160B2 (en) 2003-12-23 2013-12-10 Sadra Medical, Inc. Method of using a retrievable heart valve anchor with a sheath
US9526609B2 (en) 2003-12-23 2016-12-27 Boston Scientific Scimed, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US8182528B2 (en) 2003-12-23 2012-05-22 Sadra Medical, Inc. Locking heart valve anchor
US8840663B2 (en) 2003-12-23 2014-09-23 Sadra Medical, Inc. Repositionable heart valve method
US20050137687A1 (en) 2003-12-23 2005-06-23 Sadra Medical Heart valve anchor and method
US7329279B2 (en) 2003-12-23 2008-02-12 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US7748389B2 (en) 2003-12-23 2010-07-06 Sadra Medical, Inc. Leaflet engagement elements and methods for use thereof
US7824442B2 (en) 2003-12-23 2010-11-02 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a heart valve
US7326236B2 (en) 2003-12-23 2008-02-05 Xtent, Inc. Devices and methods for controlling and indicating the length of an interventional element
US20050137686A1 (en) 2003-12-23 2005-06-23 Sadra Medical, A Delaware Corporation Externally expandable heart valve anchor and method
US7445631B2 (en) 2003-12-23 2008-11-04 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
EP2526895B1 (en) 2003-12-23 2014-01-29 Sadra Medical, Inc. Repositionable heart valve
US8052749B2 (en) 2003-12-23 2011-11-08 Sadra Medical, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US7780725B2 (en) 2004-06-16 2010-08-24 Sadra Medical, Inc. Everting heart valve
US8343213B2 (en) 2003-12-23 2013-01-01 Sadra Medical, Inc. Leaflet engagement elements and methods for use thereof
US9005273B2 (en) 2003-12-23 2015-04-14 Sadra Medical, Inc. Assessing the location and performance of replacement heart valves
US20050137696A1 (en) 2003-12-23 2005-06-23 Sadra Medical Apparatus and methods for protecting against embolization during endovascular heart valve replacement
US7824443B2 (en) 2003-12-23 2010-11-02 Sadra Medical, Inc. Medical implant delivery and deployment tool
US20050137691A1 (en) 2003-12-23 2005-06-23 Sadra Medical Two piece heart valve and anchor
US7381219B2 (en) 2003-12-23 2008-06-03 Sadra Medical, Inc. Low profile heart valve and delivery system
US7959666B2 (en) 2003-12-23 2011-06-14 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a heart valve
US8579962B2 (en) 2003-12-23 2013-11-12 Sadra Medical, Inc. Methods and apparatus for performing valvuloplasty
US20120041550A1 (en) 2003-12-23 2012-02-16 Sadra Medical, Inc. Methods and Apparatus for Endovascular Heart Valve Replacement Comprising Tissue Grasping Elements
US20050137694A1 (en) 2003-12-23 2005-06-23 Haug Ulrich R. Methods and apparatus for endovascularly replacing a patient's heart valve
US8287584B2 (en) 2005-11-14 2012-10-16 Sadra Medical, Inc. Medical implant deployment tool
US20050228495A1 (en) 2004-01-15 2005-10-13 Macoviak John A Suspended heart valve devices, systems, and methods for supplementing, repairing, or replacing a native heart valve
US7468070B2 (en) 2004-01-23 2008-12-23 Boston Scientific Scimed, Inc. Stent delivery catheter
US7597711B2 (en) 2004-01-26 2009-10-06 Arbor Surgical Technologies, Inc. Heart valve assembly with slidable coupling connections
US20050203818A9 (en) 2004-01-26 2005-09-15 Cibc World Markets System and method for creating tradeable financial units
US7470285B2 (en) 2004-02-05 2008-12-30 Children's Medical Center Corp. Transcatheter delivery of a replacement heart valve
US7311730B2 (en) 2004-02-13 2007-12-25 Shlomo Gabbay Support apparatus and heart valve prosthesis for sutureless implantation
US8128692B2 (en) 2004-02-27 2012-03-06 Aortx, Inc. Prosthetic heart valves, scaffolding structures, and systems and methods for implantation of same
ITTO20040135A1 (en) 2004-03-03 2004-06-03 Sorin Biomedica Cardio Spa CARDIAC VALVE PROSTHESIS
WO2005086888A2 (en) 2004-03-09 2005-09-22 Fidel Realyvasquez Off pump aortic valve replacement for valve prosthesis
EP2308425B2 (en) 2004-03-11 2023-10-18 Percutaneous Cardiovascular Solutions Pty Limited Percutaneous Heart Valve Prosthesis
AU2005231356A1 (en) 2004-03-31 2005-10-20 Med Institute, Inc. Endoluminal graft with a prosthetic valve
WO2005099623A1 (en) 2004-04-08 2005-10-27 Cook Incorporated Implantable medical device with optimized shape
JP5290573B2 (en) 2004-04-23 2013-09-18 メドトロニック スリーエフ セラピューティクス,インコーポレイティド Implantable prosthetic valve
ATE367132T1 (en) 2004-05-25 2007-08-15 Cook William Europ STENT AND STENT REMOVING DEVICE
WO2005118019A1 (en) 2004-05-28 2005-12-15 Cook Incorporated Implantable bioabsorbable valve support frame
US7122020B2 (en) 2004-06-25 2006-10-17 Mogul Enterprises, Inc. Linkage steering mechanism for deflectable catheters
US7276078B2 (en) 2004-06-30 2007-10-02 Edwards Lifesciences Pvt Paravalvular leak detection, sealing, and prevention
US7462191B2 (en) 2004-06-30 2008-12-09 Edwards Lifesciences Pvt, Inc. Device and method for assisting in the implantation of a prosthetic valve
US8500785B2 (en) 2004-07-13 2013-08-06 Boston Scientific Scimed, Inc. Catheter
FR2874813B1 (en) 2004-09-07 2007-06-22 Perouse Soc Par Actions Simpli VALVULAR PROSTHESIS
US6951571B1 (en) 2004-09-30 2005-10-04 Rohit Srivastava Valve implanting device
US7641687B2 (en) 2004-11-02 2010-01-05 Carbomedics Inc. Attachment of a sewing cuff to a heart valve
WO2006055982A2 (en) 2004-11-22 2006-05-26 Avvrx Ring-shaped valve prosthesis attachment device
US7989157B2 (en) 2005-01-11 2011-08-02 Medtronic, Inc. Solution for storing bioprosthetic tissue used in a biological prosthesis
ITTO20050074A1 (en) 2005-02-10 2006-08-11 Sorin Biomedica Cardio Srl CARDIAC VALVE PROSTHESIS
US7918880B2 (en) 2005-02-16 2011-04-05 Boston Scientific Scimed, Inc. Self-expanding stent and delivery system
DK1850796T3 (en) 2005-02-18 2016-01-18 Cleveland Clinic Foundation DEVICE FOR REPLACEMENT OF A HEART VALVE
US7722666B2 (en) 2005-04-15 2010-05-25 Boston Scientific Scimed, Inc. Valve apparatus, system and method
US7914569B2 (en) 2005-05-13 2011-03-29 Medtronics Corevalve Llc Heart valve prosthesis and methods of manufacture and use
EP1883375B1 (en) 2005-05-24 2016-12-07 Edwards Lifesciences Corporation Rapid deployment prosthetic heart valve
EP3482717B1 (en) 2005-05-27 2023-09-06 Edwards Lifesciences Corporation Stentless support structure
US7938851B2 (en) 2005-06-08 2011-05-10 Xtent, Inc. Devices and methods for operating and controlling interventional apparatus
US20060287668A1 (en) 2005-06-16 2006-12-21 Fawzi Natalie V Apparatus and methods for intravascular embolic protection
WO2007005799A1 (en) 2005-06-30 2007-01-11 Abbott Laboratories Delivery system for a medical device
US8968379B2 (en) 2005-09-02 2015-03-03 Medtronic Vascular, Inc. Stent delivery system with multiple evenly spaced pullwires
US7712606B2 (en) 2005-09-13 2010-05-11 Sadra Medical, Inc. Two-part package for medical implant
US20080188928A1 (en) 2005-09-16 2008-08-07 Amr Salahieh Medical device delivery sheath
US20070173918A1 (en) 2005-09-30 2007-07-26 Dreher James H Apparatus and methods for locating an ostium of a vessel
DE102005052628B4 (en) 2005-11-04 2014-06-05 Jenavalve Technology Inc. Self-expanding, flexible wire mesh with integrated valvular prosthesis for the transvascular heart valve replacement and a system with such a device and a delivery catheter
EP1988851A2 (en) 2006-02-14 2008-11-12 Sadra Medical, Inc. Systems and methods for delivering a medical implant
EP2583640B1 (en) 2006-02-16 2022-06-22 Venus MedTech (HangZhou), Inc. Minimally invasive replacement heart valve
WO2007130881A2 (en) 2006-04-29 2007-11-15 Arbor Surgical Technologies, Inc. Multiple component prosthetic heart valve assemblies and apparatus and methods for delivering them
EP2035723A4 (en) 2006-06-20 2011-11-30 Aortx Inc Torque shaft and torque drive
US20080033541A1 (en) 2006-08-02 2008-02-07 Daniel Gelbart Artificial mitral valve
US8876895B2 (en) 2006-09-19 2014-11-04 Medtronic Ventor Technologies Ltd. Valve fixation member having engagement arms
BRPI0717540A2 (en) 2006-09-28 2013-10-22 Heart Leaflet Technologies Inc SUPPLY INSTRUMENT FOR THE PERCUTANEOUS SUPPLY OF A PROSTHESIS
EP2097012A4 (en) 2006-11-07 2012-08-15 David Stephen Celermajer Devices and methods for the treatment of heart failure
EP2114502B1 (en) * 2006-12-08 2014-07-30 Boston Scientific Limited Therapeutic catheter with displacement sensing transducer
US8236045B2 (en) 2006-12-22 2012-08-07 Edwards Lifesciences Corporation Implantable prosthetic valve assembly and method of making the same
WO2008103295A2 (en) 2007-02-16 2008-08-28 Medtronic, Inc. Replacement prosthetic heart valves and methods of implantation
US7753949B2 (en) 2007-02-23 2010-07-13 The Trustees Of The University Of Pennsylvania Valve prosthesis systems and methods
US8070802B2 (en) 2007-02-23 2011-12-06 The Trustees Of The University Of Pennsylvania Mitral valve system
US9138315B2 (en) 2007-04-13 2015-09-22 Jenavalve Technology Gmbh Medical device for treating a heart valve insufficiency or stenosis
JP5248606B2 (en) 2007-06-26 2013-07-31 セント ジュード メディカル インコーポレイテッド Device for implanting a collapsible / expandable prosthetic heart valve
US8828079B2 (en) 2007-07-26 2014-09-09 Boston Scientific Scimed, Inc. Circulatory valve, system and method
WO2009015486A1 (en) 2007-08-02 2009-02-05 Montrose Technologies Inc. Apparatus for inspecting and grouping articles traveling on a conveyor
US8192351B2 (en) 2007-08-13 2012-06-05 Paracor Medical, Inc. Medical device delivery system having integrated introducer
EP2185107B1 (en) 2007-09-07 2017-01-25 Edwards Lifesciences Corporation Active holder for annuloplasty ring delivery
WO2009067432A1 (en) 2007-11-19 2009-05-28 Cook Incorporated Valve frame
US20090171456A1 (en) 2007-12-28 2009-07-02 Kveen Graig L Percutaneous heart valve, system, and method
US8157853B2 (en) 2008-01-24 2012-04-17 Medtronic, Inc. Delivery systems and methods of implantation for prosthetic heart valves
US8398704B2 (en) 2008-02-26 2013-03-19 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US8317858B2 (en) 2008-02-26 2012-11-27 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US8052607B2 (en) 2008-04-22 2011-11-08 St. Jude Medical, Atrial Fibrillation Division, Inc. Ultrasound imaging catheter with pivoting head
BRPI0911351B8 (en) 2008-04-23 2021-06-22 Medtronic Inc stent frame for a prosthetic heart valve, and heart valve prosthesis
US8696743B2 (en) 2008-04-23 2014-04-15 Medtronic, Inc. Tissue attachment devices and methods for prosthetic heart valves
US20100036238A1 (en) * 2008-06-13 2010-02-11 Medtronic, Inc. Device and method for assessing extension of a deployable object
US8323335B2 (en) 2008-06-20 2012-12-04 Edwards Lifesciences Corporation Retaining mechanisms for prosthetic valves and methods for using
US8652202B2 (en) 2008-08-22 2014-02-18 Edwards Lifesciences Corporation Prosthetic heart valve and delivery apparatus
US9192497B2 (en) * 2008-09-05 2015-11-24 Cook Medical Technologies Llc Apparatus and methods for improved stent deployment
CN102292053A (en) 2008-09-29 2011-12-21 卡迪尔克阀门技术公司 Heart valve
WO2010040009A1 (en) 2008-10-01 2010-04-08 Cardiaq Valve Technologies, Inc. Delivery system for vascular implant
CA2739961A1 (en) 2008-10-10 2010-04-15 Sadra Medical, Inc. Medical devices and delivery systems for delivering medical devices
US8308798B2 (en) 2008-12-19 2012-11-13 Edwards Lifesciences Corporation Quick-connect prosthetic heart valve and methods
ES2551694T3 (en) 2008-12-23 2015-11-23 Sorin Group Italia S.R.L. Expandable prosthetic valve with anchoring appendages
US9402720B2 (en) 2009-01-12 2016-08-02 Valve Medical Ltd. Modular percutaneous valve structure and delivery method
US20100217382A1 (en) 2009-02-25 2010-08-26 Edwards Lifesciences Mitral valve replacement with atrial anchoring
AU2010218384B2 (en) 2009-02-27 2014-11-20 St. Jude Medical, Inc. Stent features for collapsible prosthetic heart valves
US9980818B2 (en) 2009-03-31 2018-05-29 Edwards Lifesciences Corporation Prosthetic heart valve system with positioning markers
CA2961053C (en) 2009-04-15 2019-04-30 Edwards Lifesciences Cardiaq Llc Vascular implant and delivery system
EP4257083A3 (en) 2009-11-05 2024-01-17 The Trustees of the University of Pennsylvania Valve prosthesis
JP2013512765A (en) 2009-12-08 2013-04-18 アヴァロン メディカル リミテッド Devices and systems for transcatheter mitral valve replacement
DE102010008360A1 (en) 2010-02-17 2011-09-29 Transcatheter Technologies Gmbh Medical implant in which gaps remain during crimping or folding, method and device for moving
PL3335670T3 (en) 2010-03-05 2022-09-05 Edwards Lifesciences Corporation Retaining mechanisms for prosthetic valves
US8623079B2 (en) 2010-04-23 2014-01-07 Medtronic, Inc. Stents for prosthetic heart valves
BR112012029896A2 (en) 2010-05-25 2017-06-20 Jenavalve Tech Inc prosthetic heart valve for stent graft and stent graft
US8636718B2 (en) * 2010-12-30 2014-01-28 St. Jude Medical, Atrial Fibrillation Division, Inc. Method of assembling a positioning sensor and associated wiring on a medical tool
US9155619B2 (en) 2011-02-25 2015-10-13 Edwards Lifesciences Corporation Prosthetic heart valve delivery apparatus
US8945209B2 (en) 2011-05-20 2015-02-03 Edwards Lifesciences Corporation Encapsulated heart valve
WO2013009975A1 (en) 2011-07-12 2013-01-17 Boston Scientific Scimed, Inc. Coupling system for medical devices
US9119716B2 (en) 2011-07-27 2015-09-01 Edwards Lifesciences Corporation Delivery systems for prosthetic heart valve
AU2012299311B2 (en) 2011-08-11 2016-03-03 Tendyne Holdings, Inc. Improvements for prosthetic valves and related inventions
CN104039272A (en) 2011-11-15 2014-09-10 波士顿科学国际有限公司 Medical device with keyed locking structures
CA3201836A1 (en) 2011-12-09 2013-06-13 Edwards Lifesciences Corporation Prosthetic heart valve having improved commissure supports
WO2013096644A1 (en) 2011-12-20 2013-06-27 Boston Scientific Scimed, Inc. Apparatus for endovascularly replacing a heart valve
US9277993B2 (en) 2011-12-20 2016-03-08 Boston Scientific Scimed, Inc. Medical device delivery systems
US10172708B2 (en) 2012-01-25 2019-01-08 Boston Scientific Scimed, Inc. Valve assembly with a bioabsorbable gasket and a replaceable valve implant
US20130304199A1 (en) 2012-05-09 2013-11-14 Boston Scientific Scimed, Inc. Reduced profile valve with locking elements
CN104487026B (en) 2012-07-12 2016-11-02 波士顿科学国际有限公司 Little profile heart valve delivery system
US10092778B2 (en) 2012-09-25 2018-10-09 Koninklijke Philips N.V. Treatment device and a treatment system
EP3116409B1 (en) 2014-03-10 2023-07-26 Tendyne Holdings, Inc. Devices for positioning and monitoring tether load for prosthetic mitral valve
US9757232B2 (en) 2014-05-22 2017-09-12 Edwards Lifesciences Corporation Crimping apparatus for crimping prosthetic valve with protruding anchors
WO2016100799A1 (en) 2014-12-18 2016-06-23 Medtronic Inc. Transcatheter prosthetic heart valve delivery system with clinician feedback
US9788942B2 (en) 2015-02-03 2017-10-17 Boston Scientific Scimed Inc. Prosthetic heart valve having tubular seal
CN108430365B (en) * 2015-12-20 2021-07-02 波士顿科学医学有限公司 Miniature inductive position sensor
US10342660B2 (en) 2016-02-02 2019-07-09 Boston Scientific Inc. Tensioned sheathing aids
US11826522B2 (en) 2016-06-01 2023-11-28 Becton, Dickinson And Company Medical devices, systems and methods utilizing permanent magnet and magnetizable feature
US10603472B2 (en) * 2016-10-25 2020-03-31 Biosense Webster (Israel) Ltd. Guidewires having improved mechanical strength and electromagnetic shielding

Also Published As

Publication number Publication date
US11191641B2 (en) 2021-12-07
US20190224004A1 (en) 2019-07-25
WO2019144069A3 (en) 2019-08-29
US20220110741A1 (en) 2022-04-14
WO2019144069A2 (en) 2019-07-25
JP2021511144A (en) 2021-05-06
JP7055882B2 (en) 2022-04-18

Similar Documents

Publication Publication Date Title
US10869762B2 (en) Medical device with inner assembly
US11246625B2 (en) Medical device delivery system with feedback loop
US10966829B2 (en) Medical device shaft including a liner
EP3618776B1 (en) Medical device with sealing assembly
US11419721B2 (en) Medical device with coupling member
US20220110741A1 (en) Inductance mode deployment sensors for transcatheter valve system
US11633569B2 (en) Motorized telescoping medical device delivery system
US11273037B2 (en) Conductance mode deployment sensors for transcatheter valve system
US11266518B2 (en) Medical device with telescoping sealing assembly

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200811

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230607