EP3721013B1 - Method and system for monitoring the loading of a tamping unit - Google Patents

Method and system for monitoring the loading of a tamping unit Download PDF

Info

Publication number
EP3721013B1
EP3721013B1 EP18806991.8A EP18806991A EP3721013B1 EP 3721013 B1 EP3721013 B1 EP 3721013B1 EP 18806991 A EP18806991 A EP 18806991A EP 3721013 B1 EP3721013 B1 EP 3721013B1
Authority
EP
European Patent Office
Prior art keywords
tamping unit
load
penetration
tamping
ballast bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18806991.8A
Other languages
German (de)
French (fr)
Other versions
EP3721013A1 (en
Inventor
Bernhard Maier
Alexander PUCHMAYR
Johannes MAX-THEURER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Plasser und Theurer Export Von Bahnbaumaschinen GmbH
Original Assignee
Plasser und Theurer Export Von Bahnbaumaschinen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Plasser und Theurer Export Von Bahnbaumaschinen GmbH filed Critical Plasser und Theurer Export Von Bahnbaumaschinen GmbH
Publication of EP3721013A1 publication Critical patent/EP3721013A1/en
Application granted granted Critical
Publication of EP3721013B1 publication Critical patent/EP3721013B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B35/00Applications of measuring apparatus or devices for track-building purposes
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B27/00Placing, renewing, working, cleaning, or taking-up the ballast, with or without concurrent work on the track; Devices therefor; Packing sleepers
    • E01B27/12Packing sleepers, with or without concurrent work on the track; Compacting track-carrying ballast
    • E01B27/13Packing sleepers, with or without concurrent work on the track
    • E01B27/16Sleeper-tamping machines
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B27/00Placing, renewing, working, cleaning, or taking-up the ballast, with or without concurrent work on the track; Devices therefor; Packing sleepers
    • E01B27/12Packing sleepers, with or without concurrent work on the track; Compacting track-carrying ballast
    • E01B27/20Compacting the material of the track-carrying ballastway, e.g. by vibrating the track, by surface vibrators
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B2203/00Devices for working the railway-superstructure
    • E01B2203/01Devices for working the railway-superstructure with track
    • E01B2203/012Devices for working the railway-superstructure with track present, i.e. in its normal position
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B2203/00Devices for working the railway-superstructure
    • E01B2203/04Cleaning or reconditioning ballast or ground beneath
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B2203/00Devices for working the railway-superstructure
    • E01B2203/12Tamping devices
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B2203/00Devices for working the railway-superstructure
    • E01B2203/16Guiding or measuring means, e.g. for alignment, canting, stepwise propagation

Definitions

  • the invention relates to a method for monitoring the load on a tamping unit of a track-laying machine, with at least one sensor for detecting a load on the tamping unit being arranged.
  • the invention relates to a system for carrying out the method.
  • a device for bearing diagnosis on an eccentric shaft of a tamping unit using a vibration sensor is known.
  • the vibration pickup is arranged on a housing of an eccentric drive. Only free vibrations of the eccentric drive are recorded in a phase during which the tamping unit is outside a ballast bed. Based on changes in the data recorded at time intervals, conclusions are drawn about the state of wear of the bearing of the eccentric shaft.
  • the WO 2017/129215 A shows a generic method for monitoring the load on a tamping unit of a track construction machine according to the preamble of claim 1.
  • the invention is based on the object of specifying an improvement over the prior art for a method and a system of the type mentioned at the outset.
  • measured data recorded by the sensor are stored over a period of time in an evaluation device, with at least one load-time profile for cyclic penetration processes of the tamping unit in a gravel bed is derived.
  • external or internal forces acting on the tamping unit or on tamping unit parts are taken into account in the course of a load variable over time.
  • this allows conclusions to be drawn about the load situation of the tamping unit in order to specify maintenance measures or maintenance intervals.
  • a collective load is calculated from the load-time profile.
  • the collective load indicates directly which loads the tamping unit was exposed to over the recorded period of time. A comparison with fatigue strength specifications results in a predictable service life for the tamping unit or tamping unit parts.
  • a hydraulic cylinder arranged in a lifting and lowering device of the tamping unit is monitored, with a piston travel and hydraulic pressures acting in the hydraulic cylinder being recorded as measurement data. Based on this measurement data, the evaluation device calculates a penetration force for each penetration process. The corresponding load-time curve forms an evaluation basis for the tamping unit load and the ballast bed condition.
  • a further development of the method provides that the penetration energy introduced when the tamping unit penetrates the ballast bed is calculated.
  • a course of the penetration energy over several tamping cycles is shown as a corresponding load-time course. Averaging can be useful in order to mitigate any anomalies that may occur during the measurement data acquisition.
  • the penetration energy to be applied to penetrate a ballast bed is a meaningful evaluation variable for the ballast bed condition.
  • a penetration capacity acting when the tamping unit penetrates the ballast bed is calculated. Conclusions about the condition of a processed track can be drawn from the course of the penetration performance over a continuous period of working time.
  • the penetration rate to be applied is a meaningful evaluation variable for the tamping unit load.
  • an eccentric drive of the tamping unit is monitored by detecting the power of the eccentric drive over the working time period.
  • the load situation of the tamping unit or the condition of the ballast bed can be deduced from the progression of the applied eccentric power as a load-time progression.
  • a pressure or a pressure difference and a flow rate are recorded as measurement data and if a hydraulic output of the eccentric drive is derived therefrom.
  • the performance of the eccentric drive can be derived from a measured torque and a speed.
  • An improvement of the method provides for the classification of the ballast bed to be displayed in an output device linked to an implementation time and/or an implementation location. In this way, it is immediately apparent which ballast bed condition was present in which work sections.
  • the tamping unit has at least one sensor for detecting a load, the sensor being connected to the evaluation device and the evaluation device being set up to determine the load-time curve from the stored measurement data.
  • the evaluation device is located either on the tamping machine or in a remote system center. Depending on this, the measurement data are transmitted to the evaluation device via signal lines or via an internal vehicle bus system or a wireless communication device.
  • the evaluation device includes a data acquisition unit, a microprocessor and a communication means for transmitting data to remote computer systems or output devices.
  • the data acquisition unit digitizes analog sensor signals in order to use the microprocessor to determine the load-time curve from the digitized measurement data.
  • characteristic signal ranges are identified and relevant parameters are calculated by means of the microprocessor.
  • a development of the system provides that a machine control with drives or control components of the tamping unit is connected and that the machine control is supplied with the measurement data in order to adapt control data.
  • An efficient control loop is thus implemented in order to avoid overloading the tamping unit.
  • the machine control it makes sense for the machine control to also be connected to the evaluation device in order to predefine characteristic variables calculated by means of the evaluation device as control parameters for the machine control. In this way, for example, a change in the condition of the ballast bed can be reacted to automatically.
  • the exemplary system comprises a tamping machine 1 with a tamping unit 2 on which a plurality of sensors 3 for detecting loads on the tamping unit 2 are arranged. Sensor signals are transmitted to an evaluation device 5 via signal lines 4 . Measurement data recorded by the sensors 3 are stored and evaluated over a period of time T in the evaluation device 5 .
  • the tamping machine 1 can be moved on a track 6 .
  • the track 6 comprises a rail grid 9 formed from rails 7, sleepers 8 and rail fasteners, which is mounted on a ballast bed 10 ( 1 ).
  • the rail grid 10 When tamping the track 6, the rail grid 10 is brought into a desired position by means of a lifting and straightening unit 11. To stabilize this position, tamping tools 12 of the tamping unit 2 penetrate into the ballast bed 10 between the sleepers 8 . In this case, the tamping tools 12 are subjected to a vibration movement 13 . This vibrating movement 13 is generated by means of an eccentric drive 14. This is connected to the auxiliary cylinders 15 in order to provide the tamping tools 12 in the lowered state, i.e. to move them towards one another ( 2 ).
  • the vibratory movement 13 continues to be superimposed on this ordering movement 16, the vibration frequency during a penetration process 17 (for example 45 Hz) usually being selected to be higher than during a placement process 18 (for example 35 Hz). In this way, penetration into the ballast is facilitated because, at an increased frequency, the vibrating ballast resembles a flowing medium.
  • a penetration process 17 for example 45 Hz
  • a placement process 18 for example 35 Hz
  • the eccentric drive 14 is arranged on a tool carrier 19 .
  • Pivoting arms 20 are also mounted on the tool carrier 19 . These have the tamping tools 12 at their lower ends. At the upper ends, the swivel arms 20 are coupled via the auxiliary cylinders 15 to an eccentric shaft driven by the eccentric drive 14 .
  • the tool carrier 19 is guided in a unit frame 21 and can be moved vertically by means of a lifting and lowering device 22 .
  • the lifting and lowering device 22 includes a hydraulic cylinder 23.
  • the hydraulic cylinder 23 is supported against a machine frame 24 of the tamping machine 1 and during operation causes a lifting and lowering force F Z on the tool carrier 19.
  • the lowering force applied by the hydraulic cylinder 23 during a penetration process 17 F Z is a proportion of a penetration force F E that acts on the ballast bed 10 .
  • the lowering force F Z can be determined in a simple manner.
  • the mass and the acceleration of the tool carrier 19 together with the parts arranged on it are also taken into account.
  • the acceleration can be calculated by double differentiation calculate a measured piston travel x of the hydraulic cylinder 23 .
  • To determine the penetration force F E with a known mass of the moving parts, only a pressure and displacement measurement is carried out on the hydraulic cylinder 23 .
  • a progression of the penetration force F E over time t results.
  • a simple load-time profile is initially obtained.
  • several tamping cycles are monitored and the highest penetration force during the respective penetration process 17 is stored, so that the load-time profile indicates the maximum penetration force over time t, i.e. over a large number of consecutive tamping cycles.
  • a collective load can be determined in a simple manner from the load-time profile or a load-time function. This makes it immediately clear which loads have occurred over the period of time T under consideration.
  • a hydraulic motor for example, is provided as the eccentric drive 14 for generating vibrations.
  • the eccentric power P H is averaged over the respective tamping cycle.
  • the curve of the eccentric power P H over time t results as a vibration load-time curve.
  • the individual courses are simplified in 3 shown.
  • the top diagram shows a course of the penetration path x (penetration depth) over time t. This corresponds to the detected piston travel x of the hydraulic cylinder 23.
  • the tips of the tamping tools 12 touch the surface of the ballast bed 10 and at the end of the penetration path x 1 the tamping tools 12 have reached the intended maximum penetration depth.
  • the flow rate Q, the pressure difference ⁇ p, the resulting Eccentric power P H and the progression of the penetration force F E at the bottom are simplified in 3 shown.
  • the evaluation device 5 comprises a data acquisition unit 25, a microprocessor 26 and a communication means 27 (e.g. modem) for the transmission of data to remote computer systems 28 or output devices 29.
  • the microprocessor 26 is advantageously connected to a memory device 30 for the temporary storage of data.
  • the remote computer system 28 also includes a database device 31 to store historical data.
  • Output signals from the sensors 3 are fed to a machine controller 32 to form a control loop.
  • control signals are efficiently adapted to changing system conditions.
  • Digital measurement data are formed from the output signals of the sensors 3 by digitization using the data acquisition unit 25 and are made available to the microprocessor 26 . In this case, the measurement data are stored over the provided time period T.
  • a load-time curve is created and evaluated from the measurement data. Characteristic signal ranges are identified and relevant parameters are calculated, for example load collectives of the lifting and lowering device 22 and the eccentric drive 14 or classifications of the ballast bed 10.
  • the parameters are transmitted to the machine control 32 for any adjustment of control parameters. In this way, for example, the tamping parameters are adapted to a determined hardness of the ballast bed 10.
  • the remote computer system 28 is advantageously arranged in a system control center 33 in order to analyze currently recorded and historical data and to specify maintenance and inspection intervals for the tamping unit 2 derived therefrom. As a criterion for this, for example, a comparison of a load spectrum that has been formed can be used with specified fatigue strength ranges.
  • Exemplary curves of the eccentric power P H and the penetration power P E over a continuous working time period T are in figure 5 shown. A similarity between the two curves can be seen because the nature of the ballast bed 10 affects both variables P H , P E . A harder ballast bed 10 that has already been in service requires both a higher eccentric power P H and a higher penetration power P E . In the case of a new layer with new ballast, on the other hand, the power to be applied P H , P E is lower.
  • a specified condition class soft-new condition, medium, hard-old
  • corresponding value ranges are specified for at least one of the two performance variables P H , P E .
  • the state class determined is displayed in an output device 29 (computer screen, tablet, etc.) linked to an execution time and an execution location.
  • this is done in tabular form with the date, construction site designation, condition class and average eccentric power P H and average penetration power P E .
  • a display 34 with high information content is in 6 shown.
  • a construction site 35 is drawn on an electronic map 36, with individual construction site sections being assigned differently identified status classes.
  • a predetermined hardness scale 37 for the ballast bed 10 forms the basis for this.
  • dates and times 38 are displayed at prominent points on the construction site.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Machines For Laying And Maintaining Railways (AREA)
  • Vehicle Body Suspensions (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)

Description

Gebiet der Technikfield of technology

Die Erfindung betrifft ein Verfahren zur Belastungsüberwachung eines Stopfaggregates einer Gleisbaumaschine, wobei zumindest ein Sensor zur Erfassung einer Belastung des Stopfaggregates angeordnet ist. Zudem betrifft die Erfindung ein System zur Durchführung des Verfahrens.The invention relates to a method for monitoring the load on a tamping unit of a track-laying machine, with at least one sensor for detecting a load on the tamping unit being arranged. In addition, the invention relates to a system for carrying out the method.

Stand der TechnikState of the art

Aus der EP 2 154 497 A2 ist eine Vorrichtung zur Lagerdiagnose an einer Exzenterwelle eines Stopfaggregats mittels eines Schwingungsaufnehmers bekannt. Dabei ist der Schwingungsaufnehmer an einem Gehäuse eines Exzenterantriebs angeordnet. Erfasst werden lediglich freie Schwingungen des Exzenterantriebs in einer Phase, während der sich das Stopfaggregat außerhalb eines Schotterbetts befindet. Anhand von Änderungen der in Zeitabständen erfassten Daten wird auf den Verschleißzustand der Lagerung der Exzenterwelle geschlossen.From the EP 2 154 497 A2 a device for bearing diagnosis on an eccentric shaft of a tamping unit using a vibration sensor is known. In this case, the vibration pickup is arranged on a housing of an eccentric drive. Only free vibrations of the eccentric drive are recorded in a phase during which the tamping unit is outside a ballast bed. Based on changes in the data recorded at time intervals, conclusions are drawn about the state of wear of the bearing of the eccentric shaft.

Die WO 2017/129215 A zeigt ein gattungsgemäßes Verfahren zur Belastungsüberwachung eines Stopfaggregates einer Gleisbaumaschine gemäß dem Oberbegriff des Anspruchs 1.the WO 2017/129215 A shows a generic method for monitoring the load on a tamping unit of a track construction machine according to the preamble of claim 1.

Zusammenfassung der ErfindungSummary of the Invention

Der Erfindung liegt die Aufgabe zugrunde, für ein Verfahren und ein System der eingangs genannten Art eine Verbesserung gegenüber dem Stand der Technik anzugeben.The invention is based on the object of specifying an improvement over the prior art for a method and a system of the type mentioned at the outset.

Erfindungsgemäß werden diese Aufgaben gelöst durch ein Verfahren gemäß Anspruch 1 und ein System gemäß Anspruch 11. Vorteilhafte Weiterbildungen der Erfindung ergeben sich aus den abhängigen Ansprüchen.According to the invention, these objects are achieved by a method according to claim 1 and a system according to claim 11. Advantageous developments of the invention result from the dependent claims.

Dabei werden mittels des Sensors erfasste Messdaten über eine Zeitspanne hinweg in einer Auswerteeinrichtung abgespeichert, wobei aus den abgespeicherten Messdaten zumindest ein Belastungs-Zeit-Verlauf für zyklische Eindringvorgänge des Stopfaggregats in ein Schotterbett abgeleitet wird. Äußere oder innere auf das Stopfaggregat bzw. auf Stopfaggregatteile wirkende Kräfte werden auf diese Weise im zeitlichen Verlauf einer Belastungsgröße berücksichtigt. Damit ergeben sich einerseits Rückschlüsse auf die Belastungssituation des Stopfaggregats, um Instandhaltungsmaßnahmen bzw. Instandhaltungsintervalle vorzugeben. Andererseits sind Bewertungen eines mittels des Stopfaggregats bearbeiteten Schotterbetts möglich, weil aus dem Verlauf der erfassten Belastungsgröße auf die vom Schotterbett auf das Stopfaggregat wirkenden Kräfte geschlossen werden kann.In this case, measured data recorded by the sensor are stored over a period of time in an evaluation device, with at least one load-time profile for cyclic penetration processes of the tamping unit in a gravel bed is derived. In this way, external or internal forces acting on the tamping unit or on tamping unit parts are taken into account in the course of a load variable over time. On the one hand, this allows conclusions to be drawn about the load situation of the tamping unit in order to specify maintenance measures or maintenance intervals. On the other hand, it is possible to evaluate a ballast bed processed by means of the tamping unit because the forces acting on the tamping unit from the ballast bed can be deduced from the course of the recorded load variable.

In einer Ausprägung der Erfindung ist vorgesehen, dass aus dem Belastungs-Zeit-Verlauf ein Lastkollektiv errechnet wird. Das Lastkollektiv gibt unmittelbar an, welchen Belastungen das Stopfaggregat über die erfasste Zeitspanne hinweg ausgesetzt war. Durch einen Abgleich mit Zeitfestigkeitsvorgaben ergibt sich daraus eine prognostizierbare Lebensdauer des Stopfaggregats bzw. von Stopfaggregatteilen.In one embodiment of the invention, it is provided that a collective load is calculated from the load-time profile. The collective load indicates directly which loads the tamping unit was exposed to over the recorded period of time. A comparison with fatigue strength specifications results in a predictable service life for the tamping unit or tamping unit parts.

Für eine aktuelle Beurteilung der Belastungssituation durch eine Bedienperson ist es günstig, wenn mittels einer Ausgabeeinrichtung ein aus dem Belastungs-Zeit-Verlauf abgeleiteter Belastungszustand angezeigt wird. Auf diese Weise kann unmittelbar auf Überschreitungen von vorgegebenen Belastungsgrenzen reagiert werden.For a current assessment of the stress situation by an operator, it is favorable if a stress state derived from the stress-time profile is displayed by means of an output device. In this way, it is possible to react immediately if specified load limits are exceeded.

Erfindungsgemäß wird ein in einer Hebe- und Senkvorrichtung des Stopfaggregats angeordneter Hydraulikzylinder überwacht, wobei als Messdaten ein Kolbenweg und im Hydraulikzylinder wirkende Hydraulikdrücke erfasst werden. Basierend auf diesen Messdaten erfolgt mittels der Auswerteeinrichtung für jeden Eindringvorgang eine Berechnung einer Eindringkraft. Der entsprechende Belastungs-Zeit-Verlauf bildet eine Bewertungsgrundlage für die Stopfaggregatbelastung bzw. die Schotterbettbeschaffenheit.According to the invention, a hydraulic cylinder arranged in a lifting and lowering device of the tamping unit is monitored, with a piston travel and hydraulic pressures acting in the hydraulic cylinder being recorded as measurement data. Based on this measurement data, the evaluation device calculates a penetration force for each penetration process. The corresponding load-time curve forms an evaluation basis for the tamping unit load and the ballast bed condition.

Eine Weiterbildung des Verfahrens sieht vor, dass eine beim Eindringen des Stopfaggregats in das Schotterbett eingebrachte Eindringenergie errechnet wird. Als entsprechender Belastungs-Zeit-Verlauf wird ein Verlauf der Eindringenergie über mehrere Stopfzyklen hinweg abgebildet. Dabei kann eine Mittelwertbildung sinnvoll sein, um gegebenenfalls auftretende Anomalien bei der Messdatenerfassung abzumildern. Die für das Eindringen in ein Schotterbett aufzubringende Eindringenergie ist eine aussagekräftige Bewertungsgröße für die Schotterbettbeschaffenheit.A further development of the method provides that the penetration energy introduced when the tamping unit penetrates the ballast bed is calculated. A course of the penetration energy over several tamping cycles is shown as a corresponding load-time course. Averaging can be useful in order to mitigate any anomalies that may occur during the measurement data acquisition. The penetration energy to be applied to penetrate a ballast bed is a meaningful evaluation variable for the ballast bed condition.

Des Weiteren ist es von Vorteil, wenn eine beim Eindringen des Stopfaggregats in das Schotterbett wirkende Eindringleistung errechnet wird. Aus dem Verlauf der Eindringleistung über eine zusammenhängende Arbeitszeitspanne hinweg können Rückschlüsse auf die Beschaffenheit eines bearbeiteten Gleises gezogen werden. Zudem ist die aufzubringende Eindringleistung eine aussagekräftige Bewertungsgröße für die Stopfaggregatbelastung.Furthermore, it is advantageous if a penetration capacity acting when the tamping unit penetrates the ballast bed is calculated. Conclusions about the condition of a processed track can be drawn from the course of the penetration performance over a continuous period of working time. In addition, the penetration rate to be applied is a meaningful evaluation variable for the tamping unit load.

In einer alternativen Erfindungsausprägung oder als Erweiterung der vorgenannten Verfahren ist vorgesehen, dass ein Exzenterantrieb des Stopfaggregats überwacht wird, indem über die Arbeitszeitspanne hinweg eine Leistung des Exzenterantriebs erfasst wird. Mit dem Verlauf der aufgebrachten Exzenterleistung als Belastungs-Zeit-Verlauf wird auf die Belastungssituation des Stopfaggregats bzw. die Schotterbettbeschaffenheit rückgeschlossen.In an alternative embodiment of the invention or as an extension of the aforementioned method, it is provided that an eccentric drive of the tamping unit is monitored by detecting the power of the eccentric drive over the working time period. The load situation of the tamping unit or the condition of the ballast bed can be deduced from the progression of the applied eccentric power as a load-time progression.

Dabei ist es vorteilhaft, wenn bei einem hydraulischen Exzenterantrieb des Stopfaggregats als Messdaten ein Druck bzw. eine Druckdifferenz und eine Durchflussmenge erfasst werden und wenn daraus eine hydraulische Leistung des Exzenterantriebs abgeleitet wird. Alternativ dazu kann die Leistung des Exzenterantriebs aus einem gemessenen Drehmoment und einer Drehzahl abgeleitet werden.It is advantageous if, in the case of a hydraulic eccentric drive of the tamping unit, a pressure or a pressure difference and a flow rate are recorded as measurement data and if a hydraulic output of the eccentric drive is derived therefrom. Alternatively, the performance of the eccentric drive can be derived from a measured torque and a speed.

Dasselbe gilt für eine Ausprägung mit einem elektrischen Exzenterantrieb des Stopfaggregats. Dieser wird vorteilhafterweise überwacht, indem als Messdaten eine anliegende Spannung und ein Strom erfasst werden, wobei daraus eine elektrische Leistung des Exzenterantriebs abgeleitet wird.The same applies to a version with an electric eccentric drive of the tamping unit. This is advantageously monitored in that an applied voltage and a current are recorded as measurement data, with electrical power of the eccentric drive being derived therefrom.

Für eine automatisierte Instandhaltungsplanung für das Stopfaggregat ist es von Vorteil, wenn basierend auf dem Belastungs-Zeit-Verlauf mittels einer Rechnereinheit ein Wartungs- bzw. Inspektionsintervall des Stopfaggregats vorgegeben wird.For automated maintenance planning for the tamping unit, it is advantageous if, based on the load-time curve, using a computer unit specifies a maintenance or inspection interval for the tamping unit.

Zudem ist es für eine automatisierte Auswertung der Schotterbettbeschaffenheit vorteilhaft, wenn basierend auf dem Belastungs-Zeit-Verlauf mittels einer Rechnereinheit eine Klassifizierung des gestopften Schotterbetts durchgeführt wird.In addition, it is advantageous for an automated evaluation of the condition of the ballast bed if the tamped ballast bed is classified by means of a computer unit based on the load-time profile.

Dabei sieht eine Verbesserung des Verfahrens vor, dass in einer Ausgabeeinrichtung die Klassifizierung des Schotterbetts verknüpft mit einer Durchführungszeit und/oder einem Durchführungsort angezeigt wird. Auf diese Weise wird unmittelbar ersichtlich, in welchen Arbeitsabschnitten welche Schotterbettbeschaffenheit vorlag.An improvement of the method provides for the classification of the ballast bed to be displayed in an output device linked to an implementation time and/or an implementation location. In this way, it is immediately apparent which ballast bed condition was present in which work sections.

Beim erfindungsgemäßen System zur Durchführung eines der vorgenannten Verfahren weist das Stopfaggregat zumindest einen Sensor zur Erfassung einer Belastung auf, wobei der Sensor an die Auswerteeinrichtung angeschlossen ist und wobei die Auswerteeinrichtung zur Ermittlung des Belastungs-Zeit-Verlaufs aus den abgespeicherten Messdaten eingerichtet ist. Die Auswerteeinrichtung befindet sich dabei entweder auf der Stopfmaschine oder in einer entfernt angeordneten Systemzentrale. Je nachdem werden die Messdaten über Signalleitungen bzw. über ein internes Fahrzeugbussystem oder eine drahtlose Kommunikationseinrichtung an die Auswerteeinrichtung übertragen.In the system according to the invention for carrying out one of the aforementioned methods, the tamping unit has at least one sensor for detecting a load, the sensor being connected to the evaluation device and the evaluation device being set up to determine the load-time curve from the stored measurement data. The evaluation device is located either on the tamping machine or in a remote system center. Depending on this, the measurement data are transmitted to the evaluation device via signal lines or via an internal vehicle bus system or a wireless communication device.

In einer vorteilhaften Ausprägung des Systems umfasst die Auswerteeinrichtung eine Datenerfassungseinheit, einen Mikroprozessor und ein Kommunikationsmittel zur Übertragung von Daten an entfernte Rechnersysteme bzw. Ausgabeeinrichtungen. Die Datenerfassungseinheit (Data Acquisition, DAQ) digitalisiert analoge Sensorsignale, um aus den digitalisierten Messdaten mittels des Mikroprozessors den Belastungs-Zeit-Verlauf zu ermitteln. Insbesondere werden mittels des Mikroprozessors charakteristische Signalbereiche identifiziert und relevante Kenngrößen errechnet.In an advantageous embodiment of the system, the evaluation device includes a data acquisition unit, a microprocessor and a communication means for transmitting data to remote computer systems or output devices. The data acquisition unit (Data Acquisition, DAQ) digitizes analog sensor signals in order to use the microprocessor to determine the load-time curve from the digitized measurement data. In particular, characteristic signal ranges are identified and relevant parameters are calculated by means of the microprocessor.

Eine Weiterbildung des Systems sieht vor, dass eine Maschinensteuerung mit Antrieben bzw. Steuerungskomponenten des Stopfaggregats verbunden ist und dass der Maschinensteuerung die Messdaten zugeführt sind, um Steuerungsdaten anzupassen. Damit ist eine effiziente Regelschleife realisiert, um Überlastungen des Stopfaggregats zu vermeiden.A development of the system provides that a machine control with drives or control components of the tamping unit is connected and that the machine control is supplied with the measurement data in order to adapt control data. An efficient control loop is thus implemented in order to avoid overloading the tamping unit.

Sinnvollerweise ist dabei die Maschinensteuerung auch mit der Auswerteeinrichtung verbunden, um mittels der Auswerteeinrichtung errechnete Kenngrößen als Steuerungsparameter für die Maschinensteuerung vorzugeben. Auf diese Weise kann beispielsweise automatisch auf eine Änderung der Schotterbettbeschaffenheit reagiert werden.It makes sense for the machine control to also be connected to the evaluation device in order to predefine characteristic variables calculated by means of the evaluation device as control parameters for the machine control. In this way, for example, a change in the condition of the ballast bed can be reacted to automatically.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Die Erfindung wird nachfolgend in beispielhafter Weise unter Bezugnahme auf die beigefügten Figuren erläutert. Es zeigen in schematischer Darstellung:

Fig. 1
Stopfmaschine mit Stopfaggregat
Fig. 2
Stopfaggregat
Fig. 3
Signalverläufe während zweier Stopfzyklen
Fig. 4
Systemaufbau
Fig. 5
Leistungsverläufe über der Zeit
Fig. 6
Anzeige in einer Ausgabeeinrichtung
The invention is explained below in an exemplary manner with reference to the attached figures. They show in a schematic representation:
1
Tamping machine with tamping unit
2
tamping unit
3
Signal curves during two stuffing cycles
4
system build
figure 5
performance curves over time
6
Display in an output device

Beschreibung der AusführungsformenDescription of the embodiments

Das beispielhafte System umfasst eine Stopfmaschine 1 mit einem Stopfaggregat 2, an dem mehrere Sensoren 3 zur Erfassung von Belastungen des Stopfaggregats 2 angeordnet sind. Über Signalleitungen 4 werden Sensorsignale an eine Auswerteeinrichtung 5 übermittelt. In der Auswerteinrichtung 5 werden mittels der Sensoren 3 erfasste Messdaten über eine Zeitspanne T hinweg abgespeichert und ausgewertet. Die Stopfmaschine 1 ist auf einem Gleis 6 verfahrbar. Das Gleis 6 umfasst einen aus Schienen 7, Schwellen 8 und Schienenbefestigungen gebildeten Schienenrost 9, welcher auf einem Schotterbett 10 gelagert ist (Fig. 1).The exemplary system comprises a tamping machine 1 with a tamping unit 2 on which a plurality of sensors 3 for detecting loads on the tamping unit 2 are arranged. Sensor signals are transmitted to an evaluation device 5 via signal lines 4 . Measurement data recorded by the sensors 3 are stored and evaluated over a period of time T in the evaluation device 5 . The tamping machine 1 can be moved on a track 6 . The track 6 comprises a rail grid 9 formed from rails 7, sleepers 8 and rail fasteners, which is mounted on a ballast bed 10 ( 1 ).

Beim Unterstopfen des Gleises 6 wird der Schienenrost 10 mittels eines Hebe-Richt-Aggregats 11 in eine gewünschte Position gebracht. Zur Stabilisierung dieser Position dringen Stopfwerkzeuge 12 des Stopfaggregats 2 zwischen den Schwellen 8 in das Schotterbett 10 ein. Dabei sind die Stopfwerkezeuge 12 mit einer Vibrationsbewegung 13 beaufschlagt. Erzeugt wird diese Vibrationsbewegung 13 mittels eines Exzenterantriebs 14. An diesen sind Beistellzylinder 15 angeschlossen, um die Stopfwerkzeuge 12 im abgesenkten Zustand beizustellen, das heißt aufeinander zubewegen (Fig. 2). Dieser Bestellbewegung 16 bleibt weiterhin die Vibrationsbewegung 13 überlagert, wobei die Vibrationsfrequenz während eines Eindringvorgangs 17 (z.B. 45 Hz) meist höher gewählt wird als während eines Beistellvorgangs 18 (z.B. 35 Hz). Auf diese Weise wird das Eindringen in den Schotter erleichtert, weil bei einer erhöhten Frequenz der in Vibration versetzte Schotter einem fließenden Medium gleicht.When tamping the track 6, the rail grid 10 is brought into a desired position by means of a lifting and straightening unit 11. To stabilize this position, tamping tools 12 of the tamping unit 2 penetrate into the ballast bed 10 between the sleepers 8 . In this case, the tamping tools 12 are subjected to a vibration movement 13 . This vibrating movement 13 is generated by means of an eccentric drive 14. This is connected to the auxiliary cylinders 15 in order to provide the tamping tools 12 in the lowered state, i.e. to move them towards one another ( 2 ). The vibratory movement 13 continues to be superimposed on this ordering movement 16, the vibration frequency during a penetration process 17 (for example 45 Hz) usually being selected to be higher than during a placement process 18 (for example 35 Hz). In this way, penetration into the ballast is facilitated because, at an increased frequency, the vibrating ballast resembles a flowing medium.

Der Exzenterantrieb 14 ist auf einem Werkzeugträger 19 angeordnet. Am Werkzeugträger 19 sind zudem Schwenkarme 20 gelagert. Diese weisen an unteren Enden die Stopfwerkzeuge 12 auf. An oberen Enden sind die Schwenkarme 20 über die Beistellzylinder 15 mit einer mittels des Exzenterantriebs 14 angetriebenen Exzenterwelle gekoppelt. Der Werkzeugträger 19 ist in einem Aggregatrahmen 21 geführt und mittels einer Hebe- und Senkvorrichtung 22 vertikal bewegbar. Dabei umfasst die Hebe-und Senkvorrichtung 22 einen Hydraulikzylinder 23. Der Hydraulikzylinder 23 ist gegen einen Maschinenrahmen 24 der Stopfmaschine 1 abgestützt und bewirkt im Betrieb eine Hebe- und Senkkraft FZ auf den Werkzeugträger 19. Die vom Hydraulikzylinder 23 während eines Eindringvorgangs 17 aufgebrachte Senkkraft FZ ist dabei ein Anteil einer Eindringkraft FE, die auf das Schotterbett 10 einwirkt.The eccentric drive 14 is arranged on a tool carrier 19 . Pivoting arms 20 are also mounted on the tool carrier 19 . These have the tamping tools 12 at their lower ends. At the upper ends, the swivel arms 20 are coupled via the auxiliary cylinders 15 to an eccentric shaft driven by the eccentric drive 14 . The tool carrier 19 is guided in a unit frame 21 and can be moved vertically by means of a lifting and lowering device 22 . The lifting and lowering device 22 includes a hydraulic cylinder 23. The hydraulic cylinder 23 is supported against a machine frame 24 of the tamping machine 1 and during operation causes a lifting and lowering force F Z on the tool carrier 19. The lowering force applied by the hydraulic cylinder 23 during a penetration process 17 F Z is a proportion of a penetration force F E that acts on the ballast bed 10 .

Durch Messen der im Hydraulikzylinder 23 wirkenden Hydraulikdrücke lässt sich in einfacher Weise die Senkkraft FZ ermitteln. Zur Erfassung der Eindringkraft FE werden zusätzlich die Masse und die Beschleunigung des Werkzeugträgers 19 samt der daran angeordneten Teile berücksichtigt. Die Beschleunigung lässt sich dabei durch zweifache Differentiation aus einem gemessen Kolbenweg x des Hydraulikzylinders 23 berechnen. Zur Bestimmung der Eindringkraft FE wird somit bei bekannter Masse der bewegten Teile lediglich eine Druck- und Wegmessung am Hydraulikzylinder 23 durchgeführt.By measuring the hydraulic pressures acting in the hydraulic cylinder 23, the lowering force F Z can be determined in a simple manner. To determine the penetration force F E , the mass and the acceleration of the tool carrier 19 together with the parts arranged on it are also taken into account. The acceleration can be calculated by double differentiation calculate a measured piston travel x of the hydraulic cylinder 23 . To determine the penetration force F E , with a known mass of the moving parts, only a pressure and displacement measurement is carried out on the hydraulic cylinder 23 .

Durch die Erfassung der Messdaten über eine Zeitspanne T hinweg ergibt sich ein Verlauf der Eindringkraft FE über der Zeit t. Auf diese Weise erhält man zunächst einen einfachen Belastungs-Zeit-Verlauf. Für weiterführende Auswertungen werden insbesondere mehrere Stopfzyklen überwacht und jeweils die höchste Eindringkraft während des jeweiligen Eindringvorgangs 17 abgespeichert, sodass der Belastungs-Zeit-Verlauf die Maximaleindringkraft über der Zeit t, das heißt über einer Vielzahl aufeinanderfolgender Stopfzyklen hinweg angibt. Aus dem Belastungs-Zeit-Verlauf bzw. einer Belastungs-Zeit-Funktion kann in einfacher Weise ein Lastkollektiv ermittelt werden. Damit ist unmittelbar ersichtlich, welchen Belastungen über die betrachtete Zeitspanne T hinweg aufgetreten sind.By recording the measurement data over a period of time T, a progression of the penetration force F E over time t results. In this way, a simple load-time profile is initially obtained. For further evaluations, several tamping cycles are monitored and the highest penetration force during the respective penetration process 17 is stored, so that the load-time profile indicates the maximum penetration force over time t, i.e. over a large number of consecutive tamping cycles. A collective load can be determined in a simple manner from the load-time profile or a load-time function. This makes it immediately clear which loads have occurred over the period of time T under consideration.

Zur Weiterbildung des Belastungs-Zeit-Verlaufs wird für jeden Eindringvorgang 17 die Eindringenergie EE berechnet: E E = x 0 x 1 F E x dx oder

Figure imgb0001
E E = t 0 t 1 F E x t x ˙ t dt mit
Figure imgb0002

  • x0 ··· Anfang eines Eindringwegs
  • x1 ··· Ende eines Eindringwegs
  • t0 ··· Beginn eines Eindringvorgangs 17
  • t1 ··· Ende eines Eindringvorgangs 17
To develop the load-time profile, the penetration energy E E is calculated for each penetration process 17: E E = x 0 x 1 f E x dx or
Figure imgb0001
E E = t 0 t 1 f E x t x ˙ t German with
Figure imgb0002
  • x 0 ··· Beginning of a penetration route
  • x 1 ··· End of a penetration route
  • t 0 ··· Beginning of an intrusion process 17
  • t 1 ··· End of an intrusion process 17

Damit erhält man durch Überwachung mehrerer Eindringvorgänge 17 über die Zeitspanne T hinweg den Verlauf der Eindringenergie EE über der Zeit t. Eine Mittelwertbildung über mehrere Eindringvorgänge 17 hinweg führt dabei zu einer Abmilderung von gegebenenfalls auftretenden Anomalien bei der Messdatenerfassung.By monitoring a number of intrusion processes 17 over the period of time T, one obtains the profile of the intrusion energy E E over time t. Averaging over a number of penetration processes 17 leads to a mitigation of any anomalies that may occur during the measurement data acquisition.

In Weiterer Folge kann es sinnvoll sein, die während der jeweiligen Eindringvorgänge aufgebrachte Eindringleistung PE zu bestimmen: P E = E E t

Figure imgb0003
Aus einem Verlauf der Eindringleistung PE über eine zusammenhängende Arbeitszeitspanne T hinweg lassen sich sowohl Rückschlüsse auf die Belastungssituation des Stopfaggregats 2 als auch auf die Beschaffenheit des während der Arbeitszeitspanne T bearbeiteten Schotterbetts 10 ziehen. Auch hier ist eine Mittelwertbildung sinnvoll.As a result, it can be useful to determine the penetration power P E applied during the respective penetration processes: P E = E E t
Figure imgb0003
From a profile of the penetration power P E over a continuous working time period T, conclusions can be drawn about the load situation of the tamping unit 2 and also about the condition of the ballast bed 10 processed during the working time period T. Averaging is also useful here.

Bei Mehrfachstopfungen erfolgen mehrere Stopfvorgänge (Unterzyklen) an einer Stelle des Gleises 6, um einen vorgegebenen Verdichtungsgrad des Schotterbetts 10 zu erreichen. In diesem Fall werden mehrere Belastungs-Zeit-Verläufe gebildet, nämlich entsprechend der Reihung der Unterzyklen. Bei einer Zweifachstopfung wird beispielsweise der Verlauf der Eindringkraft FE, der Eindringenergie EE oder der Eindringleistung PE für alle ersten Unterzyklen und separat für alle zweiten Unterzyklen ermittelt.In the case of multiple tamping, several tamping processes (sub-cycles) take place at one point on the track 6 in order to achieve a predetermined degree of compaction of the ballast bed 10. In this case, several load-time curves are formed, namely according to the sequence of the sub-cycles. In the case of a double tamping, for example, the course of the penetration force F E , the penetration energy E E or the penetration power P E is determined for all the first sub-cycles and separately for all the second sub-cycles.

Als Exzenterantrieb 14 zur Vibrationserzeugung ist beispielsweise ein Hydraulikmotor vorgesehen. Dabei werden eine Druckdifferenz Δp zwischen Eintritt und Ausritt des Hydrauliköls und eine Durchflussmenge Q des Hydrauliköls gemessen, um eine hydraulische Leistung PH des Exzenterantriebs 14 zu bestimmen: P H = Δp Q

Figure imgb0004
A hydraulic motor, for example, is provided as the eccentric drive 14 for generating vibrations. A pressure difference Δp between the inlet and outlet of the hydraulic oil and a flow rate Q of the hydraulic oil are measured in order to determine a hydraulic power P H of the eccentric drive 14: P H = Δp Q
Figure imgb0004

Über den jeweiligen Stopfzyklus wird die Exzenterleistung PH gemittelt. Für eine zusammenhängende Arbeitszeitspanne T mit zahlreichen Stopfzyklen ergibt sich daraus als Vibrationsbelastungs-Zeit-Verlauf der Verlauf der Exzenterleistung PH über der Zeit t.The eccentric power P H is averaged over the respective tamping cycle. For a coherent working period T with numerous tamping cycles, the curve of the eccentric power P H over time t results as a vibration load-time curve.

Die einzelnen Verläufe sind vereinfacht in Fig. 3 dargestellt. Das oberste Diagramm zeigt einen Verlauf des Eindringwegs x (Eindringtiefe) über der Zeit t. Dieser entspricht dem erfassten Kolbenweg x des Hydraulikzylinders 23. Am Anfang des Eindringwegs x0 berühren die Spitzen der Stopfwerkzeuge 12 die Oberfläche des Schotterbetts 10 und am Ende des Eindringwegs x1 haben die Stopfwerkzeuge 12 die vorgesehene maximale Eindringtiefe erreicht. In den Diagrammen darunter sind mit übereinstimmender Zeitachse die Verläufe der Durchflussmenge Q, der Druckdifferenz Δp, der resultierenden Exzenterleistung PH und ganz unten der Verlauf der Eindringkraft FE dargestellt.The individual courses are simplified in 3 shown. The top diagram shows a course of the penetration path x (penetration depth) over time t. This corresponds to the detected piston travel x of the hydraulic cylinder 23. At the beginning of the penetration path x 0 the tips of the tamping tools 12 touch the surface of the ballast bed 10 and at the end of the penetration path x 1 the tamping tools 12 have reached the intended maximum penetration depth. In the diagrams below, the flow rate Q, the pressure difference Δp, the resulting Eccentric power P H and the progression of the penetration force F E at the bottom.

Wie in Fig. 4 ersichtlich umfasst die Auswerteeinrichtung 5 eine Datenerfassungseinheit 25, einen Mikroprozessor 26 und ein Kommunikationsmittel 27 (z.B. Modem) zur Übertragung von Daten an entfernte Rechnersysteme 28 bzw. Ausgabeeinrichtungen 29. Zur Zwischenspeicherung von Daten ist der Mikroprozessor 26 günstigerweise mit einer Speichereinrichtung 30 verbunden. Das entfernte Rechnersystem 28 umfasst zudem eine Datenbankeinrichtung 31, um historische Daten abzuspeichern.As in 4 As can be seen, the evaluation device 5 comprises a data acquisition unit 25, a microprocessor 26 and a communication means 27 (e.g. modem) for the transmission of data to remote computer systems 28 or output devices 29. The microprocessor 26 is advantageously connected to a memory device 30 for the temporary storage of data. The remote computer system 28 also includes a database device 31 to store historical data.

Einer Maschinensteuerung 32 sind Ausgangssignale der Sensoren 3 zur Bildung eines Regelkreislaufs zugeführt. Auf diese Weise erfolgt eine effiziente Anpassung von Steuerungssignalen an sich verändernde Systembedingungen. Durch Digitalisierung mittels der Datenerfassungseinheit 25 werden aus den Ausgangssignalen der Sensoren 3 digitale Messdaten gebildet und dem Mikroprozessor 26 bereitgestellt. Dabei erfolgt eine Abspeicherung der Messdaten über die vorgesehene Zeitspanne T hinweg. Mittels des Mikroprozessors 26 wird aus den Messdaten ein Belastungs-Zeit-Verlauf erstellt und ausgewertet. Dabei werden charakteristische Signalbereiche identifiziert und relevante Kenngrößen berechnet, beispielsweise Lastkollektive der Hebe- und Senkvorrichtung 22 und des Exzenterantriebs 14 oder Klassifizierungen des Schotterbetts 10. Zur etwaigen Anpassung von Steuerungsparametern werden die Kenngrößen an die Maschinensteuerung 32 übertragen. Auf diese Weise erfolgt zum Beispiel eine Anpassung der Stopfparameter an eine ermittelte Härte des Schotterbetts 10.Output signals from the sensors 3 are fed to a machine controller 32 to form a control loop. In this way, control signals are efficiently adapted to changing system conditions. Digital measurement data are formed from the output signals of the sensors 3 by digitization using the data acquisition unit 25 and are made available to the microprocessor 26 . In this case, the measurement data are stored over the provided time period T. Using the microprocessor 26, a load-time curve is created and evaluated from the measurement data. Characteristic signal ranges are identified and relevant parameters are calculated, for example load collectives of the lifting and lowering device 22 and the eccentric drive 14 or classifications of the ballast bed 10. The parameters are transmitted to the machine control 32 for any adjustment of control parameters. In this way, for example, the tamping parameters are adapted to a determined hardness of the ballast bed 10.

Das entfernte Rechnersystem 28 ist vorteilhafterweise in einer Systemzentrale 33 angeordnet, um aktuell erfasste sowie historische Daten zu analysieren und daraus abgeleitete Wartungs- bzw. Inspektionsintervalle für das Stopfaggregat 2 vorzugeben. Als Kriterium dafür kann beispielsweise ein Abgleich eines gebildeten Lastkollektivs mit vorgegeben Zeitfestigkeitsbereichen herangezogen werden.The remote computer system 28 is advantageously arranged in a system control center 33 in order to analyze currently recorded and historical data and to specify maintenance and inspection intervals for the tamping unit 2 derived therefrom. As a criterion for this, for example, a comparison of a load spectrum that has been formed can be used with specified fatigue strength ranges.

Beispielhafte Verläufe der Exzenterleistung PH und der Eindringleistung PE über eine zusammenhängende Arbeitszeitspanne T hinweg sind in Fig. 5 dargestellt. Dabei ist eine Ähnlichkeit zwischen beiden Verläufen erkennbar, weil sich die Beschaffenheit des Schotterbetts 10 auf beide Größen PH, PE auswirkt. Ein härteres Schotterbett 10 mit bereits fortgeschrittener Liegedauer erfordert sowohl eine höhere Exzenterleistung PH als auch eine höher Eindringleistung PE. Bei einer Neulage mit neuem Schotter sind die aufzubringenden Leistungen PH, PE hingegen niedriger.Exemplary curves of the eccentric power P H and the penetration power P E over a continuous working time period T are in figure 5 shown. A similarity between the two curves can be seen because the nature of the ballast bed 10 affects both variables P H , P E . A harder ballast bed 10 that has already been in service requires both a higher eccentric power P H and a higher penetration power P E . In the case of a new layer with new ballast, on the other hand, the power to be applied P H , P E is lower.

Um einem jeweiligen Bearbeitungsabschnitt eines Schotterbetts 10 eine vorgegeben Zustandsklasse (weich-Neulage, mittel, hart-alt) zuzuordnen, sind für zumindest eine der beiden Leistungsgrößen PH, PE entsprechende Wertebereiche vorgegeben. Durch einen Abgleich der ermittelten Leistungsverläufe mit diesen vorgegeben Wertebereichen erfolgt eine automatisierte Klassifizierung der bearbeiteten Schotterbettabschnitte.In order to assign a specified condition class (soft-new condition, medium, hard-old) to a respective processing section of a ballast bed 10, corresponding value ranges are specified for at least one of the two performance variables P H , P E . By comparing the determined performance curves with these specified value ranges, an automated classification of the processed ballast bed sections is carried out.

Vorteilhafterweise wird die ermittelte Zustandsklasse verknüpft mit einer Durchführungszeit und einem Durchführungsort in einer Ausgabeeinrichtung 29 (Computerbildschirm, Tablet etc.) angezeigt. Im einfachsten Fall geschieht dies in tabellarischer Form mit Datum, Baustellenbezeichnung, Zustandsklasse sowie mittlerer Exzenterleistung PH und mittlerer Eindringleistung PE.Advantageously, the state class determined is displayed in an output device 29 (computer screen, tablet, etc.) linked to an execution time and an execution location. In the simplest case, this is done in tabular form with the date, construction site designation, condition class and average eccentric power P H and average penetration power P E .

Eine Anzeige 34 mit hohem Informationsgehalt ist in Fig. 6 dargestellt. Dabei ist eine Baustelle 35 in einer elektronischen Landkarte 36 eingezeichnet, wobei einzelnen Baustellenabschnitten unterschiedlich gekennzeichnete Zustandsklassen zugeordnet sind. Basis dafür bildet eine vorgegebene Härteskala 37 für das Schotterbett 10. Zudem werden an markanten Stellen der Baustelle Datums- und Uhrzeitangaben 38 angezeigt.A display 34 with high information content is in 6 shown. A construction site 35 is drawn on an electronic map 36, with individual construction site sections being assigned differently identified status classes. A predetermined hardness scale 37 for the ballast bed 10 forms the basis for this. In addition, dates and times 38 are displayed at prominent points on the construction site.

Claims (14)

  1. A method for load monitoring of a tamping unit (2) with a lifting- and lowering device (22) of a track maintenance machine (1), wherein at least one sensor (3) is arranged for recording a load on the tamping unit (2), wherein measuring data recorded by means of the sensor (3) are stored over a time period (T) in an evaluation device (5), characterized in that at least one load-time progression for cyclical penetration operations (17) of the tamping unit (2) into a ballast bed (10) is derived from the stored measuring data and a hydraulic cylinder (23) arranged in the lifting- and lowering device (22) of the tamping unit (2) is monitored, and that a piston travel (x) of the hydraulic cylinder (23) and hydraulic pressures acting in the hydraulic cylinder (23) are recorded as measuring data.
  2. A method according to claim 1, characterized in that a load spectrum is calculated from the load-time progression.
  3. A method according to one of claims 1 or 2, characterized in that a penetration energy (EE) produced during penetration of the tamping unit (2) into the ballast bed (10) is calculated.
  4. A method according to one of claims 1 to 3, characterized in that a penetration performance (PE) effective during penetration of the tamping unit (2) into the ballast bed (10) is calculated.
  5. A method according to one of claims 1 to 4, characterized in that an eccentric drive (14) of the tamping unit (2) is monitored, and that a performance of the eccentric drive (14) is recorded over the time period (T).
  6. A method according to claim 4, characterized in that a hydraulic eccentric drive (14) of the tamping unit (2) is monitored, and that a pressure (Δp) and a flow volume (Q) are recorded as measuring data, and that from this a hydraulic performance (PH) of the eccentric drive (14) is derived.
  7. A method according to claim 4, characterized in that an electric eccentric drive (14) of the tamping unit (2) is monitored, and that a voltage and a current are recorded as measuring data, and that from this an electric performance of the eccentric drive (14) is derived.
  8. A method according to one of claims 1 to 7, characterized in that a maintenance- or inspection interval for the tamping unit (2) is prescribed by means of a computer unit (28) on the basis of the load-time progression.
  9. A method according to one of claims 1 to 8, characterized in that a classification of the tamped ballast bed (10) is carried out by means of a computer unit (28) on the basis of the load-time progression.
  10. A method according to claim 9, characterized in that the classification of the ballast bed (10), linked to an implementation time and/or an implementation location, is displayed in an output device (29).
  11. A system for implementation of a method according to one of claims 1 to 10, comprising a tamping unit (2) with a lifting- and lowering device (22) and an evaluation device (5), wherein a hydraulic cylinder is arranged in the lifting- and lowering device (22) and wherein the tamping unit (2) comprises at least one sensor (3) connected to the evaluation device (5) for recording a load, wherein measuring data recorded by means of the sensor (3) are stored over a time period (T) in an evaluation device (5), characterized in that the evaluation device (5) is designed for determining the load-time progression for cyclical penetration operations (17) of the tamping unit (2) into a ballast bed (10) from the stored measuring data, wherein a piston travel (x) of the hydraulic cylinder (23) and hydraulic pressures acting in the hydraulic cylinder (23) are recorded as measuring data.
  12. A system according to claim 11, characterized in that the evaluation device (5) comprises a data acquisition device (25), a microprocessor (26) and a communication means (27) for the transmission of data to remote computer systems (28) or output devices (29).
  13. A system according to claim 11 or 12, characterized in that a machine control (32) is connected to drives or control components of the tamping unit (2), and that the measuring data are supplied to the machine control (32) in order to adjust controlling data.
  14. A system according to claim 13, characterized in that the machine control (32) is connected to the evauation device (5) in order to specify characteristic values, calculated by means of the evaluation device (5), as control parameters.
EP18806991.8A 2017-12-07 2018-11-09 Method and system for monitoring the loading of a tamping unit Active EP3721013B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA472/2017A AT520698B1 (en) 2017-12-07 2017-12-07 Method and system for load monitoring of a tamping unit
PCT/EP2018/080719 WO2019110239A1 (en) 2017-12-07 2018-11-09 Method and system for monitoring the loading of a tamping unit

Publications (2)

Publication Number Publication Date
EP3721013A1 EP3721013A1 (en) 2020-10-14
EP3721013B1 true EP3721013B1 (en) 2023-01-11

Family

ID=64402168

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18806991.8A Active EP3721013B1 (en) 2017-12-07 2018-11-09 Method and system for monitoring the loading of a tamping unit

Country Status (11)

Country Link
US (1) US20200370248A1 (en)
EP (1) EP3721013B1 (en)
JP (1) JP7179851B2 (en)
CN (1) CN111417756B (en)
AT (1) AT520698B1 (en)
CA (1) CA3079624A1 (en)
DK (1) DK3721013T3 (en)
EA (1) EA202000143A1 (en)
ES (1) ES2941534T3 (en)
PL (1) PL3721013T3 (en)
WO (1) WO2019110239A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT521798B1 (en) * 2018-10-24 2021-04-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Method and device for compacting a ballast bed
AT521850A1 (en) * 2018-10-24 2020-05-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Track construction machine and method for stuffing sleepers of a track
AT17191U1 (en) 2020-04-01 2021-08-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh System for editing a track
RU2765725C1 (en) * 2021-04-09 2022-02-02 Анатолий Николаевич Шилкин Method for controlling the process of compaction of the ballast layer of the rail track

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT319312B (en) * 1971-02-19 1974-12-10 Plasser Bahnbaumasch Franz Device for controlling the lateral adjustment of tool assemblies of a track construction machine
AT346888B (en) * 1975-01-28 1978-11-27 Plasser Bahnbaumasch Franz PROCEDURE AND EQUIPMENT FOR DETERMINING THE CONDITION OR THE DENSITY OF COARSE-GRAINED GOOD, IN PARTICULAR A TRACK BALL BED
JPS5842321B2 (en) * 1975-06-14 1983-09-19 芝浦メカトロニクス株式会社 Doushiyoushimekanamesouchi
CH658689A5 (en) * 1986-02-27 1986-11-28 Kershaw Mfg RAILWAY CONVEYOR.
ATE167249T1 (en) * 1994-11-15 1998-06-15 Plasser Bahnbaumasch Franz METHOD AND SYSTEM FOR SUBSTRATE RENOVATION OF A GRASS BED OF A TRACK
JP2005248432A (en) 2004-03-01 2005-09-15 West Japan Railway Co Method of detecting ballast condition, method of determining whether tamping operation is good or not, and finishing support device
DE102006023646A1 (en) * 2006-05-18 2007-11-22 Db Netz Ag Diagnostic system for auxiliary vehicles, in particular track-laying machines
GB0714379D0 (en) * 2007-07-21 2007-09-05 Monition Ltd Tamping bank monitoring apparatus and method
DE202008010351U1 (en) * 2008-08-04 2008-12-11 Db Netz Ag Device for bearing diagnosis on eccentric shafts of tamping machines by means of vibration sensors
AU2012398058A1 (en) 2012-12-27 2015-08-13 Acciona Infraestructuras, S.A. Predictive method for analysing tampering equipment, and tampering equipment
AT513973B1 (en) 2013-02-22 2014-09-15 System7 Railsupport Gmbh Tamping unit for a tamping machine
AT515801B1 (en) * 2014-09-16 2015-12-15 System 7 Railsupport Gmbh Method for compacting the ballast bed of a track
AT518025A1 (en) * 2015-12-10 2017-06-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Stopfaggregat and method for submerging a track
AT518195B1 (en) * 2016-01-26 2017-11-15 Plasser & Theurer Export Von Bahnbaumaschinen Gmbh Method for compacting the ballast bed of a track and tamping unit
CN205557207U (en) * 2016-01-28 2016-09-07 中国铁建高新装备股份有限公司 Two two pillow tamping cars of marching type of resting head on main track tamping machine and being equipped with device
AT518072B1 (en) * 2016-04-29 2017-07-15 Hp3 Real Gmbh Tamping unit for a tamping machine
CN206538637U (en) * 2017-02-13 2017-10-03 中铁十八局集团第四工程有限公司 A kind of track strengthening device for existing railway

Also Published As

Publication number Publication date
EA202000143A1 (en) 2020-10-13
CA3079624A1 (en) 2019-06-13
CN111417756B (en) 2022-10-04
EP3721013A1 (en) 2020-10-14
CN111417756A (en) 2020-07-14
AT520698B1 (en) 2020-09-15
JP7179851B2 (en) 2022-11-29
PL3721013T3 (en) 2023-05-02
WO2019110239A1 (en) 2019-06-13
ES2941534T3 (en) 2023-05-23
JP2021505795A (en) 2021-02-18
US20200370248A1 (en) 2020-11-26
DK3721013T3 (en) 2023-04-03
AT520698A1 (en) 2019-06-15

Similar Documents

Publication Publication Date Title
EP3721013B1 (en) Method and system for monitoring the loading of a tamping unit
EP3631087B1 (en) Method and device for compressing a track ballast bed
AT513973B1 (en) Tamping unit for a tamping machine
EP3870759B1 (en) Method and device for compacting a ballast bed
DE102008019578B4 (en) Apparatus and method for detecting damage to a work machine
DE102010060843B4 (en) Method and device for measuring soil parameters by means of compaction machines
EP3147406B1 (en) Measuring system and method for compression control and computer program with a program code for execution of the method
WO2012048433A1 (en) Method for determining the stiffness and/or damping of a body
WO2017097390A1 (en) Tamping unit having an angle sensor for determining the tamping tool position
DE60303303T2 (en) FALL WEIGHT COMPRESSION
DE102019108278A1 (en) Device for determining the current state and / or the remaining service life of a construction machine
DE10236735B4 (en) Method for generating damage equivalent to driving noise profiles for vibration testing of vehicle components
EP3315668B1 (en) Method and system for the compaction of a soil
EP3973255B1 (en) Method and apparatus for controlling/regulating a rotary drive of a work unit of a track laying machine
EP3109365A1 (en) Method for controlling a vibration rammer
AT524860B1 (en) Device and method for compacting a track bed
AT524861B1 (en) Method and machine for tamping a track
AT520791A1 (en) Method for operating a tamping aggregate of a track construction machine as well as a stuffing device for track bed compaction and track construction machine
DE3908540C2 (en) Method for rock-dependent control of a part-cut drive-on machine
EA041210B1 (en) METHOD AND SYSTEM FOR CONTROL OF LOAD ON TAMPING UNIT
EP4228949A1 (en) Method and system for ascertaining a vibration transmission in the region of a track

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200707

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210518

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220817

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018011432

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1543486

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230215

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20230327

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2941534

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20230523

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230111

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230511

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230411

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230111

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230111

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230511

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230111

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018011432

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230111

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230111

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230111

26N No opposition filed

Effective date: 20231012

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231114

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231012

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231206

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230111

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231115

Year of fee payment: 6

Ref country code: RO

Payment date: 20231031

Year of fee payment: 6

Ref country code: IT

Payment date: 20231130

Year of fee payment: 6

Ref country code: FR

Payment date: 20231123

Year of fee payment: 6

Ref country code: DK

Payment date: 20231115

Year of fee payment: 6

Ref country code: CZ

Payment date: 20231027

Year of fee payment: 6

Ref country code: CH

Payment date: 20231201

Year of fee payment: 6

Ref country code: AT

Payment date: 20231006

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231027

Year of fee payment: 6

Ref country code: BE

Payment date: 20231114

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240130

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230111