EP3719258B1 - Aube mobile d'une turbomachine - Google Patents

Aube mobile d'une turbomachine Download PDF

Info

Publication number
EP3719258B1
EP3719258B1 EP20161689.3A EP20161689A EP3719258B1 EP 3719258 B1 EP3719258 B1 EP 3719258B1 EP 20161689 A EP20161689 A EP 20161689A EP 3719258 B1 EP3719258 B1 EP 3719258B1
Authority
EP
European Patent Office
Prior art keywords
channel portion
radially
inlet
inlet channel
blade root
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20161689.3A
Other languages
German (de)
English (en)
Other versions
EP3719258A1 (fr
Inventor
Thorsten Pöhler
Dirk Frank
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN Energy Solutions SE
Original Assignee
MAN Energy Solutions SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN Energy Solutions SE filed Critical MAN Energy Solutions SE
Priority to RS20230575A priority Critical patent/RS64375B1/sr
Publication of EP3719258A1 publication Critical patent/EP3719258A1/fr
Application granted granted Critical
Publication of EP3719258B1 publication Critical patent/EP3719258B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/04Blade-carrying members, e.g. rotors for radial-flow machines or engines
    • F01D5/043Blade-carrying members, e.g. rotors for radial-flow machines or engines of the axial inlet- radial outlet, or vice versa, type
    • F01D5/046Heating, heat insulation or cooling means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/081Cooling fluid being directed on the side of the rotor disc or at the roots of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/30Fixing blades to rotors; Blade roots ; Blade spacers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/30Fixing blades to rotors; Blade roots ; Blade spacers
    • F01D5/3007Fixing blades to rotors; Blade roots ; Blade spacers of axial insertion type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/94Functionality given by mechanical stress related aspects such as low cycle fatigue [LCF] of high cycle fatigue [HCF]
    • F05D2260/941Functionality given by mechanical stress related aspects such as low cycle fatigue [LCF] of high cycle fatigue [HCF] particularly aimed at mechanical or thermal stress reduction

Definitions

  • the invention relates to a moving blade of a turbomachine.
  • Flow machines such as turbines or compressors, have assemblies on the stator and assemblies on the rotor.
  • the rotor-side assemblies of a turbomachine include the so-called turbomachine rotor, which has a hub body and moving blades that extend radially outwards, starting from the hub body.
  • a rotor blade of a turbomachine has a flow-guiding blade leaf and a blade root, via which the rotor blade can be fastened in the hub body of the turbomachine.
  • the airfoil of the turbomachine has a flow inlet edge, a flow outlet edge and flow guide surfaces for a process medium extending between the flow inlet edge and the flow outlet edge, which are also referred to as suction side and pressure side.
  • the blade root via which the moving blade can be fastened in the hub body of the turbomachine, is typically designed in the manner of a Christmas tree with at least two projections spaced apart from one another, as seen in the radial direction of the moving blade.
  • a moving blade also has what is known as an inner shroud, which is arranged between the blade leaf and the blade root, viewed in the radial direction of the moving blade. If necessary, an outer shroud can adjoin radially on the outside of the airfoil.
  • rotor blades are used, in which a cooling channel is integrated. In this case, the cooling channel extends both over the blade root and over the blade airfoil.
  • An inlet of the cooling channel is formed radially on the inside at the blade root.
  • An outlet of the cooling channel can be formed radially on the outside of the airfoil or on the radially outer outer shroud or at another point.
  • the present invention is based on the object of creating a novel moving blade of a turbomachine which, despite the cooling duct, has a high level of strength.
  • the inlet of the cooling channel is formed from a first inlet channel section and a second inlet channel section, which is arranged behind the first inlet channel section as seen in the axial direction of the blade root and between which a material web extends.
  • the first inlet channel section of the cooling channel and the second inlet channel section of the cooling channel merge into a combination channel section of the cooling channel, which is arranged radially on the outside or radially above the uppermost or radially outermost projection of the blade root and radially on the inside or radially below the inner shroud, viewed in the radial direction. This is used for effective cooling of the moving blade while at the same time maintaining high strength of the moving blade.
  • the first inlet channel section and the second inlet channel section preferably initially run in a straight line in the radial direction from radially inside to radially outside.
  • An axial thickness of the material web is constant in that region of the blade root in which the first inlet channel section and the second inlet channel section run in a straight line in the radial direction. This is used for effective cooling of the moving blade while at the same time maintaining high strength of the moving blade.
  • the first inlet channel section and the second inlet channel section then extend in a bent or curved manner in the direction of the combination channel section, namely in the direction of an upstream or axially front end of the blade root in relation to the process medium flow.
  • an axial thickness of the material web preferably decreases in the direction of the combining channel section. This also serves to effectively cool the moving blade while at the same time maintaining high strength of the moving blade.
  • the first inlet channel section is curved with a first radius of curvature in the direction of the upstream or axially front end of the blade root.
  • the second entry duct section curves toward the upstream or axially forward end of the blade root at a second radius of curvature.
  • the first radius of curvature is at least as large, preferably larger, than the second radius of curvature.
  • the cooling channel initially extends radially outwards in the direction of a radially outer deflection channel section following the combining channel section. Following the radially outer deflection channel section, the cooling channel extends radially inward in the direction of a radially inner deflection channel section. Following the radially inner deflection channel section, the cooling channel extends radially outward in the direction of a cooling channel outlet.
  • the radially inner deflection channel section is arranged in the radial direction above or radially on the outside of the topmost or radially outermost projection of the blade root and below or radially on the inside of the inner shroud. This also serves for the effective cooling of the moving blade with the same high strength.
  • the first inlet channel section and the second inlet channel section have the same flow cross sections. This ensures effective cooling of the moving blade.
  • FIG. 1 shows views of a rotor blade 10, the rotor blade 10 comprising a flow-guiding airfoil 11 and a blade root 12.
  • the flow-guiding blade leaf 11 serves to guide the flow of a process medium, in particular process gas, which flows through the turbomachine, with the blade leaf 11 having a flow inlet edge 13 for the process medium, a flow outlet edge 14 for the process medium and flow guide surfaces 15 extending between the flow inlet edge 13 and the flow outlet edge 14 , 16 for the process medium.
  • the flow guide surfaces 15, 16 form a suction side and a pressure side.
  • the blade root 12 is used to fasten the moving blade 10 in a hub body (not shown) of the turbomachine.
  • the blade root 12 is designed like a Christmas tree with at least two projections 17 spaced apart from one another as viewed in the radial direction of the moving blade 10 . In the exemplary embodiment shown, three such projections 17 are spaced apart from one another in the radial direction of the moving blade 10 .
  • the fir-tree profile of the blade root 12 tapers between adjacent projections 17. Each projection 17 and the tapering section of the fir-tree profile arranged directly above the respective projection 17 each define a so-called tooth of the fir-tree profile.
  • the rotor blade 10 also has an inner shroud 18 which, viewed in the radial direction of the rotor blade 10 , is arranged between the blade leaf 11 and the blade root 12 of the rotor blade 10 .
  • the inner shroud 18 delimits a flow guide channel for the process medium radially on the inside.
  • the rotor blade 10 also has an outer shroud 19.
  • the outer shroud 19 delimits the flow guide channel for the process medium radially on the outside.
  • a cooling channel 20 for cooling medium, in particular cooling air, is integrated into the moving blade 10 .
  • contours of the cooling channel 20 are shown in dashed lines. Also in 3 contours of the cooling channel 20 are shown in broken lines in sections. Figures 4, 5 , 6 and 7 only show the contours of the cooling channel 20 without the actual moving blade 10.
  • the cooling channel 20 has an inlet or cooling channel inlet 21 which is formed radially on the inside of the blade root 12 . Furthermore, the cooling duct 20 has an outlet or cooling duct exit 31 which is formed in particular radially on the outside on the airfoil 11 or on the outer shroud 19 . The cooling channel outlet 31 can also be positioned at a different point.
  • 3 , 5 , 6 and 7 show details of the entry or cooling channel entry 21 of the cooling channel 20.
  • the inlet or cooling duct entrance 21 of the cooling duct 20 comprises a first entry duct section 22 and a second entry duct section 23.
  • the first inlet channel section 22 is positioned at the front as seen in the axial direction with respect to the flow of the process medium, i.e. positioned closer to an upstream or axially front end of the blade root 12 with respect to the process medium flow than the second inlet channel section 23.
  • the second inlet channel section 23 is arranged behind the first inlet channel section 22 as viewed in the axial direction of the blade root 12 .
  • the blade root 12 is not used to guide the process medium but only to fasten or assemble the rotor blade 10 on the hub body. Nevertheless, the blade root 12 has two opposite axial ends, namely an upstream or axially forward end in relation to the process medium flow and a downstream or axially rearward end in relation to the process medium flow.
  • the first inlet channel section 22 is arranged between the upstream or axially forward end of the blade root 12 and the second inlet channel section 23 .
  • the second inlet channel section 23 is arranged between the first inlet channel section 22 and the downstream or axially rearward end of the blade root 12 .
  • a material web 24 extends between the two inlet channel sections 22 and 23, which are spaced apart from one another in the axial direction of the blade root 12. This material web 24 stiffens the rotor blade 10 in the region of its blade root 12.
  • this connecting channel section 25 is arranged or formed above or radially outside the uppermost or radially outermost projection 17 and below or radially inside the inner shroud 18 .
  • the material web 24 extends radially from the inside to the radial outside into a section of the blade root 12 that is arranged above or radially outside of the radially outermost and thus uppermost projection 17 of the blade root 12, as a result of which the strength of the rotor blade 10 is increased in the Area of the blade root 12 can be adjusted particularly advantageously.
  • the web of material 24 preferably extends into the region of the narrowest cross section of the radially outermost and thus uppermost tooth of the fir-tree profile of the blade root 12 .
  • the first inlet channel section 22 defines a first flow inlet opening radially inside at the blade root 12 and the second inlet channel section 23 defines a second flow inlet opening radially inside at the blade root 12 .
  • the inlet channel sections 22 , 23 themselves, these are positioned one behind the other as seen in the axial direction of the blade root 12 and are spaced apart from one another by the material web 24 .
  • the first flow inlet opening and thus the first inlet channel section 22 has a defined axial distance ⁇ x from the upstream or axially front end of the blade root 12 in relation to the process medium flow.
  • the defined axial distance ⁇ x between the first inlet channel section 22 and thus the first flow inlet opening and the upstream or axially front end of the blade root 12 is preferably between 10% and 30%, in particular between 15% and 25%, of the axial length L of the blade root 12.
  • the material web 24 has a constant thickness in the axial direction.
  • the axial distance ⁇ x defined above between the first inlet channel section 22 and the upstream end of the blade root 12 relates to the area of the first inlet channel section 22 that extends radially outwards in a straight line in the radial direction run in a straight line, the two inlet channel sections 22, 23 run bent or curved in the direction of the connecting channel section 25. In the area of this curvature, the distance ⁇ x defined above changes.
  • the curvature of the inlet channel sections 22, 23 between the regions thereof running in a straight line in the radial direction and the connecting channel section 25 is directed in the direction of the upstream or axially front end of the blade root 12 or in the direction of the flow inlet edge 13 of the moving blade 11.
  • the axial thickness of the material web 24 preferably decreases in the direction of the combining channel section 25 .
  • the web of material 24 tapers in this area.
  • the axial thickness of the web of material 24 can also be constant in this area.
  • the cooling channel 20 in the exemplary embodiment shown initially extends radially outwards with a further section 26 in the direction of a radially outer deflection channel section 27, then at the radially outer deflection channel section 27 with a further section 28 radially inwards in the direction of a inner deflection duct section 29 and then to this radially inner deflection duct section 29 with a further section 30 radially outwards in the direction of the cooling duct outlet 31.
  • the sections 26, 28 and 30 of the cooling duct 20 extend within the blade leaf 11. There are also other courses of the Cooling channel 20 downstream of the connecting channel section 25 possible.
  • the radially inner deflection channel section 29 is arranged above or radially outside the topmost or radially outermost projection 17 of the blade root 12 and below or radially inside the inner shroud 18, specifically in the axial direction opposite the inlet channel sections 22, 23, axially to the rear in the direction of the offset downstream or axially aft end of the blade root 12.
  • the upper or radially outer deflection channel section 27 can extend into the area of the outer shroud 19 .
  • cooling medium flows into the cooling duct 20 via the flow inlet openings of the inlet duct sections 22, 23, with this coolant flowing through the two inlet duct sections 22, 23 being combined in the region of the combining duct section 25. This takes place in the area of the blade root 12 .
  • the cooling medium is then conducted via the channel sections 26 , 27 , 28 , 29 and 30 in the direction of the cooling channel outlet 31 .
  • Figures 6 and 7 show geometric parameters of the flow channel 20 in the area of the cooling channel inlet 21. So 6 it can be seen that the first inlet duct section 22 is curved with a first radius of curvature R1 and the second inlet duct section 23 with a second radius of curvature R2 towards the upstream axial end of the blade root 12 .
  • the first radius of curvature R1 is at least as large as the second radius of curvature R2, preferably R1 is larger than R2.
  • cooling medium can enter the cooling channel 20 directly in the radial direction in the area of the inlet channel sections 22, 23, as a result of which an effective entry of the cooling medium into the cooling channel 20 is possible.
  • the inlet channel sections 22 , 23 spaced apart from one another in the axial direction have a defined axial distance from the upstream end of the blade root 12 .
  • the inlet channel sections 22, 23 are spaced apart from one another in the axial direction by the material web 24. This serves to provide a high strength of the rotor blade 10 in the area of the blade root 12.
  • the web 24 extends, seen in the radial direction, to above or radially outside of the uppermost or radially outermost projection 17 of the fir-tree-like blade root 12. This ensures optimum strength in the area of the blade root 12.
  • the radially inner deflection channel section 29 is also arranged at an axial distance from the combining channel section 25 .
  • This radially inner deflection channel section 29 extends into the blade root 12, but ends at a distance from the radially outermost projection 17 of the fir-tree-like blade root 12, radially on the outside or radially above the web 24.
  • the rotor blade 10 according to the invention allows optimal cooling with high strength. It is used in particular in gas turbines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Claims (11)

  1. Aube mobile (10) de turbomachine,
    comportant une pale (11), qui présente un bord d'attaque d'écoulement (13), un bord de sortie d'écoulement (14) et des surfaces de guidage d'écoulement (15, 16) pour un fluide de traitement s'étendant entre le bord de sortie d'écoulement (13) et le bord de sortie d'écoulement (14),
    comportant un pied d'aube (12) pour fixer la lame mobile à un corps de moyeu de turbomachine, dans laquelle le pied d'aube (12) est conformé en arbre avec au moins deux protubérances espacées (17) vues dans la direction radiale,
    comportant une virole interne (18) qui est disposée entre la pale (11) et le pied d'aube (12) vu dans la direction radiale,
    comportant un canal de refroidissement (20) pour un fluide de refroidissement intégré dans la pale (11) et le pied d'aube (12), dans laquelle une entrée (21) du canal de refroidissement (20) est formée radialement à l'intérieur du pied d'aube (12),
    l'entrée du canal de refroidissement (20) est composée d'une première section de canal d'entrée (22) et d'une deuxième section de canal d'entrée (23), disposée derrière la première section de canal d'entrée (22) vu dans la direction axiale du pied d'aube (12), entre lesquelles s'étend un gradin de matériau (24),
    la première section de canal d'entrée (22) du canal de refroidissement (20) et la deuxième section de canal d'entrée (23) du canal de refroidissement (20) aboutissent à une section de canal de jonction (25) du canal de refroidissement (20), qui est disposée radialement à l'extérieur ou radialement au-dessus de la protubérance la plus haute ou radialement la plus à l'extérieur (17) du pied d'aube (12) et radialement à l'intérieur ou radialement au-dessous de la virole interne (18), vue dans la direction radiale,
    la première section de canal d'entrée (22) du canal de refroidissement (20) et la deuxième section de canal d'entrée (23) du canal de refroidissement (20) s'étendent en ligne droite dans la direction radiale de radialement à l'intérieur vers radialement à l'extérieur,
    caractérisée en ce que
    la première section de canal d'entrée (22) et le deuxième section de canal d'entrée (23) s'étendent ensuite coudés ou courbés dans la direction de la section (25) du canal de refroidissement (20), à savoir dans la direction d'une extrémité amont ou axialement avant par rapport au flux de fluide de traitement du pied d'aube (12),
    la première section de canal d'entrée (22) est incurvée dans la direction de l'extrémité amont ou axialement avant du pied d'aube (12) avec un premier rayon (R1),
    la deuxième section de canal d'entrée (23) est incurvée dans la direction de l'extrémité amont ou axialement avant du pied d'aube (12) avec un deuxième rayon de courbure (R2),
    le premier rayon de courbure (R1) est au moins aussi grand, de préférence plus grand que le deuxième rayon de courbure (R2).
  2. Aube mobile selon la revendication 1, caractérisée en ce que la première section de canal d'admission (22) du canal de refroidissement (20) définit une première ouverture d'entrée d'écoulement et la deuxième section de canal d'entrée (23) du canal de refroidissement (20) définit une deuxième ouverture d'entrée d'écoulement qui, vue dans la direction axiale du pied d'aube (12), est positionnée derrière la première ouverture d'entrée d'écoulement.
  3. Aube mobile selon la revendication 2, caractérisée en ce que la première section de canal d'entrée (22) et donc la première ouverture d'entrée d'écoulement présente une distance axiale définie (Δx) à partir d'une extrémité amont ou axialement avant du pied de pale (12) par rapport à l'écoulement de fluide de traitement.
  4. Aube mobile selon la revendication 3, caractérisée en ce que la distance axiale définie (Δx) entre la première section (22) et donc la première ouverture d'entrée de flux et l'extrémité amont ou axialement avant du pied d'aube (12) est comprise entre 10% et 30% de la longueur axiale (L) du pied d'aube (12).
  5. Aube mobile selon la revendication 4, caractérisée en ce qu'une épaisseur axiale du gradin de matériau (24) est constante dans la région où la première section de canal d'entrée (22) et la deuxième section de canal d'entrée (23) s'étendent en ligne droite dans la direction radiale.
  6. Aube mobile selon la revendication 4 ou 5, caractérisée en ce que, dans la zone dans laquelle la première section de canal d'entrée (22) et la deuxième section de canal d'entrée (23) sont chacune coudées ou incurvées, une épaisseur axiale du gradin de matériau (24) diminue dans la direction de la section du canal de jonction (25).
  7. Aube mobile selon la revendication 4 ou 5, caractérisée en ce qu'une épaisseur axiale du gradin de matériau (24) est constante dans la zone dans laquelle la première section de canal d'admission (22) et la deuxième section de canal d'admission (23) sont chacune coudées ou incurvé.
  8. Aube de rotor selon une des revendications 1 à 7, caractérisée en ce que le canal de refroidissement (20) s'étend radialement vers l'extérieur au voisinage de la section de canal de jonction (25).
  9. Aube de rotor selon une des revendications 1 à 8, caractérisée en ce que
    suivant la section de canal de jonction (25), le canal de refroidissement (20) s'étend radialement vers l'extérieur dans la direction d'une section de canal de déviation radialement extérieure (27),
    le canal de refroidissement (20) s'étend alors radialement vers l'intérieur dans la direction d'une section de canal de déviation radialement intérieure (29) et
    le canal de refroidissement s'étend ensuite radialement vers l'extérieur dans la direction d'une sortie de canal de refroidissement (31).
  10. Aube mobile selon la revendication 9, caractérisée en ce que la section de canal de déviation interne radialement intérieure (27) est agencée radialement à l'extérieur ou radialement au-dessus de la protubérance la plus supérieure ou radialement la plus externe (17) du pied d'aube (12) et radialement à l'intérieur ou radialement au-dessous de la virole interne (18) dans la direction radiale
  11. Aube mobile selon une des revendications 1 à 10, caractérisée en ce que la première section de canal d'entrée (22) du canal de refroidissement (20) et la deuxième section de canal d'entrée (23) du canal de refroidissement (20) présentent les mêmes sections d'écoulement (A).
EP20161689.3A 2019-04-04 2020-03-09 Aube mobile d'une turbomachine Active EP3719258B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RS20230575A RS64375B1 (sr) 2019-04-04 2020-03-09 Pokretna lopatica strujne mašine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102019108811.9A DE102019108811B4 (de) 2019-04-04 2019-04-04 Laufschaufel einer Strömungsmaschine

Publications (2)

Publication Number Publication Date
EP3719258A1 EP3719258A1 (fr) 2020-10-07
EP3719258B1 true EP3719258B1 (fr) 2023-05-03

Family

ID=69784091

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20161689.3A Active EP3719258B1 (fr) 2019-04-04 2020-03-09 Aube mobile d'une turbomachine

Country Status (9)

Country Link
US (1) US11408289B2 (fr)
EP (1) EP3719258B1 (fr)
JP (1) JP7424893B2 (fr)
KR (1) KR20200117866A (fr)
CN (1) CN111794805A (fr)
DE (1) DE102019108811B4 (fr)
ES (1) ES2950136T3 (fr)
IL (1) IL272567B2 (fr)
RS (1) RS64375B1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019125779B4 (de) * 2019-09-25 2024-03-21 Man Energy Solutions Se Schaufel einer Strömungsmaschine

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6966756B2 (en) * 2004-01-09 2005-11-22 General Electric Company Turbine bucket cooling passages and internal core for producing the passages
US7467922B2 (en) 2005-07-25 2008-12-23 Siemens Aktiengesellschaft Cooled turbine blade or vane for a gas turbine, and use of a turbine blade or vane of this type
EP1895096A1 (fr) * 2006-09-04 2008-03-05 Siemens Aktiengesellschaft Aube mobile de turbine refroidie
DE102011121634B4 (de) * 2010-12-27 2019-08-14 Ansaldo Energia Ip Uk Limited Turbinenschaufel
US8628300B2 (en) * 2010-12-30 2014-01-14 General Electric Company Apparatus and methods for cooling platform regions of turbine rotor blades
GB201102719D0 (en) * 2011-02-17 2011-03-30 Rolls Royce Plc Cooled component for the turbine of a gas turbine engine
US20120269649A1 (en) * 2011-04-22 2012-10-25 Christopher Rawlings Turbine blade with improved trailing edge cooling
KR101543141B1 (ko) * 2011-04-22 2015-08-07 미츠비시 히타치 파워 시스템즈 가부시키가이샤 날개 부재 및 회전 기계
EP2535515A1 (fr) * 2011-06-16 2012-12-19 Siemens Aktiengesellschaft Section d'ancrage de pale de rotor dotée d'un passage de refroidissement et procédé pour la fourniture de liquide de refroidissement à une pale de rotor
US10180067B2 (en) * 2012-05-31 2019-01-15 United Technologies Corporation Mate face cooling holes for gas turbine engine component
US20140093386A1 (en) * 2012-09-28 2014-04-03 Solar Turbines Incorporated Cooled turbine blade with inner spar
US20140096538A1 (en) * 2012-10-05 2014-04-10 General Electric Company Platform cooling of a turbine blade assembly
US20150308449A1 (en) 2014-03-11 2015-10-29 United Technologies Corporation Gas turbine engine component with brazed cover
FR3020402B1 (fr) * 2014-04-24 2019-06-14 Safran Aircraft Engines Aube pour turbine de turbomachine comprenant un circuit de refroidissement a homogeneite amelioree
US10174622B2 (en) * 2016-04-12 2019-01-08 Solar Turbines Incorporated Wrapped serpentine passages for turbine blade cooling
EP3232001A1 (fr) 2016-04-15 2017-10-18 Siemens Aktiengesellschaft Aube rotorique de turbine
EP3241990A1 (fr) * 2016-05-04 2017-11-08 Siemens Aktiengesellschaft Pale ou aube de turbomachine comportant un élément de génération de vortex
EP3421721A1 (fr) 2017-06-28 2019-01-02 Siemens Aktiengesellschaft Composant de turbomachine et procédé de fabrication d'un composant de turbomachine
US11008873B2 (en) * 2019-02-05 2021-05-18 Raytheon Technologies Corporation Turbine blade tip wall cooling

Also Published As

Publication number Publication date
JP2020169644A (ja) 2020-10-15
KR20200117866A (ko) 2020-10-14
IL272567B2 (en) 2023-10-01
IL272567B1 (en) 2023-06-01
ES2950136T3 (es) 2023-10-05
EP3719258A1 (fr) 2020-10-07
JP7424893B2 (ja) 2024-01-30
DE102019108811A1 (de) 2020-10-08
IL272567A (en) 2020-10-29
US11408289B2 (en) 2022-08-09
US20200318485A1 (en) 2020-10-08
CN111794805A (zh) 2020-10-20
DE102019108811B4 (de) 2024-02-29
RS64375B1 (sr) 2023-08-31

Similar Documents

Publication Publication Date Title
DE69504071T2 (de) Turbomaschine
EP2473743B1 (fr) Aube mobile de compresseur pour un compresseur axial
DE69921320T2 (de) Turbinenstatorschaufel
DE69105837T2 (de) Gekühlte Turbinenschaufel.
EP1004748B1 (fr) Roue mobile pour une turbomachine
EP1898054B1 (fr) Turbine a gaz
EP2478186B1 (fr) Rotor de turbomachine
WO2005106207A1 (fr) Aube de compresseur et compresseur
DE10054244C2 (de) Turbinenblattanordnung und Turbinenblatt für eine Axialturbine
EP3176370A1 (fr) Ensemble d'aubes directrices pour turbomachine
EP1766192A1 (fr) Roue a aubes d'une turbine presentant une aube et au moins un canal refrigerant
EP2558685B1 (fr) Aube directrice
EP2140111B1 (fr) Turbomachine
EP3078804A1 (fr) Agencement virole pour une rangée d'aubes de rotor ou stator et turbine associée
DE102014115475A1 (de) Hinterkantenausrundung einer Gasturbinenleitschaufel
DE102007050916A1 (de) Verfahren und Vorrichtung zum Zusammenbau von Gasturbinen-Triebwerken
EP3473808B1 (fr) Pale d'aube pour une aube mobile de turbine à refroidissement intérieur ainsi que procédé de fabrication d'une telle pale
DE60019965T2 (de) Axialturbine für gase
EP2410131B1 (fr) Rotor d'une turbomachine
EP3561228B1 (fr) Aube, segment d'aube et module pour une turbomachine et turbomachine
EP3719258B1 (fr) Aube mobile d'une turbomachine
EP2696042B1 (fr) Turbomachine avec au moins un stator
EP3401504A1 (fr) Grille d'aube
DE102013213416B4 (de) Schaufel für eine Gasturbomaschine
EP3798416B1 (fr) Aube d'une turbomachine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210318

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F01D 5/30 20060101ALI20221219BHEP

Ipc: F01D 5/18 20060101AFI20221219BHEP

INTG Intention to grant announced

Effective date: 20230110

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020003132

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1564749

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230515

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230503

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2950136

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20231005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230904

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230803

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230903

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502020003132

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20240206

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240320

Year of fee payment: 5

Ref country code: CZ

Payment date: 20240229

Year of fee payment: 5

Ref country code: GB

Payment date: 20240321

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240301

Year of fee payment: 5

Ref country code: SE

Payment date: 20240320

Year of fee payment: 5

Ref country code: RS

Payment date: 20240229

Year of fee payment: 5

Ref country code: IT

Payment date: 20240329

Year of fee payment: 5

Ref country code: FR

Payment date: 20240328

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240401

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240429

Year of fee payment: 5