EP3710419A2 - Process for the production of 2,3,3,3-tetrafluoropropene - Google Patents

Process for the production of 2,3,3,3-tetrafluoropropene

Info

Publication number
EP3710419A2
EP3710419A2 EP18875016.0A EP18875016A EP3710419A2 EP 3710419 A2 EP3710419 A2 EP 3710419A2 EP 18875016 A EP18875016 A EP 18875016A EP 3710419 A2 EP3710419 A2 EP 3710419A2
Authority
EP
European Patent Office
Prior art keywords
stream
reactor
catalyst
trifluoropropene
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP18875016.0A
Other languages
German (de)
French (fr)
Inventor
Bertrand Collier
Dominique Deur-Bert
Anne Pigamo
Laurent Wendlinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Arkema France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France SA filed Critical Arkema France SA
Publication of EP3710419A2 publication Critical patent/EP3710419A2/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/25Preparation of halogenated hydrocarbons by splitting-off hydrogen halides from halogenated hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/26Chromium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/20Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
    • C07C17/202Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction
    • C07C17/206Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction the other compound being HX
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/18Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine

Definitions

  • the present invention relates to the production of hydrofluoroolefins. More particularly, the present invention relates to the production of 2,3,3,3-tetrafluoropropene.
  • Halogenated hydrocarbons particularly fluorinated hydrocarbons such as hydrofluoroolefins, are compounds which have a useful structure as functional materials, solvents, refrigerants, blowing agents and monomers for functional polymers or starting materials for such monomers.
  • Hydrofluoroolefins such as 2,3,3,3-tetrafluoropropene (HFO-1234yf) are attracting attention because they offer promising behavior as low global warming potential refrigerants.
  • the processes for producing fluoroolefins are usually carried out in the presence of a starting material such as an alkane containing chlorine or a chlorine-containing alkene, and in the presence of a fluorinating agent such as hydrogen fluoride. These processes can be carried out in the gas phase or in the liquid phase, in the absence or absence of catalyst.
  • a starting material such as an alkane containing chlorine or a chlorine-containing alkene
  • a fluorinating agent such as hydrogen fluoride.
  • These processes can be carried out in the gas phase or in the liquid phase, in the absence or absence of catalyst.
  • US 2009/0240090 discloses a gas phase process for the preparation of 2-chloro-3,3,3-trifluoropropene (HCFO-1233xf) from 1,1,1,2,3-pentachloropropane (HCC- 240db).
  • the HCFO-1233xf thus produced is converted into 2-chloro
  • WO 2013/088195 also discloses a process for the preparation of 2,3,3,3-tetrafluoropropene from 1,1,1,2,3-pentachloropropane and / or 1,1,2,2,3- pentachloropropane, comprising the steps of: (a) catalytically reacting 1,1,1,2,3-pentachloropropane and / or 1,1,2,2,3-pentachloropropane with HF in a reaction mixture comprising HCl, 2-chloro 3,3,3-trifluoropropene, 2,3,3,3-tetrafluoropropene, unreacted HF and optionally 1,1,1,2,2-pentafluoropropane; (b) separating the reaction mixture into a first stream comprising HCl and 2,3,3,3-tetrafluoropropene and a second stream comprising HF, 2-chloro-3,3,3-trifluoropropene and optionally 1,1,1,2 2-pentafluoroprop
  • the present invention relates to a process for the production of 2,3,3,3-tetrafluoropropene comprising the steps of:
  • a second reactor contacted in the gas phase in the presence or absence of a hydrofluoric acid catalyst with at least one chlorinated compound selected from the group consisting of 1,1,1,2,3-pentachloropropane, 2 , 3-dichloro-1,1,1-trifluoropropane, 2,3,3,3-tetrachloropropene and 1,1,2,3-tetrachloropropene to produce a stream B comprising 2-chloro-3,3,3-trifluoropropene,
  • step i) characterized in that the stream A obtained in step i) feeds said second reactor used for step ii); and in that the pressure at the inlet of said first reactor of step i) is greater than the pressure at the inlet of said second reactor of step ii).
  • the present process optimizes and improves the production of 2,3,3,3-tetrafluoropropene.
  • the formation of heavy impurities can be minimized in the reaction loop.
  • the reduction of the quantities of heavy impurities makes it possible to reduce the secondary reactions to ultimately facilitate the purification of 2,3,3,3-tetrafluoropropene.
  • the implementation of step ii) at a lower pressure than in step i) makes it possible in particular to reduce the formation of 1,1,1,2,2-pentafluoropropane.
  • the content of 1, 2-dichloro-3,3,3-trifluoropropene (HCFO-1223xd) is also decreased under these conditions.
  • the pressure difference between the inlet pressure of said first reactor and the inlet pressure of said second reactor is from 100 mbar to 3.5 bar, advantageously from 150 mbar to 3.0 bar, preferably from 300 mbar to 2.5 bar, more preferably from 400 mbar to 2.0 bar, in particular from 750 mbar to 1.75 bar, more particularly from 1 to 1.5 bar.
  • Controlling the pressure difference between the inlet of the two reactors in the range mentioned above makes it possible to optimize the conditions of subsequent 2,3,3,3-tetrafluoropropene purification.
  • a pressure difference as mentioned above makes it easy to control the operating conditions that can be used to purify stream B as detailed below in this application.
  • maintaining a pressure difference as mentioned above between the reactors used in step i) and ii) makes it possible to keep a low content of impurities in the reaction loop while keeping an economically viable process.
  • step i) and step ii) are carried out in the presence of a catalyst, preferably a chromium-based catalyst, in particular said catalyst comprises a chromium oxyfluoride or an oxide. chromium or a chromium fluoride or a mixture thereof.
  • the catalyst is based on chromium and also comprises a co-catalyst selected from the group consisting of Ni, Zn, Co, Mn or Mg, preferably the content of cocatalyst is between 0, 01% and 10% based on the total weight of the catalyst.
  • stream B also comprises 2,3,3,3-tetrafluoropropene, HF, HCl and 1,1,1,2,2-pentafluoropropane.
  • the stream B is purified, preferably by distillation, to form a first stream comprising 2,3,3,3-tetrafluoropropene, HCl and 1,1,1,2,2-pentafluoropropane, and a second stream comprising HF and 2-chloro-3,3,3-trifluoropropene.
  • said second stream is recycled in step i).
  • said stream A and said at least one chlorinated compound are contacted prior to entry thereof into said second reactor.
  • the temperature at which step i) is implemented is different from that at which step ii) is implemented; and the difference between the temperature at which step i) is carried out and the temperature at which step ii) is carried out is greater than 0.2 ° C, advantageously greater than 0.5 ° C, preferably greater than 1 ° C, more preferably greater than 5 ° C, in particular greater than 10 ° C; and less than 60 ° C, preferably less than 55 ° C, preferably less than 50 ° C, more preferably less than 45 ° C, in particular less than 40 ° C, more preferably less than 35 ° C, preferably lower at 30 ° C, preferentially preferred lower than 25 ° C, particularly preferably less than 20 ° C.
  • the difference between the temperature at which step i) is implemented and the temperature at which step ii) is implemented is expressed in absolute value.
  • the stream B is cooled to a temperature below 100 ° C. and then distilled to form said first stream comprising 2,3,3,3-tetrafluoropropene, HCl and 1,1,1,2,2- pentafluoropropane, and said second stream comprising HF and 2-chloro-3,3,3-trifluoropropene and optionally 1,2-dichloro-3,3,3-trifluoropropene;
  • the temperature at the top of the distillation column is -30 ° C to 10 ° C and the distillation is carried out at a pressure of 2 to 6 bara; said second stream obtained at the bottom of the distillation column is recycled in step i).
  • the present invention relates to a process for the production of 2,3,3,3-tetrafluoropropene comprising the steps of:
  • a second reactor contacted in the gas phase in the presence or absence of a hydrofluoric acid catalyst with at least one chlorinated compound selected from the group consisting of 1,1,1,2,3-pentachloropropane, 2 , 3-dichloro-1,1,1-trifluoropropane, 2,3,3,3-tetrachloropropene and 1,1,2,3-tetrachloropropene to produce a stream B comprising 2-chloro-3,3,3-trifluoropropene.
  • a hydrofluoric acid catalyst at least one chlorinated compound selected from the group consisting of 1,1,1,2,3-pentachloropropane, 2 , 3-dichloro-1,1,1-trifluoropropane, 2,3,3,3-tetrachloropropene and 1,1,2,3-tetrachloropropene to produce a stream B comprising 2-chloro-3,3,3-trifluoropropene.
  • the stream A obtained in stage i) supplies said second reactor used for stage ii).
  • stream A may also comprise 1,1,1,2,2-pentafluoropropane.
  • stream B also comprises 2,3,3,3-tetrafluoropropene, HF, HCl and 1,1,1,2,2-pentafluoropropane.
  • Stream B may also include 1,2-dichloro-3,3,3-trifluoropropene (HCFO-1223xd).
  • the pressure at the inlet of said first reactor of step i) is greater than the pressure at the inlet of said second reactor of step ii).
  • the pressure difference between the inlet pressure of said first reactor and the inlet pressure of said second reactor is from 100 mbar to 3.5 bar, advantageously from 150 mbar to 3.0 bar, preferably from 300 mbar at 2.5 bar, plus preferably from 400 mbar to 2.0 bar, in particular from 750 mbar to 1.75 bar, more particularly from 1 to 1.5 bar.
  • stream B can also comprise a 1,2-dichloro-3,3,3-trifluoropropene (HCFO-1223xd) content of less than 10% by weight based on the total weight of the organic compounds contained in said stream B, advantageously less than 8% by weight, preferably less than 7% by weight, more preferably less than 6% by weight, in particular less than or equal to 5% by weight based on the total weight of the organic compounds contained in said stream B.
  • HCFO-1223xd 1,2-dichloro-3,3,3-trifluoropropene
  • the stream B may also comprise a content of 1,1,1,2,2-pentafluoropropane (HFC-245cb) of less than 40% by weight based on the weight total organic compounds contained in said stream B, advantageously less than 35% by weight, preferably less than 30% by weight, more preferably less than 25% by weight, in particular less than or equal to 20% by weight based on the total weight of the organic compounds contained in said stream B.
  • the total weight of said stream B does not include not the weights of HF and HCI also present in stream B as mentioned above.
  • step i) and step ii) are carried out in the presence of a catalyst, preferably a chromium-based catalyst.
  • the chromium catalyst may be a chromium oxide (eg CrO 2, CrO 3 or CT 2 O 3 ), a chromium oxyfluoride or a chromium fluoride (eg CrF 5) or a mixture thereof.
  • the chromium oxyfluoride may contain a fluorine content of between 1 and 60% by weight based on the total weight of the chromium oxyfluoride, advantageously between 5 and 55% by weight, preferably between 10 and 52% by weight, more preferably between 15 and 52% by weight, in particular between 20 and 50% by weight, more particularly between 25 and 45% by weight, preferably between 30 and 45% by weight, more preferably from 35 to 45% by weight. by weight of fluorine based on the total weight of the chromium oxyfluoride.
  • the catalyst may also comprise a co-catalyst selected from the group consisting of Ni, Co, Zn, Mg, Mn, Fe, Zn, Ti, V, Zr, Mo, Ge, Sn, Pb, Sb; preferably Ni, Co, Zn, Mg, Mn; in particular Ni, Co, Zn.
  • the content by weight of the cocatalyst is between 1 and 10% by weight based on the total weight of the catalyst.
  • the catalyst can be supported or not.
  • a support such as alumina, for example in its alpha form, activated alumina, aluminum halides (AIF3 for example), aluminum oxyhalides, activated carbon, magnesium fluoride or graphite can be used. used.
  • the catalyst may have a specific surface area between 1 and 100 m 2 / g, preferably between 5 and 80 m 2 / g, more preferably between 5 and 70 m 2 / g, ideally between 5 and 50 m 2 / g, in particular between 10 and 50 m 2 / g, more particularly between 15 and 45 m 2 / g.
  • the pressure at the inlet of said first reactor is atmospheric pressure or a pressure greater than it, advantageously the pressure at the inlet of said first reactor is greater than 1.5 bara, preferably greater than at 2.0 bara, in particular greater than 2.5 bara, more particularly greater than 3.0 bara.
  • step i) is carried out at a pressure at the inlet of said first reactor between atmospheric pressure and 20 bara, preferably between 2 and 18 bara, more preferably between 3 and 15 bara.
  • step i) of the present process is carried out with a contact time between 1 and 100 s, preferably between 2 and 75 s, in particular between 3 and 50 s.
  • the molar ratio HF / 1233xf can vary between 1: 1 and 150: 1, preferably between 2: 1 and 125: 1, more preferably between 3: 1 and 100: 1.
  • An oxidant, such as oxygen or chlorine, can be added during step i).
  • the molar ratio of the oxidant to the hydrocarbon compound may be between 0.005 and 2, preferably between 0.01 and 1.5.
  • the oxidant may be pure oxygen, air or a mixture of oxygen and nitrogen.
  • the pressure at the inlet of said second reactor is lower than that at the inlet of said first reactor.
  • the pressure at the inlet of said second reactor may be lower than atmospheric pressure.
  • the pressure at the inlet of said second reactor may be greater than 1.5 bara while being lower than that at the inlet of said first reactor, preferably greater than 2.0 bara while being lower than that at the inlet of said reactor first reactor, in particular greater than 2.5 bara while being lower than that at the inlet of said first reactor, more particularly greater than 3.0 bara while being lower than that at the inlet of said first reactor.
  • step ii) is carried out at a pressure between atmospheric pressure and 20 bara while being less than that at the inlet of said first reactor, preferably between 2 and 18 bara while being lower than that at the inlet of said first reactor, more preferably between 3 and 15 bara while being lower than that at the inlet of said first reactor.
  • step ii) of the present process is carried out with a contact time of between 1 and 100 seconds, preferably between 2 and 75 seconds, in particular between 3 and 50 seconds.
  • the HF / chlorine compound molar ratio may vary between 1: 1 and 150: 1, preferably between 2: 1 and 125: 1, more preferably between 3: 1 and 100: 1.
  • an oxidant such as oxygen or chlorine, in step ii).
  • the molar ratio of the oxidant to the hydrocarbon compound may be between 0.005 and 2, preferably between 0.01 and 1.5.
  • the oxidant may be pure oxygen, air or a mixture of oxygen and nitrogen.
  • step i) is carried out at a temperature of between 310 ° C. and 420 ° C., advantageously between 310 ° C. and 400 ° C., preferably between 310 ° C. and 375 ° C. more preferably between 310 ° C and 360 ° C, in particular between 330 ° C and 360 ° C.
  • step ii) is carried out at a temperature of between 320 ° C. and 440 ° C., advantageously between 320 ° C. and 420 ° C., preferably between 330 ° C. and 400 ° C., more preferably between 330 ° C and 390 ° C, in particular between 340 ° C and 380 ° C.
  • Step i) can be carried out at a temperature different from or equal to that of step ii).
  • step i) can be carried out at a temperature lower than that of step ii) or at a higher temperature. to that of step ii).
  • the difference between the temperature at which step i) is implemented and the temperature at which step ii) is implemented is greater than 0.2 ° C, advantageously greater than 0.5 ° C, preferably greater than 1 ° C, more preferably greater than 5 ° C, in particular greater than 10 ° C; and less than 60 ° C, preferably less than 55 ° C, preferably less than 50 ° C, more preferably less than 45 ° C, in particular less than 40 ° C, more preferably less than 35 ° C, preferably lower at 30 ° C, preferentially preferred lower than 25 ° C, particularly preferably less than 20 ° C.
  • said stream A and said at least one chlorinated compound are contacted prior to entry thereof into said second reactor.
  • the resulting mixture is the mixture C.
  • said at least one chlorinated compound is in the liquid state. This is vaporized by mixing with said stream A. The resulting mixture C is then in gaseous form.
  • the mixture between said stream A and the said at least one chlorinated compound is carried out in a static mixer.
  • said at least one chlorinated compound is introduced into the static mixer via one or more spray nozzles. Said at least one chlorinated compound is thus sprayed in the form of droplets before being vaporized by mixing with said stream A; thus forming a mixture C in gaseous form. Spraying said at least a chlorinated compound in the form of fine droplets makes it possible to ensure a more efficient vaporization thereof.
  • the average diameter of the droplets thus produced may be less than 500 ⁇ .
  • contacting said stream A with said at least one chlorinated compound in a static mixer generates a pressure drop of from 100 mbar to 500 mbar, advantageously from 200 to 300 mbar.
  • the pressure difference between the inlet pressure of said first reactor and the inlet pressure of said second reactor is 100 mbar at 3.5 bar, preferably 150 mbar at 3.0 bar, preferably 300 mbar at 2.5 bar, more preferably from 450 mbar to 2.0 bar, in particular from 750 mbar to 1.75 bar, more particularly from 1 to 1.5 bar, of which 100 mbar at 500 mbar originate from use of said static mixer, advantageously of which 200 to 300 mbar are derived from the use of said static mixer.
  • Said mixture C may optionally be heated or cooled before it is introduced into said second reactor. This step can be carried out via a heat exchanger to control the temperature at the inlet of said second reactor.
  • a pressure drop of 300 to 700 mbar can be generated, advantageously from 400 to 600 mbar.
  • the pressure difference between the inlet pressure of said first reactor and the inlet pressure of said second reactor is from 300 mbar to 2.5 bar, more preferably from 400 mbar to 2.0 bar, in particular from 750 mbar to 1.75 bar, more particularly from 1 to 1.5 bar, of which 300 to 700 mbar are derived from the use of said heat exchanger for heating or cooling said mixture C, advantageously 400 to 600 mbar are from the use of said heat exchanger for heating or cooling said mixture C.
  • the pressure difference between the inlet pressure of said first reactor and the inlet pressure of said second reactor is from 400 mbar to 2.0 bar, in particular from 750 mbar to 1.75 bar, more particularly from 1 to 1.5 bar, of which 400 mbar to 1.2 bar are derived from the use of said static mixer and said heat exchanger, preferably 500 mbar to 1.0 bar are derived from the use of said static mixer and said heat exchanger.
  • the stream B is purified, preferably by distillation, to form a first stream comprising 2,3,3,3-tetrafluoropropene, HCl and 1,1,1,2,2-pentafluoropropane, and a second stream comprising HF and 2-chloro-3,3,3-trifluoropropene.
  • Said second stream may also comprise 1,2-dichloro-3,3,3-trifluoropropene.
  • said stream B is distilled under conditions sufficient to form said first stream comprising 2,3,3,3-tetrafluoropropene, HCl and 1,1,1,2,2-pentafluoropropane, and said second stream comprising HF and 2 chloro-3,3,3-trifluoropropene and optionally 1,2-dichloro-3,3,3-trifluoropropene.
  • the distillation can be carried out at a pressure of 2 to 6 bara, more particularly at a pressure of 3 to 5 bara.
  • the temperature at the top of the distillation column is from -35 ° C. to 10 ° C., preferably from -20 ° C. to 0 ° C.
  • said second stream is recycled in step i).
  • Said second stream may optionally be purified, in particular by distillation, before being recycled to stage i). Purification of said second stream may optionally be carried out to remove 1,2-dichloro-3,3,3-trifluoropropene optionally present therein.
  • said stream B obtained in stage ii) is cooled prior to the purification mentioned above.
  • said stream B obtained in stage ii) is cooled to a temperature below 100 ° C. and then distilled to form said first stream comprising 2,3,3,3-tetrafluoropropene, HCl and 1,1,1, 2,2-pentafluoropropane, and said second stream comprising HF and 2-chloro-3,3,3-trifluoropropene and optionally 1,2-dichloro-3,3,3-trifluoropropene; the temperature at the top of the distillation column is -35 ° C. to 10 ° C. and the distillation is carried out at a pressure of 2 to 6 bara; said second stream obtained at the bottom of the distillation column is recycled in step i).
  • Said stream B can be cooled, before distillation, to a temperature below 95 ° C, preferably below 90 ° C, preferably below 85 ° C, more preferably below 80 ° C, in particular below 70 ° C, more preferably less than 60 ° C, preferably less than 55 ° C, advantageously preferably less than 50 ° C, preferentially preferred less than 40 ° C, more preferably preferred less than 30 ° C, so particularly preferred less than 25 ° C, more preferably less than 20 ° C. Cooling the product stream obtained at such temperatures facilitates subsequent distillation of step c).
  • the cooling of said stream B can be carried out by means of one or a plurality of heat exchangers.
  • the cooling of said stream B can be carried out by passing it through one, two, three, four, five, six, seven, eight, nine or ten heat exchangers, preferably the number of heat exchangers is between 2 and 8, in particular between 3 and 7.
  • the process according to the present invention is carried out continuously.
  • Fluorination of HCFO-1233xf (2-chloro-3,3,3-trifluoropropene) to HFO-1234yf (2,3,3,3-tetrafluoropropene) and optionally to HFC-245cb (1,1,1,2,2 -pentafluoropropane) is carried out in a first multitubular reactor.
  • the product stream resulting from this fluorination feeds a second reactor.
  • Said second reactor is also fed with a flow of hydrofluoric acid and 1,1,1,2,3-pentachloropropane (HCC-240db).
  • the fluorination of HCC-240db in HCFO-1233xf (2-chloro-3,3,3-trifluoropropene) is carried out in the second multitubular reactor.
  • a recycling loop whose flow rate is controlled makes it possible to return certain products to the first reactor.
  • the first and the second reactor contain a mass catalyst based on chromium oxide.
  • the catalyst is activated by a series of steps including drying, fluorination, air treatment and fluorination with recycling. This multi-step treatment makes the catalytic solid active and selective.
  • the fluorination process is carried out according to the following operating conditions:
  • the fluorination process is carried out according to the following operating conditions:
  • the pressure difference between the inlet pressure of said first reactor and the inlet pressure of said second reactor is 600 mbar.
  • the flow rate of the recycling loop at the inlet of the first reactor varies from 34 to 38 kg / h.
  • the rate of introduction of 1,1,1,2,3-pentachloropropane into the second reactor varies from 3 to 7 kg / h.
  • the contents of 1,1,1,2,2-pentafluoropropane (HFC-245cb) and l, 2-dichloro-3,3,3-trifluoropropene (HFCO-1223xd) in the outlet stream of the 2nd reactor are shown in Table 1 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The invention relates to a process for producing 2,3,3,3-tetrafluoropropene, comprising the following steps: i) in a first reactor, contacting 2-chloro-3,3,3-trifluoropropene with gas-phase hydrofluoric acid in the presence of a catalyst to produce a stream A comprising 2,3,3,3-tetrafluoropropene, HF and unreacted 2-chloro-3,3,3-trifluoropropene; and ii) in a second reactor, contacting in gas phase, and optionally in the presence of a catalyst, hydrofluoric acid with at least one chlorinated compound selected from the group consisting of 1,1,1,2,3-pentachloropropane, 2,3-dichloro-1,1,1-trifluoropropane, 2,3,3,3-tetrachloropropene and 1,1,2,3-tetrachloropropene to produce a stream B comprising 2-chloro-3,3,3-trifluoropropene; characterised in that the stream A obtained in step i) supplies the second reactor used for step ii); and in that the pressure at the inlet of the first reactor of step i) is greater than the pressure at the inlet of the second reactor of step ii).

Description

Procédé de production du 2,3,3,3-tétrafluoropropène  Process for producing 2,3,3,3-tetrafluoropropene
Domaine technique de l'invention Technical field of the invention
La présente invention concerne la production d'hydrofluorooléfines. Plus particulièrement, la présente invention concerne la production de 2,3,3,3-tétrafluoropropène.  The present invention relates to the production of hydrofluoroolefins. More particularly, the present invention relates to the production of 2,3,3,3-tetrafluoropropene.
Arrière-plan technologique de l'invention Technological background of the invention
Les hydrocarbures halogénés, en particulier les hydrocarbures fluorés comme les hydrofluorooléfines, sont des composés qui ont une structure utile comme matériaux fonctionnels, solvants, réfrigérants, agents de gonflage et monomères pour polymères fonctionnels ou matériaux de départ pour de tels monomères. Des hydrofluorooléfines comme le 2,3,3,3-tétrafluoropropène (HFO-1234yf) attirent l'attention parce qu'elles offrent un comportement prometteur comme réfrigérants à faible potentiel de réchauffement global.  Halogenated hydrocarbons, particularly fluorinated hydrocarbons such as hydrofluoroolefins, are compounds which have a useful structure as functional materials, solvents, refrigerants, blowing agents and monomers for functional polymers or starting materials for such monomers. Hydrofluoroolefins such as 2,3,3,3-tetrafluoropropene (HFO-1234yf) are attracting attention because they offer promising behavior as low global warming potential refrigerants.
Les procédés de production de fluorooléfines sont habituellement effectués en présence d'une substance de départ telle qu'un alcane contenant du chlore ou un alcène contenant du chlore, et en présence d'un agent fluorant tel que le fluorure d'hydrogène. Ces procédés peuvent être effectués en phase gazeuse ou en phase liquide, en absence ou non de catalyseur. On connaît par exemple par US 2009/0240090 un procédé en phase gazeuse de préparation du 2-chloro-3,3,3-trifluoropropène (HCFO-1233xf) à partir du 1,1,1,2,3- pentachloropropane (HCC-240db). Le HCFO-1233xf ainsi produit est converti en 2-chloro- The processes for producing fluoroolefins are usually carried out in the presence of a starting material such as an alkane containing chlorine or a chlorine-containing alkene, and in the presence of a fluorinating agent such as hydrogen fluoride. These processes can be carried out in the gas phase or in the liquid phase, in the absence or absence of catalyst. For example, US 2009/0240090 discloses a gas phase process for the preparation of 2-chloro-3,3,3-trifluoropropene (HCFO-1233xf) from 1,1,1,2,3-pentachloropropane (HCC- 240db). The HCFO-1233xf thus produced is converted into 2-chloro
1.1.1.2- tétrafluoropropane (HCFC-244bb) en phase liquide puis ce dernier est converti en1.1.1.2- tetrafluoropropane (HCFC-244bb) in the liquid phase and the latter is converted into
2.3.3.3- tétrafluoropropène. 2.3.3.3- Tetrafluoropropene.
On connaît également par WO 2013/088195, un procédé de préparation du 2,3,3,3- tétrafluoropropène à partir du 1,1,1,2,3-pentachloropropane et/ou 1,1,2,2,3- pentachloropropane, comprenant les étapes : (a) réaction catalytique du 1,1,1,2,3- pentachloropropane et/ou 1,1,2,2,3-pentachloropropane avec HF en un mélange réactionnel comprenant HCI, 2-chloro-3,3,3-trifluoropropène, 2,3,3,3-tétrafluoropropène, HF n'ayant pas réagi et optionnellement 1,1,1,2,2-pentafluoropropane; (b) séparation du mélange réactionnel en un premier courant comprenant HCI et 2,3,3,3-tétrafluoropropène et un second courant comprenant HF, 2-chloro-3,3,3-trifluoropropène et optionnellement 1,1,1,2,2- pentafluoropropane; (c) réaction catalytique dudit second courant en un mélange réactionnel comprenant 2,3,3,3-tétrafluoropropène, HCI, 2-chloro-3,3,3-trifluoropropène non réagi, HF non réagi et optionnellement 1,1,1,2,2-pentafluoropropane et (d) alimentation du mélange réactionnel obtenu à l'étape c) directement à l'étape a) sans séparation. WO 2013/088195 also discloses a process for the preparation of 2,3,3,3-tetrafluoropropene from 1,1,1,2,3-pentachloropropane and / or 1,1,2,2,3- pentachloropropane, comprising the steps of: (a) catalytically reacting 1,1,1,2,3-pentachloropropane and / or 1,1,2,2,3-pentachloropropane with HF in a reaction mixture comprising HCl, 2-chloro 3,3,3-trifluoropropene, 2,3,3,3-tetrafluoropropene, unreacted HF and optionally 1,1,1,2,2-pentafluoropropane; (b) separating the reaction mixture into a first stream comprising HCl and 2,3,3,3-tetrafluoropropene and a second stream comprising HF, 2-chloro-3,3,3-trifluoropropene and optionally 1,1,1,2 2-pentafluoropropane; (c) catalytically reacting said second stream to a reaction mixture comprising unreacted 2,3,3,3-tetrafluoropropene, HCl, 2-chloro-3,3,3-trifluoropropene, non-reactive HF; reacted and optionally 1,1,1,2,2-pentafluoropropane and (d) supplying the reaction mixture obtained in step c) directly to step a) without separation.
Il y a toujours un besoin pour des procédés de production du 2,3,3,3-tétrafluoropropène plus performant.  There is still a need for more efficient 2,3,3,3-tetrafluoropropene production processes.
Résumé de l'invention Summary of the invention
La présente invention concerne un procédé pour la production de 2,3,3,3- tétrafluoropropène comprenant les étapes :  The present invention relates to a process for the production of 2,3,3,3-tetrafluoropropene comprising the steps of:
i) dans un premier réacteur, mise en contact de 2-chloro-3,3,3-trifluoropropène avec de l'acide fluorhydrique en phase gazeuse en présence d'un catalyseur pour produire un courant A comprenant 2,3,3,3-tétrafluoropropène, HF et 2-chloro-3,3,3-trifluoropropène n'ayant pas réagi ; et  i) in a first reactor, contacting 2-chloro-3,3,3-trifluoropropene with hydrofluoric acid in the gas phase in the presence of a catalyst to produce a stream A comprising 2,3,3,3 unreacted tetrafluoropropene, HF and 2-chloro-3,3,3-trifluoropropene; and
ii) dans un second réacteur, mise en contact en phase gazeuse en présence ou non d'un catalyseur d'acide fluorhydrique avec au moins un composé chloré sélectionné parmi le groupe consistant en 1,1,1,2,3-pentachloropropane, 2,3-dichloro-l,l,l-trifluoropropane, 2,3,3,3- tétrachloropropène et 1,1,2,3-tétrachloropropène pour produire un courant B comprenant 2- chloro-3,3,3-trifluoropropène,  ii) in a second reactor, contacted in the gas phase in the presence or absence of a hydrofluoric acid catalyst with at least one chlorinated compound selected from the group consisting of 1,1,1,2,3-pentachloropropane, 2 , 3-dichloro-1,1,1-trifluoropropane, 2,3,3,3-tetrachloropropene and 1,1,2,3-tetrachloropropene to produce a stream B comprising 2-chloro-3,3,3-trifluoropropene,
caractérisé en ce que le courant A obtenu à l'étape i) alimente ledit second réacteur utilisé pour l'étape ii) ; et en ce que la pression à l'entrée dudit premier réacteur de l'étape i) est supérieure à la pression à l'entrée dudit second réacteur de l'étape ii). characterized in that the stream A obtained in step i) feeds said second reactor used for step ii); and in that the pressure at the inlet of said first reactor of step i) is greater than the pressure at the inlet of said second reactor of step ii).
Le présent procédé permet d'optimiser et d'améliorer la production de 2,3,3,3- tétrafluoropropène. Ainsi la formation d'impuretés lourdes peut être minimisée dans la boucle réactionnelle. La diminution des quantités d'impuretés lourdes permet de réduire les réactions secondaires pour in fine faciliter la purification du 2,3,3,3-tétrafluoropropène. La mise en œuvre de l'étape ii) à une pression plus faible qu'à l'étape i) permet en particulier de diminuer la formation de 1,1,1,2,2-pentafluoropropane. La teneur en l,2-dichloro-3,3,3-trifluoropropène (HCFO-1223xd) est également diminuée dans ces conditions.  The present process optimizes and improves the production of 2,3,3,3-tetrafluoropropene. Thus the formation of heavy impurities can be minimized in the reaction loop. The reduction of the quantities of heavy impurities makes it possible to reduce the secondary reactions to ultimately facilitate the purification of 2,3,3,3-tetrafluoropropene. The implementation of step ii) at a lower pressure than in step i) makes it possible in particular to reduce the formation of 1,1,1,2,2-pentafluoropropane. The content of 1, 2-dichloro-3,3,3-trifluoropropene (HCFO-1223xd) is also decreased under these conditions.
Selon un mode réalisation préféré, la différence de pression entre la pression à l'entrée dudit premier réacteur et la pression à l'entrée dudit second réacteur est de 100 mbar à 3,5 bar, avantageusement de 150 mbar à 3,0 bar, de préférence de 300 mbar à 2,5 bar, plus préférentiellement de 400 mbar à 2,0 bar, en particulier de 750 mbar à 1,75 bar, plus particulièrement de 1 à 1,5 bar. Le contrôle de la différence de pression entre l'entrée des deux réacteurs dans la gamme mentionnée ci-dessus permet d'optimiser les conditions de purification du 2,3,3,3-tétrafluoropropène subséquentes. Par exemple, une différence de pression telle que mentionnée ci-dessus permet de facilement contrôler les conditions opératoires pouvant être utilisée pour purifier le courant B comme détaillé ci-dessous dans la présente demande. Ainsi maintenir une différence de pression telle que mentionnée ci-dessus entre les réacteurs utilisés à l'étape i) et ii) permet de garder une faible teneur en impuretés dans la boucle réactionnelle tout en gardant un procédé viable économiquement. According to a preferred embodiment, the pressure difference between the inlet pressure of said first reactor and the inlet pressure of said second reactor is from 100 mbar to 3.5 bar, advantageously from 150 mbar to 3.0 bar, preferably from 300 mbar to 2.5 bar, more preferably from 400 mbar to 2.0 bar, in particular from 750 mbar to 1.75 bar, more particularly from 1 to 1.5 bar. Controlling the pressure difference between the inlet of the two reactors in the range mentioned above makes it possible to optimize the conditions of subsequent 2,3,3,3-tetrafluoropropene purification. For example, a pressure difference as mentioned above makes it easy to control the operating conditions that can be used to purify stream B as detailed below in this application. Thus, maintaining a pressure difference as mentioned above between the reactors used in step i) and ii) makes it possible to keep a low content of impurities in the reaction loop while keeping an economically viable process.
Selon un mode de réalisation préféré, l'étape i) et l'étape ii) sont mises en œuvre en présence d'un catalyseur, de préférence un catalyseur à base de chrome, en particulier ledit catalyseur comprend un oxyfluorure de chrome ou un oxyde de chrome ou un fluorure de chrome ou un mélange de ceux-ci.  According to a preferred embodiment, step i) and step ii) are carried out in the presence of a catalyst, preferably a chromium-based catalyst, in particular said catalyst comprises a chromium oxyfluoride or an oxide. chromium or a chromium fluoride or a mixture thereof.
Selon un mode de réalisation préféré, le catalyseur est à base de chrome et comprend également un co-catalyseur sélectionné parmi le groupe consistant en Ni, Zn, Co, Mn ou Mg, de préférence la teneur en co-catalyseur est comprise entre 0,01% et 10% sur base du poids total du catalyseur.  According to a preferred embodiment, the catalyst is based on chromium and also comprises a co-catalyst selected from the group consisting of Ni, Zn, Co, Mn or Mg, preferably the content of cocatalyst is between 0, 01% and 10% based on the total weight of the catalyst.
Selon un mode de réalisation préféré, le courant B comprend également 2,3,3,3- tétrafluoropropène, HF, HCI et 1,1,1,2,2-pentafluoropropane.  According to a preferred embodiment, stream B also comprises 2,3,3,3-tetrafluoropropene, HF, HCl and 1,1,1,2,2-pentafluoropropane.
Selon un mode de réalisation préféré, le courant B est purifié, de préférence par distillation, pour former un premier courant comprenant 2,3,3,3-tétrafluoropropène, HCI et 1,1,1,2,2-pentafluoropropane, et un second courant comprenant HF et 2-chloro-3,3,3- trifluoropropène.  According to a preferred embodiment, the stream B is purified, preferably by distillation, to form a first stream comprising 2,3,3,3-tetrafluoropropene, HCl and 1,1,1,2,2-pentafluoropropane, and a second stream comprising HF and 2-chloro-3,3,3-trifluoropropene.
Selon un mode de réalisation préféré, ledit second courant est recyclé à l'étape i). Selon un mode de réalisation préféré, ledit courant A et ledit au moins un composé chloré sont mis en contact préalablement à l'entrée de ceux-ci dans ledit second réacteur.  According to a preferred embodiment, said second stream is recycled in step i). According to a preferred embodiment, said stream A and said at least one chlorinated compound are contacted prior to entry thereof into said second reactor.
Selon un mode de réalisation, la température à laquelle l'étape i) est mise en œuvre est différente de celle à laquelle l'étape ii) est mise en œuvre ; et l'écart entre la température à laquelle l'étape i) est mise en œuvre et la température à laquelle l'étape ii) est mise en œuvre est supérieur à 0,2°C, avantageusement supérieur à 0,5°C, de préférence supérieur à 1°C, plus préférentiellement supérieur à 5°C, en particulier supérieur à 10°C ; et inférieur à 60°C, avantageusement inférieur à 55°C, de préférence inférieur à 50°C, plus préférentiellement inférieur à 45°C, en particulier inférieur à 40°C, plus particulièrement inférieur à 35°C, de manière privilégiée inférieur à 30°C, de manière préférentiellement privilégiée inférieur à 25°C, de manière particulièrement privilégiée inférieur à 20°C. L'écart entre la température à laquelle l'étape i) est mise en œuvre et la température à laquelle l'étape ii) est mise en œuvre est exprimé en valeur absolu. According to one embodiment, the temperature at which step i) is implemented is different from that at which step ii) is implemented; and the difference between the temperature at which step i) is carried out and the temperature at which step ii) is carried out is greater than 0.2 ° C, advantageously greater than 0.5 ° C, preferably greater than 1 ° C, more preferably greater than 5 ° C, in particular greater than 10 ° C; and less than 60 ° C, preferably less than 55 ° C, preferably less than 50 ° C, more preferably less than 45 ° C, in particular less than 40 ° C, more preferably less than 35 ° C, preferably lower at 30 ° C, preferentially preferred lower than 25 ° C, particularly preferably less than 20 ° C. The difference between the temperature at which step i) is implemented and the temperature at which step ii) is implemented is expressed in absolute value.
Selon un mode réalisation préféré, le courant B est refroidi à une température inférieure à 100°C, puis distillé pour former ledit premier courant comprenant 2,3,3,3-tétrafluoropropène, HCI et 1,1,1,2,2-pentafluoropropane, et ledit second courant comprenant HF et 2-chloro-3,3,3- trifluoropropène et optionnellement l,2-dichloro-3,3,3-trifluoropropène; la température en tête de colonne de distillation est de -30°C à 10°C et la distillation est mise en œuvre à une pression est de 2 à 6 bara ; ledit second courant obtenu en pied de colonne de distillation est recyclé à l'étape i).  According to a preferred embodiment, the stream B is cooled to a temperature below 100 ° C. and then distilled to form said first stream comprising 2,3,3,3-tetrafluoropropene, HCl and 1,1,1,2,2- pentafluoropropane, and said second stream comprising HF and 2-chloro-3,3,3-trifluoropropene and optionally 1,2-dichloro-3,3,3-trifluoropropene; the temperature at the top of the distillation column is -30 ° C to 10 ° C and the distillation is carried out at a pressure of 2 to 6 bara; said second stream obtained at the bottom of the distillation column is recycled in step i).
Description détaillée de l'invention Detailed description of the invention
La présente invention concerne un procédé pour la production de 2,3,3,3- tétrafluoropropène comprenant les étapes :  The present invention relates to a process for the production of 2,3,3,3-tetrafluoropropene comprising the steps of:
i) dans un premier réacteur, mise en contact de 2-chloro-3,3,3-trifluoropropène avec de l'acide fluorhydrique en phase gazeuse en présence d'un catalyseur pour produire un courant A comprenant 2,3,3,3-tétrafluoropropène, HF et 2-chloro-3,3,3-trifluoropropène n'ayant pas réagi ; et  i) in a first reactor, contacting 2-chloro-3,3,3-trifluoropropene with hydrofluoric acid in the gas phase in the presence of a catalyst to produce a stream A comprising 2,3,3,3 unreacted tetrafluoropropene, HF and 2-chloro-3,3,3-trifluoropropene; and
ii) dans un second réacteur, mise en contact en phase gazeuse en présence ou non d'un catalyseur d'acide fluorhydrique avec au moins un composé chloré sélectionné parmi le groupe consistant en 1,1,1,2,3-pentachloropropane, 2,3-dichloro-l,l,l-trifluoropropane, 2,3,3,3- tétrachloropropène et 1,1,2,3-tétrachloropropène pour produire un courant B comprenant 2- chloro-3,3,3-trifluoropropène.  ii) in a second reactor, contacted in the gas phase in the presence or absence of a hydrofluoric acid catalyst with at least one chlorinated compound selected from the group consisting of 1,1,1,2,3-pentachloropropane, 2 , 3-dichloro-1,1,1-trifluoropropane, 2,3,3,3-tetrachloropropene and 1,1,2,3-tetrachloropropene to produce a stream B comprising 2-chloro-3,3,3-trifluoropropene.
De préférence, le courant A obtenu à l'étape i) alimente ledit second réacteur utilisé pour l'étape ii).  Preferably, the stream A obtained in stage i) supplies said second reactor used for stage ii).
De préférence, le courant A peut également comprendre 1,1,1,2,2-pentafluoropropane. Preferably, stream A may also comprise 1,1,1,2,2-pentafluoropropane.
Selon un mode de réalisation préféré, le courant B comprend également 2,3,3,3- tétrafluoropropène, HF, HCI et 1,1,1,2,2-pentafluoropropane. Le courant B peut également comprendre l,2-dichloro-3,3,3-trifluoropropène (HCFO-1223xd). According to a preferred embodiment, stream B also comprises 2,3,3,3-tetrafluoropropene, HF, HCl and 1,1,1,2,2-pentafluoropropane. Stream B may also include 1,2-dichloro-3,3,3-trifluoropropene (HCFO-1223xd).
Selon un mode de réalisation préféré de l'invention, la pression à l'entrée dudit premier réacteur de l'étape i) est supérieure à la pression à l'entrée dudit second réacteur de l'étape ii).  According to a preferred embodiment of the invention, the pressure at the inlet of said first reactor of step i) is greater than the pressure at the inlet of said second reactor of step ii).
De préférence, la différence de pression entre la pression à l'entrée dudit premier réacteur et la pression à l'entrée dudit second réacteur est de 100 mbar à 3,5 bar, avantageusement de 150 mbar à 3,0 bar, de préférence de 300 mbar à 2,5 bar, plus préférentiellement de 400 mbar à 2,0 bar, en particulier de 750 mbar à 1,75 bar, plus particulièrement de 1 à 1,5 bar. Preferably, the pressure difference between the inlet pressure of said first reactor and the inlet pressure of said second reactor is from 100 mbar to 3.5 bar, advantageously from 150 mbar to 3.0 bar, preferably from 300 mbar at 2.5 bar, plus preferably from 400 mbar to 2.0 bar, in particular from 750 mbar to 1.75 bar, more particularly from 1 to 1.5 bar.
Le procédé selon l'invention est ainsi mis en œuvre dans des conditions efficaces permettant de minimiser la teneur en l,2-dichloro-3,3,3-trifluoropropène (HCFO-1223xd) et/ou 1,1,1,2,2-pentafluoropropane (HFC-245cb) dans le courant B. Ainsi, le courant B peut également comprendre une teneur en l,2-dichloro-3,3,3-trifluoropropène (HCFO-1223xd) inférieure à 10% en poids sur base du poids total des composés organiques contenus dans ledit courant B, avantageusement inférieure à 8% en poids, de préférence inférieure à 7% en poids, plus préférentiellement inférieure à 6% en poids, en particulier inférieure ou égale à 5% en poids sur base du poids total des composés organiques contenus dans ledit courant B. En outre, le courant B peut également comprendre une teneur en 1,1,1,2,2-pentafluoropropane (HFC-245cb) inférieure à 40% en poids sur base du poids total des composés organiques contenus dans ledit courant B, avantageusement inférieure à 35% en poids, de préférence inférieure à 30% en poids, plus préférentiellement inférieure à 25% en poids, en particulier inférieure ou égale à 20% en poids sur base du poids total des composés organiques contenus dans ledit courant B. Le poids total dudit courant B n'inclut pas les poids de HF et HCI également présents dans le courant B comme mentionné ci-dessus.  The process according to the invention is thus carried out under effective conditions making it possible to minimize the content of 1,2-dichloro-3,3,3-trifluoropropene (HCFO-1223xd) and / or 1,1,1,2, 2-pentafluoropropane (HFC-245cb) in stream B. Thus, stream B can also comprise a 1,2-dichloro-3,3,3-trifluoropropene (HCFO-1223xd) content of less than 10% by weight based on the total weight of the organic compounds contained in said stream B, advantageously less than 8% by weight, preferably less than 7% by weight, more preferably less than 6% by weight, in particular less than or equal to 5% by weight based on the total weight of the organic compounds contained in said stream B. In addition, the stream B may also comprise a content of 1,1,1,2,2-pentafluoropropane (HFC-245cb) of less than 40% by weight based on the weight total organic compounds contained in said stream B, advantageously less than 35% by weight, preferably less than 30% by weight, more preferably less than 25% by weight, in particular less than or equal to 20% by weight based on the total weight of the organic compounds contained in said stream B. The total weight of said stream B does not include not the weights of HF and HCI also present in stream B as mentioned above.
Selon un mode de réalisation préféré, l'étape i) et l'étape ii) sont mises en œuvre en présence d'un catalyseur, de préférence un catalyseur à base de chrome. De préférence, le catalyseur à base de chrome peut être un oxyde de chrome (par exemple CrÛ2, CrÛ3 ou CT2O3), un oxyfluorure de chrome ou un fluorure de chrome (par exemple CrFs) ou un mélange de ceux- ci. L'oxyfluorure de chrome peut contenir une teneur en fluor comprise entre 1 et 60% en poids sur base du poids total de l'oxyfluorure de chrome, avantageusement entre 5 et 55% en poids, de préférence entre 10 et 52% en poids, plus préférentiellement entre 15 et 52% en poids, en particulier entre 20 et 50% en poids, plus particulièrement entre 25 et 45% en poids, de manière privilégiée entre 30 et 45% en poids, de manière plus privilégiée de 35 à 45% en poids de fluor sur base du poids total de l'oxyfluorure de chrome. Le catalyseur peut également comprendre un co-catalyseur choisi parmi le groupe consistant en Ni, Co, Zn, Mg, Mn, Fe, Zn, Ti, V, Zr, Mo, Ge, Sn, Pb, Sb ; de préférence Ni, Co, Zn, Mg, Mn ; en particulier Ni, Co, Zn. La teneur en poids du co-catalyseur est comprise entre 1 et 10% en poids sur base du poids total du catalyseur. Le catalyseur peut être supporté ou non. Un support tel que l'alumine, par exemple sous sa forme alpha, de l'alumine activée, les halogénures d'aluminium (AIF3 par exemple), les oxyhalogénures d'aluminium, du charbon actif, fluorure de magnésium ou du graphite peut être utilisé. De préférence, le catalyseur peut une surface spécifique entre 1 et 100 m2/g, de préférence entre 5 et 80 m2/g, plus préférentiellement entre 5 et 70 m2/g, idéalement entre 5 et 50 m2/g, en particulier entre 10 et 50 m2/g, plus particulièrement entre 15 et 45 m2/g. According to a preferred embodiment, step i) and step ii) are carried out in the presence of a catalyst, preferably a chromium-based catalyst. Preferably, the chromium catalyst may be a chromium oxide (eg CrO 2, CrO 3 or CT 2 O 3 ), a chromium oxyfluoride or a chromium fluoride (eg CrF 5) or a mixture thereof. The chromium oxyfluoride may contain a fluorine content of between 1 and 60% by weight based on the total weight of the chromium oxyfluoride, advantageously between 5 and 55% by weight, preferably between 10 and 52% by weight, more preferably between 15 and 52% by weight, in particular between 20 and 50% by weight, more particularly between 25 and 45% by weight, preferably between 30 and 45% by weight, more preferably from 35 to 45% by weight. by weight of fluorine based on the total weight of the chromium oxyfluoride. The catalyst may also comprise a co-catalyst selected from the group consisting of Ni, Co, Zn, Mg, Mn, Fe, Zn, Ti, V, Zr, Mo, Ge, Sn, Pb, Sb; preferably Ni, Co, Zn, Mg, Mn; in particular Ni, Co, Zn. The content by weight of the cocatalyst is between 1 and 10% by weight based on the total weight of the catalyst. The catalyst can be supported or not. A support such as alumina, for example in its alpha form, activated alumina, aluminum halides (AIF3 for example), aluminum oxyhalides, activated carbon, magnesium fluoride or graphite can be used. used. Preferably, the catalyst may have a specific surface area between 1 and 100 m 2 / g, preferably between 5 and 80 m 2 / g, more preferably between 5 and 70 m 2 / g, ideally between 5 and 50 m 2 / g, in particular between 10 and 50 m 2 / g, more particularly between 15 and 45 m 2 / g.
Selon un mode de réalisation préféré, la pression à l'entrée dudit premier réacteur est la pression atmosphérique ou une pression supérieure à celle-ci, avantageusement la pression à l'entrée dudit premier réacteur est supérieure à 1,5 bara, de préférence supérieure à 2,0 bara, en particulier supérieure à 2,5 bara, plus particulièrement supérieure à 3,0 bara. De préférence, l'étape i) est mise en œuvre à une pression à l'entrée dudit premier réacteur comprise entre la pression atmosphérique et 20 bara, de préférence entre 2 et 18 bara, plus préférentiellement entre 3 et 15 bara.  According to a preferred embodiment, the pressure at the inlet of said first reactor is atmospheric pressure or a pressure greater than it, advantageously the pressure at the inlet of said first reactor is greater than 1.5 bara, preferably greater than at 2.0 bara, in particular greater than 2.5 bara, more particularly greater than 3.0 bara. Preferably, step i) is carried out at a pressure at the inlet of said first reactor between atmospheric pressure and 20 bara, preferably between 2 and 18 bara, more preferably between 3 and 15 bara.
De préférence, l'étape i) du présent procédé est mise en œuvre avec un temps de contact entre 1 et 100 s, de préférence entre 2 et 75 s, en particulier entre 3 et 50 s. De préférence, le rapport molaire HF/1233xf peut varier entre 1:1 et 150:1, de préférence entre 2:1 et 125:1, plus préférentiellement entre 3:1 et 100:1. On peut ajouter un oxydant, comme l'oxygène ou le chlore, en cours de l'étape i). Le rapport molaire de l'oxydant sur le composé hydrocarbure peut être entre 0,005 et 2, de préférence entre 0,01 et 1,5. L'oxydant peut être de l'oxygène pur, de l'air ou un mélange d'oxygène et d'azote.  Preferably, step i) of the present process is carried out with a contact time between 1 and 100 s, preferably between 2 and 75 s, in particular between 3 and 50 s. Preferably, the molar ratio HF / 1233xf can vary between 1: 1 and 150: 1, preferably between 2: 1 and 125: 1, more preferably between 3: 1 and 100: 1. An oxidant, such as oxygen or chlorine, can be added during step i). The molar ratio of the oxidant to the hydrocarbon compound may be between 0.005 and 2, preferably between 0.01 and 1.5. The oxidant may be pure oxygen, air or a mixture of oxygen and nitrogen.
Comme mentionné ci-dessus, la pression à l'entrée dudit second réacteur est inférieure à celle à l'entrée dudit premier réacteur. Ainsi, la pression à l'entrée dudit second réacteur peut être inférieure à la pression atmosphérique. La pression à l'entrée dudit second réacteur peut être supérieure à 1,5 bara tout en étant inférieure à celle à l'entrée dudit premier réacteur, de préférence supérieure à 2,0 bara tout en étant inférieure à celle à l'entrée dudit premier réacteur, en particulier supérieure à 2,5 bara tout en étant inférieure à celle à l'entrée dudit premier réacteur, plus particulièrement supérieure à 3,0 bara tout en étant inférieure à celle à l'entrée dudit premier réacteur. De préférence, l'étape ii) est mise en œuvre à une pression comprise entre la pression atmosphérique et 20 bara tout en étant inférieure à celle à l'entrée dudit premier réacteur, de préférence entre 2 et 18 bara tout en étant inférieure à celle à l'entrée dudit premier réacteur, plus préférentiellement entre 3 et 15 bara tout en étant inférieure à celle à l'entrée dudit premier réacteur.  As mentioned above, the pressure at the inlet of said second reactor is lower than that at the inlet of said first reactor. Thus, the pressure at the inlet of said second reactor may be lower than atmospheric pressure. The pressure at the inlet of said second reactor may be greater than 1.5 bara while being lower than that at the inlet of said first reactor, preferably greater than 2.0 bara while being lower than that at the inlet of said reactor first reactor, in particular greater than 2.5 bara while being lower than that at the inlet of said first reactor, more particularly greater than 3.0 bara while being lower than that at the inlet of said first reactor. Preferably, step ii) is carried out at a pressure between atmospheric pressure and 20 bara while being less than that at the inlet of said first reactor, preferably between 2 and 18 bara while being lower than that at the inlet of said first reactor, more preferably between 3 and 15 bara while being lower than that at the inlet of said first reactor.
De préférence, l'étape ii) du présent procédé est mise en œuvre avec un temps de contact entre 1 et 100 s, de préférence entre 2 et 75 s, en particulier entre 3 et 50 s. De préférence, le rapport molaire HF/composé chloré peut varier entre 1:1 et 150:1, de préférence entre 2:1 et 125:1, plus préférentiellement entre 3:1 et 100:1. On peut ajouter un oxydant, comme l'oxygène ou le chlore, en cours de l'étape ii). Le rapport molaire de l'oxydant sur le composé hydrocarbure peut être entre 0,005 et 2, de préférence entre 0,01 et 1,5. L'oxydant peut être de l'oxygène pur, de l'air ou un mélange d'oxygène et d'azote. Preferably, step ii) of the present process is carried out with a contact time of between 1 and 100 seconds, preferably between 2 and 75 seconds, in particular between 3 and 50 seconds. Preferably, the HF / chlorine compound molar ratio may vary between 1: 1 and 150: 1, preferably between 2: 1 and 125: 1, more preferably between 3: 1 and 100: 1. We can add an oxidant, such as oxygen or chlorine, in step ii). The molar ratio of the oxidant to the hydrocarbon compound may be between 0.005 and 2, preferably between 0.01 and 1.5. The oxidant may be pure oxygen, air or a mixture of oxygen and nitrogen.
Selon un mode de réalisation préféré, l'étape i) est mise en œuvre à une température comprise entre 310°C et 420°C, avantageusement entre 310°C et 400°C, de préférence entre 310°C et 375°C, plus préférentiellement entre 310°C et 360°C, en particulier entre 330°C et 360°C.  According to a preferred embodiment, step i) is carried out at a temperature of between 310 ° C. and 420 ° C., advantageously between 310 ° C. and 400 ° C., preferably between 310 ° C. and 375 ° C. more preferably between 310 ° C and 360 ° C, in particular between 330 ° C and 360 ° C.
Selon un mode de réalisation préféré, l'étape ii) est mise en œuvre à une température comprise entre 320°C et 440°C, avantageusement entre 320°C et 420°C, de préférence entre 330°C et 400°C, plus préférentiellement entre 330°C et 390°C, en particulier entre 340°C et 380°C.  According to a preferred embodiment, step ii) is carried out at a temperature of between 320 ° C. and 440 ° C., advantageously between 320 ° C. and 420 ° C., preferably between 330 ° C. and 400 ° C., more preferably between 330 ° C and 390 ° C, in particular between 340 ° C and 380 ° C.
L'étape i) peut être mise en œuvre à une température différente ou égale à celle de l'étape ii). Lorsque l'étape i) est mise en œuvre à une température différente de celle de l'étape ii), l'étape i) peut être mise en œuvre à une température inférieure à celle de l'étape ii) ou à une température supérieure à celle de l'étape ii).  Step i) can be carried out at a temperature different from or equal to that of step ii). When step i) is carried out at a temperature different from that of step ii), step i) can be carried out at a temperature lower than that of step ii) or at a higher temperature. to that of step ii).
Selon un mode de réalisation préféré, l'écart entre la température à laquelle l'étape i) est mise en œuvre et la température à laquelle l'étape ii) est mise en œuvre est supérieur à 0,2°C, avantageusement supérieur à 0,5°C, de préférence supérieur à 1°C, plus préférentiellement supérieur à 5°C, en particulier supérieur à 10°C ; et inférieur à 60°C, avantageusement inférieur à 55°C, de préférence inférieur à 50°C, plus préférentiellement inférieur à 45°C, en particulier inférieur à 40°C, plus particulièrement inférieur à 35°C, de manière privilégiée inférieur à 30°C, de manière préférentiellement privilégiée inférieur à 25°C, de manière particulièrement privilégiée inférieur à 20°C.  According to a preferred embodiment, the difference between the temperature at which step i) is implemented and the temperature at which step ii) is implemented is greater than 0.2 ° C, advantageously greater than 0.5 ° C, preferably greater than 1 ° C, more preferably greater than 5 ° C, in particular greater than 10 ° C; and less than 60 ° C, preferably less than 55 ° C, preferably less than 50 ° C, more preferably less than 45 ° C, in particular less than 40 ° C, more preferably less than 35 ° C, preferably lower at 30 ° C, preferentially preferred lower than 25 ° C, particularly preferably less than 20 ° C.
Selon un mode de réalisation préféré, ledit courant A et ledit au moins un composé chloré sont mis en contact préalablement à l'entrée de ceux-ci dans ledit second réacteur. Le mélange résultant est le mélange C.  According to a preferred embodiment, said stream A and said at least one chlorinated compound are contacted prior to entry thereof into said second reactor. The resulting mixture is the mixture C.
De préférence, ledit au moins un composé chloré est à l'état liquide. Celui-ci est vaporisé par mélange avec ledit courant A. Le mélange résultant C est alors sous forme gazeuse. En particulier, le mélange entre ledit courant A et ledit au moins un composé chloré est effectué dans un mélangeur statique. De préférence, ledit au moins un composé chloré est introduit dans le mélangeur statique via une ou plusieurs buses de pulvérisation. Ledit au moins un composé chloré est ainsi pulvérisé sous forme de gouttelettes avant d'être vaporisé par mélange avec ledit courant A ; formant ainsi un mélange C sous forme gazeuse. La pulvérisation dudit au moins un composé chloré sous forme de fines gouttelettes permet d'assurer une vaporisation plus efficace de celui-ci. Par exemple, le diamètre moyen des gouttelettes ainsi produites peut être inférieur à 500 μιτι. Preferably, said at least one chlorinated compound is in the liquid state. This is vaporized by mixing with said stream A. The resulting mixture C is then in gaseous form. In particular, the mixture between said stream A and the said at least one chlorinated compound is carried out in a static mixer. Preferably, said at least one chlorinated compound is introduced into the static mixer via one or more spray nozzles. Said at least one chlorinated compound is thus sprayed in the form of droplets before being vaporized by mixing with said stream A; thus forming a mixture C in gaseous form. Spraying said at least a chlorinated compound in the form of fine droplets makes it possible to ensure a more efficient vaporization thereof. For example, the average diameter of the droplets thus produced may be less than 500 μιτι.
De préférence, la mise en contact dans un mélangeur statique dudit courant A avec ledit au moins un composé chloré génère une perte de charge de 100 mbar à 500 mbar, avantageusement de 200 à 300 mbar. Ainsi, la différence de pression entre la pression à l'entrée dudit premier réacteur et la pression à l'entrée dudit second réacteur est de 100 mbar à 3,5 bar, avantageusement de 150 mbar à 3,0 bar, de préférence de 300 mbar à 2,5 bar, plus préférentiellement de 450 mbar à 2,0 bar, en particulier de 750 mbar à 1,75 bar, plus particulièrement de 1 à 1,5 bar, dont 100 mbar à 500 mbar sont issus de l'utilisation dudit mélangeur statique, avantageusement dont 200 à 300 mbar sont issus de l'utilisation dudit mélangeur statique.  Preferably, contacting said stream A with said at least one chlorinated compound in a static mixer generates a pressure drop of from 100 mbar to 500 mbar, advantageously from 200 to 300 mbar. Thus, the pressure difference between the inlet pressure of said first reactor and the inlet pressure of said second reactor is 100 mbar at 3.5 bar, preferably 150 mbar at 3.0 bar, preferably 300 mbar at 2.5 bar, more preferably from 450 mbar to 2.0 bar, in particular from 750 mbar to 1.75 bar, more particularly from 1 to 1.5 bar, of which 100 mbar at 500 mbar originate from use of said static mixer, advantageously of which 200 to 300 mbar are derived from the use of said static mixer.
Ledit mélange C peut optionnellement être chauffé ou refroidi avant son introduction dans ledit second réacteur. Cette étape peut être réalisée par l'intermédiaire d'un échangeur de chaleur pour contrôler la température à l'entrée dudit second réacteur. Ainsi, lorsque le mélange C est chauffé ou refroidi par l'intermédiaire d'un échangeur de chaleur, une perte de charge de 300 à 700 mbar peut être générée, avantageusement de 400 à 600 mbar. Dans ce cas, la différence de pression entre la pression à l'entrée dudit premier réacteur et la pression à l'entrée dudit second réacteur est de 300 mbar à 2,5 bar, plus préférentiellement de 400 mbar à 2,0 bar, en particulier de 750 mbar à 1,75 bar, plus particulièrement de 1 à 1,5 bar, dont 300 à 700 mbar sont issus de l'utilisation dudit échangeur de chaleur pour chauffer ou refroidir ledit mélange C, avantageusement dont 400 à 600 mbar sont issus de l'utilisation dudit échangeur de chaleur pour chauffer ou refroidir ledit mélange C.  Said mixture C may optionally be heated or cooled before it is introduced into said second reactor. This step can be carried out via a heat exchanger to control the temperature at the inlet of said second reactor. Thus, when the mixture C is heated or cooled by means of a heat exchanger, a pressure drop of 300 to 700 mbar can be generated, advantageously from 400 to 600 mbar. In this case, the pressure difference between the inlet pressure of said first reactor and the inlet pressure of said second reactor is from 300 mbar to 2.5 bar, more preferably from 400 mbar to 2.0 bar, in particular from 750 mbar to 1.75 bar, more particularly from 1 to 1.5 bar, of which 300 to 700 mbar are derived from the use of said heat exchanger for heating or cooling said mixture C, advantageously 400 to 600 mbar are from the use of said heat exchanger for heating or cooling said mixture C.
Plus particulièrement, si le mélange entre ledit courant A et ledit au moins un composé chloré est effectué dans un mélangeur statique et que le mélange C résultant est chauffé ou refroidi par l'intermédiaire d'un échangeur de chaleur, comme détaillé ci-dessus, de 400 mbar à 1,2 bar peut être générée, avantageusement de 500 mbar à 1,0 bar. Dans ce cas, la différence de pression entre la pression à l'entrée dudit premier réacteur et la pression à l'entrée dudit second réacteur est de 400 mbar à 2,0 bar, en particulier de 750 mbar à 1,75 bar, plus particulièrement de 1 à 1,5 bar, dont 400 mbar à 1,2 bar sont issus de l'utilisation dudit mélangeur statique et dudit échangeur de chaleur, avantageusement dont 500 mbar à 1,0 bar sont issus de l'utilisation dudit mélangeur statique et dudit échangeur de chaleur. Selon un mode de réalisation préféré, le courant B est purifié, de préférence par distillation, pour former un premier courant comprenant 2,3,3,3-tétrafluoropropène, HCI et 1,1,1,2,2-pentafluoropropane, et un second courant comprenant HF et 2-chloro-3,3,3- trifluoropropène. Ledit second courant peut également comprendre du l,2-dichloro-3,3,3- trifluoropropène. More particularly, if the mixture between said stream A and the said at least one chlorinated compound is carried out in a static mixer and the resulting mixture C is heated or cooled via a heat exchanger, as detailed above, from 400 mbar to 1.2 bar can be generated, preferably from 500 mbar to 1.0 bar. In this case, the pressure difference between the inlet pressure of said first reactor and the inlet pressure of said second reactor is from 400 mbar to 2.0 bar, in particular from 750 mbar to 1.75 bar, more particularly from 1 to 1.5 bar, of which 400 mbar to 1.2 bar are derived from the use of said static mixer and said heat exchanger, preferably 500 mbar to 1.0 bar are derived from the use of said static mixer and said heat exchanger. According to a preferred embodiment, the stream B is purified, preferably by distillation, to form a first stream comprising 2,3,3,3-tetrafluoropropene, HCl and 1,1,1,2,2-pentafluoropropane, and a second stream comprising HF and 2-chloro-3,3,3-trifluoropropene. Said second stream may also comprise 1,2-dichloro-3,3,3-trifluoropropene.
De préférence, ledit courant B est distillé dans des conditions suffisantes pour former ledit premier courant comprenant 2,3,3,3-tétrafluoropropène, HCI et 1,1,1,2,2- pentafluoropropane, et ledit second courant comprenant HF et 2-chloro-3,3,3-trifluoropropene et optionnellement l,2-dichloro-3,3,3-trifluoropropène. En particulier, la distillation peut être effectuée à une pression de 2 à 6 bara, plus particulièrement à une pression de 3 à 5 bara. En particulier, la température en tête de colonne de distillation est de -35°C à 10°C, de préférence de -20°C à 0°C.  Preferably, said stream B is distilled under conditions sufficient to form said first stream comprising 2,3,3,3-tetrafluoropropene, HCl and 1,1,1,2,2-pentafluoropropane, and said second stream comprising HF and 2 chloro-3,3,3-trifluoropropene and optionally 1,2-dichloro-3,3,3-trifluoropropene. In particular, the distillation can be carried out at a pressure of 2 to 6 bara, more particularly at a pressure of 3 to 5 bara. In particular, the temperature at the top of the distillation column is from -35 ° C. to 10 ° C., preferably from -20 ° C. to 0 ° C.
Selon un mode de réalisation préféré, ledit second courant est recyclé à l'étape i). Ledit second courant peut éventuellement être purifié, en particulier par distillation, avant d'être recyclé à l'étape i). La purification dudit second courant peut éventuellement être mise en œuvre pour éliminer le l,2-dichloro-3,3,3-trifluoropropène éventuellement présent dans celui- ci.  According to a preferred embodiment, said second stream is recycled in step i). Said second stream may optionally be purified, in particular by distillation, before being recycled to stage i). Purification of said second stream may optionally be carried out to remove 1,2-dichloro-3,3,3-trifluoropropene optionally present therein.
Selon un mode réalisation préféré, ledit courant B obtenu à l'étape ii) est refroidi préalablement à la purification mentionnée ci-dessus. En particulier, ledit courant B obtenu à l'étape ii) est refroidi à une température inférieure à 100°C, puis distillé pour former ledit premier courant comprenant 2,3,3,3-tétrafluoropropène, HCI et 1,1,1,2,2-pentafluoropropane, et ledit second courant comprenant HF et 2-chloro-3,3,3-trifluoropropène et optionnellement l,2-dichloro-3,3,3-trifluoropropène; la température en tête de colonne de distillation est de - 35°C à 10°C et la distillation est mise en œuvre à une pression de 2 à 6 bara ; ledit second courant obtenu en pied de colonne de distillation est recyclé à l'étape i).  According to a preferred embodiment, said stream B obtained in stage ii) is cooled prior to the purification mentioned above. In particular, said stream B obtained in stage ii) is cooled to a temperature below 100 ° C. and then distilled to form said first stream comprising 2,3,3,3-tetrafluoropropene, HCl and 1,1,1, 2,2-pentafluoropropane, and said second stream comprising HF and 2-chloro-3,3,3-trifluoropropene and optionally 1,2-dichloro-3,3,3-trifluoropropene; the temperature at the top of the distillation column is -35 ° C. to 10 ° C. and the distillation is carried out at a pressure of 2 to 6 bara; said second stream obtained at the bottom of the distillation column is recycled in step i).
Ledit courant B peut être refroidi, avant distillation, à une température inférieure à 95°C, avantageusement inférieure à 90°C, de préférence inférieure à 85°C, plus préférentiellement inférieure à 80°C, en particulier inférieure à 70°C, plus particulièrement inférieure à 60°C, de manière privilégiée inférieure à 55°C, de manière avantageusement privilégiée inférieure à 50°C, de manière préférentiellement privilégiée inférieure à 40°C, de manière plus préférentiellement privilégiée inférieure à 30°C, de manière particulièrement privilégiée inférieure à 25°C, de manière plus particulièrement privilégiée inférieure à 20°C. Le refroidissement du flux de produits obtenu à de telles températures facilite la distillation ultérieure de l'étape c). Le refroidissement dudit courant B peut être effectué grâce à un ou une pluralité d'échangeurs de chaleur. Le refroidissement dudit courant B peut être effectué en faisant passer celui-ci au travers de un, deux, trois, quatre, cinq, six, sept, huit, neuf ou dix échangeurs de chaleur, de préférence le nombre d'échangeurs de chaleur est compris entre 2 et 8, en particulier entre 3 et 7. Said stream B can be cooled, before distillation, to a temperature below 95 ° C, preferably below 90 ° C, preferably below 85 ° C, more preferably below 80 ° C, in particular below 70 ° C, more preferably less than 60 ° C, preferably less than 55 ° C, advantageously preferably less than 50 ° C, preferentially preferred less than 40 ° C, more preferably preferred less than 30 ° C, so particularly preferred less than 25 ° C, more preferably less than 20 ° C. Cooling the product stream obtained at such temperatures facilitates subsequent distillation of step c). The cooling of said stream B can be carried out by means of one or a plurality of heat exchangers. The cooling of said stream B can be carried out by passing it through one, two, three, four, five, six, seven, eight, nine or ten heat exchangers, preferably the number of heat exchangers is between 2 and 8, in particular between 3 and 7.
De préférence, le procédé selon la présente invention est mis en œuvre en continu.  Preferably, the process according to the present invention is carried out continuously.
Exemple Example
La fluoration du HCFO-1233xf (2-chloro-3,3,3-trifluoropropène) en HFO-1234yf (2,3,3,3- tétrafluoropropène) et optionnellement en HFC-245cb (1,1,1,2,2-pentafluoropropane) est réalisée dans un premier réacteur multitubulaire. Le courant de produits issu de cette fluoration alimente un second réacteur. Ledit second réacteur est également alimenté avec un flux d'acide fluorhydrique et de 1,1,1,2,3-pentachloropropane (HCC-240db). La fluoration du HCC-240db en HCFO-1233xf (2-chloro-3,3,3-trifluoropropène) est réalisée dans le second réacteur multitubulaire. Une boucle de recyclage dont le débit est contrôlé permet de ramener certains produits vers le premier réacteur. Le premier et le second réacteur contiennent un catalyseur massique à base d'oxyde de chrome. Le catalyseur est activé par une série d'étapes comprenant séchage, fluoration, traitement sous air et fluoration avec recyclage. Ce traitement en plusieurs étapes permet de rendre le solide catalytique actif et sélectif.  Fluorination of HCFO-1233xf (2-chloro-3,3,3-trifluoropropene) to HFO-1234yf (2,3,3,3-tetrafluoropropene) and optionally to HFC-245cb (1,1,1,2,2 -pentafluoropropane) is carried out in a first multitubular reactor. The product stream resulting from this fluorination feeds a second reactor. Said second reactor is also fed with a flow of hydrofluoric acid and 1,1,1,2,3-pentachloropropane (HCC-240db). The fluorination of HCC-240db in HCFO-1233xf (2-chloro-3,3,3-trifluoropropene) is carried out in the second multitubular reactor. A recycling loop whose flow rate is controlled makes it possible to return certain products to the first reactor. The first and the second reactor contain a mass catalyst based on chromium oxide. The catalyst is activated by a series of steps including drying, fluorination, air treatment and fluorination with recycling. This multi-step treatment makes the catalytic solid active and selective.
Dans le premier réacteur, le procédé de fluoration est mis en œuvre suivant les conditions opératoires suivantes :  In the first reactor, the fluorination process is carried out according to the following operating conditions:
Une pression absolue dans le réacteur de fluoration de 6,1 bars absolu  An absolute pressure in the fluorination reactor of 6.1 bars absolute
Un ratio molaire entre THF et la somme des organiques alimentés par la boucle de recyclage compris entre 15 et 20  A molar ratio between THF and the sum of the organic feeds fed by the recycling loop of between 15 and 20
- Un temps de contact compris entre 18 et 20 secondes  - A contact time between 18 and 20 seconds
Une température constante dans le réacteur de 350°C.  A constant temperature in the reactor of 350 ° C.
Dans le second réacteur, le procédé de fluoration est mis en œuvre suivant les conditions opératoires suivantes :  In the second reactor, the fluorination process is carried out according to the following operating conditions:
Une pression absolue dans le réacteur de fluoration de 5,5 bars absolu  An absolute pressure in the fluorination reactor of 5.5 bar absolute
- Un ratio molaire entre THF et la somme des organiques alimentés par la boucle de recyclage compris entre 12 et 15  A molar ratio between THF and the sum of the organic feeds fed by the recycling loop of between 12 and 15;
Un temps de contact compris entre 11 et 13 secondes  A contact time between 11 and 13 seconds
Une température constante dans le réacteur de 350°C. La différence de pression entre la pression à l'entrée dudit premier réacteur et la pression à l'entrée dudit second réacteur est de 600 mbar. Le débit de la boucle de recyclage à l'entrée du premier réacteur varie de 34 à 38 kg/h. Le débit d'introduction du 1,1,1,2,3-pentachloropropane dans le second réacteur varie de 3 à 7 kg/h. Les teneurs en 1,1,1,2,2-pentafluoropropane (HFC- 245cb) et en l,2-dichloro-3,3,3-trifluoropropène (HFCO-1223xd) dans le courant sortant du 2eme réacteur sont reprises dans le tableau 1 ci-dessous. A constant temperature in the reactor of 350 ° C. The pressure difference between the inlet pressure of said first reactor and the inlet pressure of said second reactor is 600 mbar. The flow rate of the recycling loop at the inlet of the first reactor varies from 34 to 38 kg / h. The rate of introduction of 1,1,1,2,3-pentachloropropane into the second reactor varies from 3 to 7 kg / h. The contents of 1,1,1,2,2-pentafluoropropane (HFC-245cb) and l, 2-dichloro-3,3,3-trifluoropropene (HFCO-1223xd) in the outlet stream of the 2nd reactor are shown in Table 1 below.
Tableau 1 Table 1
* Les teneurs sont calculées sur base du poids total des composés organiques dans le courant sortant du 2ème réacteur. * The contents are calculated on the basis of the total weight of the organic compounds in the current leaving the 2nd reactor.
Le demandeur a observé que les teneurs en HFC-245cb et en HCFO-1223xd dans le courant sortant du second réacteur diminuent lorsque le procédé est mis en œuvre avec une pression à l'entrée du premier réacteur supérieure à celle à l'entrée du second réacteur par rapport à une mise en œuvre du procédé à des pressions identiques dans les deux réacteurs. The applicant has observed that the contents of HFC-245cb and HCFO-1223xd in the outgoing stream of the second reactor decrease when the process is implemented with a pressure at the inlet of the first reactor greater than that at the inlet of the second reactor. reactor compared to an implementation of the process at identical pressures in the two reactors.

Claims

Revendications claims
1. Procédé pour la production de 2,3,3,3-tétrafluoropropène comprenant les étapes : A process for producing 2,3,3,3-tetrafluoropropene comprising the steps of:
i) dans un premier réacteur, mise en contact de 2-chloro-3,3,3-trifluoropropène avec de l'acide fluorhydrique en phase gazeuse en présence d'un catalyseur pour produire un courant A comprenant 2,3,3,3-tétrafluoropropène, HF et 2-chloro-3,3,3-trifluoropropène n'ayant pas réagi ; et  i) in a first reactor, contacting 2-chloro-3,3,3-trifluoropropene with hydrofluoric acid in the gas phase in the presence of a catalyst to produce a stream A comprising 2,3,3,3 unreacted tetrafluoropropene, HF and 2-chloro-3,3,3-trifluoropropene; and
ii) dans un second réacteur, mise en contact en phase gazeuse en présence ou non d'un catalyseur d'acide fluorhydrique avec au moins un composé chloré sélectionné parmi le groupe consistant en 1,1,1,2,3-pentachloropropane, 2,3-dichloro-l,l,l-trifluoropropane, 2,3,3,3- tétrachloropropène et 1,1,2,3-tétrachloropropène pour produire un courant B comprenant 2- chloro-3,3,3-trifluoropropène,  ii) in a second reactor, contacted in the gas phase in the presence or absence of a hydrofluoric acid catalyst with at least one chlorinated compound selected from the group consisting of 1,1,1,2,3-pentachloropropane, 2 , 3-dichloro-1,1,1-trifluoropropane, 2,3,3,3-tetrachloropropene and 1,1,2,3-tetrachloropropene to produce a stream B comprising 2-chloro-3,3,3-trifluoropropene,
caractérisé en ce que le courant A obtenu à l'étape i) alimente ledit second réacteur utilisé pour l'étape ii) ; et en ce que la pression à l'entrée dudit premier réacteur de l'étape i) est supérieure à la pression à l'entrée dudit second réacteur de l'étape ii). characterized in that the stream A obtained in step i) feeds said second reactor used for step ii); and in that the pressure at the inlet of said first reactor of step i) is greater than the pressure at the inlet of said second reactor of step ii).
2. Procédé selon la revendication précédente caractérisé en ce que la différence de pression entre la pression à l'entrée dudit premier réacteur et la pression à l'entrée dudit second réacteur est de 100 mbar à 3,5 bar, avantageusement de 150 mbar à 3,0 bar, de préférence de 300 mbar à 2,5 bar, plus préférentiellement de 400 mbar à 2,0 bar, en particulier de 750 mbar à 1,75 bar, plus particulièrement de 1 à 1,5 bar. 2. Method according to the preceding claim characterized in that the pressure difference between the pressure at the inlet of said first reactor and the pressure at the inlet of said second reactor is 100 mbar at 3.5 bar, preferably 150 mbar at 3.0 bar, preferably from 300 mbar to 2.5 bar, more preferably from 400 mbar to 2.0 bar, in particular from 750 mbar to 1.75 bar, more particularly from 1 to 1.5 bar.
3. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que l'étape i) et l'étape ii) sont mises en œuvre en présence d'un catalyseur, de préférence un catalyseur à base de chrome, en particulier ledit catalyseur comprend un oxyfluorure de chrome ou un oxyde de chrome ou un fluorure de chrome ou un mélange de ceux-ci. 3. Process according to any one of the preceding claims, characterized in that step i) and step ii) are carried out in the presence of a catalyst, preferably a chromium-based catalyst, in particular said catalyst. comprises a chromium oxyfluoride or a chromium oxide or a chromium fluoride or a mixture thereof.
4. Procédé selon la revendication précédente caractérisé en ce que le catalyseur est à base de chrome et comprend également un co-catalyseur sélectionné parmi le groupe consistant en Ni, Zn, Co, Mn ou Mg, de préférence la teneur en co-catalyseur est comprise entre 0,01% et 10% sur base du poids total du catalyseur. 4. Method according to the preceding claim characterized in that the catalyst is based on chromium and also comprises a co-catalyst selected from the group consisting of Ni, Zn, Co, Mn or Mg, preferably the cocatalyst content is between 0.01% and 10% based on the total weight of the catalyst.
5. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que le courant B comprend également 2,3,3,3-tétrafluoropropène, HF, HCI et 1,1,1,2,2- pentafluoropropane. 5. Process according to any one of the preceding claims, characterized in that the stream B also comprises 2,3,3,3-tetrafluoropropene, HF, HCl and 1,1,1,2,2-pentafluoropropane.
6. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que le courant B est purifié, de préférence par distillation, pour former un premier courant comprenant 2,3,3,3-tétrafluoropropène, HCI et 1,1,1,2,2-pentafluoropropane, et un second courant comprenant HF et 2-chloro-3,3,3-trifluoropropène. 6. Method according to any one of the preceding claims characterized in that the stream B is purified, preferably by distillation, to form a first stream comprising 2,3,3,3-tetrafluoropropene, HCl and 1,1,1, 2,2-pentafluoropropane, and a second stream comprising HF and 2-chloro-3,3,3-trifluoropropene.
7. Procédé selon la revendication précédente caractérisé en ce que ledit second courant est recyclé à l'étape i). 7. Method according to the preceding claim characterized in that said second stream is recycled in step i).
8. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que ledit courant A et ledit au moins un composé chloré sont mis en contact préalablement à l'entrée de ceux-ci dans ledit second réacteur. 8. Method according to any one of the preceding claims characterized in that said stream A and said at least one chlorinated compound are contacted prior to the entry thereof into said second reactor.
9. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que la température à laquelle l'étape i) est mise en œuvre est différente de celle à laquelle l'étape ii) est mise en œuvre ; et l'écart entre la température à laquelle l'étape i) est mise en œuvre et la température à laquelle l'étape ii) est mise en œuvre est supérieur à 0,2°C, avantageusement supérieur à 0,5°C, de préférence supérieur à 1°C, plus préférentiellement supérieur à 5°C, en particulier supérieur à 10°C ; et inférieur à 60°C, avantageusement inférieur à 55°C, de préférence inférieur à 50°C, plus préférentiellement inférieur à 45°C, en particulier inférieur à 40°C, plus particulièrement inférieur à 35°C, de manière privilégiée inférieur à 30°C, de manière préférentiellement privilégiée inférieur à 25°C, de manière particulièrement privilégiée inférieur à 20°C. 9. Method according to any one of the preceding claims characterized in that the temperature at which step i) is implemented is different from that at which step ii) is implemented; and the difference between the temperature at which step i) is carried out and the temperature at which step ii) is carried out is greater than 0.2 ° C, advantageously greater than 0.5 ° C, preferably greater than 1 ° C, more preferably greater than 5 ° C, in particular greater than 10 ° C; and less than 60 ° C, preferably less than 55 ° C, preferably less than 50 ° C, more preferably less than 45 ° C, in particular less than 40 ° C, more preferably less than 35 ° C, preferably lower at 30 ° C, preferentially preferred lower than 25 ° C, particularly preferably less than 20 ° C.
10. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que le courant B est refroidi à une température inférieure à 100°C, puis distillé pour former un premier courant comprenant 2,3,3,3-tétrafluoropropène, HCI et 1,1,1,2,2-pentafluoropropane, et un second courant comprenant HF et 2-chloro-3,3,3-trifluoropropène et optionnellement 1,2- dichloro-3,3,3-trifluoropropène ; la température en tête de colonne de distillation est de -35°C à 10°C et la distillation est mise en œuvre à une pression est de 2 à 6 bara ; ledit second courant obtenu en pied de colonne de distillation est recyclé à l'étape i). 10. Method according to any one of the preceding claims characterized in that the stream B is cooled to a temperature below 100 ° C, and then distilled to form a first stream comprising 2,3,3,3-tetrafluoropropene, HCl and 1 1,1,2,2-pentafluoropropane, and a second stream comprising HF and 2-chloro-3,3,3-trifluoropropene and optionally 1,2-dichloro-3,3,3-trifluoropropene; the temperature at the top of the distillation column is -35 ° C. at 10 ° C and the distillation is carried out at a pressure of 2 to 6 bara; said second stream obtained at the bottom of the distillation column is recycled in step i).
EP18875016.0A 2017-11-13 2018-11-08 Process for the production of 2,3,3,3-tetrafluoropropene Pending EP3710419A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1760635A FR3073516B1 (en) 2017-11-13 2017-11-13 PROCESS FOR PRODUCING 2,3,3,3-TETRAFLUOROPROPENE
PCT/FR2018/052777 WO2019092376A2 (en) 2017-11-13 2018-11-08 Process for the production of 2,3,3,3-tetrafluoropropene

Publications (1)

Publication Number Publication Date
EP3710419A2 true EP3710419A2 (en) 2020-09-23

Family

ID=61187448

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18875016.0A Pending EP3710419A2 (en) 2017-11-13 2018-11-08 Process for the production of 2,3,3,3-tetrafluoropropene

Country Status (5)

Country Link
US (1) US11028029B2 (en)
EP (1) EP3710419A2 (en)
CN (1) CN111328324B (en)
FR (1) FR3073516B1 (en)
WO (1) WO2019092376A2 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8058486B2 (en) 2004-04-29 2011-11-15 Honeywell International Inc. Integrated process to produce 2,3,3,3-tetrafluoropropene
GB0806422D0 (en) * 2008-04-09 2008-05-14 Ineos Fluor Holdings Ltd Process
US8563789B2 (en) * 2007-06-27 2013-10-22 Arkema Inc. Process for the manufacture of hydrofluoroolefins
WO2011099605A2 (en) * 2010-02-12 2011-08-18 Daikin Industries, Ltd. Process for producing fluorine-containing alkene compound
CN102001910B (en) * 2010-09-20 2013-11-06 西安近代化学研究所 Method for preparing 2,3,3,3-tetrafluoropropene
WO2013088195A1 (en) 2011-12-14 2013-06-20 Arkema France Process for the preparation of 2,3,3,3 tetrafluoropropene
US9422211B2 (en) * 2012-08-08 2016-08-23 Daikin Industries, Ltd. Process for producing 2,3,3,3-tetrafluoropropene
JP5825299B2 (en) * 2013-07-12 2015-12-02 ダイキン工業株式会社 Method for producing 2,3,3,3-tetrafluoropropene
FR3012137B1 (en) 2013-10-17 2016-09-16 Arkema France PROCESS FOR PRODUCING FLUORINATED COMPOUNDS
JP6043415B2 (en) * 2015-08-20 2016-12-14 アルケマ フランス Method for producing 2,3,3,3-tetrafluoropropene
JP2017122063A (en) * 2016-01-06 2017-07-13 ダイキン工業株式会社 Method for producing 2,3,3,3-tetrafluoropropene
JP6216832B2 (en) * 2016-05-24 2017-10-18 アルケマ フランス Process for preparing 2,3,3,3-tetrafluoropropene

Also Published As

Publication number Publication date
US20200331826A1 (en) 2020-10-22
WO2019092376A3 (en) 2019-09-06
FR3073516B1 (en) 2019-10-18
CN111328324A (en) 2020-06-23
US11028029B2 (en) 2021-06-08
WO2019092376A2 (en) 2019-05-16
CN111328324B (en) 2023-08-08
FR3073516A1 (en) 2019-05-17

Similar Documents

Publication Publication Date Title
WO2019170991A1 (en) Process for the production of 2,3,3,3-tetrafluoropropene
WO2019170989A1 (en) Process for the production of 2,3,3,3-tetrafluoropropene
US9624145B2 (en) Process for the manufacture of 2,3,3,3-tetrafluoropropene by gas phase fluorination of pentachloropropane
EP3762354A1 (en) Process for producing 2-chloro-3,3,3-trifluoropropene
EP3057929A1 (en) Method for producing fluorinated compounds
FR3073516B1 (en) PROCESS FOR PRODUCING 2,3,3,3-TETRAFLUOROPROPENE
FR3068969B1 (en) PROCESS FOR PRODUCING 2,3,3,3-TETRAFLUOROPROPENE
FR3068970B1 (en) PROCESS FOR PRODUCING 2,3,3,3-TETRAFLUOROPROPENE
FR3073221B1 (en) PROCESS FOR PRODUCING 2,3,3,3-TETRAFLUOROPROPENE
WO2019170992A1 (en) Process for dehydrofluorination of a hydrocarbon compound
EP3807239A1 (en) Process for producing 2,3,3,3-tetrafluoropropene, and reactor for carrying out said process
FR3098127A1 (en) Process for the production of 2,3,3,3-tetrafluoropropene and reactor for the implementation thereof
WO2019239040A1 (en) Process for producing 2,3,3,3-tetrafluoropropene, and system for carrying out same
FR3098216A1 (en) Process for the production of 2,3,3,3-tetrafluoropropene and installation for its implementation
WO2019239041A1 (en) Process for the production of 2,3,3,3-tetrafluoropropene, reactor and system for carrying out same
FR3082204A1 (en) PROCESS FOR PRODUCING 2-CHLORO-3,3,3-TRIFLUOROPROPENE AND PLANT FOR IMPLEMENTING SAME.

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200422

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)