EP3706895A1 - Nouveau separateur gaz solide pour les unites de craquage catalytique possedant un riser externe - Google Patents

Nouveau separateur gaz solide pour les unites de craquage catalytique possedant un riser externe

Info

Publication number
EP3706895A1
EP3706895A1 EP18785404.7A EP18785404A EP3706895A1 EP 3706895 A1 EP3706895 A1 EP 3706895A1 EP 18785404 A EP18785404 A EP 18785404A EP 3706895 A1 EP3706895 A1 EP 3706895A1
Authority
EP
European Patent Office
Prior art keywords
gas
riser
solid
separation device
catalytic cracking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP18785404.7A
Other languages
German (de)
English (en)
Inventor
Benjamin AMBLARD
Frederic Feugnet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP3706895A1 publication Critical patent/EP3706895A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/005Separating solid material from the gas/liquid stream
    • B01J8/0055Separating solid material from the gas/liquid stream using cyclones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/005Separating solid material from the gas/liquid stream
    • B01J8/0065Separating solid material from the gas/liquid stream by impingement against stationary members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/26Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with two or more fluidised beds, e.g. reactor and regeneration installations
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
    • C10G11/182Regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00548Flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00654Controlling the process by measures relating to the particulate material
    • B01J2208/00672Particle size selection
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4093Catalyst stripping

Definitions

  • the invention is in the context of catalytic cracking units of heavy cuts.
  • the invention relates to a separation and stripping device and its use in a catalytic cracking conversion process of hydrocarbons which can be vacuum distillates, residues or lighter cuts such as gasoline for example from various processes. conversion or atmospheric distillation of crude oil and possibly ligno-cellulosic biomass.
  • the catalytic cracking process (abbreviated as FCC, abbreviated notation of "fluid catalytic craking") makes it possible to convert heavy hydrocarbon feeds, whose boiling point is generally greater than 340 ° C., into lighter hydrocarbon fractions, by cracking molecules of the heavy charge in the presence of an acid catalyst.
  • FCC catalytic cracking process
  • the FCC process produces mainly gasoline and LPG (abbreviation for liquefied petroleum gas) as well as heavier cuts called LCO and HCO.
  • the reactor used in the catalytic cracking units is a fluidized bed reactor transported which is generally called a riser.
  • the main load of an FCC heavy-cup unit is generally a hydrocarbon or a mixture of hydrocarbons containing essentially at least 80% of molecules whose boiling point is greater than 340 ° C.
  • This feed contains quantities of metals, mainly nickel and vanadium (Ni + V) limited, generally less than 50 ppm, preferably less than 20 ppm, and a hydrogen content in general greater than 11% by weight. It is also preferable to limit the nitrogen content below the value of 0.5% by weight.
  • the load defined by ASTM D 482 the coke yield requires a specific dimensioning of the unit to satisfy the thermal balance.
  • the carbon deposited on the catalyst is then burned in the regeneration zone releasing calories which are used to satisfy the heat of vaporization of the feed, introduced through injectors in the form of liquid droplets, and the endothermicity of the reactions. cracking. So, if the Carbon Conradson of the feed is less than 3% by weight, it is possible to satisfy the heat balance of the unit by burning the coke in a fluidized bed in total combustion.
  • Figure 1 shows the upper part of a catalytic cracking unit in the case of an external riser (2), that is to say completely separated from the stripping chamber (1).
  • the separation device according to the invention (5) is located inside the stripping enclosure. It is connected to the riser (2) by a horizontal pipe (19) which penetrates inside the stripping enclosure (1).
  • the separator (5) is followed by one or more cyclones (9).
  • FIGs 2a, 2b and 2c show in more detail the solid gas separator and its connection with the external riser. Note the pipe (18) which can channel the stripping gas and joins the gaseous effluent of the riser in the chamber (16). Figure 2 introduces the angles and dimensions that will be specified in the rest of the text.
  • Figure 3 is a perspective view of the separator object of the invention. In this Figure 3 we see more clearly the pipe (18) and the way it connects to the chamber (16). This figure also shows the return leg of the solid (6) after separation.
  • FIG. 4 is a schematic view of the possible subdivisions of the main pipe (19) bringing the solid gas suspension from the riser (2) in the separation device (5). These subdivisions result in a tree structure of the separators (5) operating in parallel, a configuration forming part of the invention.
  • FIG. 5 shows the results of the 3D simulation comparing the separator of the prior art (5a) with that according to the invention (5b).
  • Patent EP0852963 discloses a solid-gas separator with direct winding of the particles contained in a gaseous mixture and its use in thermal or catalytic cracking in a fluidized bed. The device applies to a riser whose upper part opens into the stripping zone, which is not the case of the present invention.
  • the patent FR2767715 describes a separation and stripping device for main riser FCC units. It is in the cited document a riser whose upper part opens into the stripping zone. The path of the gaseous effluents shows a lateral shift since the reversal of the gas which takes place in the chamber 2 is followed by a displacement in the chamber 3, as can be seen in FIG. 3 of the document cited.
  • US 8383051 discloses a solid gas separation device which is intended for external risers, that is to say which are not at least partly contained in the envelope of the stripper.
  • the main flow of the solid gas suspension is divided in two and the device comprises an impaction plate (called in the English terminology “partitioning baffle” in the text cited) which allows to recover the solid by sudden decrease in its speed .
  • the device described is connected to a stripping chamber.
  • the present invention can be considered as an improvement of the cited document.
  • EPI patent 017,762 discloses a solid gas separation system comprising a set of separation chambers and stripping chambers arranged alternately around the riser. This system makes it possible to simultaneously perform the following operations:
  • the present invention can be defined as a device for solid gas separation of the particles contained in the solid gas suspension from the external riser of a catalytic cracking unit (FCC).
  • FCC catalytic cracking unit
  • This external riser is either the main riser of the unit thus converting the different loads possible alone or in mixture, or a secondary riser associated with a central main riser.
  • a possible configuration is a central main riser treating the conventional load and a secondary riser parallel to the main riser but which is in the outer position with respect to the main riser handling a lighter load such as naphtha.
  • a configuration in which the one or more heavy loads, and the one or more light loads are respectively treated in the outer riser and the main riser in the central position is also possible.
  • the effluents of the two risers are collected in a common stripper.
  • each pipe (4) is connected to a bend (12) located in a vertical plane in which the particles are separated from the gas and pressed into the wall by the centrifugal force, the separated particles flowing downwards in the legs.
  • return (13) themselves connected to a substantially vertical portion (14) which serves to join the two flows of particles from the two legs (13).
  • return leg according to the vocabulary of the skilled person, a vertical pipe within which the catalyst flows in a dense fluidized flow, the density of the flow is generally between 400 and 800 kg / m 3 .
  • the flow of the recovered solid ends in the return leg (6) which opens into or near the fluidized bed of the stripping vessel
  • the gas from the riser is separated from the solid in the bends (12), turning approximately 180 ° in the legs (13) and then to the chambers (15), themselves connected to the pipe (18) in which the fluidization / stripping gas from the Downstream lluidized bed is channeled.
  • the stripping gases join the gaseous effluents from the riser (2) after separation with the catalyst.
  • the gases from the riser (2) and the gases from the lluidized stripping bed are then sent to a cyclone stage 9 via the discharge line (16).
  • the pipe (18 plays an important role in the separation device according to the invention in that it makes it possible to collect the stripping gases in a dedicated pipe (18), and to contact these stripping gases with the gaseous effluents from riser in a chamber (15) after separation from the catalyst. This thus allows a seal of the separator to prevent the effluent from the riser entering the stripper and undergo overcooling that would be detrimental to performance. a set of reactions that are globally at the expense of gasoline.
  • the catalyst particles to be separated have a diameter distribution ranging from ⁇ to 1 mm, and a grain density ranging from 500 kg / m 3 to 5000 kg / m 3 , with a percentage of fine particles of less than 40. microns, generally between 10% and 30% by weight.
  • the diameter d of bends (12) is calculated to have a gas velocity of between 0.5 V and 10 V, preferably between 5 V and 5 V, and preferably between V and 2 V , V being the average speed of the gas in the external riser.
  • the radius of curvature of the bends (12) is between d and 10d, preferably between 2d and 5d, and preferably equal to 2d.
  • the chambers (15) are dimensioned to have a horizontal gas velocity generally between 0.5V and 10V, preferably between V and 5V, and preferably between V and 2V, V designating the average velocity of the gas taken in the riser external.
  • the angle ⁇ between the upper part of the leg (13) and the element (14) where the two legs (13) meet in the vertical plane (xz) is generally between 90 ° and 140 °, preferably between 90 ° and 120 °, and preferably between 90 ° and 105 °.
  • the notion of vertical plane is deduced from the usual coordinate system x, y, z, where z is the vertical coordinate, (x, y) designating the horizontal plane.
  • the angle ⁇ of the element (14) in the vertical plane (xz) is generally between 20 ° and 90 °, preferably between 30 ° and 120 °, and preferably between 45 ° and 90 °.
  • the angle ⁇ of the element (14) in the vertical plane (yz) is generally between 90 ° and 140 °, preferably between 90 ° and 120 °, and preferably between 90 ° and 105 °.
  • the diameter of the stripping gas collection pipe (18) is sized to have a gas velocity within said pipe generally between 1m / s and 40m / s, preferably between 1.5m / s and 20 m / s, and preferably between 2m / s and 10m / s.
  • the diameter of the gas discharge pipe (16) is calculated to have a gas velocity generally between 0.1V and 10V, preferably between 0.2V and 5V, and preferably between 0.5V and 2V,
  • V denotes the average speed of the gas in the external riser.
  • the diameter of the return leg (6) is dimensioned to have a particle flux of between 10 kg / m 2 / s and 700 kg / m 2 / s, preferably between 10 kg / m 2 / s and 300 kg / m 2 / s, and preferably between 10 kg / m 2 / s and 200 kg / m 2 / s.
  • the invention also relates to a catalytic cracking process using the separation device according to the present invention, wherein the gas velocity V in the riser (2) is between 1 m / s and 40 m / s, preferably between 10 m / s and 30 m / s, and preferably between 15 m / s and 25 m / s.
  • the invention also relates to a catalytic cracking process using the separation device according to the present invention, wherein the particle flow in the riser (2) is between 10 kg / m 2 / s and 1500 kg / m 2 / s preferably between 200 kg / m 2 / s and 1000 kg / m 2 / s, and preferably between 400 kg / m 2 / s and 800 kg / m 2 / s.
  • the invention also relates to a catalytic cracking process using the separation device according to the present invention, wherein the gas velocity in the pipe (19) and the pipes (4) is between 0.5V and 10V, preferably between V and 5V, and preferably between
  • the present invention can be seen as an improvement of the device described in US Patent 8,383,051 B2 previously cited.
  • Catalytic cracking of heavy cuts produces effluents ranging from dry gases to a conversion residue.
  • effluents the following cuts are distinguished which are classically defined according to their composition or their boiling point.
  • dry and acid gases essentially: H2, H2S, Cl, C2
  • LCO abbreviation of the Anglo-Saxon term "light cycle oil”
  • HCO abbreviation of English term “heavy cycle oil”
  • the conversion residue with a boiling point greater than 360 ° C. or 440 ° C. in the case where an HCO cut is present.
  • lignocellulosic biomass containing in various proportions three main families namely lignin, cellulose and hemicellulose
  • oils and animal fats mainly containing triglycerides and fatty acids or esters, with hydrocarbon fatty chains having a number of carbon atoms of between 6 and 25.
  • oils may be palm oils, palm kernel, copra, castor oil and cotton, peanut, flax and cranberry oils, coriander, and all oils derived for example from sunflower or rapeseed by genetic modification or hybridization.
  • Fried oils, various animal oils such as fish oils, tallow, lard can also be used.
  • feedstocks are almost or completely free of sulfur and nitrogen compounds and do not contain aromatic hydrocarbons.
  • this type of filler, lignocellulosic biomass, vegetable oil or animal fat may undergo prior to its use in the FCC process, a pretreatment or pre-refining step so as to eliminate by appropriate treatment, various contaminants.
  • the gaseous effluents from the cracked feedstock are separated from the catalyst particles, in order to stop the catalytic reactions and to rapidly evacuate the gaseous effluents from the reactor. It is also appropriate to limit as much as possible the thermal degradation of the effluents resulting from their prolonged exposure to a temperature level close to that encountered at the outlet of the riser.
  • solid gas separation technologies have been developed to promote the rapid disengagement of gaseous effluents and catalyst at the riser outlet, equipment playing a key role in the final performance of the process in terms of yield and selectivity.
  • the object of the present invention is to provide an improved fast separator geometry for improving the gas / particle separation at the external riser outlet compared with the designs of the prior art patents.
  • - solid separation that is, reducing the amount of particles going to secondary cyclones
  • gas separation that is to say, reducing the amount of gas in the return leg (6) of the separator in order to reduce the residence time of the gas in the upper zone of the stripper and to limit the phenomena of cracking of the desired products.
  • the device presented in the invention makes it possible to collect the stripping gases in a dedicated pipe (18) and to contact these stripping gases with the gaseous effluents from the riser in a chamber (15) after separation with the catalyst.
  • Figure 1 shows the general layout of the separator according to the invention in the case of an external riser.
  • the external riser (2) is connected to the stripping enclosure (1) which encloses a fluidized bed located in the lower part of said enclosure.
  • the fluidized bed is separated into a so-called dense phase (20) and a diluted phase (3).
  • the interface (7) delimits the separation between the two phases.
  • the separator according to the invention and the cyclone (s) (9) situated downstream are located in the dilute phase of the stripping enclosure and the return legs of the separated solid, leg (6) for the separator and leg (10). for the downstream cyclone (s) down to the dense phase. They can be more or less immersed in the dense phase depending on the pressure balance of the unit.
  • the upward flow in the riser (2) enters the enclosure (1) through a substantially horizontal tubular portion (19).
  • the gas is then separated in the separator (5), object of the present invention.
  • the solid separated from the gas is sent into the dense fluidized bed (20) through the return leg (6). This leg can either be immersed in the dense zone (20) or end in the diluted zone (3).
  • the return leg (6) of the separator (5) may have an internal (17) packing type or "packing" as described for example in the document US6224833, to obtain a good radial distribution of the solid in said leg of return (6), and thus improve the gas / particle contact.
  • the gas separated from the particles in the separator (5) is then directed to a cyclone stage (9) through the connecting lines (8).
  • the separated solid particles are returned to the fluidized bed through the return leg (10) while the gas leaves the stripping vessel (1) through the exhaust pipe (s) (11).
  • a single cyclone stage is not sufficient, it is possible to place a second stage in series from the first stage.
  • the invention is not related to the configuration of the cyclone stages placed downstream of the separator (5).
  • FIGS. 2 and Figure 3 show the geometry of the separator 5, object of the present invention.
  • the external riser (2) is connected to the separator (5) by the tabular network (19).
  • the tubings (4) divide the gas / particle flow from the tubular array (19) in a homogeneous manner.
  • Each tubing (4) is connected to a bend (12) in which the particles are separated from the gas and pressed into the wall by centrifugal force.
  • the separated particles flow downward into return legs (13), themselves connected to a substantially vertical portion (14) which serves to collect the two particle flows from the two legs (13).
  • the particles then return to the return leg (6) to the fluidized stripping bed.
  • the gas from the riser is separated from the solid in the elbows (12).
  • the gas is turned approximately 180 ° in the legs (13) and then go to the chambers (15).
  • These chambers (15) are connected to the stripping gas collection pipe (18) in which the fluidization / stripping gases from the fluidized bed are channeled.
  • the gases from the riser (2) and the gases from the fluidized bed (20) are then sent to a cyclone stage (9) through the chamber (16).
  • Figure 4 shows the possibility of putting several separators (5) in parallel according to the available space in the stripping enclosure (1) by means of a tabular network (19) composed of multiple pipes which divide successively in two.
  • the advantage of putting several separators (5) in parallel is that the elbows used for the separation have smaller radii, and the gas / particle separation conditioned essentially by the centrifugal force, is thus improved.
  • the number of separators (5) in parallel can vary between 1 and 10, preferably between 1 and 6, and preferably between 1 and 4.
  • the homogeneous distribution of the flow between all the bends of the separators is ensured by the fact that the number of bends is even, and that the arrangement of the tubular array (19) is symmetrical.
  • the device according to the invention makes it possible to collect the stripping gases in a dedicated line, called the collection line (18), and to contact these stripping gases with the gaseous effluents from the riser in a chamber (15) after separation with the catalyst . This thus allows the separator to be sealed in order to prevent the effluents from the riser entering the stripper and undergo a supercracking which is detrimental to the yield structure.
  • the catalyst particles circulating in the unit and used in the fluidized stripping bed (20) may have a diameter distribution ranging from ⁇ to 1 mm and a grain density ranging from 500 kg / m 3 to 5000 kg / m 3. .
  • the gas velocity V in the external riser (2) is between 1 m / s and 40 m / s, preferably between 10 m / s and 30 m / s, and preferably between 15 m / s and 25 m / s.
  • the flow of particles in the riser (2) is between 10 kg / m 2 / s and 1500 kg / m 2 / s, preferably between 200 kg / m 2 / s and 1000 kg / m 2 / s and preferred between 400 kg / m 2 / s and 800 kg / m 2 / s.
  • the gas velocity in the tubular network (19) and the pipes (4) is between 0.5V and 10V, preferably between V and 5V, and preferably between V and 2V, V designating the average velocity of the gas in the external riser.
  • the angle ⁇ which defines the orientation of the tubes (4) with respect to the axis is between 5 ° and 85 °, preferably between 25 ° and 65 °, and preferably between 40 ° and 50 °.
  • the diameter d of elbows (12) is implemented to have a gas velocity between 0.5V and 10V, preferably between V and 5V, and preferably between V and 2V, V designating the average velocity of the gas in the external riser .
  • the elbows (12) have an angle of 90 °.
  • Their curvature diameter r is between d and 10d, preferably between 2d and 5d and preferably equal to 2d.
  • the chambers (15) are dimensioned to have a horizontal gas velocity between 0.5V and 10V, preferably between V and 5V, and preferably between V and 2V, V designating the average velocity of the gas in the external riser.
  • the angle ⁇ between the upper part of the leg (13) and the element (14) in the plane (xz) is between 90 ° and 140 °, preferably between 90 ° and 120 °, and preferably between 90 ° and 105 °.
  • the angle ⁇ of the element (14) in the plane (xz) is between 20 ° and 90 °, preferably between 30 ° and 120 °, and preferably between 45 ° and 90 °.
  • the angle ⁇ of the element (14) in the plane (yz) is between 90 ° and 140 °, preferably between 90 ° and 120 °, and preferably between 90 ° and 105 °.
  • the diameter of the return leg (6) is dimensioned to have a particle flux of between 10 kg / m 2 / s and 700 kg / m 2 / s, preferably between 10 kg / m 2 / s and 300 kg / m 2 / s and preferably between 10 kg / m 2 / s and 200 kg / m 2 / s.
  • the diameter of the tube collects stripping gases (18) is sized to have a gas velocity of between 1m / s and 40m / s, preferably between 1.5m / s and 20m / s, and preferably between 2m / s and 10m / s.
  • the diameter of the gas outlet pipe (16) is implemented to have a gas velocity between 0.1V and 10V, preferably between 0.2V and 5V, and preferably between 0.5V and 2V, V designating the velocity average gas in the riser.
  • the particulate phase is divided into groups of particles representing a certain number of real particles having the same properties (diameter, speed, density, ).
  • the advantage of this method is that a particle size distribution can be taken into account for a lower calculation cost.
  • Table 1 shows the simulated conditions as well as the dimensions of the two separators.
  • Figure 5 shows the volume fraction of the particles in the two simulated configurations with left ( Figure 5a) the design according to the prior art and on the right ( Figure 5b) the design according to the present invention.
  • the gas / particle separation is sharper. Indeed, in the device of the prior art a cloud of particles is observed inside the separator that is not found in Figure 5b where the solid appears only in the lower part of the device. According to the invention there is inside the separator a zone very diluted in solid particles.
  • the solid efficiency of the separators is defined as follows:
  • the gas efficiency of the separators is defined as follows:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Separating Particles In Gases By Inertia (AREA)

Abstract

La présente invention concerne un dispositif de séparation gaz solide spécialement adapté aux risers externes des unités de craquage catalytique. Le dispositif comprend une tubulure (19) formant sensiblement un angle de 90° par rapport à un riser (2), la dite tubulure (19) se divisant en deux tubulaires (4) formant entre elles un angle 2*γ, γ étant compris entre 5° et 85°. Ce dispositif permet simultanément de canaliser les gaz de stripage et améliore l'efficacité globale de la séparation grâce à un meilleur contrôle du temps de contact. La présente invention concerne également un procédé de craquage catalytique utilisant ledit dispositif de séparation gaz solide.

Description

NOUVEAU SEPARATEUR GAZ SOLIDE POUR LES UNITES DE CRAQUAGE CATALYTIQUE POSSEDANT UN RISER EXTERNE
CONTEXTE DE L'INVENTION
L'invention se situe dans le contexte des unités de craquage catalytique des coupes lourdes. L'invention concerne un dispositif de séparation et de stripage et son utilisation dans un procédé de conversion en craquage catalytique d'hydrocarbures qui peuvent être des distillats sous vide, des résidus ou des coupes plus légères telles qu'essence par exemple provenant de divers procédés de conversion ou de la distillation atmosphérique du pétrole brut et éventuellement de biomasse ligno cellulosique.
Le procédé de craquage catalytique (en abrégé FCC, notation abrégée de « fluid catalytic craking ») permet de convertir des charges hydrocarbonées lourdes, dont la température d'ébullition est généralement supérieure à 340°C, en fractions hydrocarbonées plus légères, par craquage des molécules de la charge lourde en présence d'un catalyseur acide. Le procédé FCC produit essentiellement de l'essence et des GPL (abréviation de gaz de pétrole liquéfié) ainsi que des coupes plus lourdes notées LCO et HCO.
Le réacteur utilisé dans les unités de craquage catalytique est un réacteur en lit fluidisé transporté qu'on appelle généralement un riser.
La charge principale d'une unité FCC de coupes lourdes est généralement un hydrocarbure ou un mélange d'hydrocarbures contenant essentiellement au moins 80% de molécules dont le point d'ébullition est supérieur à 340°C. Cette charge contient des quantités de métaux, essentiellement nickel et vanadium (Ni+V) limitées, généralement inférieures à 50 ppm, préférentiellement inférieures à 20 ppm, et une teneur en hydrogène en général supérieure à 11 % poids. Il est également préférable de limiter la teneur en azote sous la valeur de 0,5% poids. En fonction de la teneur en Carbon Conradson, de la charge définie par la norme ASTM D 482, le rendement en coke nécessite un dimensionnement spécifique de l'unité pour satisfaire le bilan thermique.
En effet, le carbone déposé sur le catalyseur est ensuite brûlé dans la zone de régénération libérant des calories qui sont utilisées pour satisfaire la chaleur de vaporisation de la charge, introduite à travers des injecteurs sous forme de gouttelettes liquide, et l'endothermicité des réactions de craquage. Ainsi, si le Carbon Conradson de la charge est inférieur à 3% poids, il est possible de satisfaire le bilan thermique de l'unité en brûlant le coke dans un lit fluidisé en combustion totale. Pour les charges plus lourdes, qui produisent généralement un excédent de calories par rapport aux besoins de l'unité, on peut mettre en œuvre d'autres solutions permettant de satisfaire le bilan thermique, telle que la régénération en combustion partielle ou la combinaison d'une régénération partielle en défaut d'air avec une régénération en excès d'air, par exemple la double régénération du procédé R2R, ou encore l'injection de coupes craquées recyclées au riser qui en se vaporisant absorberont les calories excédentaires.
Enfin, la mise en place d'échangeurs à l'état fluidisé (généralement appelés "cat cooler" dans la terminologie anglo-saxonne), dans la zone de régénération ou en parallèle de cette zone, permet d'absorber une partie des calories excédentaires, par exemple en produisant de la vapeur basse ou moyenne pression et en refroidissant le catalyseur.
DESCRIPTION SOMMAIRE DES FIGURES
La Figure 1 représente la partie supérieure d'une unité de craquage catalytique dans le cas d'un riser externe (2), c'est-à-dire entièrement séparé de l'enceinte de stripage (1). Le dispositif de séparation selon l'invention (5) se trouve à l'intérieur de l'enceinte de stripage. Il est relié au riser (2) par une conduite horizontale (19) qui pénètre à l'intérieur de l'enceinte de stripage (1). Dans la conFiguration la plus usuelle, le séparateur (5) est suivi d'un ou plusieurs cyclones (9).
Les Figures 2a, 2b et 2c représentent plus en détail le séparateur gaz solide et sa connexion avec le riser externe. On notera la conduite (18) qui permet de canaliser les gaz de stripage et les réunit aux effluents gazeux du riser dans la chambre (16). La Figure 2 introduit les angles et les dimensions qui seront précisés dans la suite du texte.
La Figure 3 est une vue en perspective cavalière du séparateur objet de l'invention. Sur cette Figure 3 on voit plus clairement la conduite (18) et la manière dont elle se relie à la chambre (16). On visualise aussi sur cette Figure la jambe de retour du solide (6) après séparation.
La figure 4 est une vue schématique des subdivisions possibles de la conduite principale (19) amenant la suspension gaz solide issue du riser (2) dans le dispositif de séparation (5). Ces subdivisions aboutissent à une arborescence des séparateurs (5) fonctionnant en parallèle, configuration faisant partie de l'invention. La figure 5 permet de visualiser les résultats de la simulation 3D comparant le séparateur de l'art antérieur (5a) avec celui selon l'invention (5b).
EXAMEN DE L'ART ANTERIEUR
L'art antérieur dans le domaine de la séparation gaz solide en tête des risers des unités de craquage catalytique (FCC) est très vaste et nous retiendrons comme particulièrement pertinents à l'égard de la présente invention les documents suivants :
Le brevet EP0852963 décrit un séparateur gaz solide à enroulement direct des particules contenues dans un mélange gazeux et son utilisation en craquage thermique ou catalytique en lit fluidisé. Le dispositif s'applique à un riser dont la partie supérieure débouche dans la zone de stripage, ce qui n'est pas le cas de la présente invention.
Le brevet FR2767715 décrit un dispositif de séparation et de stripage pour riser principal des unités FCC. Il s'agit dans le document cité d'un riser dont la partie supérieure débouche dans la zone de stripage. Le trajet des effluents gazeux montre un décalage latéral puisque le retournement du gaz qui a lieu dans la chambre 2 est suivi d'un déplacement dans la chambre 3, comme on le voit sur la figure 3 du document cité.
Le brevet US8383051 décrit un dispositif de séparation gaz solide qui s'adresse aux risers externes, c'est-à-dire qui ne sont pas au moins en partie contenu dans l'enveloppe du stripeur. Le flux principal de la suspension gaz solide est divisé en deux et le dispositif comporte une plaque d'impaction (appelée dans la terminologie anglo-saxonne « partitioning baffle » dans le texte cité) qui permet de récupérer le solide par diminution brutale de sa vitesse. Le dispositif décrit est connecté à une chambre de stripage. La présente invention peut être considérée comme une amélioration du document cité.
Le brevet EPI, 017,762 décrit un système de séparation gaz solide comportant un ensemble de chambres de séparation et de chambres de stripage agencées de manière alternée autour du riser. Ce système permet de réaliser simultanément les opérations suivantes :
- la séparation du gaz et des particules dans les chambres de séparation,
l'introduction dans le stripeur de l'essentiel du catalyseur séparé au niveau des chambres de séparation à travers des conduits minimisant l'entraînement d'hydrocarbures,
le passage du gaz depuis les chambres de séparation dans les chambres de stripage qui permettent de parfaire la séparation entre le gaz et les particules de catalyseur, et de mélanger ledit gaz aux effluents provenant du stripeur, l'évacuation rapide de l'ensemble des effluents gazeux issus du riser et de la chambre de stripage vers les cyclones du réacteur pour une séparation ultime avant la sortie du réacteur.
DESCRIPTION SOMMAIRE DE L'INVENTION
La présente invention peut se définir comme un dispositif de séparation gaz solide des particules contenues dans la suspension gaz solide issue du riser externe d'une unité de craquage catalytique (FCC). On entend par riser externe le fait que le riser est entièrement séparé de l'enceinte de stripage.
Ce riser externe est soit le riser principal de l'unité convertissant ainsi les différentes charges possibles seules ou en mélange, soit un riser secondaire associé à un riser principal central.
Dans ce dernier cas, une configuration possible est un riser principal central traitant la charge conventionnelle et un riser secondaire parallèle au riser principal mais qui se trouve en position externe par rapport au riser principal traitant une charge plus légère de type naphta par exemple.
Une configuration dans laquelle la ou les charges lourdes, et la ou les charges légères sont respectivement traitée dans le riser externe et le riser principal en position centrale est également possible. Les effluents des deux risers sont collectés dans un stripper commun.
L'extrémité supérieure du riser (2) est connectée au dispositif de séparation (5) selon l'invention grâce à la tubulure (19) formant sensiblement un angle de 90° par rapport au riser (2), la dite tubulure (19) se divisant en deux tubulaires (4) formant entre elles un angle 2*γ, γ étant compris entre 5° et 85°, de préférence entre 25° et 65°, et de manière préférée entre 40° et 50°. Par ailleurs, chaque tubulure (4) est connectée à un coude (12) situé dans un plan vertical dans lequel les particules sont séparées du gaz et plaquées en paroi par la force centrifuge, les particules séparées s'écoulant vers le bas dans des jambes de retour (13), elles-mêmes connectées à une partie sensiblement verticale (14) qui sert à rejoindre les deux écoulements de particules provenant des deux jambes (13). On entend par jambe de retour conformément au vocabulaire de l'homme du métier, une conduite verticale à l'intérieur de laquelle le catalyseur s'écoule en écoulement fluidisé dense, la densité de l'écoulement étant généralement comprise entre 400 et 800 kg/m3.
Puis l'écoulement du solide récupéré se termine dans la jambe de retour (6 qui débouche à l'intérieur ou au voisinage du lit fluidisé de l'enceinte de stripage. Le gaz provenant du riser est séparé du solide dans les coudes (12), en se retournant approximativement à 180° dans les jambes (13) pour ensuite aller vers les chambres (15), elles-mêmes connectées à la conduite (18) dans laquelle le gaz de fluidisation/stripage provenant du lit lluidisé aval est canalisé. Ainsi, les gaz de stripage rejoignent les effluents gazeux issus du riser (2) après la séparation avec le catalyseur. Les gaz provenant du riser (2) et les gaz provenant du lit lluidisé de stripage sont ensuite envoyés vers un étage de cyclone 9 par l'intermédiaire de la conduite d'évacuation (16). La conduite (18 joue un rôle important dans le dispositif de séparation selon l'invention en ce sens qu'elle permet de collecter les gaz de stripage dans une conduite dédiée (18), et de contacter ces gaz de stripage avec les effluents gazeux issus du riser dans une chambre (15) après séparation d'avec le catalyseur. Ceci permet ainsi une étanchéité du séparateur afin d'éviter que les effluents issus du riser pénètrent dans le stripper et subissent un surcraquage qui serait néfaste au rendement. Le surcraquage est un ensemble de réactions qui se font globalement au détriment de l'essence.
De manière générale, les particules de catalyseur à séparer ont une distribution de diamètre allant de Ιμιη à 1mm, et une masse volumique de grain allant de 500 kg/m3 à 5000 kg/m3, avec un pourcentage de particules fines inférieurs à 40 microns, généralement compris entre 10% et 30% poids.
Dans le dispositif de séparation gaz solide selon la présente invention, le diamètre d des coudes (12) est calculé pour avoir une vitesse gaz comprise entre 0,5V et 10V, de préférence entre V et 5V, et de manière préférée entre V et 2V, V étant la vitesse moyenne du gaz dans le riser externe.
Dans le dispositif de séparation gaz solide selon la présente invention, le rayon de courbure r des coudes (12) est compris entre d et lOd, de préférence entre 2d et 5d, et de manière préférée égal à 2d.
Les chambres (15) sont dimensionnées pour avoir une vitesse de gaz horizontale généralement comprise entre 0,5V et 10V, de préférence entre V et 5V, et de manière préférée entre V et 2V, V désignant la vitesse moyenne du gaz prise dans le riser externe.
Dans le dispositif de séparation gaz solide selon la présente invention, l'angle a entre la partie supérieure de la jambe (13) et l'élément (14) où se rejoignent les deux jambes (13) dans le plan vertical (xz) est généralement compris entre 90° et 140°, de préférence entre 90° et 120°, et de manière préférée entre 90° et 105°. La notion de plan vertical est déduite du système de coordonnées usuel x, y, z, z étant la coordonnée verticale, (x,y) désignant le plan horizontal.
Dans le dispositif de séparation gaz solide selon la présente invention, l'angle β de l'élément (14) dans le plan vertical (xz) est généralement compris entre 20° et 90°, de préférence entre 30° et 120°, et de manière préférée entre 45° et 90°. Dans le dispositif de séparation gaz solide selon la présente invention, l'angle δ de l'élément (14) dans le plan vertical (yz) est généralement compris entre 90° et 140°, de préférence entre 90° et 120°, et de manière préférée entre 90° et 105°.
Le diamètre de la conduite de collecte des gaz de stripage (18) est dimensionné pour avoir une vitesse de gaz à l'intérieur de ladite conduite généralement comprise entre lm/s et 40 m/s, de préférence entre l,5m/s et 20 m/s, et de manière préférée entre 2m/s et lOm/s.
Le diamètre du tuyau d'évacuation du gaz (16) est calculé pour avoir une vitesse gaz généralement comprise entre 0,1V et 10V, de préférence entre 0,2V et 5V, et de manière préférée entre 0,5V et 2V,
V désignant la vitesse moyenne du gaz dans le riser externe. Le diamètre de la jambe de retour (6) est dimensionné pour avoir un flux de particules compris entre 10 kg/m2/s et 700 kg/m2/s, de préférence entre 10 kg/m2/s et 300 kg/m2/s, et de manière préférée entre 10 kg/m2/s et 200 kg/m2/s.
L'invention concerne également un procédé de craquage catalytique utilisant le dispositif de séparation selon la présente invention, dans lequel la vitesse de gaz V dans le riser (2) est comprise entre 1 m/s et 40 m/s, de préférence entre 10 m/s et 30 m/s, et de manière préférée entre 15 m/s et 25 m/s.
L'invention concerne également un procédé de craquage catalytique utilisant le dispositif de séparation selon la présente invention, dans lequel le flux de particules dans le riser (2) est compris entre 10 kg/m2/s et 1500 kg/m2/s, de préférence entre 200 kg/m2/s et 1000 kg/m2/s, et de manière préférée entre 400 kg/m2/s et 800 kg/m2/s.
L'invention concerne également un procédé de craquage catalytique utilisant le dispositif de séparation selon la présente invention, dans lequel la vitesse de gaz dans la tubulure (19) et les tubulures (4) est comprise entre 0,5V et 10V, de préférence entre V et 5V, et de manière préférée entre
V et 2V, V désignant la vitesse du gaz dans le riser externe. DESCRIPTION DETAILLEE DE L'INVENTION
La présente invention peut être vue comme une amélioration du dispositif décrit dans le brevet US 8,383,051 B2 précédemment cité.
Dans la suite du texte, le réacteur de craquage catalytique en lit fluidisé, de forme tabulaire allongée et fonctionnant en lit transporté, sera appelé selon le vocabulaire de l'homme du métier "riser". Ce terme décrit en général un réacteur dans lequel l'écoulement du gaz et du catalyseur s'effectue à co-courant ascendant et à l'état de lit transporté. Dans la suite du texte, on parlera pour simplifier de riser et, dans le contexte de l'invention, il est entendu qu'il s'agit d'un riser externe.
On peut avec les technologies actuelles convertir par craquage catalytique des coupes lourdes lorsque le Carbon Conradson de la charge est inférieur à 15 % poids, et préférentiellement inférieur à 10% poids.
Le craquage catalytique des coupes lourdes produit des effluents allant des gaz secs à un résidu de conversion. On distingue parmi les effluents les coupes suivantes qui sont définies classiquement en fonction de leur composition ou de leur température d'ébullition.
- les gaz secs et acides (essentiellement: H2, H2S, Cl, C2),
- les gaz de pétrole liquéfiés contenant les molécules en C3-C4,
- les essences qui commencent aux molécules contenant 5 atomes de carbone et vont jusqu' aux hydrocarbures plus lourds dont le point d'ébullition est inférieur à 220°C (point de coupe standard),
- les gazoles d'intervalle d'ébullition standard 220-360°, qui sont très aromatiques et de ce fait dénommés LCO (abréviation du terme anglo saxon « light cycle oil ») et dans certains cas une coupe gazoles lourdes dénommée HCO (abréviation du terme anglo saxon « heavy cycle oil ») de même nature que la coupe LCO mais de points d'ébullition compris typiquement entre 360 et 440°C
- le résidu de conversion, de point d'ébullition supérieur à 360°C ou 440C°+ dans le cas où une coupe HCO est présente.
Il est possible de recycler certaines de ces coupes dans le ou les riser de l'unité de craquage catalytique pour les recraquer catalytiquement. On peut ainsi recycler des coupes directement produites au FCC, ou des coupes produites au FCC mais ayant subi des transformations ultérieures. Par exemple, il est possible de craquer l'essence légère de FCC, d'intervalle d'ébullition C5-150°C, et riche en oléfines, pour favoriser la production de propylène.
On peut également séparer des effluents une coupe riche en molécules C4-C5, oligomériser les oléfines de cette coupe, et craquer ensuite les oligomérats catalytiquement.
On peut également envisager de récupérer le LCO, de l'hydrogéner, puis de craquer cette coupe dont les propriétés sont modifiées et plus favorables au craquage catalytique. De nombreuses combinaisons sont possibles. Il est également envisageable d'injecter au FCC des coupes légères provenant d'autres procédés pour les convertir catalytiquement. Ainsi, à titre d'exemple, on peut envisager de craquer catalytiquement des naphtas pétrochimiques ou des naphtas straight run directement issus de la distillation atmosphérique du pétrole brut. II est également possible de craquer catalytiquement des coupes légères hydrocarbonées provenant de sources végétales ou animales. Ces charges sont constituées par l'ensemble :
- de biomasse ligno-cellulosique contenant dans des proportions variées trois familles principales à savoir lignine, cellulose et hémicellulose
- des huiles végétales et des graisses animales, contenant essentiellement des triglycérides et des acides gras ou des esters, avec des chaînes grasses hydrocarbonées ayant un nombre d'atomes de carbone compris entre 6 et 25. Ces huiles peuvent être des huiles de palme, de palmiste, de coprah, de ricin et de coton, les huiles d'arachides, de lin et de crambe, de coriandre, et toutes les huiles issues par exemple du tournesol ou du colza par modification génétique ou hybridation. Les huiles de fritures, les huiles animales variées comme les huiles de poisson, le suif, le saindoux peuvent également être utilisées.
Ces charges sont quasiment ou totalement exemptes de composés sulfurés et azotés et ne contiennent pas d'hydrocarbures aromatiques. De manière avantageuse, ce type de charge, biomasse ligno- cellulosique, huile végétale ou graisse animale, peut subir préalablement à son utilisation dans le procédé de FCC, une étape de prétraitement ou pré-raffinage de façon à éliminer par un traitement approprié, divers contaminants.
Dans tous les cas de figures, à la sortie du riser, les effluents gazeux issus de la charge craquée, sont séparés des particules de catalyseur, afin de stopper les réactions catalytiques et d'évacuer rapidement les effluents gazeux du réacteur. Il convient également de limiter au maximum la dégradation thermique des effluents résultant de leur exposition prolongée à un niveau de température proche de celui rencontré à la sortie du riser. A ces fins, des technologies de séparation gaz solide ont été développées pour favoriser le désengagement rapide des effluents gazeux et du catalyseur à la sortie du riser, équipements jouant un rôle clé sur les performances finales du procédé en termes de rendement et sélectivité.
L'objet de la présente invention est de proposer une géométrie améliorée de séparateur rapide permettant d'améliorer la séparation gaz/particules en sortie de riser externe par rapport aux designs des brevets de l'art antérieur. Il y a toujours un intérêt dans l'amélioration de : - la séparation solide, c'est-à-dire réduire la quantité de particules qui partent vers les cyclones secondaires
- le séparation gaz, c'est-à-dire de réduire la quantité de gaz dans la jambe de retour (6) du séparateur afin de réduire le temps de séjour du gaz dans la zone supérieure du stripper et de limiter les phénomènes de sur craquage des produits recherchés.
De plus, le dispositif présenté dans l'invention permet de collecter les gaz de stripage dans une conduite dédiée (18) et de contacter ces gaz de stripage avec les effluents gazeux issus du riser dans une chambre (15) après séparation avec le catalyseur.
La figure 1 présente l'implantation générale du séparateur selon l'invention dans le cas d'un riser externe. Le riser externe (2) est connecté à l'enceinte de stripage (1) qui renferme un lit fluidisé situé dans la partie inférieure de ladite enceinte. Dans l'enceinte de stripage (1), le lit fluidisé est séparé en une phase dite dense (20) et une phase diluée (3). L'interface (7) délimite la séparation entre les deux phases. Le séparateur selon l'invention et le ou les cyclones (9) situés en aval sont localisés dans la phase diluée de l'enceinte de stripage et les jambes de retour du solide séparé, jambe (6) pour le séparateur et jambe (10) pour le ou les cyclones aval redescendent vers la phase dense. Elles peuvent être plus ou moins immergées dans la phase dense en fonction du bilan pression de l'unité. L'écoulement ascendant dans le riser (2) pénètre dans l'enceinte (1) à travers une partie tubulaire (19) sensiblement horizontale. Le gaz est ensuite séparé dans le séparateur (5), objet de la présente invention. Le solide séparé du gaz est envoyé dans le lit fluidisé dense (20) grâce à la jambe de retour (6). Cette jambe peut soit être immergée dans la zone dense (20), soit se terminer dans la zone diluée (3).
La jambe de retour (6) du séparateur (5) peut disposer d'un interne (17) de type garnissage ou « packing » tel que décrit par exemple dans le document US6224833, pour obtenir une bonne répartition radiale du solide dans ladite jambe de retour (6), et ainsi améliorer le contact gaz/particule. Le gaz séparé des particules dans le séparateur (5) est ensuite dirigé vers un étage de cyclones (9) à travers les conduites de liaison (8). Les particules solides séparées sont renvoyées dans le lit fluidisé à travers la jambe de retour (10), tandis que le gaz quitte l'enceinte de stripage (1) à travers la ou les tubulures d'évacuation (11). Bien entendu, si un seul étage de cyclones n'est pas suffisant, il est possible de placer en série du premier étage un second étage. L'invention n'est pas liée à la configuration des étages de cyclones placés en aval du séparateur (5).
La figure 2 et la figure 3 présentent la géométrie du séparateur 5, objet de la présente invention. Le riser externe (2) est connecté au séparateur (5) grâce au réseau tabulaire (19). Les tubulures (4) divisent en deux l'écoulement gaz/particules provenant du réseau tabulaire (19) de façon homogène.
La répartition homogène entre les deux tubulures (4) est assurée par la symétrie de leur configuration. Chaque tubulure (4) est connectée à un coude (12) dans lequel les particules sont séparées du gaz et plaquées en paroi par la force centrifuge.
Les particules séparées s'écoulent vers le bas dans des jambes de retour (13), elles-mêmes connectées à une partie sensiblement verticale (14) qui sert à rassembler les deux écoulements de particules provenant des deux jambes (13).
Les particules retournent ensuite dans la jambe de retour (6) vers le lit fluidisé de stripage. Le gaz provenant du riser est séparé du solide dans les coudes (12). Le gaz se retourne approximativement à 180° dans les jambes (13) pour ensuite aller vers les chambres (15).
Ces chambres (15) sont connectées au tuyau de collecte des gaz de stripage (18) dans lequel les gaz de fluidisation/stripage provenant du lit fluidisé sont canalisés. Les gaz provenant du riser (2) et les gaz provenant du lit fluidisé (20) sont ensuite envoyés vers un étage de cyclone (9) à travers la chambre (16).
La Figure 4 montre la possibilité de mettre plusieurs séparateurs (5) en parallèle selon la place disponible dans l'enceinte de stripage (1) au moyen d'un réseau tabulaire (19) composé de multiples tubulures qui se divisent successivement en deux. L'avantage de mettre plusieurs séparateurs (5) en parallèle est que les coudes utilisés pour la séparation ont des rayons plus petits, et la séparation gaz/particules conditionnée essentiellement par la force centrifuge, est ainsi améliorée.
Le nombre de séparateurs (5) en parallèle peut varier entre 1 et 10, de préférence entre 1 et 6, et de manière préférée entre 1 et 4.
La répartition homogène de l'écoulement entre tous les coudes des séparateurs est assurée par le fait que le nombre de coudes est pair, et que l'agencement du réseau tabulaire (19) est symétrique. Le dispositif selon l'invention permet de collecter les gaz de stripage dans une conduite dédiée, dite conduite de collecte (18) et de contacter ces gaz de stripage avec les effluents gazeux issus du riser dans une chambre (15) après séparation avec le catalyseur. Ceci permet ainsi une étanchéité du séparateur afin d'éviter que les effluents issus du riser pénètrent dans le stripper et subissent un sur- craquage néfaste à la structure de rendement. Les particules de catalyseur circulant dans l'unité et utilisées dans le lit fluidisé de stripage (20) peuvent avoir une distribution de diamètre allant de Ιμιη à 1mm et une masse volumique de grain allant de 500 kg/m3 à 5000 kg/m3.
La vitesse de gaz V dans le riser externe (2) est comprise entre 1 m/s et 40 m/s, de préférence entre 10 m/s et 30 m/s, et de manière préférée entre 15 m/s et 25 m/s. Le flux de particules dans le riser (2) est compris entre 10 kg/m2/s et 1500 kg/m2/s, de préférence entre 200 kg/m2/s et 1000 kg/m2/s et de manière préférée entre 400 kg/m2/s et 800 kg/m2/s.
La vitesse de gaz dans le réseau tabulaire (19) et les tubulures (4) est comprise entre 0,5V et 10V, de préférence entre V et 5V, et de manière préférée entre V et 2V, V désignant la vitesse moyenne du gaz dans le riser externe. L'angle γ qui définit l'orientation des tubulures (4) par rapport à l'axe est compris entre 5° et 85°, de préférence entre 25° et 65°, et de manière préférée entre 40° et 50°.
Le diamètre d des coudes (12) est implémenté pour avoir une vitesse gaz comprise entre 0,5V et 10V, de préférence entre V et 5V, et de manière préférée entre V et 2V, V désignant la vitesse moyenne du gaz dans le riser externe. Les coudes (12) ont un angle de 90°. Leur diamètre de courbure r est compris entre d et lOd, de préférence entre 2d et 5d et de manière préférée égal à 2d.
Les chambres (15) sont dimensionnées pour avoir une vitesse de gaz horizontale entre 0,5V et 10V, de préférence entre V et 5V, et de manière préférée entre V et 2V, V désignant la vitesse moyenne du gaz dans le riser externe. L'angle a entre la partie supérieure de la jambe (13) et l'élément (14) dans le plan (xz) est compris entre 90° et 140°, de préférence entre 90° et 120°, et de manière préférée entre 90° et 105°.
L'angle β de l'élément (14) dans le plan (xz) est compris entre 20° et 90°, de préférence entre 30° et 120°, et de manière préférée entre 45° et 90°.
L'angle δ de l'élément (14) dans le plan (yz) est compris entre 90° et 140°, de préférence entre 90° et 120°, et de manière préférée entre 90° et 105°.
Le diamètre de la jambe de retour (6) est dimensionné pour avoir un flux de particules compris entre 10 kg/m2/s et 700 kg/m2/s, de préférence entre 10 kg/m2/s et 300 kg/m2/s et de manière préférée entre 10 kg/m2/s et 200 kg/m2/s. Le diamètre du tube collecte des gaz de stripage (18) est dimensionné pour avoir une vitesse de gaz comprise entre lm/s et 40 m/s, de préférence entre l,5m/s et 20 m/s, et de manière préférée entre 2m/s et lOm/s.
Le diamètre du tuyau de sortie du gaz (16) est implémenté pour avoir une vitesse gaz comprise entre 0,1V et 10V, de préférence entre 0,2V et 5V, et de manière préférée entre 0,5V et 2V, V désignant la vitesse moyenne du gaz dans le riser.
EXEMPLE COMPARATIF
Des simulations CFD de l'écoulement gaz/particules dans un séparateur conforme au brevet US 8,383,051 et dans le séparateur décrit la présente invention ont été effectuées avec le logiciel Barracuda™. Ce logiciel utilise une approche eulérienne pour la phase fluide, et une approche pseudo- lagrangienne pour la phase particulaire avec la méthode dite « Multiphase Particle in Cell » (MP-PIC).
Avec cette méthode, la phase particulaire est divisée en groupements de particules représentant un certain nombre de particules réels ayant les mêmes propriétés (diamètre, vitesse, densité, ...). L'avantage de cette méthode est qu'une distribution de taille de particule peut être prise en compte pour un coût de calcul moindre.
Le tableau 1 présente les conditions simulées ainsi que les dimensions des deux séparateurs.
Tableau 1
La Figure 5 présente la fraction volumique des particules dans les deux configurations simulées avec à gauche (figure 5a) le design selon l'art antérieur et à droite (figure 5b) le design selon la présente invention. Avec l'invention, la séparation gaz/particules est plus nette. En effet, dans le dispositif de l'art antérieur un nuage de particules est observé à l'intérieur du séparateur qu'on ne retrouve pas sur la figure 5b où le solide n' apparaît que dans la partie inférieure du dispositif. Selon l'invention il existe à l'intérieur du séparateur une zone très diluée en particules solides. On définit l'efficacité solide des séparateurs de la manière suivante :
. , , .„ . Débit massique solide dans ïambes de retour (6)
Efficacité solides( m) = 1 Eq. 1
Débit massique solide riser (2)
On définit l'efficacité gaz des séparateurs de la manière suivante :
Débit massique gaz dans jambes de retour (6)
Efficacité gaz (%m) = 1 - Eq. 2
Débit massique gaz riser (2)
Le tableau ci-dessous présente les efficacités gaz et solide pour le séparateur de Γ art antérieur et pour le séparateur selon l'invention.
Le design proposé dans ce brevet augmente l'efficacité solide de 13 points dans les conditions simulées et améliore l'efficacité gaz de 2 points.

Claims

REVENDICATIONS
1) Dispositif de séparation gaz solide des particules contenues dans une suspension gaz solide issue du riser externe d'une unité de craquage catalytique dans lequel :
- une extrémité supérieure du riser externe (2) est connectée au dispositif de séparation (5) grâce à la tubulure (19) formant sensiblement un angle de 90° par rapport au riser (2),
- chaque tubulure (4) étant connectée à un coude (12) situé dans un plan vertical dans lequel les particules sont séparées du gaz et plaquées en paroi par la force centrifuge, puis les particules séparées s'écoulant vers le bas dans des jambes de retour (13), elles-mêmes connectées à une partie sensiblement verticale (14) qui sert à rejoindre les deux écoulements de particules provenant des deux jambes (13), puis dans la jambe de retour (6), et le gaz provenant du riser externe (2) étant séparé du solide dans les coudes (12), en se retournant approximativement à 180° dans les jambes (13) pour ensuite aller vers la chambres (15), elles-mêmes connectées à la conduite de collecte (18) dans laquelle le gaz de fluidisation/stripage provenant du lit fluidisé de stripage est canalisé,
- les effluents gazeux provenant du riser (2) et les gaz provenant du lit fluidisé aval étant ensuite envoyés vers un étage de cyclone (9) par l'intermédiaire du tuyau d'évacuation (16), dispositif caractérisé en ce que la dite tubulure (19) se divise en deux tubulaires (4) formant entre elles un angle 2*γ, γ étant compris entre 5° et 85°, de préférence entre 25° et 65°, et de manière préférée entre 40° et 50°. 2) Dispositif de séparation gaz solide selon la revendication 1, dans lequel les particules de catalyseur à séparer ont une distribution de diamètre allant de Ιμιη à 1mm, et une masse volumique de grain allant de 500 kg/m3 à 5000 kg/m3.
3) Dispositif de séparation gaz solide selon la revendication 1 , dans lequel le diamètre d des coudes (12) est calculé pour avoir une vitesse gaz comprise entre 0,5V et 10V, de préférence entre V et 5V, et de manière préférée entre V et 2V, V désignant la vitesse moyenne du gaz dans le riser externe.
4) Dispositif de séparation gaz solide selon la revendication 1, dans lequel le rayon de courbure r des coudes (12) est compris entre d et lOd, de préférence entre 2d et 5d et de manière préférée égal à 2d. Dispositif de séparation gaz solide selon la revendication 1, dans lequel les chambres (15) sont dimensionnées pour avoir une vitesse de gaz horizontale entre 0,5V et 10V, de préférence entre V et 5V, et de manière préférée entre V et 2V, V désignant la vitesse moyenne du gaz dans le riser externe.
Dispositif de séparation gaz solide selon la revendication 1, dans lequel l'angle a entre la partie supérieure de la jambe (13) et l'élément (14) dans le plan vertical (xz) est compris entre 90° et 140°, de préférence entre 90° et 120°, et de manière préférée entre 90° et 105°.
Dispositif de séparation gaz solide selon la revendication 1, dans lequel l'angle β de l'élément (14) dans le plan vertical (xz) est compris entre 20° et 90°, de préférence entre 30° et 120°, et de manière préférée entre 45° et 90°.
Dispositif de séparation gaz solide selon la revendication 1, dans lequel l'angle δ de l'élément (14) dans le plan vertical (yz) est compris entre 90° et 140°, de préférence entre 90° et 120°, et de manière préférée entre 90° et 105°.
Dispositif de séparation gaz solide selon la revendication 1 , dans lequel le diamètre de la conduite de collecte des gaz de stripage (18) est dimensionné pour avoir une vitesse de gaz à l'intérieur de ladite conduite comprise entre lm/s et 40 m/s, de préférence entre l,5m/s et 20 m/s, et de manière préférée entre 2m/s et lOm/s.
Dispositif de séparation gaz solide selon la revendication 1, dans lequel le diamètre du tuyau d'évacuation du gaz (16) est calculé pour avoir une vitesse gaz comprise entre 0,1V et 10V, de préférence entre 0,2V et 5V, et de manière préférée entre 0,5V et 2V, V désignant la vitesse du gaz dans le riser externe.
Dispositif de séparation gaz solide selon la revendication 1, dans lequel le diamètre de la jambe de retour (6) est dimensionné pour avoir un flux de particules compris entre 10 kg/m2/s et 700 kg/m2/s, de préférence entre 10 kg/m2/s et 300 kg/m2/s, et de manière préférée entre 10 kg/m2/s et 200 kg/m2/s.
Procédé de craquage catalytique utilisant le dispositif de séparation selon la revendication 1 , dans lequel la vitesse de gaz V dans le riser (2) est comprise entre 1 m/s et 40 m/s, de préférence entre 10 m/s et 30 m/s, et de manière préférée entre 15 m/s et 25 m/s. 13) Procédé de craquage catalytique utilisant le dispositif de séparation selon la revendication 1, dans lequel le flux de particules dans le riser (2) est compris entre 10 kg/m2/s et 1500 kg/m2/s, de préférence entre 200 kg/m2/s et 1000 kg/m2/s, et de manière préférée entre 400 kg/m2/s et 800 kg/m2/s. 14) Procédé de craquage catalytique utilisant le dispositif de séparation selon la revendication 1, dans lequel la vitesse de gaz dans la tubulure (19) et les tubulures (4) est comprise entre 0,5V et 10V, de préférence entre V et 5V, et de manière préférée entre V et 2V, V désignant la vitesse moyenne du gaz dans le riser externe.
EP18785404.7A 2017-11-08 2018-10-17 Nouveau separateur gaz solide pour les unites de craquage catalytique possedant un riser externe Withdrawn EP3706895A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1760510A FR3073153B1 (fr) 2017-11-08 2017-11-08 Nouveau separateur gaz solide pour les unites de craquage catalytique possedant un riser externe
PCT/EP2018/078432 WO2019091736A1 (fr) 2017-11-08 2018-10-17 Nouveau separateur gaz solide pour les unites de craquage catalytique possedant un riser externe

Publications (1)

Publication Number Publication Date
EP3706895A1 true EP3706895A1 (fr) 2020-09-16

Family

ID=62017332

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18785404.7A Withdrawn EP3706895A1 (fr) 2017-11-08 2018-10-17 Nouveau separateur gaz solide pour les unites de craquage catalytique possedant un riser externe

Country Status (8)

Country Link
US (1) US20200346177A1 (fr)
EP (1) EP3706895A1 (fr)
JP (1) JP2021502237A (fr)
KR (1) KR20200085808A (fr)
CN (1) CN111278548A (fr)
FR (1) FR3073153B1 (fr)
RU (1) RU2020116460A (fr)
WO (1) WO2019091736A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3104468A1 (fr) * 2019-12-12 2021-06-18 IFP Energies Nouvelles Dispositif et procédé de séparation gaz-solide de craquage catalytique en lit fluidisé avec paroi externe de préstripage verticale.

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4591427A (en) * 1982-11-24 1986-05-27 Chevron Research Company Method for vapor recovery for fluidized catalytic cracking processes
US4629552A (en) * 1984-07-18 1986-12-16 Mobil Oil Corporation FCC catalyst separation method
US4687497A (en) * 1986-09-29 1987-08-18 Mobil Oil Corporation Solids-gas separator
US5290430A (en) * 1991-11-13 1994-03-01 Uop Riser disengager with suspended catalyst separation zone
US5370844A (en) * 1993-03-01 1994-12-06 The M. W. Kellogg Company FCC disengagement apparatus
FR2758277B1 (fr) 1997-01-13 1999-10-08 Inst Francais Du Petrole Separateur a enroulement direct de particules d'un melange gazeux et son utilisation en craquage thermique ou catalytique en lit fluidise
RU2115460C1 (ru) * 1997-03-31 1998-07-20 Борис Захарович Соляр Устройство для разделения газа и взвешенных в нем твердых частиц
FR2767715B1 (fr) 1997-09-01 1999-10-08 Inst Francais Du Petrole Dispositif de separation et de stripage et son utilisation en craquage catalytique en lit fluidise
US6830734B1 (en) * 1998-11-06 2004-12-14 Shell Oil Company Separator apparatus
US6224833B1 (en) 1998-12-15 2001-05-01 Koch-Glitsch, Inc. Apparatus for contacting of gases and solids in fluidized beds
FR2788006B1 (fr) * 1998-12-31 2001-03-23 Total Raffinage Distribution Procede et dispositif pour la separation rapide de particules solides et de fluides gazeux et leur utilisation
US7767870B2 (en) * 2005-08-31 2010-08-03 Exxonmobil Chemical Patents Inc. Riser termination devices for reduced catalyst attrition and losses
FR2909897B1 (fr) * 2006-12-13 2009-06-26 Inst Francais Du Petrole Nouveau systeme de separation gaz solide pour les regenerateurs des unites de craquage catalytique en lit fluidise
US8383051B2 (en) * 2009-07-22 2013-02-26 Stone & Webster Process Technology, Inc. Separating and stripping apparatus for external FCC risers
CN104275036A (zh) * 2013-07-09 2015-01-14 刘英聚 一种无沉降器气固分离方法及设备

Also Published As

Publication number Publication date
JP2021502237A (ja) 2021-01-28
WO2019091736A1 (fr) 2019-05-16
FR3073153A1 (fr) 2019-05-10
US20200346177A1 (en) 2020-11-05
CN111278548A (zh) 2020-06-12
KR20200085808A (ko) 2020-07-15
RU2020116460A (ru) 2021-12-08
FR3073153B1 (fr) 2019-11-22

Similar Documents

Publication Publication Date Title
WO2009007519A2 (fr) Zone réactionnelle comportant deux risers en parallèle et une zone de séparation gaz solide commune en vue de la production de propylène
RU2628521C2 (ru) Системы и способы для возобновляемого топлива
CN1281715C (zh) 在热裂化应用中将雾流转换为环形流
CA2878917C (fr) Procedes et appareils de traitement de combustible pour valoriser un courant d'huile pyrolytique et un courant d'hydrocarbure
SA518391683B1 (ar) عملية تحسين ماء فوق حرج لإنتاج تيار بارافيني من نفط ثقيل
RU2573562C2 (ru) Способ получения олефина с3 в установке флюид каталитического крекинга
FR2966160A1 (fr) Procede de craquage catalytique adapte au traitement de charges a faible carbon conradson comportant le recycle d'une coupe cokante selon une technologie nouvelle
US10822546B2 (en) Conversion of biomass into a liquid hydrocarbon material
CN117651752A (zh) 废塑料热解油和生物可再生原料的共处理
US9249362B2 (en) Separation of product streams
JP2014511936A (ja) 固体バイオマス材料を転化させる方法
EP2385094B1 (fr) Procédé de craquage catalytique avec recycle d'une coupe oléfinique prélevée en amont de la section de séparation des gaz afin de maximiser la production de propylène
FR3073153B1 (fr) Nouveau separateur gaz solide pour les unites de craquage catalytique possedant un riser externe
BR112018010526B1 (pt) Processo para produzir produtos de hidrocarboneto líquidos a partir de pelo menos uma dentre uma matéria-prima que contém biomassa e uma matéria-prima derivada de biomassa
WO2021186168A1 (fr) Procédé et appareil de traitement d'hydrocarbures
EP3897953A1 (fr) Conversion d'un brut petrolier en lit fluidise comportant des zones a differents temps de contact
US10947458B1 (en) Upgrading of renewable feedstocks with spent equilibrium catalyst
GB2595342A (en) Method and apparatus for hydrocarbon processing
EP1466958A2 (fr) Procédé et installation de traitement d'hydrocarbures et de séparation des phases produites par ledit traitement
FR3094983A1 (fr) Reacteur triphasique avec coupelle de recycle tronconique a fort angle d’inclinaison
CA2678048A1 (fr) Procede de pretraitement de fcc par hydrocraquage doux incluant une dilution de la charge par une charge d'origine biologique
FR3041359A1 (fr) Procede optimise pour la valorisation de bio-huiles en bases aromatiques et olefiniques
FR3129947A1 (fr) Procede de production de kerosene d’aviation a partir d’un flux riche en composes aromatiques de source renouvelable
FR3090683A1 (fr) Conversion d’un brut pétrolier en lit fluidisé compartimenté

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200608

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210323

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20210803