EP3705185A1 - Elektrostatischer abscheider für die reinigung von rauchgasen - Google Patents

Elektrostatischer abscheider für die reinigung von rauchgasen Download PDF

Info

Publication number
EP3705185A1
EP3705185A1 EP20020085.5A EP20020085A EP3705185A1 EP 3705185 A1 EP3705185 A1 EP 3705185A1 EP 20020085 A EP20020085 A EP 20020085A EP 3705185 A1 EP3705185 A1 EP 3705185A1
Authority
EP
European Patent Office
Prior art keywords
flow channel
corona discharge
electrostatic precipitator
channel section
collecting container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20020085.5A
Other languages
English (en)
French (fr)
Inventor
Andrei Bologa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Karlsruher Institut fuer Technologie KIT
Original Assignee
Karlsruher Institut fuer Technologie KIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Karlsruher Institut fuer Technologie KIT filed Critical Karlsruher Institut fuer Technologie KIT
Publication of EP3705185A1 publication Critical patent/EP3705185A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/41Ionising-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/06Plant or installations having external electricity supply dry type characterised by presence of stationary tube electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/36Controlling flow of gases or vapour
    • B03C3/361Controlling flow of gases or vapour by static mechanical means, e.g. deflector
    • B03C3/366Controlling flow of gases or vapour by static mechanical means, e.g. deflector located in the filter, e.g. special shape of the electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/49Collecting-electrodes tubular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/66Applications of electricity supply techniques
    • B03C3/70Applications of electricity supply techniques insulating in electric separators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/74Cleaning the electrodes
    • B03C3/76Cleaning the electrodes by using a mechanical vibrator, e.g. rapping gear ; by using impact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/10Ionising electrode has multiple serrated ends or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/28Parts being easily removable for cleaning purposes

Definitions

  • the invention relates to an electrostatic separator for cleaning flue gases, preferably from technical conversion processes, preferably combustion processes such as e.g. from small combustion systems, ovens, combustion engines or other incineration systems.
  • Flue gases are particulate gases with solid and / or liquid components. They have a gaseous carrier component in which solid particles and / or liquid drops are suspended.
  • a preferred use of the electrostatic separator is the cleaning of flue gases from small incineration plants such as incinerators for biomass, coke, coal, fuel oils, wood, wood pellets or other fossil fuels.
  • Electrostatic precipitators have a wide range of uses for cleaning aerosols.
  • electrostatic precipitators which send particles of combustion gas through an ionizer, in which they are charged in a corona discharge which is generated at the sharp edges of a high-voltage electrode.
  • the collector pipe of the separator is earthed. Charged particles are collected on the inner surface of the collector tube, mainly gas downstream of the ionizer.
  • an electrostatic precipitator for cleaning flue gases from wood-burning stoves or stationary diesel engines. It consists of a housing with at least one gas inlet and one gas outlet. The gas inlet is followed in the direction of flow by a downwardly leading, tubular first flow channel section with a non-corona agglomerator, followed by a corona discharger, which opens into a covered shaft for collecting separated soot particles.
  • the tubular second flow channel section follows from the covered shaft in the direction of flow, leading upwards, which opens into a gas outlet and is equipped as a collector with a rotatable, helical brush.
  • one object of the invention is to design a concept for electrostatic separation for cleaning flue gases in such a way that it is particularly suitable for use with small combustion systems, especially in confined spaces or in environments sensitive to emissions such as is suitable, for example, in buildings and is characterized by particularly safe handling.
  • an electrostatic separator for the cleaning of flue gases, comprising a housing with a preferably downwardly removable collecting container for separated particles, a gas inlet and a gas outlet and between a flow channel arranged in the housing and routed past the collecting container.
  • the flow channel After the gas inlet downstream, the flow channel initially follows a downwardly directed first flow channel section and from there opens into a flow deflector, from there into an upwardly directed second flow channel section of the flow channel and from which it exits into the gas outlet.
  • a corona discharge arrangement is arranged in the flow channel, comprising at least one, preferably two disc-shaped corona discharge electrodes and separation surfaces, suitable for the formation of a circumferential electrical field between the corona discharge electrode and the separation surfaces as counter-electrodes.
  • these are arranged in series in the flow channel in the direction of flow and are preferably electrically connected to one another.
  • the disk-shaped corona discharge electrodes are preferably arranged orthogonally to the direction of flow in the flow channel, with the result that the flue gas flow in the flow channel is deflected through the electric field as homogeneously as possible over the entire field.
  • the shortest distance between the circumferential edge of the corona discharge electrode and the closest inner wall is preferably the same.
  • the electric field between the circumferential edge of a corona discharge electrode and the shortest distance in each case to the inner wall is at a maximum.
  • a preferred embodiment of the at least one disk-shaped corona discharge electrode is characterized in that it has circumferentially radially protruding electrode tips, the distance between the electrode tips then being decisive as the shortest distance and preferably uniformly the same to the closest deposition surface.
  • the separation surfaces are formed by the inner wall areas of the flow channel.
  • the separation surfaces in the flow channel are preferably grounded (zero potential), while the at least one corona discharge electrode is preferably connected to a preferably common high-voltage source and through this has a potential difference to the zero potential, preferably a negative direct voltage potential.
  • the housing or at least the inner walls of the flow channel or at least the separation surfaces are electrically conductive or coated in a conductive manner.
  • the separation surfaces extend in their entirety basically over all electrically conductive or conductive coated inner walls of the flow channel, which are electrically connected to one another and are thereby subjected to the same potential to one another.
  • the entire inner surface of the electrostatic precipitator forms the collecting surface for particles: particles are released from the gas flow after passing through the gas inlet and prior to reaching the corona discharge arrangement, first deposited as a gas-dynamic and mechanical precipitate on the inner walls, in particular of the first flow channel section, due to gas-dynamic phenomena.
  • the deposition takes place increasingly electrostatically in the corona discharge field, the particles being deposited essentially as particle deposits on the grounded inner wall areas. This deposition is repeated in the case of the second and possibly further corona discharge electrodes following the first corona discharge electrode. Deposition also takes place on the surfaces of the corona discharge electrodes (gas dynamic effects, mechanical collecting and collecting under the influence of electrical wind).
  • particles are also deposited on the upward-facing surfaces of the first and second and, if applicable, subsequent disc-shaped corona discharge electrodes (gas-dynamic effects, mechanical precipitation, partially electrostatic separation of positively charged particles from the gas flow on the surface of the high-voltage electrode with negative polarity, electrical precipitation Wind).
  • Particles are deposited on the inner surface of the collecting container, which is also earthed. This deposition takes place due to space charge effects by means of mechanical forces, thermophoretic forces, electrical field forces between the inner surface of the collecting container and the rigid support between the corona discharge electrodes.
  • the inner walls of the second flow channel section following the corona discharge electrodes in the direction of flow also under the influence of space charge effects, a further separation of charged particles takes place.
  • An essential basic idea of the invention is to completely or partially, preferably predominantly, cover the separation surfaces through inner walls of the collecting container form.
  • the separation surfaces or some of the separation surfaces extend onto the inner wall of the collecting container, which thus forms part of the aforementioned inner wall of the flow channel.
  • the collecting container and thus the inner walls are electrically conductive or have a conductive coating and form the aforementioned inner wall of the flow channel.
  • the collecting container and thus the inner walls are electrically conductive or coated for this purpose.
  • a preferred embodiment also provides for at least one of the, preferably all, disk-shaped corona discharge electrodes to be arranged in the collecting container, i. they are not arranged in the interior of the housing, but at least partially protrude from the housing and into the collecting container.
  • a preferred embodiment is characterized in that only the areas on the separation surfaces with the shortest distance from one of the electrodes are entirely or partially, preferably predominantly, formed by inner walls of the collecting container.
  • Another preferred embodiment is characterized in that only the areas on the separation surfaces with the shortest distance plus a maximum of 50%, more preferably 20%, more preferably 10% of the shortest distance to one of the electrodes are wholly or partially, preferably predominantly are formed by inner walls of the collecting container.
  • the at least one corona discharge electrode is preferably through, preferably only through a rigid high-voltage line fixed in the flow channel and connected via this to a high voltage source outside the housing. It goes without saying that only if the high-voltage line and the electrically conductive inner wall of the flow channel are insulated from one another is the aforementioned potential difference between the corona discharge electrode and the inner wall as separation surfaces possible at all.
  • the rigid high-voltage line ends at a first corona discharge electrode.
  • the corona discharge electrodes are connected to one another by an electrically conductive rigid connection, e.g. a rigid metal beam connected to each other.
  • the rigid high voltage line is preferably axially in the first flow channel section, i. aligned with its free end downwards and has no electrical contact with the inner wall.
  • the distance from the high-voltage line to the inner wall away from the at least corona discharge electrode to avoid deposits is also preferably greater than the aforementioned shortest distance between the circumferential edge of the corona discharge electrode and the closest inner wall.
  • the high-voltage line is led out of the flow channel preferably via a gas-impermeable high-voltage leadthrough away from the gas inlet.
  • the gas-impermeable high-voltage bushing is provided away from the gas inlet.
  • a tubular electrical insulator is preferably also arranged around the high-voltage line on the high-voltage line in the flow channel itself.
  • This insulator preferably extends from the gas-impermeable high-voltage bushing to shortly before or to the first electrode and electrically insulates the high-voltage line from the first flow channel section.
  • the tubular electrical insulator also serves to improve the operational stability of the separator, to extend the length of the insulating surface between the aforementioned separation surface and high-voltage line, and to reduce electrical leakage currents.
  • the tubular electrical insulator In order to prevent the risk of a short circuit at the end of the insulator, it is proposed within the scope of one embodiment to configure the tubular electrical insulator so that it has an inner diameter greater than the outer diameter of the rigid high-voltage line. Between the high-voltage line and the tubular insulator, there is thus a clearance and thus a circumferential gap, the tubular electrical insulator being advantageously suspended from the gas-impermeable high-voltage bushing and the gap thus only being open at the bottom.
  • This gap especially when the gap width changes during operation, fundamentally makes it difficult to achieve a continuous deposit coating over the transition between the insulator and the high-voltage line across the open end of the gap.
  • the tubular insulator preferably consists of a hose made of an elastic or pliable material, preferably a silicone, a silicone-containing material or another temperature-resistant elastic material.
  • the tubular insulator can be elastically fixed in the aforementioned suspension. This has the advantageous effect that the insulator is moved relative to the high-voltage line by the flow of flue gas, thereby causing the aforementioned to move
  • the gap changes dynamically with the flow and possible deposits in and on the gap are loosened. Since the high-voltage line with the insulator is arranged in the first downward flow channel section from above at the high-voltage bushing down to the gap, the released deposits in the gap are carried downward out of the gap by gravity alone, thereby stabilizing the gap.
  • the tubular electrical insulator preferably ends at a predeterminable fixed distance before it is reached, ie above a first of the at least one corona discharge electrode. This prevents the particles deposited on the first of the at least one corona discharge electrode from reaching the lower end of the insulator as bulk material and possibly causing a short circuit or a leakage current path.
  • This bed is created on the upward-facing surface of the corona discharge electrode, in that there is accumulation of particle masses discharged from the gap or directly from the flue gas.
  • Said fixed distance preferably corresponds to between 10%, 20% or 30% to 50%, 70% or 80% of the maximum dimension of the first of the at least one disk-shaped corona discharge electrode.
  • the fixed distance is typically between 2 and 15 cm.
  • An optional temperature sensor for the flow channel is advantageous for operating the electrostatic separator for flue gas cleaning of combustion processes.
  • the flue gas cleaning can be activated or deactivated by applying an HV voltage to the at least one corona discharge electrode.
  • the temperature is detected by at least one temperature detection sensor in the first flow channel section or on the housing near the first flow channel section.
  • the high voltage only be switched through to the at least one corona discharge electrode above 50 ° C to 70 ° C, preferably above 60 ° C, measured with the temperature detection sensor in the first flow channel cross section, and thus activate the electrostatic separation.
  • the illustrated embodiments show a housing 1 of the electrostatic precipitator with a gas inlet 2 and a gas outlet 3 and a flow channel arranged between these in the housing, comprising a first flow channel section 5 directed downwards in flow direction 4 , a flow deflector 6 following the first flow channel section into an upwardly directed second Flow channel section 7 of the flow channel.
  • the housing 1 itself is open at the bottom, but is closed to the outside by a collecting container 8 closing the opening with handles on both sides.
  • the housing and / or the collecting container are preferably made of metal and grounded in the exemplary embodiment.
  • Fig.1a shows an embodiment with laterally arranged gas inlet and gas outlet for use, for example, in a horizontal exhaust line, for example in a transition line between a furnace and a chimney shaft.
  • Fig.1b shows, however, an embodiment with a laterally arranged gas inlet and upwardly directed gas outlet, for example suitable for installation in a chimney shaft, into which the gas outlet opens directly.
  • FIG.1a In the representation of a first embodiment according to Fig.1a are the circumferential lines or separations of the individual components to highlight the continuous flow channel in contrast to the illustration in Fig.1b not shown.
  • first and second flow channel sections 5 and 7 are arranged parallel to one another, more preferably arranged vertically parallel to one another.
  • the illustrated embodiments each include a corona discharge arrangement in the flow channel with two disc-shaped corona discharge electrodes 9 and 10 as well as separation surfaces 11 , suitable for forming a rotating electrical field 12 between the corona discharge electrode and the separation surfaces.
  • the two corona discharge electrodes are preferably each arranged one before and one after the flow deflector 6 .
  • the at least one corona discharge electrode is more preferably oriented orthogonally to the first and / or the second flow channel section. With a vertical alignment of the flow channel sections mentioned, the disk-shaped corona discharge electrodes are aligned horizontally.
  • the corona discharge electrodes 9 and 10 are as particularly in FIG Fig. 2 shown not arranged in the housing 1 , but protrude downward from the housing 1 . As in Fig.1a and b , they are arranged inside the collecting container 8 . Likewise, the areas on the separation surfaces with the shortest distance from one of the electrodes are entirely or partially, preferably predominantly formed by inner walls of the collecting container.
  • the two corona discharge electrodes 9 and 10 have, as in FIG Fig. 3 to be recognized schematically, circumferentially radially protruding electrode tips 25 , around which the field strengths of the electric field 12 are maximum. These electrode tips each preferably have the same distance A from the respectively closest deposition surface, so that the electric fields have approximately the same field strength over the entire circumference of the corona discharge electrodes.
  • the two corona discharge electrodes 9 and 10 are also, as in FIG Fig. 4 shown, connected to one another by an electrically conductive rigid support 13 along the flow deflector 6 , whereby one and the same electrical potential is applied to these.
  • the rigid support is only connected to the corona discharge electrodes (electrically conductive), positions them relative to one another in the flow channel and preferably has no connection to other components, in particular to the inner walls of the flow channel, in particular in the area of the flow deflector 6 .
  • the carrier is preferably a sheet metal carrier, the sheet metal being arranged as upright as possible, ie vertically and as aixal in the flow channel in the area of the deflector 6 for the benefit of a minimal pressure drop in the gas flow, in order to avoid or reduce the build-up of particles.
  • a rigid high-voltage line 15 is arranged axially in the first flow channel section 6 , which serves both as a carrier element for fixing the corona discharge electrodes 9 and 10 in the flow channel and as an electrical connection for these to a high-voltage source 16 .
  • the high-voltage line is led out and held through a high-voltage bushing 17 with a preferably ceramic element 18 , alternatively a glass element as an electrical insulator to the housing 1 from the upper end of the first flow channel 5 .
  • an elastic or limp tubular electrical insulation preferably a silicone hose 19 is provided around the high-voltage line, which has a larger inner diameter than the outer diameter of the high-voltage line with the formation of an annular gap 21 .
  • the hose end 20 of the silicone hose 19 ends as previously explained and in FIG Fig. 5 shown at a fixed distance H above the first corona discharge electrode 9.
  • the height H preferably exceeds the maximum possible bed height of the particle bed 22 on the first corona discharge electrode 9 , so that between the particle deposits 23 on the silicone hose 19 at the lower end of the hose 20 and the aforementioned particle bed 22 on the first corona discharge electrode 9.
  • the corona discharge electrodes are acted upon by the high-voltage source 16 , preferably in a temperature-controlled manner, with a potential difference only being fed in from an adjustable operating temperature. It is proposed that at least one temperature detection be carried out in the first flow channel section 5 above the gas inlet 2 . This is done either selectively by means of a temperature detection sensor 24 , as in FIG Fig.1a shown, in the inner volume or integrally over the wall surface, as in Fig.1b shown, on the upper wall of the first flow channel section near the high-voltage bushing 17.
  • a flow around the elastic or limp tubular electrical insulation, preferably the silicone hose, with flue gas advantageously causes a continuous or recurring movement of the hose end around the high-voltage line.
  • the associated constant changes in the width of the gap 21 in the region of the hose end 20 lead to a detachment of particles from particles deposited on the hose and / or high-voltage line, in particular in the gap.
  • the detached particles or particle agglomerates then fall, following the force of gravity, onto the top of the first corona discharge electrode 9.
  • first flow channel section 5 it is optionally provided with corresponding sources of flow disturbance, not shown in the figures, such as baffles and / or tear-off edges, in which turbulence is generated locally and its flow trailing onto the hose end 20 , but more preferably not extends to the aforementioned electrical fields 12 around the first corona discharge electrode 9 .
  • sources of flow disturbance not shown in the figures, such as baffles and / or tear-off edges, in which turbulence is generated locally and its flow trailing onto the hose end 20 , but more preferably not extends to the aforementioned electrical fields 12 around the first corona discharge electrode 9 .
  • a particularly preferred embodiment of the aforementioned compact structure provides a housing 1 which encloses a cylindrical internal volume (cf. Fig. 3 ), which is divided above the flow deflector 6 by a partition 14 with an electrically conductive and grounded surface as part of the separation surfaces into two semi-cylindrical partial volumes, one of the partial volumes forming the first and second flow channel sections.
  • This advantageously favors a cylindrical outer contour of the housing 1 of the electrostatic precipitator and thus also a design as a collecting container 8 as a cylindrical pot preferred uniform inner and outer diameter, ie a stepless transition in particular of the inner walls between the housing and the collecting container.
  • the collecting container can be attached to the lower opening of the housing and can be locked, for example, with a bayonet connection or with clamps.
  • a pair of sealing surfaces adapted to one another is optionally provided with a separate encircling sealing ring there.
  • the collecting container and the housing at least their inner walls, which form the flow channel, have the same electrical potential as the housing, preferably earth or zero potential.
  • the collecting container and the housing have a different electrical potential applied to them, with which different electrostatic attractive forces to the respective inner walls of the housing, i.e. first or second flow channel section, and sump, i.e. can be implemented in the area of flow deflection.
  • the partition 14 and the first and second flow channel sections 5 and 7 extend from above into the collecting container 8 , while the area of the flow deflector 6 is provided below the partition 14 in the collecting container.
  • a corona discharge electrode is arranged in each of the two flow channel sections on both sides of the dividing wall in the collecting container, which electrodes likewise protrude into the collecting container arranged on both sides of the dividing wall. The area of the inner wall of the flow channel, which is closest to the corona discharge electrodes, is thus shifted to the lower part of the partition and, like this, also into the collecting container.
  • the separation surfaces are shifted towards the inner walls of the collecting container, whereby the particle deposits advantageously take place directly in the collecting container and can be removed with this directly from the electrostatic separator.
  • the corona discharge electrodes are accessible for cleaning, for example of deposits in the area of the high-voltage line.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrostatic Separation (AREA)

Abstract

Elektrostatischer Abscheider für die Reinigung von Rauchgasen, umfassend ein Gehäuse(1)mit einem abnehmbaren Sammelbehälter(8)für abgeschiedene Partikel, einem Gaseintritt(2)und einem Gasaustritt(3)und dazwischen im Gehäuse(1)angeordneten am Sammelbehälter vorbeigeleiteten Strömungskanal, ein dem Gaseintritt(2)stromabwärts folgenden nach unten gerichteten ersten Strömungskanalabschnitt(5)des Strömungskanals, eine dem ersten Strömungskanalabschnitt(5)folgenden Strömungsumlenkung(6)in einen nach oben gerichteten zweiten Strömungskanalabschnitt(7)des Strömungskanals, wobei der zweite Strömungskanalabschnitt(7)in den Gasaustritt(3)ausmündet sowie eine Koronaentladungsanordnung im Strömungskanal, umfassend mindestens eine scheibenförmige Koronaentladungselektrode(9, 10)und Abscheideflächen(11),geeignet für eine Ausbildung eines umlaufenden elektrischen Feldes(12)zwischen Koronaentladungselektrode(9,10)und den Abscheideflächen(11).Die Aufgabe liegt davon ausgehend in einer besseren Eignung und einer sichereren Handhabung bei der Rauchgasreinigung insbesondere für Kleinfeueungsanlagen. Gelöst wird die Aufgabe, indem die Abscheideflächen(11)geerdet sind und ganz oder teilweise durch Innenwandungen des Sammelbehälters(8)gebildet sind.

Description

  • Die Erfindung betrifft einen elektrostatischen Abscheider für die Reinigung von Rauchgasen, vorzugsweise aus technischen Umwandlungsprozessen, vorzugsweise Verbrennungsprozessen wie z.B. aus Kleinfeuerungsanlagen, Öfen, Verbrennungsmotoren oder sonstige Verbrennungsanlagen.
  • Rauchgase sind partikelhaltige Gase mit festen und/oder flüssigen Bestandteilen. Sie weisen eine gasförmige Trägerkomponente auf, in die feste Partikel und/oder Flüssigtropfen suspendiert sind.
  • Es ist immer noch üblich, insbesondere feste Brennstoffe wie Holz oder Kohle zum Heizen ohne jegliche Rauchgasreinigung zu verbrennen. Die dabei entstehenden Rauchgase verursachen Feinstaub- und Aerosolemissionen und damit einerseits eine Verunreinigung der Umwelt und andererseits emissionsbedingte Gesundheitsgefährdungen. Feinstaubpartikel und Aerosole können vor dem Austritt in die Umgebung durch wirksame Rauchgasreinigung abgefangen und weiterverarbeitet werden. Ein elektrostatischer Abscheider ist eine solche effektive Gasreinigungseinrichtung.
  • Eine bevorzugte Verwendung des elektrostatischen Abscheiders ist die Abreinigung von Rauchgasen aus Kleinverbrennungsanlagen wie insbesondere Verbrennungsöfen für Biomasse, Koks, Kohle, Brennöle, Holz, Holzpellets oder andere fossile Brennstoffe.
  • Elektrostatische Abscheider haben zum Reinigen von Aerosolen einen weiten Anwendungsbereich. Zum Beispiel werden in einem in der CH 694 645 A5 beschriebenen elektrostatischen Abscheider, die Partikel eines Verbrennungsgases durch einen Ionisierer geschickt, in dem sie in einer Korona-Entladung, die an den scharfen Kanten einer Hochspannungselektrode erzeugt wird, geladen werden. Das Kollektorrohr des Abscheiders ist geerdet. Geladene Partikel werden an der inneren Oberfläche des Kollektorrohrs gesammelt, hauptsächlich gasstromabwärts des Ionisierers.
  • Aus DE 10 2004 039 118 ist zu entnehmen, das Partikel in einem ersten Ionisierungsfeld geladen und abgeschieden werden können. Geladene Partikel werden unter dem Einfluss einer Aerosol-Raumladung auf der inneren Oberfläche der Wände der Abscheiderkammer, durch die die Rauchgase gelangen, abgeschieden und treten dann gereinigt aus dem Abscheider aus.
  • Ferner ist aus der DE 10 2008 049 211 A1 ein elektrostatischer Abscheider für die Reinigung von Rauchgasen aus Holzverbrennungsöfen oder stationären Dieselmotoren bekannt. Er besteht aus einem Gehäuse mit mindestens einem Gaseintritt und ein Gasaustritt. Dem Gaseintritt folgt in Strömungsrichtung ein nach unten führender, rohrförmiger erster Strömungskanalabschnitt mit einem Nicht-Korona-Agglomerator, gefolgt von einem Korona-Entlader, der in einen abgedeckten Schacht zum Auffangen ausgeschiedener Rußpartikel mündet. Aus dem abgedeckten Schacht folgt in Strömungsrichtung, nach oben führend, der rohrförmige zweite Strömungskanalabschnitt, der in einen Gasaustritt mündet und als Kollektor mit einer drehbaren, wendelförmigen Bürste ausgestattet ist.
  • Davon ausgehend liegt eine Aufgabe der Erfindung darin, ein Konzept für eine elektrostatische Abscheidung zur Reinigung von Rauchgasen so auszugestalten, dass es in besonderem Maße für den Einsatz mit Kleinfeuerungsanlagen vor allem in beengten Platzverhältnissen oder Emissionssensiblen Umgebungen wie z.B. in Gebäuden geeignet ist und sich dabei durch eine besonders sichere Handhabung auszeichnet.
  • Die Aufgabe wird durch einen elektrostatischen Abscheider mit den Merkmalen des Anspruchs 1 gelöst. Hierauf rückbezogene Unteransprüche geben vorteilhafte Ausgestaltungen wieder.
  • Die Lösung der Aufgabe basiert auf einen elektrostatischen Abscheider für die Reinigung von Rauchgasen, umfassend ein Gehäuse mit vorzugsweise nach unten abnehmbarem Sammelbehälter für abgeschiedene Partikel, ein Gaseintritt und ein Gasaustritt und dazwischen einen im Gehäuse angeordneten und am Sammelbehälter vorbeigeleiteten Strömungskanal. Der Strömungskanal folgt nach dem Gaseintritt stromabwärts zunächst einem nach unten gerichteten ersten Strömungskanalabschnitt und mündet von da aus in eine Strömungsumlenkung, von da aus in einen nach oben gerichteten zweiten Strömungskanalabschnitt des Strömungskanals und von dem er in den Gasaustritt aus.
  • Im Strömungskanal ist eine Koronaentladungsanordnung angeordnet, umfassend mindestens eine, vorzugsweise zwei scheibenförmige Koronaentladungselektroden und Abscheideflächen, geeignet für eine Ausbildung eines umlaufenden elektrischen Feldes zwischen Koronaentladungselektrode und den Abscheideflächen als Gegenelektroden. Im Falle von mehreren Koronaentladungselektroden sind diese im Strömungskanal in Strömungrichtung seriell angeordnet und vorzugsweise miteinander elektrisch verbunden.
  • Vorzugsweise sind die scheibenförmigen Koronaentladungselektroden orthogonal zu der Durchströmungsrichtung im Strömungskanal angeordnet, womit eine Umlenkung der Rauchgasdurchströmung im Strömungskanal durch das elektrische Feld hindurch möglichst im gesamten Feld gleichmäßig homogen erfolgt. Zur Erzeugung einer gleichmassigen elektrischen Feldstärke über das gesamte Feld wird vorgeschlagen, dass der kürzeste Abstand des umlaufenden Rands der Koronaentladungselektrode vorzugsweise zu jeweils der nächstliegenden Innenwandung jeweils gleich ist. Entsprechend ist das elektrische Feld zwischen dem umlaufenden Rand einer Koronaentladungselektrode und dem jeweils kürzesten Abstand zur Innenwandung maximal.
  • Eine bevorzugte Ausgestaltung der mindestens einen scheibenförmige Koronaentladungselektrode kennzeichnet sich dadurch aus, dass diese umlaufend radial vorstehenden Elektrodenspitzen aufweist, wobei dann der Abstand der Elektrodenspitzen als kürzester Abstand maßgeblich und zu jeweils der nächstliegenden Abscheidefläche vorzugsweise einheitlich gleich groß ist.
  • Die Abscheideflächen werden durch die Innenwandungsbereiche des Strömungskanals gebildet. Vorzugsweise sind dabei die Abscheideflächen im Strömungskanal geerdet (Nullpotential), während die mindestens eine Koronaentladungselektrode bevorzugt an eine vorzugsweise gemeinsame Hochspannungsquelle angeschlossen ist und durch diese mit einer Potentialdifferenz zum Nullpotential, vorzugsweise mit einem negativen Gleichspannungspotential beaufschlagt ist. Dabei sind das Gehäuse oder zumindest die Innenwandungen des Strömungskanals oder zumindest die Abscheideflächen elektrisch leitfähig bzw. leitfähig beschichtet.
  • Die Abscheideflächen erstrecken sich in ihrer Gesamtheit grundsätzlich über alle elektrisch leitfähigen oder leitfähig beschichteten Innenwandungen des Strömungskanals, die elektrisch miteinander verbunden sind und hierdurch mit einem gleichen Potential zueinander beaufschlagt sind.
  • Grundsätzlich bildet die gesamte innere Oberfläche des elektrostatischen Abscheiders die Sammelfläche für Partikel: Partikel werden aus dem Gasstrom nach Durchlauf des Gaseinlasses und vor Erreichen des Koronaentladungsanordnung zunächst aufgrund gasdynamischer Phänomene als gasdynamischer und mechanischer Niederschlag an den Innenwandungen insbesondere des ersten Strömungskanalabschnitts abgeschieden. Mit Erreichen des Gasstroms der ersten Koronaentladungselektrode erfolgt die Abscheidung zunehmend elektrostatisch im Koronaentladungsfeld, wobei die Abscheidung der Partikel im Wesentlichen als Partikelablagerungen an den geerdeten Innenwandungsbereichen erfolgt. Diese Abscheidung wiederholt sich bei den der ersten Koronaentladungselektrode folgenden zweiten und ggf. weiteren Koronaentladungselektroden. An den Oberflächen der Koronaentladungselektroden ebenfalls findet Abscheidung statt (gasdynamische Effekte, mechanisches Sammeln und Sammeln unter dem Einfluss von elektrischem Wind). Dabei werden Partikel auch auf der nach oben weisenden Flächen der ersten und zweiten und ggf. folgenden weiteren scheibenförmigen Koronaentladungselektroden abgeschieden (gasdynamische Effekte, mechanische Ausfällung, teilweise elektrostatische Ausscheidung positiv geladener Partikel aus der Gasströmung auf der Oberfläche der Hochspannungselektrode mit negativer Polarität, Niederschlag durch elektrischen Wind). Im ebenfalls geerdeten Sammelbehälter werden Partikel auf der inneren Oberfläche abgeschieden. Diese Abscheidung erfolgt aufgrund von Raumladungseffekten mittels mechanischer Kräfte, thermophoretischer Kräfte, elektrischer Feldkräfte zwischen der inneren Oberfläche des Sammelbehälters und dem starren Träger zwischen den Koronaentladungselektroden. Die Innenwandungen des in Strömungsrichtung den Koronaentladungselektroden nachfolgenden zweiten Strömungskanalabschnitts erfolgt ferner unter dem Einfluss von Raumladungseffekten eine weitere Abscheidung von geladenen Partikeln.
  • Ein wesentlicher Grundgedanke der Erfindung liegt darin, die Abscheideflächen ganz oder teilweise, vorzugsweise zum überwiegenden Anteil durch Innenwandungen des Sammelbehälters zu bilden. Dies bedeutet, dass der Strömungskanal zumindest im Bereich der Koronaentladungsanordnung durch den Sammelbehälter geleitet wird oder diesen tangiert. Die Abscheideflächen oder ein Teil der Abscheideflächen erstrecken sich dabei auf die Innenwandung des Sammelbehälters, die somit einen Teil der vorgenannten Innenwandung des Strömungskanals bildet. Der Sammelbehälter und damit die Innenwandungen sind hierfür elektrisch leitfähig oder leitfähig beschichtet vorgenannten Innenwandung des Strömungskanals bildet. Der Sammelbehälter und damit die Innenwandungen sind hierfür elektrisch leitfähig oder leitfähig beschichtet.
  • Eine bevorzugte Ausführung sieht zudem vor, mindestens eine der, vorzugsweise alle scheibenförmigen Koronaentladungselektroden im Sammelbehälter anzuordnen, d.h. sie sind nicht im Innern des Gehäuses angeordnet, sondern ragen zumindest zum Teil aus dem Gehäuse heraus und in den Sammelbehälter hinein.
  • Eine bevorzugte Ausführung kennzeichnet sich dadurch aus, dass nur die Bereiche auf den Abscheideflächen mit den kürzesten Abstand zu einer der Elektroden aufweisen, ganz oder teilweise, vorzugsweise zum überwiegenden Anteil durch Innenwandungen des Sammelbehälters gebildet werden.
  • Eine weitere bevorzugte Ausführung kennzeichnet sich dadurch, dass nur die Bereiche auf den Abscheideflächen mit den kürzesten Abstand zuzüglich maximal 50%, weiter bevorzugt 20%, weiter bevorzugt 10% des kürzesten Abstands zu einer der Elektroden aufweisen, ganz oder teilweise, vorzugsweise zum überwiegenden Anteil durch Innenwandungen des Sammelbehälters gebildet werden.
  • Die mindestens eine Koronaentladungselektrode ist vorzugsweise durch, vorzugsweise nur durch eine starre Hochspannungsleitung im Strömungskanal fixiert und über diese an eine Hochspannungsquelle außerhalb des Gehäuses angeschlossen. Es versteht sich von selbst, dass nur wenn die Hochspannungsleitung und die elektrisch leitfähige Innenwandung des Strömungskanals gegeneinander isoliert sind, ein vorgenannter Potentialunterschied zwischen Koronaentladungselektrode und Innenwandung als Abscheideflächen überhaupt möglich ist.
  • Die starre Hochspannungsleitung endet an einer ersten Koronaentladungselektrode. Im Falle von mehreren Koronaentladungselektroden, die vorzugsweise in Strömungsrichtung im Strömungskanal hintereinander angeordnet sind, sind die Koronaentladungselektroden untereinander durch eine elektrisch leitfähige starre Verbindung, wie z.B. ein starrer Träger aus Metall miteinander verbunden.
  • Die starre Hochspannungsleitung ist vorzugsweise axial im ersten Strömungskanalabschnitt, d.h. mit ihrem freien Ende nach unten ausgerichtet und weist dabei keinen elektrischen Kontakt zur Innenwandung auf. Weiter bevorzugt ist der Abstand von der Hochspannungsleitung zur Innenwandung abseits der mindestens Koronaentladungselektrode zur Vermeidung von Ablagerungen stets größer als der vorgenannte kürzeste Abstand des umlaufenden Rands der Koronaentladungselektrode zu jeweils der nächstliegenden Innenwandung.
  • Die Ausleitung der Hochspannungsleitung aus dem Strömungskanal erfolgt vorzugsweise über eine gasundurchlässige Hochspannungsdurchführung abseits dem Gaseintritt. Zur Reduzierung einer Verschmutzungsgefahr durch Ablagerungen aus dem zu reinigenden Rauchgas auf der Innenwandung und der Hochspannungsleitung der und damit einer grundsätzlich möglichen Kurzschlussgefahr ist die gasundurchlässige Hochspannungsdurchführung abseits dem Gaseintritt vorgesehen.
  • Vorzugsweise wird auch auf der Hochspannungsleitung im Strömungskanal selbst ein rohrförmiger elektrischer Isolator um die Hochspannungsleitung angeordnet. Vorzugsweise erstreckt sich dieser Isolator von der gasundurchlässige Hochspannungsdurchführung bis kurz vor oder bis zur ersten Elektrode und isoliert dabei die Hochspannungsleitung von dem ersten Strömungskanalabschnitt elektrisch. Der rohrförmige elektrische Isolator dient dabei auch der Verbesserung der Betriebsstabilität des Abscheiders, der Verlängerung der Länge der Isolierfläche zwischen vorgenannter Abscheidungsfläche und Hochspannungsleitung sowie der Verringerung von elektrischen Leckströme.
  • Um einer Kurzschlussgefahr am Ende des Isolators vorzubeugen, wird im Rahmen einer Ausführungsform vorgeschlagen, den rohrförmigen elektrische Isolator so auszugestalten, dass dieser einen Innendurchmesser größer dem Außendurchmesser der starren Hochspannungsleitung aufweist. Zwischen Hochspannungsleitung und rohrförmigen Isolator entstehen so ein Spielmaß und damit ein umlaufender Spalt, wobei der rohrförmige elektrische Isolator dabei in vorteilhafter Weise an der gasundurchlässigen Hochspannungsdurchführung aufgehängt ist und der Spalt somit nur nach unten offen ist. Dieser Spalt, insbesondere dann, wenn dieser sich im laufenden Betrieb in der Spaltbreite verändert, erschwert grundsätzlich eine durchgehende Ablagerungsbeschichtung über den Übergang zwischen Isolator und Hochspannungsleitung über das offene Ende des Spalts hinweg. Vorzugsweise besteht der rohrförmige Isolator aus einen Schlauch aus einem elastischen oder biegeschlaffen Material, vorzugsweise einem Silikon, einem silikonhaltigen Material oder einem anderen temperaturbeständigen elastischen Werkstoff. Alternativ ist der rohrförmige Isolator in der vorgenannten Aufhängung elastisch fixierbar. Dies bewirkt in vorteilhafter Weise, dass der Isolator durch Anströmung mit Rauchgas relativ zur Hochspannungsleitung bewegt wird, dadurch sich der vorgenannte Spalt mit der Anströmung dynamisch ändert und sich mögliche Ablagerungen im und am Spalt sich lösen. Da die Hochspannungsleitung mit dem Isolator im ersten nach unten gerichteten Strömungskanalabschnitt von oben an der Hochspannungsdurchführung nach unten zum Spalt angeordnet ist, werden die gelösten Ablagerungen im Spalt allein schon durch die Schwerkraft aus dem Spalt nach unten herausbefördert und der Spalt dadurch stabilisiert.
  • Der rohrförmige elektrische Isolator endet vorzugsweise mit einem vorgebbaren fixen Abstand vor Erreichen, d.h. über einer ersten der mindestens einen Koronaentladungselektrode. Dies verhindert, dass die auf der ersten der mindestens einen Koronaentladungselektrode abgeschiedenen Partikel als Schüttung nicht das untere Ende des Isolators erreichen und womöglich einen Kurzschluss oder einen Kriechstromweg verursachen. Diese Schüttung entsteht auf der nach oben weisenden Fläche der Koronaentladungselektrode, indem sich dort insbesondere aus dem Spalt oder direkt aus dem Rauchgas abgeführte Partikelmassen anlagern. Der genannte fixe Abstand entspricht vorzugsweise zwischen 10%, 20% oder 30% bis 50%, 70% oder 80% der maximalen Abmessung der ersten der mindestens einen scheibenförmigen Koronaentladungselektrode. Für elektrostatische Abscheider für Kleinfeuerungsanlagen, Öfen, Verbrennungsmotoren mit Abgasströmungsvolumina im Bereich zwischen 20 bis 300 m3/h liegt der fixe Abstand typischerweise zwischen 2 und 15 cm.
  • Für den Betrieb des elektrostatischen Abscheiders für eine Rauchgasreinigung von Verbrennungsprozessen ist ein optionaler Temperatursensor für den Strömungskanal vorteilhaft. Je nach Rauchgastemperatur lässt sich die Rauchgasreinigung durch Beaufschlagen der mindestens einen Koronaentladungselektrode mit einer HV-Spannung aktivieren oder deaktivieren. Vorzugsweise erfolgt die Temperaturerfassung durch mindestens einen Temperaturerfassungssensor im ersten Strömungskanalabschnitt oder am Gehäuse nahe des ersten Strömungskanalabschnitts.
  • Während des Betriebs des elektrostatischen Abscheiders besteht die Gefahr, dass sich an den Innenwänden des Strömungskanals insbesondere in der Anlaufphase vor Erreichen einer Betriebstemperatur zusätzlich kleinere Kondensatmengen insbesondere an noch kälteren Bereichen der Innenwandung bilden, die jedoch im laufenden stationären Betrieb durch das heiße Gas wieder verdampft werden und so die Prozessstabilität der elektrostatischen Abscheidung allenfalls nur unwesentlich beeinträchtigen. Lassen die Temperaturverhältnisse in den beiden Strömungskanalabschnitten eine Verdampfung nicht zu, fließen die Kondensate schwerkraftgetrieben nach vorzugsweise stufenlos und vertikal nach unten direkt in den Sammelbehälter. Es wird optional vorgeschlagen, die Hochspannung erst oberhalb von 50°C bis 70°C, vorzugsweise oberhalb von 60°C, gemessen mit dem Temperaturerfassungssensor im ersten Strömungskanalquerschnitt, auf die mindestens eine Koronaentladungselektrode durchzuschalten und so die elektrostatische Abscheidung zu aktivieren.
  • Die Erfindung wird anhand von weiteren Ausführungsbeispielen, den folgenden Figuren und Beschreibungen näher erläutert. Alle dargestellten Merkmale und deren Kombinationen sind nicht nur auf diese Ausführungsbeispiele und deren Ausgestaltungen begrenzt. Vielmehr sollen diese stellvertretend für weitere mögliche, aber nicht explizit als Ausführungsbeispiele dargestellte weitere Ausgestaltungen kombinierbar angesehen werden. Es zeigen
    • Fig.1a und b prinzipielle Ansichten von Ausführungsbeispielen für je einen elektrostatischen Abscheider mit einer Koronaentladeanordnung mit zwei scheibenförmigen Koronaentladungselektroden, bei der die Temperatur nahe der Hochspannungsdurchführung im Strömungskanal ( Fig.1a ) oder am Gehäuse ( Fig.1b ) ermittelt wird,
    • Fig.2 eine sowie prinzipielle Ansicht eines Ausführungsbeispiels in Anlehnung an Fig.1a oder b (jedoch ohne Temperaturmessvorrichtung) mit abgenommen Sammelbehälter,
    • Fig.3 eine Querschnittdarstellung der in Fig.1a dargestellten Ausführungsform auf der Höhe des Gaseintritts und des Gasaustritts,
    • Fig.4 eine beispielhafte Ausgestaltung eines starren Trägers mit den beiden Koronaentladungselektroden (nur angedeutet) im Bereich der Strömungsumlenkung der Ausführungsbeispiele gemäß Fig.1a , 1b , 2 und 3 sowie
    • Fig.5 eine Detailansicht der Hochspannungsleitung im Bereich oberhalb der ersten Koronaentladungselektrode mit Ablagerungen von Partikeln.
  • Die in Fig.1a und b sowie Fig.2 und 3 dargestellten Ausführungsbeispiele zeigen ein Gehäuse 1 des elektrostatischen Abscheiders mit einem Gaseinlass 2 und einem Gasauslass 3 und zwischen diesen im Gehäuse angeordneten Strömungskanal, umfassend einen in Strömungsrichtung 4 nach unten gerichteten ersten Strömungskanalabschnitt 5, eine dem ersten Strömungskanalabschnitt folgenden Strömungsumlenkung 6 in einen nach oben gerichteten zweiten Strömungskanalabschnitt 7 des Strömungskanals. Das Gehäuse 1 selbst ist nach unten hin offen, wird aber durch einen die Öffnung schließenden Sammelbehälter 8 mit beidseitigen Griffen nach außen hin abgeschlossen. Das Gehäuse und/oder der Sammelbehälter sind im Ausführungsbeispiel vorzugsweise aus Metall gefertigt und geerdet.
  • Fig.1a zeigt ein Ausführungsbeispiel mit seitlich angeordneten Gaseinlass und Gasauslass für eine Verwendung z.B. in einem waagerechten Abgasstrang, beispielsweise in einer Übergangsleitung zwischen einem Brennofen und einer Kaminschacht.
  • Fig.1b zeigt dagegen ein Ausführungsbeispiel mit seitlich angeordneten Gaseinlass und nach oben gerichteten Gasauslass, beispielsweise geeignet für einen Einbau in einem Kaminschacht, in den der Gasauslass unmittelbar ausmündet.
  • In der Darstellung eines ersten Ausführungsbeispiels gemäß Fig.1a sind die Umlauflinien oder Trennungen den einzelnen Komponenten zur Hervorhebung des durchgehenden Strömungskanals im Gegensatz zu der Darstellung in Fig.1b nicht eingezeichnet.
  • Zugunsten eine kompakten Aufbaus sind der ersten und der zweite Strömungskanalabschnitt 5 bzw. 7 parallel zueinander angeordnet, weiter bevorzugt vertikal parallel zueinander angeordnet.
  • Ferner umfassen die dargestellten Ausführungsbeispiele je eine Koronaentladungsanordnung im Strömungskanal mit zwei scheibenförmigen Koronaentladungselektroden 9 und 10 sowie Abscheideflächen 11, geeignet für eine Ausbildung jeweils eines umlaufenden elektrischen Feldes 12 zwischen Koronaentladungselektrode und den Abscheideflächen. Wie in den Ausführungsbeispielen gemäß den Fig.1a und b dargestellt, sind die beiden Koronaentladungselektroden vorzugsweise jeweils eine vor und eine nach der Strömungsumlenkung 6 angeordnet. Weiter bevorzugt sind die mindestens eine Koronaentladungselektrode orthogonal zu dem ersten und/oder dem zweiten Strömungskanalabschnitt ausgerichtet. Bei einer vertikalen Ausrichtung der genannten Strömungskanalabschnitte sind die scheibenförmigen Koronaentladungselektroden horizontal ausgerichtet.
  • Die Koronaentladungselektroden 9 und 10 sind wie insbesondere in Fig.2 dargestellt nicht im Gehäuse 1 angeordnet, sondern ragen nach unten aus dem Gehäuse 1 heraus. Wie in Fig.1a und b dargestellt, sind sie im Innern des Sammelbehälters 8 angeordnet. Ebenso werden die Bereiche auf den Abscheideflächen mit den kürzesten Abstand zu einer der Elektroden ganz oder teilweise, vorzugsweise zum überwiegenden Anteil durch Innenwandungen des Sammelbehälters gebildet.
  • Die beiden Koronaentladungselektroden 9 und 10 weisen, wie in Fig.3 schematisch zu erkennen, umlaufend radial vorstehenden Elektrodenspitzen 25 auf, um die die Feldstärken des elektrischen Feldes 12 maximal sind. Vorzugsweise weisen diese Elektrodenspitzen jeweils einen gleichen Abstand A zu der jeweilig nächstliegenden Abscheidefläche auf, sodass die elektrischen Felder über den gesamten Umfang der Koronaentladungselektroden eine ungefähr gleiche Feldstärke aufweisen.
  • Die beiden Koronaentladungselektroden 9 und 10 sind zudem, wie in Fig.4 dargestellt, durch einen elektrisch leitfähigen starren Träger 13 entlang der Strömungsumlenkung 6 miteinander verbunden, womit an diesen ein und dasselbe elektrische Potential anliegt. Der starre Träger ist nur mit den Koronaentladungselektroden verbunden (elektrisch leitfähig), positioniert diese relativ zueinander im Strömungskanal und weist vorzugsweise keine Verbindung zu anderen Komponenten, insbesondere zu den Innenwandungen des Strömungskanals insbesondere im Bereich zu der Strömungsumlenkung 6 auf. Vorzugsweise ist der Träger ein Blechträger, wobei das Blech hierfür zur Vermeidung oder Reduzierung von Ablagerungen von Partikeln möglichst hochkant, d.h. vertikal sowie zugunsten eines minimalen Druckabfalls in der Gasströmung möglichst aixal im Strömungskanal im Bereich der Umlenkung 6 angeordnet ist.
  • Ferner ist in den Figuren eine starre Hochspannungsleitung 15 axial im ersten Strömungskanalabschnitt 6 angeordnet, die sowohl als Trägerelement für die für eine Fixierung der Koronaentladungselektroden 9 und 10 im Strömungskanal als auch als elektrischer Anschluss dieser an eine Hochspannungsquelle 16 dient. Die Hochspannungsleitung wird durch eine Hochspannungsdurchführung 17 mit einem vorzugsweise keramischen Element 18, alternativ einem Glaselement als elektrischer Isolator zum Gehäuse 1 aus dem oberen Ende des ersten Strömungskanals 5 ausgeleitet und gehalten. Ferner ist um die Hochspannungsleitung eine elastische oder biegeschlaffe rohrförmige elektrische Isolierung, vorzugweise ein Silikonschlauch 19 vorgesehen, der einen größeren Innendurchmesser als der Außendurchmesser der Hochspannungsleitung unter Ausbildung eines ringförmigen Spaltes 21 aufweist. Das Schlauchende 20 des Silikonschlauchs 19 endet wie zuvor erläutert und in Fig.5 dargestellt in einem fixen Abstand H über der ersten Koronaentladungselektrode 9. Die Höhe H übersteigt vorzugsweise die maximal mögliche Schütthöhe der Partikelschüttung 22 auf der ersten Koronaentladungselektrode 9, sodass zwischen den Partikelablagerungen 23 auf dem Silikonschlauch 19 am unteren Schlauchende 20 und der vorgenannten Partikelschüttung 22 auf der ersten Koronaentladungselektrode 9.
  • Die Beaufschlagung der Koronaentladungelektroden durch die Hochspannungsquelle 16 erfolgt vorzugsweise temperaturgesteuert, wobei ein Potentialunterschied nur ab einer einstellbaren Betriebstemperatur eingespeist wird. Es wird vorgeschlagen, mindestens eine Temperaturerfassung im ersten Strömungskanalabschnitt 5 oberhalb des Gaseintritts 2 vorzunehmen. Dies erfolgt mittels eines Temperaturerfassungssensor 24 entweder punktuell, wie in Fig.1a dargestellt, im Innenvolumen oder integral über die Wandungsfläche, wie in Fig.1b dargestellt, an der oberen Wandung des ersten Strömungskanalabschnitts nahe der Hochspannungsdurchführung 17.
  • Eine Umströmung der elastischen oder biegeschlaffen rohrförmigen elektrischen Isolierung, vorzugweise des Silikonschlauches mit Rauchgas bewirkt in vorteilhafter Weise eine andauernde oder wiederkehrende Bewegung des Schlauchendes um die Hochspannungsleitung. Die damit einhergehenden ständigen Änderungen der Breite des Spaltes 21 im Bereich des Schlauchendes 20 führt zu einem Ablösen von Partikel von auf dem Schlauch und / oder Hochspannungsleitung abgeschiedenen Partikeln insbesondere im Spalt. Die abgelösten Partikel oder Partikelagglomerate fallen dann der Schwerkraft folgend auf die Oberseite der ersten Koronaentladungselektrode 9.
  • Insbesondere instationäre Strömungsanteile wie z.B. Turbulenzen um das Schlauchende führen zu dessen ständiger Bewegung. Insofern werden im Rahmen einer bevorzugten Ausgestaltung des ersten Strömungskanalabschnitts 5 dieser optional mit entsprechenden, in den Figuren nicht weiter dargestellten Strömungsstörquellen wie z.B. Leitblechen und/oder Abrisskanten versehen, in denen Turbulenzen lokal erzeugt werden und deren Strömungsnachlauf auf das Schlauchende 20, weiter bevorzugt nicht aber auf die vorgenannten elektrischen Felder 12 um die ersten Koronaentladungselektrode 9 erstreckt.
  • Eine besonders bevorzugte Ausgestaltung des vorgenannten kompakten Aufbaus sieht ein Gehäuse 1 vor, das ein zylinderförmiges Innenvolumen einschließt (vgl. Fig.3 ), das oberhalb der Strömungsumlenkung 6 durch eine Trennwand 14 mit elektrisch leitfähigen und geerdeten Oberfläche als ein Teil der Abscheideflächen in zwei halbzylinderförmige Teilvolumina unterteilt ist, wobei je eines der Teilvolumina den ersten und den zweiten Strömungskanalabschnitt bildet. Dies begünstigt in vorteilhafter Weise eine zylindrische Außenkontur des Gehäuses 1 des elektrostatischen Abscheiders und damit auch eine Gestaltung als Sammelbehälters 8 als zylinderförmigen Topfes mit bevorzugten einheitlichen Innen- und Außendurchmesser, d.h. einem stufenlosen Übergang insbesondere der Innenwandungen zwischen Gehäuse und Sammelbehälter.
  • Der Sammelbehälter ist an die untere Öffnung des Gehäuses ansetzbar und beispielsweise mit einem Bajonettanschluss oder mit Spannschellen arretierbar. Zur Vermeidung von einem Austritt von Rauchgas zwischen Gehäuse und Sammelbehälter ist ein aufeinander angepasstes Dichtflächenpaar optional ein dort separater umlaufender Dichtring vorgesehen. In einer ersten Ausgestaltung sind der Sammelbehälter und das Gehäuse, zumindest deren Innenwandungen, die den Strömungskanal bilden, mit dem gleichen elektrischen Potential wie das Gehäuse, vorzugsweise mit Erd- oder Nullpotential beaufschlagt. In einer weiteren optionalen Ausgestaltung sind der Sammelbehälter und das Gehäuse mit einem unterschiedlichen elektrischen Potential beaufschlagt, womit unterschiedliche elektrostatische Anziehungskräfte zu den jeweiligen Innenwandungen von Gehäuse, d.h. ersten oder zweiten Strömungskanalabschnitt, und Sammelbehälter, d.h. im Bereich der Strömungsumlenkung realisierbar sind.
  • In den dargestellten Ausführungsbeispielen ragen die Trennwand 14 sowie erstrecken sich der erste und der zweite Strömungskanalabschnitt 5 bzw. 7 von oben in den Sammelbehälter 8 hinein, während der Bereich der Strömungsumlenkung 6 unterhalb der Trennwand 14 im Sammelbehälter vorgesehen ist. Dabei ist in den beiden Strömungskanalabschnitten beidseitig der Trennwand im Sammelbehälter je eine Koronaentladungselektrode angeordnet, die beidseitig der Trennwand angeordnet ebenfalls in den Sammelbehälter hineinragen. Damit verschiebt sich der Bereich der Innenwandung des Strömungskanals, der den Koronaentladungselektroden am nächsten liegt, an das untere Teil der Trennwand und wie dieser ebenfalls in den Sammelbehälter.
  • Damit wird zumindest ein Teil der Abscheideflächen zu den Innenwandungen des Sammelbehälters verschoben, womit in vorteilhafter Weise die Partikelablagerungen direkt in den Sammelbehälter erfolgen und sind mit diesem direkt aus dem elektrostatischen Abscheider entnehmbar. Außerdem sind nach einem Abnehmen des Sammelbehälters die Koronaentladungselektroden für eine Reinigung, beispielsweise von Ablagerungen im Bereich der Hochspannungsleitung, zugänglich.
  • Bezugszeichenliste
  • 1
    Gehäuse
    2
    Gaseinlass
    3
    Gasauslass
    4
    Strömungsrichtung
    5
    erster Strömungskanalabschnitt
    6
    Strömungsumlenkung
    7
    zweiter Strömungskanalabschnitt
    8
    Sammelbehälter
    9
    erste Koronaentladungselektrode
    10
    zweite Koronaentladungselektrode
    11
    Abscheideflächen
    12
    umlaufendes elektrisches Feld
    13
    starrer Träger
    14
    Trennwand
    15
    Hochspannungsleitung
    16
    Hochspannungsquelle
    17
    Hochspannungsdurchführung
    18
    keramisches Element
    19
    Silikonschlauch
    20
    Schlauchende
    21
    Spalt
    22
    Partikelschüttung
    23
    Partikelablagerung
    24
    Temperaturerfassungssensor
    25
    Elektrodenspitzen

Claims (19)

  1. Elektrostatischer Abscheider für die Reinigung von Rauchgasen, umfassend:
    a) ein Gehäuse (1) mit einem abnehmbaren Sammelbehälter (8) für abgeschiedene Partikel, einem Gaseintritt (2) und einem Gasaustritt (3) und dazwischen im Gehäuse angeordneten am Sammelbehälter vorbeigeleiteten Strömungskanal,
    b) ein dem Gaseintritt (2) stromabwärts folgenden nach unten gerichteten ersten Strömungskanalabschnitt (5) des Strömungskanals,
    c) eine dem ersten Strömungskanalabschnitt folgenden Strömungsumlenkung (6) in einen nach oben gerichteten zweiten Strömungskanalabschnitt (7) des Strömungskanals, wobei der zweite Strömungskanalabschnitt in den Gasaustritt (3) ausmündet sowie
    d) eine Koronaentladungsanordnung im Strömungskanal, umfassend mindestens eine scheibenförmige Koronaentladungselektrode (9, 10) und Abscheideflächen (11), geeignet für eine Ausbildung eines umlaufenden elektrischen Feldes (12) zwischen der mindestens einen Koronaentladungselektrode (9,10) und den Abscheideflächen (11),
    dadurch gekennzeichnet, dass
    e) die Abscheideflächen (11) geerdet sind und ganz oder teilweise durch Innenwandungen des Sammelbehälters (8) gebildet sind.
  2. Elektrostatischer Abscheider nach Anspruch 1, dadurch gekennzeichnet, dass mindestens eine der, vorzugsweise alle scheibenförmigen Koronaentladungselektroden (9, 10) im Sammelbehälter (8) angeordnet sind.
  3. Elektrostatischer Abscheider nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die mindestens eine Koronaentladungselektrode (9, 10) durch eine starre Hochspannungsleitung (15) im Strömungskanal fixiert ist und über diese an eine Hochspannungsquelle (16) außerhalb des Gehäuses (1) angeschlossen ist.
  4. Elektrostatischer Abscheider nach Anspruch 3, dadurch gekennzeichnet, dass die starre Hochspannungsleitung (15) axial im ersten Strömungskanalabschnitt (5) ausgerichtet ist und über eine gasundurchlässige Hochspannungsdurchführung (17) abseits dem Gaseintritt (2) aus dem Strömungskanal ausmündet.
  5. Elektrostatischer Abscheider nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass um die starre Hochspannungsleitung (15) im Strömungskanal ein rohrförmiger elektrischer Isolator (19) angeordnet ist.
  6. Elektrostatischer Abscheider nach Anspruch 5, dadurch gekennzeichnet, dass der rohrförmige elektrische Isolator (19) einen Innendurchmesser größer dem Außendurchmesser der starren Hochspannungsleitung (15) aufweist, an der gasundurchlässigen Hochspannungsdurchführung (17) aufgehängt ist und aus einen Schlauch aus einem elastischen oder biegeschlaffen Material ist.
  7. Elektrostatischer Abscheider nach Anspruch 6, dadurch gekennzeichnet, dass das Material Silikone umfassen oder Silikone ist.
  8. Elektrostatischer Abscheider nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass der rohrförmige elektrische Isolator (19) mit einem vorgebbaren fixen Abstand (H) vor einer ersten der mindestens einen Koronaentladungselektrode (9) endet.
  9. Elektrostatischer Abscheider nach Anspruch 6, dadurch gekennzeichnet, dass der vorgebbaren fixen Abstand (H) zwischen 2 und 15 cm beträgt.
  10. Elektrostatischer Abscheider nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass die Koronaentladungsanordnung zwei Koronaentladungselektroden (9, 10) aufweist, wobei je eine vor und eine nach der Strömungsumlenkung angeordnet ist und die beiden Koronaentladungselektroden durch einen elektrisch leitfähigen starren Träger (13) entlang der Strömungsumlenkung (6) miteinander verbunden sind.
  11. Elektrostatischer Abscheider nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass die mindestens eine Koronaentladungselektrode (9, 10) umlaufend radial vorstehenden Elektrodenspitzen (25) aufweist, wobei der Abstand (A) der Elektrodenspitzen zu jeweils der nächstliegenden Abscheidefläche (11) einheitlich gleich ist.
  12. Elektrostatischer Abscheider nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass die mindestens eine Koronaentladungselektrode (9, 10) orthogonal zu dem ersten und/oder dem zweiten Strömungskanalabschnitt (5, 7) ausgerichtet sind.
  13. Elektrostatischer Abscheider nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass der ersten und der zweite Strömungskanalabschnitt (5, 7) parallel zueinander angeordnet sind.
  14. Elektrostatischer Abscheider nach Anspruch 13, dadurch gekennzeichnet, dass der erste und der zweite Strömungskanalabschnitt (5, 7) vertikal und/oder die mindestens eine Koronaentladungselektrode (9,10) horizontal ausgerichtet sind.
  15. Elektrostatischer Abscheider nach Anspruch 13 oder 14, dadurch gekennzeichnet, dass das Gehäuse (1) ein zylinderförmiges Innenvolumen einschließt, das oberhalb der Strömungsumlenkung (6) durch eine Trennwand (14) mit elektrisch leitfähigen und geerdeten Oberfläche als ein Teil der Abscheideflächen (11) in zwei halbzylinderförmige Teilvolumina unterteilt ist, wobei je eines der Teilvolumina den ersten und den zweiten Strömungskanalabschnitt (5, 7) bildet.
  16. Elektrostatischer Abscheider nach Anspruch 15, dadurch gekennzeichnet, dass die Trennwand (14) sowie sich der erste und der zweite Strömungskanalabschnitt (5, 7) von oben in den Sammelbehälter (8) hineinragt bzw. erstrecken, die Umlenkung (6) unterhalb der Trennwand im Sammelbehälter vorgesehen ist und in den beiden Strömungskanalabschnitten (5, 7) beidseitig der Trennwand im Sammelbehälter je eine Koronaentladungselektrode (9, 10) angeordnet ist.
  17. Elektrostatischer Abscheider nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass der Sammelbehälter (8) in Verlängerung zum Gehäuse (1) topfförmig gestaltet ist über einen mechanischen Verschluss, vorzugsweise einen Bajonettverschluss mit dem Gehäuse (1) dichtend verbindbar ist.
  18. Elektrostatischer Abscheider nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass im ersten Strömungskanalabschnitt (5) oder am Gehäuse (1) nahe des ersten Strömungskanalabschnitts ein Temperaturerfassungssensor (24) angeordnet ist.
  19. Elektrostatischer Abscheider nach Anspruch 18, dadurch gekennzeichnet, dass der Temperaturerfassungssensor (24) oberhalb des Gaseintritts (2) im oder am ersten Strömungskanalabschnitt (5) angeordnet ist.
EP20020085.5A 2019-03-07 2020-02-24 Elektrostatischer abscheider für die reinigung von rauchgasen Pending EP3705185A1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102019105776.0A DE102019105776A1 (de) 2019-03-07 2019-03-07 Elektrostatischer Abscheider für die Reinigung von Rauchgasen

Publications (1)

Publication Number Publication Date
EP3705185A1 true EP3705185A1 (de) 2020-09-09

Family

ID=69740089

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20020085.5A Pending EP3705185A1 (de) 2019-03-07 2020-02-24 Elektrostatischer abscheider für die reinigung von rauchgasen

Country Status (2)

Country Link
EP (1) EP3705185A1 (de)
DE (1) DE102019105776A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115007313A (zh) * 2022-06-09 2022-09-06 李亮 一种可防回风的卧式静电除尘器及其实施方法
CN117283905A (zh) * 2023-09-08 2023-12-26 浙江跃发新材料有限公司 一种塑料包装袋表面局部电晕生产工艺

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020133670A1 (de) 2020-12-16 2022-06-23 Karlsruher Institut für Technologie Elektrostatischer Abscheider für die Reinigung und Desinfektion von Gasen
DE102021125149A1 (de) 2021-09-28 2023-03-30 Karl Schräder Nachf. Inh. Karl-Heinz Schräder e. K. Rauchgasreinigungsvorrichtung

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4675029A (en) * 1984-11-21 1987-06-23 Geoenergy International, Corp. Apparatus and method for treating the emission products of a wood burning stove
CH694645A5 (de) 2003-12-01 2005-05-13 Empa Vorrichtung zur elektrostatischen Partikelabscheidung in Gasströmen.
DE102004039118B3 (de) 2004-08-11 2005-08-11 Eidgenössische Materialprüfungs- und Forschungsanstalt Empa Elektrofilter für eine Feuerungsanlage
EP1967273A2 (de) * 2007-03-05 2008-09-10 Schmatloch Nückel Technologietransfer Elektrofilter für eine Kleinfeuerungsanlage
DE102008005096A1 (de) * 2007-02-14 2008-11-06 Olaf Wilde Vorrichtung zur Reinigung von Rauchgas in Heizungsanlagen
DE102008049211A1 (de) 2008-09-27 2010-04-08 Forschungszentrum Karlsruhe Gmbh Elektrostatischer Abscheider für die Reinigung von Rauchgasen
DE202010016019U1 (de) * 2010-11-30 2012-03-01 Robert Bosch Gmbh Heizkessel mit einem elektrostatischen Abscheider
DE202012100052U1 (de) * 2012-01-06 2012-07-11 Georg Hipp Maschinenbau Gmbh Anordnung einer beheizbaren Elektrode in einem Kamin oder einem Abgaskanal
EP2583755A1 (de) * 2011-10-18 2013-04-24 Karlsruher Institut für Technologie Vorrichtung, Gerät und Verfahren zum Filtern feinen Schwebstoffteilchen aus Abgas

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB914299A (en) * 1960-08-24 1963-01-02 Metallgesellschaft Ag Improvements in or relating to insulators for electrostatic precipitators
FR2864143B1 (fr) * 2003-12-19 2006-04-07 Renault Sas Systeme de filtration electrostatique pour les gaz d'echappement d'un moteur a combustion interne
US20190001345A1 (en) * 2017-06-28 2019-01-03 Tassu Esp Oy Particle filtering apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4675029A (en) * 1984-11-21 1987-06-23 Geoenergy International, Corp. Apparatus and method for treating the emission products of a wood burning stove
CH694645A5 (de) 2003-12-01 2005-05-13 Empa Vorrichtung zur elektrostatischen Partikelabscheidung in Gasströmen.
DE102004039118B3 (de) 2004-08-11 2005-08-11 Eidgenössische Materialprüfungs- und Forschungsanstalt Empa Elektrofilter für eine Feuerungsanlage
DE102008005096A1 (de) * 2007-02-14 2008-11-06 Olaf Wilde Vorrichtung zur Reinigung von Rauchgas in Heizungsanlagen
EP1967273A2 (de) * 2007-03-05 2008-09-10 Schmatloch Nückel Technologietransfer Elektrofilter für eine Kleinfeuerungsanlage
DE102008049211A1 (de) 2008-09-27 2010-04-08 Forschungszentrum Karlsruhe Gmbh Elektrostatischer Abscheider für die Reinigung von Rauchgasen
DE202010016019U1 (de) * 2010-11-30 2012-03-01 Robert Bosch Gmbh Heizkessel mit einem elektrostatischen Abscheider
EP2583755A1 (de) * 2011-10-18 2013-04-24 Karlsruher Institut für Technologie Vorrichtung, Gerät und Verfahren zum Filtern feinen Schwebstoffteilchen aus Abgas
DE202012100052U1 (de) * 2012-01-06 2012-07-11 Georg Hipp Maschinenbau Gmbh Anordnung einer beheizbaren Elektrode in einem Kamin oder einem Abgaskanal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115007313A (zh) * 2022-06-09 2022-09-06 李亮 一种可防回风的卧式静电除尘器及其实施方法
CN117283905A (zh) * 2023-09-08 2023-12-26 浙江跃发新材料有限公司 一种塑料包装袋表面局部电晕生产工艺
CN117283905B (zh) * 2023-09-08 2024-06-07 浙江跃发新材料有限公司 一种塑料包装袋表面局部电晕生产工艺

Also Published As

Publication number Publication date
DE102019105776A1 (de) 2020-09-10

Similar Documents

Publication Publication Date Title
EP3705185A1 (de) Elektrostatischer abscheider für die reinigung von rauchgasen
EP1193445B1 (de) Vorrichtung zur Rauchgasreinigung an Kleinfeuerungen
DE102004022288B4 (de) Elektrostatischer Abscheider mit internem Netzgerät
DE102006003028B4 (de) Elektrofilter mit Selbstreinigungseinrichtung für eine Feuerungsanlage und Verfahren zum Betreiben des Elektrofilters
DE3804779C2 (de)
DE102008049211B4 (de) Elektrostatischer Abscheider für die Reinigung von Rauchgasen
FI124675B (fi) Menetelmä pienhiukkasten keräämiseksi savukaasuista sekä vastaava sovitelma
WO2022069586A1 (de) Elektroabscheider, rohrabschnitt und schwebstaub erzeugende anlage
EP1930081B1 (de) Optimierter elektrostatischer Abscheider
EP2105206A2 (de) Elektrostatischer Abscheider mit Partikelabweisemittel und Heizsystem
KR101721925B1 (ko) 전기 쇼트 발생 방지용 전기 집진기 애자 및 이를 포함한 전기 집진기
CH702125B1 (de) Elektrostatischer Feinstaubfilter.
EP1732695B1 (de) Verfahren zur steuerung einer vorrichtung für die elektrostatische partikelabscheidung in gasströmen, sowie steuerungseinheit hierzu
EP2256411B1 (de) Abgasleitung für ein Heizgerät oder eine Verbrennungsmaschine
DE3323926C2 (de) Vorrichtung zum Reinigen von Gasen
DE8810485U1 (de) Wechselspannungsfilter zur Abscheidung von Schwebstoffen aus strömenden Gasen
EP2266702B1 (de) Elektrostatischer Abscheider zur Rauchgasreinigung mit einem elektrischen Sperrfeld
EP2251088B1 (de) Elektrostatischer Abscheider und Heizsystem
AT504902A4 (de) Elektrofilter für eine feuerungsanlage
EP1771254B1 (de) Bauprinzip einer abgasreinigungsanlage und verfahren zum reinigen eines abgases damit
DE102009036957A1 (de) Elektrostatischer Abscheider und Heizungssystem
EP2062649B1 (de) Elektrostatischer Abscheider mit Partikelabweisemittel, Heizungssystem und Verfahren zum Betrieb
EP1515806A1 (de) Durchf hrung f r elektrische hochspannung durch eine wa nd, die einen umgebungsbereich von einem prozessbereich trennt
EP2006023B1 (de) Elektrostatischer Abscheider und sein Heizungssystem
DE102009030804B4 (de) Elektrostatischer Abscheider zur Partikelabscheidung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210305

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20221212