EP3701060B1 - Method for repairing monocrystalline materials - Google Patents

Method for repairing monocrystalline materials Download PDF

Info

Publication number
EP3701060B1
EP3701060B1 EP18796582.7A EP18796582A EP3701060B1 EP 3701060 B1 EP3701060 B1 EP 3701060B1 EP 18796582 A EP18796582 A EP 18796582A EP 3701060 B1 EP3701060 B1 EP 3701060B1
Authority
EP
European Patent Office
Prior art keywords
substrate
monocrystalline
repairing method
powder
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18796582.7A
Other languages
German (de)
French (fr)
Other versions
EP3701060A1 (en
Inventor
Tobias KALFHAUS
Robert Vassen
Olivier Guillon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Juelich GmbH
Original Assignee
Forschungszentrum Juelich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Juelich GmbH filed Critical Forschungszentrum Juelich GmbH
Priority to PL18796582T priority Critical patent/PL3701060T3/en
Publication of EP3701060A1 publication Critical patent/EP3701060A1/en
Application granted granted Critical
Publication of EP3701060B1 publication Critical patent/EP3701060B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/137Spraying in vacuum or in an inert atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/073Metallic material containing MCrAl or MCrAlY alloys, where M is nickel, cobalt or iron, with or without non-metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment

Definitions

  • the invention relates to the field of metals and alloys and more particularly to the field of nickel alloys.
  • the invention relates in particular to a method for repairing monocrystalline materials which are often used for components subject to high temperatures, such as, for example, the blades of stationary gas turbines or aircraft turbines.
  • Out EP 2631324 A1 is a process for coating a single-crystal substrate surface of a component made of a nickel superalloy, in which a powder material similar to the material of the component is applied by means of vacuum plasma spraying.
  • the substrate is heated to 600 ° C and a mixture of argon and hydrogen is used as the working gas.
  • EP 2110449 A1 reports on the production of coated superalloys, in which a rod made of a single crystal alloy is cast in a vacuum and solidified by a heat treatment. The surface of the substrate produced in this way is polished before the actual coating.
  • EP 1001055 A1 discloses a method in which a protective coating is applied by means of laser cladding to protect a gas turbine component made of a superalloy base material with a monocrystalline structure, and in which the protective coating is grown epitaxially on the base material and the coating is grown with a completely monocrystalline structure.
  • US 5,732,467 A1 describes a method for repairing cracks in the outer surfaces of components which have a superalloy with a directional microstructure.
  • the process described there coats and seals the outer surfaces of directionally solidified and monocrystalline structures by coating the defective area using a high-speed oxy-fuel process (also referred to herein as HVOF), followed by hot isostatic pressing of the corresponding component.
  • HVOF high-speed oxy-fuel process
  • a crack-free, repaired area should be created without adversely affecting the single-crystal microstructure of the rest of the component.
  • a polycrystalline microstructure is produced in the repair area, which has the aforementioned disadvantages.
  • the break point must be suitable to be welded and at the same time to enable an orientation direction of the newly applied material which has the same orientation as the rest of the material. This requires a temperature gradient that supports the orientation alignment.
  • the laser build-up welding described here is, due to its specific process parameters, such as small local energy input and controlled material input, in principle a suitable method for welding such break points accordingly.
  • the challenges with this process are to achieve a perfect, single-crystal, crack-free area, since only polycrystalline areas can be generated regularly due to a low unstable energy distribution.
  • a welding process is also proposed to repair damage to monocrystalline materials, such as those found in the blades or blades of gas turbines [3] .
  • LMF laser metal forming
  • laser cladding it is in principle possible to create monocrystalline structures on a monocrystalline substrate. This method is characterized by minimal heat input into the component during construction, so that further cracks or recrystallization of the monocrystalline material are prevented.
  • the orientation of the monocrystalline starting material can also be maintained up to the interface in the newly applied material.
  • Optimized process parameters can also lead to a matching epitaxial growth on a monocrystalline substrate, for example in which the ratio between the temperature gradient in the welding zone and the solidification rate is higher than a material-dependent threshold value.
  • the object of the invention is achieved by a method for repairing single-crystal materials according to the main claim.
  • the vacuum plasma spraying method can be used to generate epitaxial growth on a monocrystalline material (substrate).
  • the material to be repaired typically comprises a metallic alloy, in particular a nickel-based alloy or also a cobalt-based alloy.
  • plasma spraying is understood to mean a coating process which is carried out with the aid of a plasma and is not based on plasma polymerisation.
  • vacuum plasma spraying is understood to mean a coating process which is carried out in a vacuum chamber at a pressure of 1 to 200 mbar to avoid oxidation of the coating material by atmospheric oxygen.
  • the same material as the substrate material is used as the coating material. Since the components to be repaired, such as blades of stationary gas turbines and / or aircraft turbine blades, are usually materials exposed to high temperatures, all metallic high-temperature alloys or superalloys are particularly suitable as coating materials.
  • the known high-temperature alloys currently predominantly include solid and high-strength nickel-based alloys or also cobalt-based alloys.
  • metallic materials of complex composition iron, nickel, platinum, chromium or cobalt-based with additions of the elements Co, Ni, Fe, Cr, Mo, W, Re, Ru, Ta, Nb, Al, Ti, Mn
  • superalloys Zr, C and B
  • They are mostly scale and high temperature resistant. They can be manufactured using either melt metallurgy or powder metallurgy.
  • the polycrystallinity of thermally sprayed metallic layers can be suppressed by spraying an alloy of at least the same type as the monocrystalline substrate material has on the heated and polished substrate surface at greatly reduced pressure and in an argon atmosphere .
  • the term “identical” is understood to mean that the proportion of alloying elements of substrate and layer differ only slightly and that these have an almost identical microstructure after a heat treatment.
  • the temperature ranges of the substrate are so high that the solidification rate of the melted powder particles is greatly reduced, but the melting temperature of the substrate is not reached.
  • substrate temperatures between 700 ° C. and temperatures just below the melting temperature of the substrate used, ie. H. for example 50 ° C below the melting temperature of the substrate, set.
  • the disadvantage of this process is that the solidification rate cannot be measured exactly, but it should preferably be less than 100 mm / s.
  • nucleation does not take place anywhere within the applied layer, but advantageously directly on the substrate surface, where it is aligned with the predetermined orientation of the single crystal of the substrate.
  • An epitaxial growth of the applied layer on the substrate is thus possible.
  • the area of the substrate to be repaired is preferably heated by a meandering movement of a plasma torch without conveying powder over the surface of the substrate.
  • the entire substrate is heated.
  • the substrate can be heated in different ways: electrically, inductively or by electromagnetic radiation.
  • the entire substrate is advantageously heated to at least 700 ° C., advantageously to at least 800 ° C., preferably even to approx. 1100 ° C., depending on the alloy.
  • the substrate itself is heated, but not up to temperatures at which the substrate melts.
  • the powder melted in the plasma theoretically hits a solid, polished substrate surface, nucleates there and can therefore advantageously solidify in the same crystal orientation.
  • local melting of the surface of the substrate by a few ⁇ m cannot be ruled out.
  • This process step must be clearly distinguished from repair processes known to date, such as welding processes using a laser, in which the substrate itself is often also melted at least on the surface to be repaired.
  • argon-containing plasma gas When it comes to the composition of the plasma gas, it is important that it contains hydrogen. Hydrogen causes reducing conditions which regularly suppress the oxidation of the substrate material during the heating process.
  • a suitable argon-containing plasma gas could thus have a minimum of 5 NLPM and a maximum of 25 NLMP hydrogen at 50 NLPM argon.
  • a vacuum plasma spray system with a powder delivery system and a device for heating a substrate (component) to temperatures of approx. 700 ° C. up to 1300 ° C. are preferably required.
  • the area to be repaired on the component should preferably be polished.
  • the repair process of the damaged component usually begins with the removal of the bondcoat and topcoat of the thermal insulation layer using hydrofluoric acid, also known as stripping, if there are any on the substrate material.
  • hydrofluoric acid also known as stripping
  • the critical damage is identified and regularly removed, ground and polished using a machining process.
  • Sanding can be done with 320, 640, 1200 and 4000 grit sandpaper, for example.
  • the subsequent polishing can be done with a diamond suspension on a soft cloth, for example first a suspension with diamond particles with an average particle size of approx. 3 ⁇ m and then a suspension with diamond particles with an average particle size of approx. 1 ⁇ m is used.
  • a light microscope is suitable for checking the polished substrate surface.
  • the treated substrate surface should be free of scratches.
  • the undamaged areas of the substrate are masked.
  • the removed area can now be rebuilt using the method according to the invention.
  • Layer thicknesses of approx. 10 ⁇ m up to several mm can be achieved.
  • the layer thickness when driving over / spraying the plasma torch once can be set individually and results from the robot speed in connection with the powder feed rate.
  • the entire layer thickness is regularly implemented by repeatedly driving over / spraying.
  • a single transition results in a layer thickness of approx. 25 ⁇ m.
  • the layer can be built up as thick as you want.
  • an application rate that is too high in the case of a single transition should not take place, since otherwise this can disadvantageously lead to increased pore formation. It is not necessary to polish between the individual transitions.
  • the application of several layers is also possible according to the invention, provided that the corresponding surface is polished between the applications of the layers. This can be necessary, for example, if a further repair appears to be necessary after an initial repair and inspection of an area. In this respect, the repaired substrate can then be polished again and used for a further repair.
  • the applied layer is generally very low in tension due to the high application temperature, there is no physical limit to a maximum layer thickness that can be applied using the method according to the invention.
  • a layer thickness range of a few ⁇ m up to approx. 5 mm can be achieved with the process.
  • a new thermal insulation layer can be applied and, if necessary, new cooling holes can be drilled.
  • the method according to the invention therefore advantageously offers the possibility of restoring defective and discarded monocrystalline blades to a new condition.
  • the optimal process parameters can be determined by a specialist by means of a few preliminary tests. Depending on the material, CET models and / or microstructure diagrams already existed, such as for CMSX-4® [5] (see Figure 1 ) that can be accessed.
  • the method according to the invention it is important to first heat the entire substrate or the entire component externally to temperatures just below the melting temperature of the substrate.
  • the temperature to be set is alloy-specific.
  • the additional further heating by the plasma jet is necessary to suppress oxidation of the surface.
  • the hydrogen contained in the plasma jet creates reducing conditions.
  • the desired temperatures should be as high as possible, so a temperature of 50 K below the melting temperature is desirable.
  • the temperature difference to the rest of the substrate / component should be as small as possible, since the area to be repaired should advantageously have a temperature distribution that is as homogeneous as possible.
  • a high substrate temperature usually has a beneficial effect on the formation of internal stresses. Residual stresses can disadvantageously lead to the previously applied layer flaking off. The higher the substrate temperature, the lower the resulting internal stresses.
  • An inhomogeneous temperature distribution of the component during the injection molding process would increase the susceptibility to internal stresses in the entire component.
  • the main difference in the method according to the invention is the additional external heating of the substrate. Only with this is it possible to achieve the desired microstructure with the outstanding mechanical properties of the monocrystalline alloys and to achieve minimal residual stresses. In contrast, heating up the component solely through the energy introduced by the plasma would not be sufficient.
  • a CET diagram (Columnar to Equiaxed Transition (CET)) shows the effects of the solidification rate and the temperature gradient prevailing at the point on the resulting microstructure of the solidified material.
  • the Figure 2 shows schematically a solidification model for the method described.
  • the molten powder particles hit the heated surface of the sample with the velocity v p.
  • the temperature near the substrate is below the melting temperature.
  • There the dendrites and the interdendritic area have already solidified. Above this is a transition area in which the solidification front lies and the dendrites form.
  • the interdentric area has not yet solidified.
  • the melted particles hit the substrate.
  • the temperature is above the melting temperature.
  • the figure in the substrate shows the large dendrite arm spacing ⁇ 1 substrate, which is created by a very low solidification rate v and a low temperature gradient G (see CET diagram) during the production of the single-crystal substrates.
  • CMSX-4® is a registered trademark for a single crystal (SC) alloy from Cannon-Muskegon, MI (USA).
  • ERBO / 1 is a single crystal nickel-based superalloy of the second generation from Doncasters Precision Casting, Bochum (Germany).
  • Table 1 Element [wt .-%] Al Cr Co Hf Mon re Ti Ta W.
  • Ni CMSX-4® powder 6.0 6.4 9.5 0.1 0.6 2.9 0.9 8.5 8.1 rest ERBO-1® substrate 5.7 6.5 9.6 0.1 0.6 2.9 1.0 6.5 6.4 rest
  • substrate samples with the dimensions 32 mm x 20 mm x 2.5 mm and a hole with a diameter of 1.1 mm and a length of 10 mm are produced by means of spark erosion from ERBO-1 plates.
  • the Figure 3 shows the sample geometry used here.
  • the substrate samples are ground and polished.
  • the surface was first treated with 320, 640, 1200 grit sandpaper and finally with 4000 grit sandpaper.
  • the subsequent polishing was carried out using a soft cloth soaked in a diamond suspension.
  • a cloth with a suspension with diamond particles with an average particle size of approx. 3 ⁇ m was used and the surface was polished to a circular shape.
  • Another cloth with a suspension with diamond particles with an average particle size of approx. 1 ⁇ m was then used and the surface was polished again.
  • the substrate surface treated and polished in this way was checked using a light microscope. No scratches could be detected on the substrate surface.
  • An insulated SiN flat heater 2 with a power of 1000 W enables the sample 4 to be heated to up to 1100 ° C. in a vacuum, preferably at 1 to 200 mbar.
  • a SiC heating plate 3 On the heater 2 is a SiC heating plate 3, which ensures a more constant temperature of the sample.
  • the heater 2, the thermally conductive plate (SiC) 3 and the sample 4 are surrounded by a prepared insulation 1, 5 which reduces convection.
  • the sprayed layer or layers are applied via an opening in the diaphragm 6.
  • the temperature is regulated by a controller and by measuring the temperature in the sample with a thermocouple. Both the cables of the thermocouple and the power cables of the heater are laid separately in the vacuum chamber by means of a feedthrough.
  • the Sulzer Metco Powder Feeder Twin-120-V is filled with CMSX-4® powder with spherical particles with a mean geometric particle diameter of 25 - 60 ⁇ m.
  • the mean particle size was determined by means of laser diffraction using the Horiba LA-950V2 device from Retsch.
  • the D 10 value was 27.70 ⁇ m
  • the D 50 value was 39.77 ⁇ m
  • the D 90 value was 55.27 ⁇ m.
  • the powder had previously been stored at 150 ° C. for 2 hours. This step is to remove any water in the powder.
  • the sample heater When the heating process is initiated, the sample heater is activated first. From a temperature of approx. 300 ° C, the plasma flame of the F4 - VB from Oerlinkon Metco supports the heating of the substrate surface until the coating temperature of approx. 900 ° C is reached.
  • the hydrogen contained in the argon-containing plasma gas (plasma gas: 50 NLPM argon and 9 NLPM hydrogen) ensures reducing conditions. In this way, the oxygen contained in argon can be oxidized in a targeted manner without it reacting with the substrate surface and disadvantageously forming an oxide layer.
  • Table 2 Argon [NLPM] 50.0 ⁇ 6.1 Hydrogen [NLPM] 9.0 ⁇ 0.6 Sample temperature [° C] 900 ⁇ 10 Spray distance [mm]: 275 ⁇ 0.1 Robot speed [mm / s]: 440 ⁇ 5 Process pressure [mbar]: 60 ⁇ 1 Powder feed rate in% based on the maximum feed rate 15 ⁇ 0.5 Powder feed rate (absolute) 47.7 g / min.
  • a heat treatment is usually an advantage.
  • solution heat treatment SHT may be necessary in order to reduce any inhomogeneities that may be present in the structure of the coating.
  • the aforementioned heat treatment can advantageously be carried out with the aid of pressure using a hot isostatic press (HIP).
  • HIP hot isostatic press
  • the pressure-assisted heat treatment regularly reduces pores in the structure.
  • the regular arrangement of the y'-precipitates within the ⁇ -matrix takes place regularly by precipitation annealing.
  • the y 'precipitations are largely responsible for the very good mechanical properties in the high temperature range.
  • Figures 5a and 5b Scanning electron microscope images of cross-sections of the samples treated in this way are shown, showing the directional solidification on the monocrystalline substrate.
  • Figure 5a shows the single crystal substrate onto which the repair layer was sprayed.
  • the columnar structure of the grains in the polycrystalline layer is an indication of directional solidification.
  • At the transition between substrate and layer there is an area with a gray color similar to that of the substrate. Due to the crystal orientation contrast in the backscattered electron image of the scanning electron microscope, this means the same crystal orientation for substrate and layer in this same-colored area.
  • Figure 5b represents a higher enlargement of this area.
  • the dark y 'precipitations in the ⁇ matrix can be seen in the substrate.
  • FIGS. 6a and 6b show scanning electron microscope images of cross-sections of the same sample which, after coating with the parameters listed above, was first solution annealed and then precipitation annealed.
  • Figure 6a shows the transition area from the monocrystalline substrate to the repair layer.
  • the white dashed line marks the former interface.
  • the grains nucleated on the monocrystalline substrate grow into the polycrystalline layer at the expense of the small grains.
  • a monocrystalline structure is created with the same crystal orientation as the substrate.
  • the repair layer only has a slightly increased pore density, which would disappear through a pressure-assisted heat treatment using HIP.
  • the smaller black dots indicate Al 2 O 3 inclusions that have arisen as a result of slight oxidation of the spray material.
  • Figure 6b shows an enlarged section. At the former interface, an Al 2 O 3 pore fringe indicates this.
  • the precipitation annealing reduces the size of the y 'precipitates in the ⁇ matrix and these are arranged in a cubic manner. This arrangement ensures for the best possible mechanical properties of the alloy.
  • the orientation of the precipitates shows, in addition to the same crystal orientation contrast, that the monocrystallinity of the substrate was continued in the repair layer.
  • the applied coating can then be recognized by its red color, the red color indicating the (001) crystal plane in which the substrate material is also oriented. It can thus be proven that in the application according to the invention the applied, sprayed layer solidifies at least in wide areas in the same orientation as the single-crystal substrate material.
  • the porosity in the sprayed layer is determined by the application rate, which results from the powder feed rate and the robot speed. As the application rate decreases, the quality of the layer is also reduced. It was also found that the size of the solidified grains depends on the powder size used. The size of the directionally solidified grains increases with larger particle diameters.
  • the quality of the argon with regard to the oxygen content should be improved.
  • Another reason for the formation of an oxide layer could be an awkward robot movement during the spraying process. This should preferably be adjusted so that the sample does not leave the area of influence of the plasma torch. If there is no nucleation on the polished surface of the area to be repaired, although there is no oxide layer, the temperature of the workpiece to be repaired must be increased.

Description

Die Erfindung bezieht sich auf das Gebiet der Metalle und Legierungen und speziell auf das Gebiet der Nickellegierungen. Die Erfindung betrifft insbesondere ein Verfahren zur Reparatur von einkristallinen Werkstoffen, die häufig für hoch-temperaturbelastete Bauteile, wie beispielsweise die Schaufeln von stationären Gasturbinen oder von Flugzeugturbinen eingesetzt werden.The invention relates to the field of metals and alloys and more particularly to the field of nickel alloys. The invention relates in particular to a method for repairing monocrystalline materials which are often used for components subject to high temperatures, such as, for example, the blades of stationary gas turbines or aircraft turbines.

Stand der TechnikState of the art

Aus der Literatur ist bekannt, dass die Herstellung von einkristallinen Schaufeln stationärer Gasturbinen und/oder von Flugzeugturbinen durch die gerichtete Erstarrung und spezielle Gießprozesse sehr teuer und aufwändig ist. Die in den Bauteilen erzeugte Ausrichtung der Mikrostruktur erfolgt dabei entlang der Richtung der axialen Spannung. Die Schaufeln werden im Betrieb regelmäßig einer hohen thermischen Belastung und auch einer korrosiven Atmosphäre ausgesetzt, wodurch diese stark verschleißen.It is known from the literature that the production of monocrystalline blades for stationary gas turbines and / or aircraft turbines is very expensive and complex due to the directional solidification and special casting processes. The alignment of the microstructure produced in the components takes place along the direction of the axial tension. During operation, the blades are regularly exposed to high thermal loads and also to a corrosive atmosphere, as a result of which they wear heavily.

Aus EP 2631324 A1 ist ein Verfahren zur Beschichtung einer einkristallinen Substratoberfläche eines Bauteiles aus einer Nickelsuperlegierung, bei dem ein ähnliches Pulvermaterial wie das Material des Bauteils mittels Vakuum-Plasmaspritzen aufgebracht wird. Das Substrat wird auf 600°C aufgeheizt und eine Mischung von Argon und Wasserstoff als Arbeitsgas benutzt.Out EP 2631324 A1 is a process for coating a single-crystal substrate surface of a component made of a nickel superalloy, in which a powder material similar to the material of the component is applied by means of vacuum plasma spraying. The substrate is heated to 600 ° C and a mixture of argon and hydrogen is used as the working gas.

In EP 2110449 A1 wird über die Herstellung von beschichteten Superlegierungen berichtet, bei dem ein Stab aus einer Einkristall-Legierung im Vakuum gegossen und durch eine Wärmebehandlung verfestigt wird. Die Oberfläche des so hergestellten Substrates wird vor der eigentlichen Beschichtung poliert.In EP 2110449 A1 reports on the production of coated superalloys, in which a rod made of a single crystal alloy is cast in a vacuum and solidified by a heat treatment. The surface of the substrate produced in this way is polished before the actual coating.

EP 1001055 A1 offenbart ein Verfahren, bei dem zum Schutz eines Gasturbinenbauteils aus einem Superlegierungsgrundmaterial mit einkristalliner Struktur eine Schutzbeschichtung mittels Laser-Cladding aufgebracht wird, und bei dem man die Schutzbeschichtung epitaktisch auf das Basismaterial aufwachsen lässt und die Beschichtung mit einer vollkommen einkristallinen Struktur wachsen lässt. EP 1001055 A1 discloses a method in which a protective coating is applied by means of laser cladding to protect a gas turbine component made of a superalloy base material with a monocrystalline structure, and in which the protective coating is grown epitaxially on the base material and the coating is grown with a completely monocrystalline structure.

Aus diesem Grund ist beispielsweise das Interesse an der Reparatur einkristalliner Turbinenschaufeln anstelle einer Neuherstellung sehr groß. Dazu sind auch bereits einige Reparaturverfahren aus dem Stand der Technik bekannt, wobei dort unterschieden wird, zwischen Verfahren zur Reparatur von z. B. Turbinenschaufeln über ein thermisches Spritzverfahren, ferner Reparaturverfahren, bei denen Schweißen und Laser cladding eingesetzt wird und zuletzt Verfahren, bei denen während eines thermischen Spritzverfahrens epitaktisches Wachstum von keramischen Werkstoffen erfolgt.For this reason, there is, for example, great interest in repairing single-crystal turbine blades instead of producing them from scratch. For this purpose, some repair methods are already known from the prior art, a distinction being made there between Method for repairing z. B. turbine blades via a thermal spray process, further repair processes in which welding and laser cladding is used and finally processes in which epitaxial growth of ceramic materials takes place during a thermal spray process.

So ist aus Kazuhoro et al. [1] ein Verfahren bekannt, mit dem eine defekte Turbinenschaufel repariert werden kann. Dabei findet jedoch kein epitaktisches Wachstum auf dem einkristallinen Substrat statt, so dass als Folge eine polykristalline Mikrostruktur erzeugt wird, die regelmäßig nicht die mechanischen Eigenschaften des Ursprungssubstrats aufweist.From Kazuhoro et al. [1] a method known with which a defective turbine blade can be repaired. However, there is no epitaxial growth on the monocrystalline substrate, so that a polycrystalline microstructure is generated as a result, which usually does not have the mechanical properties of the original substrate.

Ferner wird in US 5,732,467 A1 ein Verfahren zur Reparatur von Rissen in den Außenflächen von Bauteilen beschrieben, die eine Superlegierung mit einer richtungsorientierten Mikrostruktur aufweisen. Das dort beschriebene Verfahren beschichtet und versiegelt die Außenflächen von gerichtet erstarrten und einkristallinen Strukturen durch Beschichten des defekten Bereichs unter Verwendung eines Hochgeschwindigkeits-Oxy-Fuel-Verfahrens (hierin auch als HVOF bezeichnet), gefolgt von einem heißisostatischen Pressen des entsprechenden Bauteils. Hierbei soll ein rissfreier reparierter Bereich entstehen, ohne dass die einkristalline Mikrostruktur des restlichen Bauteils nachteilig beeinflusst wird. Auch hierbei wird im Reparaturbereich jedoch eine polykristalline Mikrostruktur erzeugt, die die vorgenannten Nachteile aufweist.Furthermore, in US 5,732,467 A1 describes a method for repairing cracks in the outer surfaces of components which have a superalloy with a directional microstructure. The process described there coats and seals the outer surfaces of directionally solidified and monocrystalline structures by coating the defective area using a high-speed oxy-fuel process (also referred to herein as HVOF), followed by hot isostatic pressing of the corresponding component. A crack-free, repaired area should be created without adversely affecting the single-crystal microstructure of the rest of the component. Here too, however, a polycrystalline microstructure is produced in the repair area, which has the aforementioned disadvantages.

Aus dem Stand der Technik ist zudem ein Schweißverfahren von Boris Rottwinkel et al. [2] bekannt, bei dem zur Reparatur eines Risses unterhalb des Spitzenbereichs eines einkristallinen Bauteils, z. B. einer Turbinenschaufel, Zeit und Material sparend Bruchstellen vorgesehen sind, um den betroffenen geschädigten Bereich zunächst zu eliminieren. Die Bruchstelle muss geeignet sein, um verschweißt werden zu können, und um gleichzeitig eine Orientierungsrichtung des neu aufgebrachten Materials zu ermöglichen, welche dieselbe Ausrichtung wie das übrige Material aufweist. Dazu wird ein Temperaturgradient benötigt, der die Orientierungsausrichtung unterstützt. Das hier beschriebene Laserstrahl-Auftragschweißen ist aufgrund seiner spezifischen Prozessparameter, wie kleiner lokaler Energieeintrag und kontrollierter Materialeintrag, prinzipiell eine geeignete Methode, um solche Bruchstellen entsprechend zu verschweißen. Die Herausforderungen bei diesem Verfahren bestehen jedoch darin, einen perfekten einkristallinen, rissfreien Bereich zu erreichen, da durch eine geringe instabile Energieverteilung bereits regelmäßig nur polykristalline Bereiche erzeugt werden können.A welding process by Boris Rottwinkel et al. [2] known in which to repair a crack below the tip region of a single crystal component, e.g. B. a turbine blade, time and material-saving breakpoints are provided to initially eliminate the affected damaged area. The break point must be suitable to be welded and at the same time to enable an orientation direction of the newly applied material which has the same orientation as the rest of the material. This requires a temperature gradient that supports the orientation alignment. The laser build-up welding described here is, due to its specific process parameters, such as small local energy input and controlled material input, in principle a suitable method for welding such break points accordingly. The challenges with this process, however, are to achieve a perfect, single-crystal, crack-free area, since only polycrystalline areas can be generated regularly due to a low unstable energy distribution.

Aus Henderson et al. [3] sind automatische Schweißverfahren für die industrielle Herstellung von Gasturbinen bekannt. Das Schweißen von hochlegierten Nickellegierungen ist sehr komplex und kann häufig nur sehr schwer zufriedenstellend angewandt werden. Bei Schweißversuchen zur Reparatur von Schaufelrädern wurden beispielsweise spezielle Legierungsdrähte zum Auffüllen eingesetzt. Es folgte ein Standard Ausheiz- und Alterungsprozedere, in denen jedoch Mikrorisse auftraten.From Henderson et al. Automatic welding processes for the industrial production of gas turbines are known [3]. The welding of high-alloy nickel alloys is very complex and can often only be used with great difficulty. For example, during welding tests to repair paddle wheels, special alloy wires were used for filling. A standard baking and aging procedure followed, in which, however, micro-cracks occurred.

Zur Reparatur von Schäden an einkristallinen Materialien, wie sie beispielsweise in Schaufeloder Flügelblättern von Gasturbinen vorkommen, wird ebenfalls ein Schweißverfahren vorgeschlagen [3]. Bei der Reparatur durch Laserstrahl-Auftragschweißen (engl. Laser Metall Forming (LMF) oder Laser Cladding) ist es prinzipiell möglich, einkristalline Strukturen auf einem einkristallinen Substrat zu erzeugen. Diese Methode zeichnet sich durch einen minimalen Wärmeeintrag in das Bauteil während des Aufbaus aus, sodass weitere Risse oder eine Rekristallisation des einkristallinen Materials verhindert werden.A welding process is also proposed to repair damage to monocrystalline materials, such as those found in the blades or blades of gas turbines [3] . When repairs are carried out by laser metal forming (LMF) or laser cladding, it is in principle possible to create monocrystalline structures on a monocrystalline substrate. This method is characterized by minimal heat input into the component during construction, so that further cracks or recrystallization of the monocrystalline material are prevented.

Mit Hilfe dieser Methode kann zudem die Orientierung des einkristallinen Ausgangsmaterials bis über die Grenzfläche in das neu aufgebrachte Material beibehalten werden. Optimierte Prozessparameter können zudem zu einem übereinstimmenden epitaktischen Wachstum auf einem einkristallinen Substrat führen, beispielsweise in dem das Verhältnis zwischen dem Temperaturgradienten in der Schweißzone und der Erstarrungsgeschwindigkeit höher ist, als ein materialabhängiger Schwellenwert.With the help of this method, the orientation of the monocrystalline starting material can also be maintained up to the interface in the newly applied material. Optimized process parameters can also lead to a matching epitaxial growth on a monocrystalline substrate, for example in which the ratio between the temperature gradient in the welding zone and the solidification rate is higher than a material-dependent threshold value.

Die gezielte Reparatur von Rissen ist aber bislang nicht möglich. Bei der Reparatur von größeren Bereichen kommt es regelmäßig zu erhöhten Spannungen durch thermische Expansion. Des Weiteren liefert die Literatur keine Ergebnisse über die Reparatur von Bereichen, in denen Kühllöcher oder -leitungen verlaufen, durch dieses Verfahren. Durch Kühllöcher entsteht - ähnlich wie in einer Kerbe - ein komplexes Erstarrungssystem. Die gerichtete kristalline Erstarrung erfolgt regelmäßig nur, wenn der Wärmefluss konstant ist und nicht gestört wird. Beim Vorhandensein von Kühllöchern wird dieser konstante Wärmefluss jedoch typischerweise gestört, so dass in Folge Risse entstehen und/oder eine unerwünschte Polykristallinität in diesem Bereich auftritt. Eine Reparatur in einem solchen Bereich unterhalb der Turbinenspitze ist somit mit diesen Verfahren in der Regel nicht möglich.However, the targeted repair of cracks has not yet been possible. When repairing larger areas, there are regularly increased stresses due to thermal expansion. Furthermore, the literature does not provide any results on the repair of areas in which cooling holes or conduits run by this method. A complex solidification system is created through cooling holes - similar to a notch. The directional crystalline solidification only takes place regularly if the heat flow is constant and not disturbed. In the presence of cooling holes, however, this constant heat flow is typically disturbed, with the result that cracks occur and / or undesired polycrystallinity occurs in this area. A repair in such an area below the turbine tip is therefore generally not possible with these methods.

Durch die bereits bestehenden Reparaturverfahren ist es somit noch nicht möglich, die Mikrostruktur des einkristallinen Grundwerkstoffes an jedem Bereich des zu reparierenden Bauteils, z. B. einer Turbinenschaufel, wiederherzustellen. Dies bedeutet, dass eine Reparatur der Schaufeln zwar möglich ist, diese jedoch regelmäßig noch nicht die mechanischen Eigenschaften neuwertiger Schaufeln besitzen.Due to the already existing repair methods, it is not yet possible to change the microstructure of the single-crystal base material on every area of the component to be repaired, e.g. B. a turbine blade to restore. This means a repair of the blades is possible, however, these regularly do not yet have the mechanical properties of blades that are as good as new.

Im Bereich der keramischen Bearbeitung sind von Shu-Wie Yao et al. [4] Untersuchungen zum Thema epitaktisches Wachstum während der Erstarrung von Plasma gespritztem geschmolzenem TiO2 durchgeführt worden. Es wurde herausgefunden, dass eine Vielzahl von Parametern, wie beispielsweise die Aufbringungstemperatur, die kristallographische Ausrichtung und die Unterkühlung der Schmelze, einen deutlichen Einfluss auf das epitaktische Wachstum haben. Insbesondere die Temperatur der Schmelze entscheidet darüber, ob eine heterogene Keimbildung oder epitaktisches Wachstum auftritt. Die Druckschrift zeigt, dass eine gerichtete Erstarrung auch schon beim Plasma Spritzen beobachtet wurde.In the field of ceramic processing, Shu-Wie Yao et al. [4] Studies on the subject of epitaxial growth during the solidification of plasma sprayed molten TiO 2 have been carried out. It was found that a large number of parameters, such as the application temperature, the crystallographic orientation and the supercooling of the melt, have a clear influence on the epitaxial growth. In particular, the temperature of the melt determines whether heterogeneous nucleation or epitaxial growth occurs. The publication shows that directional solidification has also been observed with plasma spraying.

Die Aufgabe der Erfindung wird gelöst durch ein Verfahren zur Reparatur einkristalliner Werkstoffe gemäß Hauptanspruch.The object of the invention is achieved by a method for repairing single-crystal materials according to the main claim.

Vorteilhafte Ausgestaltungen des Verfahrens ergeben sich aus den darauf rückbezogenen Ansprüchen.Advantageous refinements of the method emerge from the claims that refer back to them.

Gegenstand der ErfindungSubject of the invention

Im Rahmen der Erfindung wurde herausgefunden, dass über die Methode des Vakuum Plasma Spritzens epitaktisches Wachstum auf einem einkristallinen Werkstoff (Substrat) generiert werden kann.In the context of the invention, it was found that the vacuum plasma spraying method can be used to generate epitaxial growth on a monocrystalline material (substrate).

Im Rahmen dieser Erfindung umfasst der zu reparierende Werkstoff, im folgenden Substratwerkstoff genannt, typischerweise eine metallische Legieruing, insbesondere eine Nickelbasislegierung oder auch eine Kobaltbasislegierung.In the context of this invention, the material to be repaired, referred to below as the substrate material, typically comprises a metallic alloy, in particular a nickel-based alloy or also a cobalt-based alloy.

Unter dem Begriff Plasma Spritzen wird ein Beschichtungsverfahren verstanden, welches mit Hilfe eines Plasmas durchgeführt wird und nicht auf einer Plasmapolymerisation beruht.The term plasma spraying is understood to mean a coating process which is carried out with the aid of a plasma and is not based on plasma polymerisation.

Im Unterschied zum atmosphärischen Plasma Spritzen wird unter Vakuum Plasma Spritzen ein Beschichtungsverfahren verstanden, welches zur Vermeidung der Oxidation des Beschichtungsmaterials durch Luftsauerstoff in einer Vakuumkammer bei einem Druck von 1 bis 200 mbar durchgeführt wird.In contrast to atmospheric plasma spraying, vacuum plasma spraying is understood to mean a coating process which is carried out in a vacuum chamber at a pressure of 1 to 200 mbar to avoid oxidation of the coating material by atmospheric oxygen.

Als Beschichtungsmaterial kommt im optimalen Fall dasselbe Material zum Einsatz, aus dem der Substratwerkstoff besteht. Da es sich in der Regel bei den zu reparierenden Bauteilen, wie beispielsweise Schaufeln stationärer Gasturbinen und/oder Flugzeugturbinenschaufeln, um hoch temperaturbelastete Werkstoffe handelt, kommen als Beschichtungsmaterialien insbesondere alle metallische Hochtemperaturlegierungen oder auch Superlegierungen in Betracht.In the optimal case, the same material as the substrate material is used as the coating material. Since the components to be repaired, such as blades of stationary gas turbines and / or aircraft turbine blades, are usually materials exposed to high temperatures, all metallic high-temperature alloys or superalloys are particularly suitable as coating materials.

Zu den bekannten Hochtemperaturlegierungen gehören zurzeit überwiegend feste und hochfeste Nickelbasislegierungen oder auch Kobaldbasislegierungen. Als Superlegierungen werden ganz allgemein metallische Werkstoffe komplexer Zusammensetzung (Eisen, Nickel, Platin, Chrom oder Kobalt-Basis mit Zusätzen der Elemente Co, Ni, Fe, Cr, Mo, W, Re, Ru, Ta, Nb, Al, Ti, Mn, Zr, C und B) für Hochtemperaturanwendungen bezeichnet. Sie sind zumeist zunder- und hochwarmfest. Ihre Herstellung kann sowohl schmelzmetallurgisch als auch pulvermetallurgisch erfolgen.The known high-temperature alloys currently predominantly include solid and high-strength nickel-based alloys or also cobalt-based alloys. In general, metallic materials of complex composition (iron, nickel, platinum, chromium or cobalt-based with additions of the elements Co, Ni, Fe, Cr, Mo, W, Re, Ru, Ta, Nb, Al, Ti, Mn) are used as superalloys , Zr, C and B) for high temperature applications. They are mostly scale and high temperature resistant. They can be manufactured using either melt metallurgy or powder metallurgy.

Im Rahmen der Erfindung hat sich herausgestellt, dass die Polykristallinität von thermisch gespritzten metallischen Schichten unterdrückt werden kann, indem eine zumindest artgleiche Legierung, wie sie der einkristalline Substratwerkstoff aufweist, auf die beheizte und polierte Substratoberfläche bei stark verringertem Druck und in einer Argon Atmosphäre gespritzt wird. Im Rahmen dieser Erfindung wird unter dem Begriff "artgleich" verstanden, dass sich der Anteil der Legierungselemente von Substrat und Schicht nur geringfügig unterscheiden und diese nach einer Wärmebehandlung eine nahezu identische Mikrostruktur aufweisen.In the context of the invention, it has been found that the polycrystallinity of thermally sprayed metallic layers can be suppressed by spraying an alloy of at least the same type as the monocrystalline substrate material has on the heated and polished substrate surface at greatly reduced pressure and in an argon atmosphere . In the context of this invention, the term “identical” is understood to mean that the proportion of alloying elements of substrate and layer differ only slightly and that these have an almost identical microstructure after a heat treatment.

Es hat sich herausgestellt, dass eine geringe Erstarrungsgeschwindigkeit das gerichtete einkristalline Wachstum des aufgebrachten Materials begünstigt. Die Erstarrungsgeschwindigkeit innerhalb der aufgebrachten Schicht verringert sich regelmäßig mit steigender Substrattemperatur.It has been found that a low solidification rate favors the directional monocrystalline growth of the applied material. The solidification rate within the applied layer decreases regularly with increasing substrate temperature.

Erfindungsgemäß liegen die Temperaruten des Substrates derart hoch, dass die Erstarrungsgeschwindigkeit der aufgeschmolzenen Pulverpartikel stark verringert, die Schmelztemperatur des Substrates aber nicht erreicht wird. Typischerweise werden dazu Substrattemperaturen zwischen 700 °C und Temperaturen knapp unterhalb der Schmelztemperatur des eingesetzten Substrates, d. h. beispielsweise 50 °C unterhalb der Schmelztemperatur des Substrates, eingestellt.According to the invention, the temperature ranges of the substrate are so high that the solidification rate of the melted powder particles is greatly reduced, but the melting temperature of the substrate is not reached. For this purpose, substrate temperatures between 700 ° C. and temperatures just below the melting temperature of the substrate used, ie. H. for example 50 ° C below the melting temperature of the substrate, set.

Die Erstarrungsgeschwindigkeit lässt sich bei diesem Prozess nachteilig nicht exakt messen, sie sollte aber bevorzugt bei weniger als 100 mm/s liegen.The disadvantage of this process is that the solidification rate cannot be measured exactly, but it should preferably be less than 100 mm / s.

Die Keimbildung findet bei diesem Bedingungen nicht irgendwo innerhalb der aufgebrachten Schicht statt, sondern vorteilhaft direkt an der Substratoberfläche, wo sie sich an der vorgegebenen Orientierung des Einkristalls des Substrates ausrichtet. Ein epitaktisches Wachstum der aufgebrachten Schicht auf dem Substrat ist somit möglich.Under these conditions, nucleation does not take place anywhere within the applied layer, but advantageously directly on the substrate surface, where it is aligned with the predetermined orientation of the single crystal of the substrate. An epitaxial growth of the applied layer on the substrate is thus possible.

Vorzugsweise erfolgt das Aufheizen des zu reparierenden Bereiches des Substrates durch eine Meanderbewegung eines Plasmabrenners ohne Pulverförderung über die Oberfläche des Substrates.The area of the substrate to be repaired is preferably heated by a meandering movement of a plasma torch without conveying powder over the surface of the substrate.

Zusätzlich erfolgt eine Aufheizung des gesamten Substrates. Das Substrat kann dabei auf verschiedene Weisen beheizt werden: elektrisch, induktiv oder durch elektromagnetische Strahlung. Vorteilhaft wird das gesamte Substrat je nach Legierung auf mindestens 700 °C, vorteilhaft auf mindestens 800 °C, vorzugsweise sogar auf ca. 1100 °C aufgeheizt.In addition, the entire substrate is heated. The substrate can be heated in different ways: electrically, inductively or by electromagnetic radiation. The entire substrate is advantageously heated to at least 700 ° C., advantageously to at least 800 ° C., preferably even to approx. 1100 ° C., depending on the alloy.

Wichtig bei dem erfindungsgemäßen Verfahren ist, dass während des Aufbringens der thermisch gespritzten Schicht das Substrat selbst zwar aufgeheizt wird, aber nicht bis zu Temperaturen, bei denen das Substrat aufschmilzt. Beim Reparaturprozess trifft somit das im Plasma aufgeschmolzenen Pulver theoretisch auf eine feste, polierte Substratoberfläche, nukliert dort und kann somit vorteilhaft in derselben Kristallorientierung erstarren. In der Praxis kann je nach Durchführung des Verfahrens ein Aufschmelzen der Oberfläche des Substrates lokal um einige wenige µm jedoch nicht ausgeschlossen werden.It is important in the method according to the invention that, while the thermally sprayed layer is being applied, the substrate itself is heated, but not up to temperatures at which the substrate melts. During the repair process, the powder melted in the plasma theoretically hits a solid, polished substrate surface, nucleates there and can therefore advantageously solidify in the same crystal orientation. In practice, however, depending on how the method is carried out, local melting of the surface of the substrate by a few μm cannot be ruled out.

Dieser Verfahrensschritt ist deutlich zu unterscheiden, von bislang bekannten Reparaturverfahren, wie beispielsweise Schweißverfahren mittels eines Lasers, bei denen häufig auch das Substrat selbst zumindest an der zu reparierenden Oberfläche mit aufgeschmolzen wird.This process step must be clearly distinguished from repair processes known to date, such as welding processes using a laser, in which the substrate itself is often also melted at least on the surface to be repaired.

Bei der Zusammensetzung des Plasmagases ist es wichtig, dass dieses Wasserstoff aufweist. Wasserstoff bewirkt reduzierende Bedingungen, welche die Oxidation des Substratwerkstoffes während des Aufheizvorgangs regelmäßig unterdrücken. Ein geeignetes Argon haltiges Plasmagas könnte insofern minimal 5 NLPM und maximal 25 NLMP Wasserstoff bei 50 NLPM Argon aufweisen. NLPM bedeutet Normliter pro Minute und bezieht sich auf einen Gasmengenstrom bei Normbedingungen (T = 273,15 K). Dies entspricht dann einem Konzentrationsbereich von 10 Vol.-% bis 50 Vol.-% Wasserstoff im Plasmagas Argon.When it comes to the composition of the plasma gas, it is important that it contains hydrogen. Hydrogen causes reducing conditions which regularly suppress the oxidation of the substrate material during the heating process. A suitable argon-containing plasma gas could thus have a minimum of 5 NLPM and a maximum of 25 NLMP hydrogen at 50 NLPM argon. NLPM means standard liters per minute and refers to a gas flow rate under standard conditions (T = 273.15 K). This then corresponds to a concentration range of 10% by volume to 50% by volume of hydrogen in the argon plasma gas.

Zur Durchführung des Verfahren werden vorzugsweise eine Vakuum Plasma Spritz Anlage mit Pulverfördersystem und eine Vorrichtung zum Aufheizen eines Substrats (Bauteils) auf Temperaturen von ca. 700 °C bis zu 1300 °C benötigt. Der zu reparierende Bereich auf dem Bauteil sollte vorzugsweise poliert sein.To carry out the process, a vacuum plasma spray system with a powder delivery system and a device for heating a substrate (component) to temperatures of approx. 700 ° C. up to 1300 ° C. are preferably required. The area to be repaired on the component should preferably be polished.

Der Reparaturprozess des beschädigten Bauteils beginnt in der Regel mit dem Entfernen des Bondcoats und Topcoats der Wärmedämmschicht durch Flusssäure, auch strippen (englisch) genannt, sofern solche auf dem Substratwerkstoff vorhanden sind. Im nächsten Schritt werden die kritischen Beschädigungen identifiziert und regelmäßig durch ein zerspanendes Verfahren abgetragen, geschliffen und poliert.The repair process of the damaged component usually begins with the removal of the bondcoat and topcoat of the thermal insulation layer using hydrofluoric acid, also known as stripping, if there are any on the substrate material. In the next step, the critical damage is identified and regularly removed, ground and polished using a machining process.

Das Schleifen kann beispielsweise mit Schleifpapier der Körnung: 320, 640, 1200 und 4000 erfolgen.Sanding can be done with 320, 640, 1200 and 4000 grit sandpaper, for example.

Das anschließende Polieren kann mit einer Diamantsuspension auf einem weichen Tuch erfolgen, wobei beispielsweise zunächst eine Suspension mit Diamantpartikel mit einer mittleren Partikelgröße von ca. 3 µm und anschließend eine Suspension mit Diamantpartikel mit einer mittleren Partikelgröße von ca. 1 µm eingesetzt wird. Für die Überprüfung der polierten Substratoberfläche ist ein Lichtmikroskop geeignet. Dabei sollte die behandelte Substratoberfläche frei von Kratzern sein.The subsequent polishing can be done with a diamond suspension on a soft cloth, for example first a suspension with diamond particles with an average particle size of approx. 3 µm and then a suspension with diamond particles with an average particle size of approx. 1 µm is used. A light microscope is suitable for checking the polished substrate surface. The treated substrate surface should be free of scratches.

Im nächsten Schritt erfolgt die Maskierung der unbeschädigten Bereiche des Substrates.In the next step, the undamaged areas of the substrate are masked.

Nun kann der abgetragene Bereich durch das erfindungsgemäße Verfahren neu aufgebaut werden. Schichtdicken von ca. 10 µm bis zu mehreren mm sind dabei realisierbar. Die Schichtdicke beim einmaligen Überfahren/Spritzen des Plasmabrenners kann individuell eingestellt werden und ergibt sich aus der Robotergeschwindigkeit in Verbindung mit der Pulverförderrate. Die gesamte Schichtdicke wird regelmäßig durch mehrfaches Überfahren/Spritzen realisiert.The removed area can now be rebuilt using the method according to the invention. Layer thicknesses of approx. 10 µm up to several mm can be achieved. The layer thickness when driving over / spraying the plasma torch once can be set individually and results from the robot speed in connection with the powder feed rate. The entire layer thickness is regularly implemented by repeatedly driving over / spraying.

So ergibt sich beispielsweise bei einem einmaligen Übergang eine Schichtdicke von ca. 25 µm. Je nach Anzahl der Übergänge kann die Schicht beliebig dick aufgebaut werden. Eine zu hohe Auftragsrate beim einmaligen Übergang sollte jedoch nicht erfolgen, da es ansonsten nachteilig zu einer erhöhten Porenbildung kommen kann. Eine Politur zwischen den einzelnen Übergängen ist nicht nötig.For example, a single transition results in a layer thickness of approx. 25 µm. Depending on the number of transitions, the layer can be built up as thick as you want. However, an application rate that is too high in the case of a single transition should not take place, since otherwise this can disadvantageously lead to increased pore formation. It is not necessary to polish between the individual transitions.

Auch das Aufbringen mehrerer Schichten ist erfindungsgemäß möglich, sofern zwischen den Aufbringungen der Schichten jeweils eine Polierung der entsprechenden Oberfläche erfolgt. Dies kann beispielsweise dann erforderlich sein, wenn nach einer ersten Reparatur und Überprüfung eines Bereiches eine weitere Reparatur notwendig erscheint. Insofern kann das reparierte Substrat dann erneut poliert und für eine weitere Reparatur eingesetzt werden.The application of several layers is also possible according to the invention, provided that the corresponding surface is polished between the applications of the layers. This can be necessary, for example, if a further repair appears to be necessary after an initial repair and inspection of an area. In this respect, the repaired substrate can then be polished again and used for a further repair.

Da die aufgebrachte Schicht durch die hohe Aufbringungstemperatur in der Regel sehr spannungsarm ist, gibt es keine physikalische Grenze für eine maximale Schichtdicke, die über das erfindungsgemäße Verfahren aufgebracht werden kann. Ein Schichtdickenbereich von wenigen µm bis zu ca. 5 mm kann durch das Verfahren erzielt werden.Since the applied layer is generally very low in tension due to the high application temperature, there is no physical limit to a maximum layer thickness that can be applied using the method according to the invention. A layer thickness range of a few µm up to approx. 5 mm can be achieved with the process.

Anschließend erfolgen eine Nachbearbeitung und gegebenenfalls eine Wiederherstellung der ursprünglichen Bauteilabmessungen und eine Wärmebehandlung, beispielsweise in Form von Lösungsglühen und Ausscheidungsglühen.This is followed by post-processing and, if necessary, restoration of the original component dimensions and heat treatment, for example in the form of solution annealing and precipitation annealing.

Im letzten Schritt kann dann je nach Anforderung wieder eine neue Wärmedämmschicht aufgebracht und gegebenenfalls Kühllöcher neu gebohrt werden.In the last step, depending on the requirements, a new thermal insulation layer can be applied and, if necessary, new cooling holes can be drilled.

Das erfindungsgemäße Verfahren bietet somit vorteilhaft die Möglichkeit, defekte und ausrangierte einkristalline Schaufeln in einen neuwertigen Zustand zu versetzten.The method according to the invention therefore advantageously offers the possibility of restoring defective and discarded monocrystalline blades to a new condition.

Die optimalen Prozessparameter können dabei mittels einiger Vorversuche durch einen Fachmann ermittelt werden. Je nach Material existierten dazu bereits CET-Modelle und/oder Mikrostrukturdiagramme, wie beispielsweise für CMSX-4® [5] (siehe Figur 1), auf die zurückgegriffen werden kann.The optimal process parameters can be determined by a specialist by means of a few preliminary tests. Depending on the material, CET models and / or microstructure diagrams already existed, such as for CMSX-4® [5] (see Figure 1 ) that can be accessed.

Zusammenfassend kann man sagen, dass es bei dem erfindungsgemäßen Verfahren darauf ankommt, das gesamte Substrat bzw. das gesamte Bauteil zunächst extern bis auf Temperaturen knapp unterhalb der Schmelztemperatur des Substrates aufzuheizen. Die dabei einzustellende Temperatur ist legierungsspezifisch. Die zusätzliche weitere Aufheizung durch den Plasmastrahl ist nötig, damit eine Oxidation der Oberfläche unterdrückt wird. Der im Plasmastrahl enthaltene Wasserstoff schafft reduzierende Bedingungen. Die angestrebten Temperaturen sollten möglichst hoch sein, daher ist eine Temperatur von 50 K unterhalb der Schmelztemperatur anstrebenswert.In summary, it can be said that in the method according to the invention it is important to first heat the entire substrate or the entire component externally to temperatures just below the melting temperature of the substrate. The temperature to be set is alloy-specific. The additional further heating by the plasma jet is necessary to suppress oxidation of the surface. The hydrogen contained in the plasma jet creates reducing conditions. The desired temperatures should be as high as possible, so a temperature of 50 K below the melting temperature is desirable.

Der Temperaturunterschied zum restlichen Substrat/Bauteil sollte möglichst gering sein, da der zu reparierende Bereich vorteilhaft eine möglichst homogene Temperaturverteilung aufweisen sollte. Eine hohe Substrattemperatur wirkt sich in der Regel vorteilhaft auf die Bildung von Eigenspannungen aus. Eigenspannungen können nachteilig zum Abplatzen der zuvor aufgebrachten Schicht führen. Je höher die Substrattemperatur ist, desto geringer sind die resultierenden Eigenspannungen. Eine inhomogene Temperaturverteilung des Bauteils während des Spritzprozesses würde insofern die Anfälligkeit für Eigenspannungen im gesamten Bauteil erhöhen.The temperature difference to the rest of the substrate / component should be as small as possible, since the area to be repaired should advantageously have a temperature distribution that is as homogeneous as possible. A high substrate temperature usually has a beneficial effect on the formation of internal stresses. Residual stresses can disadvantageously lead to the previously applied layer flaking off. The higher the substrate temperature, the lower the resulting internal stresses. An inhomogeneous temperature distribution of the component during the injection molding process would increase the susceptibility to internal stresses in the entire component.

Der wesentliche Unterschied bei dem erfindungsgemäßen Verfahren ist die zusätzliche externe Beheizung des Substrates. Nur mit dieser ist es möglich die angestrebte Mikrostruktur mit den überragenden mechanischen Eigenschaften der einkristallinen Legierungen und minimale Eigenspannungen zu erzielen. Ein Aufheizen des Bauteils nur durch die eingebrachte Energie des Plasmas wäre demgegenüber nicht ausreichend.The main difference in the method according to the invention is the additional external heating of the substrate. Only with this is it possible to achieve the desired microstructure with the outstanding mechanical properties of the monocrystalline alloys and to achieve minimal residual stresses. In contrast, heating up the component solely through the energy introduced by the plasma would not be sufficient.

In einem CET-Diagramm (engl. Columnar to Equiaxed Transition (CET)) werden die Auswirkungen der Erstarrungsgeschwindigkeit und des an der Stelle herrschenden Temperaturgradienten auf die dabei entstehende Mikrostruktur des erstarrten Materials aufgezeigt.A CET diagram (Columnar to Equiaxed Transition (CET)) shows the effects of the solidification rate and the temperature gradient prevailing at the point on the resulting microstructure of the solidified material.

Die Figur 2 zeigt schematisch ein Erstarrungsmodell für das beschriebene Verfahren. Die geschmolzenen Pulverparikel treffen mit der Geschwindigkeit vp auf die beheizte Oberfläche der Probe. Es entstehen drei Temperaturzonen nahe der Oberfläche. Die Temperatur nahe dem Substrat liegt unterhalb der Schmelztemperatur. Dort sind die Dendriten und der interdentritisch Bereich bereits erstarrt. Darüber liegt ein Übergangsbereich in dem die Erstarrungsfront liegt und sich die Dendriten bilden. Der interdentrische Bereich ist noch nicht erstarrt. Im oberen Bereich der Abbildung treffen die geschmolzenen Partikel auf das Substrat. Hier liegt die Temperatur oberhalb der Schmelztemperatur. Des Weiteren zeigt die Abbildung im Substrat den großen Dendritenarmabstand λ1 Substrat, der durch eine sehr geringe Erstarrungsgeschwindigkeit v und durch einen geringen Temperaturgradienten G (siehe CET-Diagramm) bei der Herstellung der einkristallinen Substrate entsteht.The Figure 2 shows schematically a solidification model for the method described. The molten powder particles hit the heated surface of the sample with the velocity v p. There are three temperature zones near the surface. The temperature near the substrate is below the melting temperature. There the dendrites and the interdendritic area have already solidified. Above this is a transition area in which the solidification front lies and the dendrites form. The interdentric area has not yet solidified. In the upper area of the figure, the melted particles hit the substrate. Here the temperature is above the melting temperature. Furthermore, the figure in the substrate shows the large dendrite arm spacing λ 1 substrate, which is created by a very low solidification rate v and a low temperature gradient G (see CET diagram) during the production of the single-crystal substrates.

Durch die hohe Temperatur der geschmolzenen Pulverpartikel erhöht sich der Temperaturgradient G und auch die Erstarrungsgeschwindigkeit v steigt aufgrund der angestrebten Substrattemperatur. Dies führt zu einem verringerten Dendritenarmabstand λ1 Reparatur-Schicht.Due to the high temperature of the molten powder particles, the temperature gradient G increases and the solidification rate v also increases due to the desired substrate temperature. This leads to a reduced dendrite arm spacing λ 1 repair layer .

Spezieller BeschreibungsteilSpecial descriptive part

Im Weiteren wird die Erfindung anhand von Ausführungsbeispielen und einigen Figuren näher erläutert, ohne dass dies zu einer Einschränkung des breiten Schutzumfanges führen soll.In the following, the invention is explained in more detail on the basis of exemplary embodiments and a few figures, without this being intended to restrict the broad scope of protection.

Im Folgenden wird exemplarisch die gerichtete Erstarrung von CMSX-4®-Pulver auf einem ERBO-1 Substrat gezeigt. Diese beiden Legierungen sind sehr ähnlich. Die genaue Zusammensetzung kann der nachfolgenden Tabelle entnommen werden. Bei CMSX-4® handelt es sich um eine eingetragene Marke für eine Einkristall (SC)-Legierung der Firma Cannon-Muskegon, MI (USA). ERBO/1 ist eine Einkristall Nickel-basierte Superlegierung der zweiten Generation von der Firma Doncasters Precision Casting, Bochum (Germany). Tabelle 1: Element [Gew.-%] Al Cr Co Hf Mo Re Ti Ta W Ni CMSX-4®-Pulver 6,0 6,4 9,5 0,1 0,6 2,9 0,9 8,5 8,1 Rest ERBO-1®-Substrat 5,7 6,5 9,6 0,1 0,6 2,9 1,0 6,5 6,4 Rest In the following, the directional solidification of CMSX-4® powder on an ERBO-1 substrate is shown as an example. These two alloys are very similar. The exact composition can be found in the table below. CMSX-4® is a registered trademark for a single crystal (SC) alloy from Cannon-Muskegon, MI (USA). ERBO / 1 is a single crystal nickel-based superalloy of the second generation from Doncasters Precision Casting, Bochum (Germany). Table 1: Element [wt .-%] Al Cr Co Hf Mon re Ti Ta W. Ni CMSX-4® powder 6.0 6.4 9.5 0.1 0.6 2.9 0.9 8.5 8.1 rest ERBO-1® substrate 5.7 6.5 9.6 0.1 0.6 2.9 1.0 6.5 6.4 rest

Zunächst werden aus ERBO-1 Platten Substratproben mit den Maßen 32 mm x 20 mm x 2,5 mm und einem Loch mit einem Durchmesser von 1,1 mm und eine Länge von 10 mm mittels Funkenerodieren hergestellt. Die Figur 3 zeigt die hier verwendete Probengeometrie.First, substrate samples with the dimensions 32 mm x 20 mm x 2.5 mm and a hole with a diameter of 1.1 mm and a length of 10 mm are produced by means of spark erosion from ERBO-1 plates. The Figure 3 shows the sample geometry used here.

Vor dem Beschichten werden die Substratproben geschliffen und poliert. Dabei wurde die Oberfläche zunächst nacheinander mit Schleifpapier der Körnung 320, 640, 1200 und abschließend mit 4000er Körnung behandelt.Before coating, the substrate samples are ground and polished. The surface was first treated with 320, 640, 1200 grit sandpaper and finally with 4000 grit sandpaper.

Das anschließende Polieren erfolgte mittels eines mit einer Diamantsuspension getränkten weichen Tuchs. Zunächst wurde ein Tuch mit einer Suspension mit Diamantpartikel mit einer mittleren Partikelgröße von ca. 3 µm eingesetzt und die Oberfläche kreisförmig poliert. Anschließen wurde ein weiteres Tuch mit einer Suspension mit Diamantpartikel mit einer mittleren Partikelgröße von ca. 1 µm eingesetzt und die Oberfläche erneut poliert.The subsequent polishing was carried out using a soft cloth soaked in a diamond suspension. First, a cloth with a suspension with diamond particles with an average particle size of approx. 3 µm was used and the surface was polished to a circular shape. Another cloth with a suspension with diamond particles with an average particle size of approx. 1 µm was then used and the surface was polished again.

Die Überprüfung der so behandelten und polierten Substratoberfläche erfolgte mit einem Lichtmikroskop. Es konnten keine Kratzer auf der Substratoberfläche detektiert werden.The substrate surface treated and polished in this way was checked using a light microscope. No scratches could be detected on the substrate surface.

Im Anschluss daran erfolgt der Einbau der polierten Probe in einen beheizten Probenhalter. Eine technische Zeichnung zeigt den genauen Aufbau gemäß Figur 4.The polished sample is then installed in a heated sample holder. A technical drawing shows the exact structure according to Figure 4 .

Ein isolierter SiN-Flachheizer 2 mit einer Leistung von 1000 W ermöglicht das Aufheizen der Probe 4 auf bis zu 1100 °C im Vakuum, vorzugsweise bei 1 bis 200 mbar. Auf dem Heizer 2 liegt eine SiC-Wärmeplatte 3, die für eine konstantere Temperatur der Probe sorgt. Der Heizer 2, die wärmeleitende Platte (SiC) 3 und die Probe 4 sind von einer angefertigten Isolierung 1, 5 umgeben, die die Konvektion verringert. Das Aufbringen der gespritzten Schicht bzw. der Schichten erfolgt über eine Öffnung in der Blende 6. Die Temperaturregelung erfolgt durch einen Regler und durch die Temperaturmessung in der Probe mit einem Thermoelement. Sowohl die Kabel des Thermoelementes als auch die Stromkabel des Heizers werden separat mittels Durchführung in die Vakuumkammer gelegt.An insulated SiN flat heater 2 with a power of 1000 W enables the sample 4 to be heated to up to 1100 ° C. in a vacuum, preferably at 1 to 200 mbar. On the heater 2 is a SiC heating plate 3, which ensures a more constant temperature of the sample. The heater 2, the thermally conductive plate (SiC) 3 and the sample 4 are surrounded by a prepared insulation 1, 5 which reduces convection. The sprayed layer or layers are applied via an opening in the diaphragm 6. The temperature is regulated by a controller and by measuring the temperature in the sample with a thermocouple. Both the cables of the thermocouple and the power cables of the heater are laid separately in the vacuum chamber by means of a feedthrough.

Der Pulverförderer Sulzer Metco Powder Feeder Twin-120-V wird mit CMSX-4®-Pulver mit sphärischen Partikel mit einem mittleren geometrischen Partikeldurchmesser von 25 - 60 µm gefüllt. Die Bestimmung der mittleren Partikelgröße erfolgte dabei mittels Laserbeugung mit dem Gerät Horiba LA-950V2 der Firma Retsch.The Sulzer Metco Powder Feeder Twin-120-V is filled with CMSX-4® powder with spherical particles with a mean geometric particle diameter of 25 - 60 µm. The mean particle size was determined by means of laser diffraction using the Horiba LA-950V2 device from Retsch.

Für das Pulver mit einem mittleren Partikeldurchmesser von 38,53 mm ergaben sich beispielsweise der D10-Wert zu 27,70 µm, der D50-Wert zu 39,77 µm und der D90-Wert zu 55,27 µm.For the powder with an average particle diameter of 38.53 mm, for example, the D 10 value was 27.70 μm, the D 50 value was 39.77 μm and the D 90 value was 55.27 μm.

Das Pulver wurde zuvor für 2 Stunden bei 150 °C gelagert. Dieser Schritt dient dem Entfernen von Wasser im Pulver.The powder had previously been stored at 150 ° C. for 2 hours. This step is to remove any water in the powder.

Es folgte der erfindungsgemäße Beschichtungsprozess. Aus der nachfolgenden Tabelle 2 können die dazu eingestellten Spritzparameter entnommen werden. Tabelle 2: Versuch-Nr.: v-17-061-f4 Anwender: Projekt: WDS.intern Beschreibung: 20 x 30 x 2,5 mm Spritzteil-Nr.: RX - Proben Pulver (Line 1): CMSX 4 / V2 Injektionsort (Linie 1): unten (90°) Pulver (Linie 2): - Injektionsort (Linie 2): - Pulver (Linie 3): - Injektionsort (Linie 3): - Abstreifer (Linie 1): NI Pulverrinne (Linie 1): 16 x 1,2 Abstreifer (Linie 2): - Pulverrinne (Linie 2): 11 x 0,5 Abstreifer (Linie 3): - Pulverrinne (Linie 3): 11 x 0,5 Prozessdruck (mbar): 60 Sputterstrom (A): Spritzdistanz (mm): 275 Drehtisch (1/min.): Robot.-Geschw.(mm/s): 440 Robot-PRG: MHOR4 Y440 X120 Beschichtungszyklen/Zeit: 8 02-Zusatz (SLPM): 0 Substrat: CMSX-4 Oberflächenbehandlung: gestrahlt, poliert Beschichtungstemp. (°C): 900 Schichtdicke (µm): 320 Bemerkungen: Schichtgewicht (g): 0 beheizter Probenhalter x+-135 R10=3 Diagnostik: Report-Datei: mit Mäander-Programm geheizt und direkt Pulver zugeführt The coating process according to the invention followed. The spray parameters set for this can be taken from Table 2 below. Table 2: Experiment no .: v-17-061-f4 User: Project: WDS.intern Description: 20 x 30 x 2.5 mm Molded part no .: RX - samples Powder (Line 1): CMSX 4 / V2 Injection site (line 1): below (90 °) Powder (line 2): - Injection site (line 2): - Powder (line 3): - Injection site (line 3): - Scraper (line 1): NI Powder trough (line 1): 16 x 1.2 Scraper (line 2): - Powder trough (line 2): 11 x 0.5 Scraper (line 3): - Powder trough (line 3): 11 x 0.5 Process pressure (mbar): 60 Sputter current (A): Spray distance (mm): 275 Rotary table (1 / min.): Robot speed (mm / s): 440 Robot PRG: MHOR4 Y440 X120 Coating cycles / time: 8 0 2 suffix (SLPM): 0 Substrate: CMSX-4 Surface treatment: blasted, polished Coating temp. (° C): 900 Layer thickness (µm): 320 Remarks: Layer weight (g): 0 heated sample holder x + -135 R10 = 3 Diagnosis: Report file: heated with a meander program and powder fed directly

Wird der Aufheizvorgang eingeleitet wird zunächst der Probenheizer aktiviert. Ab einer Temperatur von ca. 300 °C unterstützt die Plasmaflamme des F4 - VB der Firma Oerlinkon Metco das Aufheizen der Substratoberfläche bis die Beschichtungstemperatur von ca. 900 °C erreicht ist.When the heating process is initiated, the sample heater is activated first. From a temperature of approx. 300 ° C, the plasma flame of the F4 - VB from Oerlinkon Metco supports the heating of the substrate surface until the coating temperature of approx. 900 ° C is reached.

Der im Argon haltigen Plasmagas enthaltene Wasserstoff (Plasmagas: 50 NLPM Argon und 9 NLPM Wasserstoff) sorgt dabei für reduzierende Bedingungen. So kann der im Argon enthaltende Sauerstoff gezielt oxidiert werden, ohne dass dieser mit der Substratoberfläche reagiert und nachteilig eine Oxidschicht ausbildet.The hydrogen contained in the argon-containing plasma gas (plasma gas: 50 NLPM argon and 9 NLPM hydrogen) ensures reducing conditions. In this way, the oxygen contained in argon can be oxidized in a targeted manner without it reacting with the substrate surface and disadvantageously forming an oxide layer.

Die für die Beschichtung ausgewählten Parameter sind der Tabelle 2 zu entnehmen. Tabelle 2: Argon [NLPM] 50,0 ± 6,1 Wasserstoff [NLPM] 9,0 ± 0,6 Probentemperatur [°C] 900 ± 10 Spritzdistanz [mm]: 275 ± 0,1 Robot.-Geschw.[mm/s]: 440 ± 5 Prozessdruck [mbar]: 60 ± 1 Pulverförderrate in % bezogen auf die maximale Förderrate 15 ± 0,5 Pulverförderrate (absolut) 47,7 g/min. The parameters selected for the coating are shown in Table 2. Table 2: Argon [NLPM] 50.0 ± 6.1 Hydrogen [NLPM] 9.0 ± 0.6 Sample temperature [° C] 900 ± 10 Spray distance [mm]: 275 ± 0.1 Robot speed [mm / s]: 440 ± 5 Process pressure [mbar]: 60 ± 1 Powder feed rate in% based on the maximum feed rate 15 ± 0.5 Powder feed rate (absolute) 47.7 g / min.

Nach dem Beschichten ist regelmäßig eine Wärmebehandlung von Vorteil. Beispielsweise kann eine Lösungsglühung (engl. Solution Heat Treatment (SHT)) notwendig sein, um gegebenenfalls vorhandene Inhomogenitäten im Gefüge der Beschichtung zu verringern.After the coating, a heat treatment is usually an advantage. For example, solution heat treatment (SHT) may be necessary in order to reduce any inhomogeneities that may be present in the structure of the coating.

Die vorgenannte Wärmebehandlung kann vorteilhaft druckunterstützt mit einer heißisostatischen Presse (engl. Hot Isostatic Press (HIP)) durchgeführt werden. Durch die druckunterstütze Wärmebehandlung verringern sich regelmäßig Poren im Gefüge.The aforementioned heat treatment can advantageously be carried out with the aid of pressure using a hot isostatic press (HIP). The pressure-assisted heat treatment regularly reduces pores in the structure.

Die regelmäßige Anordnung der y'-Ausscheidungen innerhalb der γ-Matrix erfolgt regelmäßig durch Ausscheidungsglühen. Die y'-Ausscheidungen sind maßgeblich für die sehr guten mechanischen Eigenschaften im Hochtemperaturbereich verantwortlich.The regular arrangement of the y'-precipitates within the γ-matrix takes place regularly by precipitation annealing. The y 'precipitations are largely responsible for the very good mechanical properties in the high temperature range.

Die genauen Temperaturverläufe der für dieses Ausführungsbeispiel vorgenommenen Wärmebehandlungen sind nachfolgend aufgeführt:

  • Lösungsglühung: 1300 - 1315 °C in Schutzatmosphäre für 6 Stunden mit anschließender Kühlung von 150 - 400°C/min auf ca. 800 °C.
  • Ausscheidungsglühung: 1140 ± 10 °C für 4 Stunden, anschließend 870 ± 10 °C für 16 Stunden in Schutzatmosphäre.
The exact temperature profiles of the heat treatments carried out for this exemplary embodiment are listed below:
  • Solution heat treatment: 1300 - 1315 ° C in a protective atmosphere for 6 hours with subsequent cooling from 150 - 400 ° C / min to approx. 800 ° C.
  • Precipitation annealing: 1140 ± 10 ° C for 4 hours, then 870 ± 10 ° C for 16 hours in a protective atmosphere.

In den Figuren 5a und 5b sind Rasterelektronenmikroskop-Aufnahmen von Querschliffen der so behandelten Proben dargestellt, die die gerichtete Erstarrung auf dem einkristallinen Substrat zeigen. Figur 5a zeigt das einkristalline Substrat, auf das die Reparaturschicht gespritzt wurde. Die stängelige Struktur der Körner in der polykristallinen Schicht ist ein Indiz für gerichtete Erstarrung. Am Übergang zwischen Substrat und Schicht fällt ein Bereich mit einer ähnlichen Graufärbung, wie das Substrat, auf. Dies bedeutet aufgrund des Kristallorientierungskontrastes im Rückstreuelektronen Bild des Rasterelektronenmikroskops die gleiche Kristallorientierung für Substrat und Schicht in diesem gleichfarbigen Bereich. Figur 5b stellt eine höhere Vergrößerung dieses Bereiches dar. Im Übergang vom Substrat zur Schicht ist kein Oxid vorhanden. Dies ist für die Nukleation des geschmolzenen Pulvers auf dem Substrat sehr wichtig. Im Substrat lassen sich die dunklen y'-Ausscheidungen in der γ- Matrix erkennen.In the Figures 5a and 5b Scanning electron microscope images of cross-sections of the samples treated in this way are shown, showing the directional solidification on the monocrystalline substrate. Figure 5a shows the single crystal substrate onto which the repair layer was sprayed. The columnar structure of the grains in the polycrystalline layer is an indication of directional solidification. At the transition between substrate and layer, there is an area with a gray color similar to that of the substrate. Due to the crystal orientation contrast in the backscattered electron image of the scanning electron microscope, this means the same crystal orientation for substrate and layer in this same-colored area. Figure 5b represents a higher enlargement of this area. There is no oxide in the transition from the substrate to the layer. This is very important for the nucleation of the molten powder on the substrate. The dark y 'precipitations in the γ matrix can be seen in the substrate.

Die Figuren 6a und 6b zeigen Rasterelektronenmikroskop-Aufnahmen von Querschliffen der gleichen Probe, die nach der Beschichtung mit den oben aufgeführten Parametern zunächst Lösungsgeglüht und anschließend Ausscheidungsgeglüht wurde.The Figures 6a and 6b show scanning electron microscope images of cross-sections of the same sample which, after coating with the parameters listed above, was first solution annealed and then precipitation annealed.

Figur 6a zeigt den Übergansbereich vom einkristallinen Substrat zur Reparaturschicht. Die weiß gestrichelte Linie kennzeichnet die ehemalige Grenzfläche. Durch diese Wärmebehandlung wachsen die auf dem einkristallinen Substrat nukleierten Körner auf Kosten der kleinen Körner in die polykristalline Schicht. Zumindest an der Grenzfläche entsteht ein einkristallines Gefüge mit der gleichen Kristallorientierung, wie sie das Substrat aufweist. Die Reparaturschicht weist lediglich eine geringfügig erhöhte Porendichte auf, welche durch eine druckunterstützte Wärmebehandlung mittels HIP verschwinden würden. Die kleineren schwarzen Punkte kennzeichnen Al2O3 Einschlüsse, die durch geringfügige Oxidation des Spritzwerkstoffes entstanden sind. Figure 6a shows the transition area from the monocrystalline substrate to the repair layer. The white dashed line marks the former interface. As a result of this heat treatment, the grains nucleated on the monocrystalline substrate grow into the polycrystalline layer at the expense of the small grains. At least at the interface, a monocrystalline structure is created with the same crystal orientation as the substrate. The repair layer only has a slightly increased pore density, which would disappear through a pressure-assisted heat treatment using HIP. The smaller black dots indicate Al 2 O 3 inclusions that have arisen as a result of slight oxidation of the spray material.

Figur 6b zeigt einen vergrößerten Ausschnitt. An der ehemaligen Grenzfläche weist ein Al2O3 Porensaum auf diese hin. Durch die Ausscheidungsglühung verringert sich die Größe der y' Ausscheidungen in der γ-Matrix und diese ordnen sich kubisch an. Diese Anordnung sorgt für die best-möglichen mechanischen Eigenschaften der Legierung. Die Orientierung der Ausscheidungen zeigt neben dem gleichen Kristallorientierungskontrast, dass die Einkristallinizität des Substrates in die Reperaturschicht fortgeführt wurde. Figure 6b shows an enlarged section. At the former interface, an Al 2 O 3 pore fringe indicates this. The precipitation annealing reduces the size of the y 'precipitates in the γ matrix and these are arranged in a cubic manner. This arrangement ensures for the best possible mechanical properties of the alloy. The orientation of the precipitates shows, in addition to the same crystal orientation contrast, that the monocrystallinity of the substrate was continued in the repair layer.

Neben den Untersuchungen mit einem Rastersondenmikroskop wurden auch Aufnahmen der Elektronenrückstreubeugung (engl. Elektron Backschaften Diffraction (EBSD)) Analyse für diese Proben angefertigt (hier nicht dargestellt). Darauf ist die aufgetragene Beschichtung anhand ihrer roten Farbe zu erkennen, wobei die rote Farbe die (001) Kristallebene signalisiert, in der auch der Substratwerkstoff orientiert ist. Damit kann belegt werden, dass bei der erfindungsgemäßen Aufbringung die aufgebrachte, gespritzte Schicht zumindest in weiten Bereichen in derselben Orientierungsausrichtung erstarrt, wie der einkristalline Substratwerkstoff.In addition to the examinations with a scanning probe microscope, recordings of the electron backscatter diffraction (EBSD) analysis were made for these samples (not shown here). The applied coating can then be recognized by its red color, the red color indicating the (001) crystal plane in which the substrate material is also oriented. It can thus be proven that in the application according to the invention the applied, sprayed layer solidifies at least in wide areas in the same orientation as the single-crystal substrate material.

Bei der Entwicklung des Reparaturverfahrens im Rahmen dieser Erfindung wurde festgestellt, dass die Porösität in der gespritzen Schicht durch die Auftragsrate, die sich aus der Pulverförderrate und der Robotergeschwindigkeit ergibt, bestimmt wird. Mit sinkender Auftragsrate wird auch die Prösität der Schicht verringert. Des Weiteren wurde festgestellt, dass die Größe der erstarrten Körner von der eingesetzten Pulvergröße abhängt. So steigt die Größe der gerichtet erstarrten Körner mit höheren Partikeldurchmessern.During the development of the repair method within the scope of this invention, it was found that the porosity in the sprayed layer is determined by the application rate, which results from the powder feed rate and the robot speed. As the application rate decreases, the quality of the layer is also reduced. It was also found that the size of the solidified grains depends on the powder size used. The size of the directionally solidified grains increases with larger particle diameters.

Bildet sich eine Oxidschicht zwischen Substrat und Reparaturschicht, die die Nukleation verhindert, sollte die Qualität des Argons bezüglich des Sauerstoffgehaltes verbessert werden. Ein weiterer Grund für die Bildung einer Oxidschicht könnte eine ungünstige Roboterbewegung während des Spritzprozesses sein. Diese sollte vorzugsweise so angepasst werden, dass die Probe den Einflussbereich des Plasmabrenners nicht verlässt. Findet keine Nukleation an der polierten Oberfläche des zu reparierenden Bereiches statt, obwohl keine Oxidschicht vorhanden ist, muss die Temperatur des zu reparierenden Werkstückes erhöht werden.If an oxide layer forms between the substrate and the repair layer, which prevents nucleation, the quality of the argon with regard to the oxygen content should be improved. Another reason for the formation of an oxide layer could be an awkward robot movement during the spraying process. This should preferably be adjusted so that the sample does not leave the area of influence of the plasma torch. If there is no nucleation on the polished surface of the area to be repaired, although there is no oxide layer, the temperature of the workpiece to be repaired must be increased.

In dieser Anmeldung zitierte Literatur:

  1. [1] Kazuhiro Ogawa and Dowon Seo (2011). Repair of Turbine Blades Using Cold Spray Technique, Advances in Gas Turbine Technology, Dr. Ernesto Benini (Ed.), InTech, DOI: 10.5772/23623. Available from: https://www.intechopen.com/books/advances-ingas-turbine-technology/repair-of-turbine-blades-using-cold-spray-technique .
  2. [2] Boris Rottwinkel, Luiz Schweitzer, Christian Noelke, Stefan Kaierle, Volker Wesling. Challenges for single-crystal (SX) crack cladding, Physics Procedia 56 (2014) 301 - 308 .
  3. [3] M. B. Henderson, D. Arrell, R. Larsson, M. Heobel & G. Marchant, Nickel based superalloy welding practices for industrial gas turbine applications, Science and Technology of Welding and Joining Volume 9, 2004 - Issue 1 .
  4. [4] Shu-Wei Yao, Tao Liu, Chang-Jiu Li, Guan-Jun Yang, Cheng-Xin Li, Epitaxial growth during the rapid solidification of plasma-sprayed molten TiO2 splat, Acta Materialia 134 (2017) 66e80 .
  5. [5] W. Kurz, C. Bezençon, M. Gäumann, Columnar to equiaxed transition in solidification processing, Science and Technology of Advanced Materials 2 (2001) 185 - 191 . W. Kurz, D. J. Fisher, Fundamentals in Solidification, Chryst. Res. Tech. (1986) 21(9), 1176 .
  6. [6] Boris Rottwinkel, Christian Nölke, Stefan Kaierle, Volker Wesling, Crack repair of single crystal turbine blades using laser cladding technology, Procedia CIRP (22) 2014, 263-267, available from: http://www.sciencedirect.com/science/article/pii/S2212827114007732
Literature cited in this application:
  1. [1] Kazuhiro Ogawa and Dowon Seo (2011). Repair of Turbine Blades Using Cold Spray Technique, Advances in Gas Turbine Technology, Dr. Ernesto Benini (Ed.), InTech, DOI: 10.5772 / 23623. Available from: https://www.intechopen.com/books/advances-ingas-turbine-technology/repair-of-turbine-blades-using-cold-spray-technique .
  2. [2] Boris Rottwinkel, Luiz Schweitzer, Christian Noelke, Stefan Kaierle, Volker Wesling. Challenges for single-crystal (SX) crack cladding, Physics Procedia 56 (2014) 301-308 .
  3. [3] MB Henderson, D. Arrell, R. Larsson, M. Heobel & G. Marchant, Nickel based superalloy welding practices for industrial gas turbine applications, Science and Technology of Welding and Joining Volume 9, 2004 - Issue 1 .
  4. [4] Shu-Wei Yao, Tao Liu, Chang-Jiu Li, Guan-Jun Yang, Cheng-Xin Li, Epitaxial growth during the rapid solidification of plasma-sprayed molten TiO2 splat, Acta Materialia 134 (2017) 66e80 .
  5. [5] W. Kurz, C. Bezençon, M. Gäumann, Columnar to equiaxed transition in solidification processing, Science and Technology of Advanced Materials 2 (2001) 185 - 191 . W. Kurz, DJ Fisher, Fundamentals in Solidification, Chryst. Res. Tech. (1986) 21 (9), 1176 .
  6. [6] Boris Rottwinkel, Christian Nölke, Stefan Kaierle, Volker Wesling, Crack repair of single crystal turbine blades using laser cladding technology, Procedia CIRP (22) 2014, 263-267, available from: http://www.sciencedirect.com/science/ article / pii / S2212827114007732

Claims (8)

  1. A repairing method for coating a metallic, monocrystalline substrate surface of a component, comprising a monocrystalline alloy, with a coating material with the steps:
    - the surface to be coated is polished,
    - the substrate is transferred to a vacuum chamber,
    - the entire substrate is heated to temperatures which correspond to at least half the melting temperature of the substrate in °C, but are below the melting temperature of the substrate,
    - the coating material is applied in powder form to the surface to be coated by means of vacuum plasma spraying,
    - wherein a powder having mean particle sizes in the area from 10 bis 200 µm is used, and
    - wherein the coating material comprises an alloy of the same type as the monocrystalline substrate basic material has,
    - wherein a pressure between 1 and 200 mbar is set, and
    - wherein an argon atmosphere with a hydrogen content of 10 to 50% by volume is used as working gas,
    - thereby generating at least an area directly at the interface of the coating material and the polished substrate surface, which area has the same monocrystalline orientation alignment as the underlying substrate.
  2. A repairing method according to claim 1,
    wherein a material is used as coating material, which is identical to the substrate material.
  3. A repairing method according to any one of claims 1 to 2,
    wherein respectively a monocrystalline nickel-based alloy or a cobalt-based alloy is used as substrate and as coating material.
  4. A repairing method according to any one of claims 1 to 3,
    wherein the entire substrate is heated to at least 700 ° C, advantageously to at least 800 ° C.
  5. A repairing method according to any one of claims 1 to 4,
    wherein the heating of the entire substrate is performed electrically, inductively or by electromagnetic radiation.
  6. A repairing method according to any one of claims 1 to 5,
    wherein the heating of the substrate surface is performed by the plasma torch without the addition of powder.
  7. A repairing method according to any one of claims 1 to 6,
    wherein, following the coating, the coated substrate is subjected to a solution annealing and/or a precipitation annealing and/or a pressure-assisted heat treatment.
  8. A repairing method according to any one of claims 1 to 7,
    wherein a substrate having at least one cooling hole is used.
EP18796582.7A 2017-10-26 2018-10-04 Method for repairing monocrystalline materials Active EP3701060B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL18796582T PL3701060T3 (en) 2017-10-26 2018-10-04 Method for repairing monocrystalline materials

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017009948.0A DE102017009948A1 (en) 2017-10-26 2017-10-26 Process for the repair of monocrystalline materials
PCT/DE2018/000281 WO2019080951A1 (en) 2017-10-26 2018-10-04 Method for repairing monocrystalline materials

Publications (2)

Publication Number Publication Date
EP3701060A1 EP3701060A1 (en) 2020-09-02
EP3701060B1 true EP3701060B1 (en) 2021-06-09

Family

ID=64100531

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18796582.7A Active EP3701060B1 (en) 2017-10-26 2018-10-04 Method for repairing monocrystalline materials

Country Status (7)

Country Link
US (1) US20200216942A1 (en)
EP (1) EP3701060B1 (en)
CN (1) CN111373068A (en)
DE (1) DE102017009948A1 (en)
ES (1) ES2886226T3 (en)
PL (1) PL3701060T3 (en)
WO (1) WO2019080951A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115537810A (en) * 2022-10-14 2022-12-30 中国兵器装备集团西南技术工程研究所 Method for preparing composite component based on plasma spraying-laser cladding

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3493415A (en) * 1967-11-16 1970-02-03 Nasa Method of making a diffusion bonded refractory coating
CA2030427A1 (en) * 1989-12-19 1991-06-20 Jonathan S. Stinson Method of enhancing bond joint structural integrity of spray cast articles
US5232522A (en) * 1991-10-17 1993-08-03 The Dow Chemical Company Rapid omnidirectional compaction process for producing metal nitride, carbide, or carbonitride coating on ceramic substrate
US5732467A (en) 1996-11-14 1998-03-31 General Electric Company Method of repairing directionally solidified and single crystal alloy parts
DE69821945T2 (en) * 1998-11-10 2005-07-14 Alstom Technology Ltd Gas turbine part
US7157151B2 (en) * 2002-09-11 2007-01-02 Rolls-Royce Corporation Corrosion-resistant layered coatings
JP5334017B2 (en) * 2006-09-13 2013-11-06 独立行政法人物質・材料研究機構 Heat resistant material
CH699930A1 (en) * 2008-11-26 2010-05-31 Alstom Technology Ltd High temperature and oxidation resistant material.
US20130202913A1 (en) * 2010-10-19 2013-08-08 Kyoko Kawagishi Ni-BASED SUPERALLOY COMPONENT HAVING HEAT-RESISTANT BOND COAT LAYER FORMED THEREIN

Also Published As

Publication number Publication date
ES2886226T3 (en) 2021-12-16
PL3701060T3 (en) 2021-12-20
US20200216942A1 (en) 2020-07-09
CN111373068A (en) 2020-07-03
EP3701060A1 (en) 2020-09-02
WO2019080951A1 (en) 2019-05-02
DE102017009948A1 (en) 2019-05-02

Similar Documents

Publication Publication Date Title
Basak et al. Microstructure of nickel-base superalloy MAR-M247 additively manufactured through scanning laser epitaxy (SLE)
EP0892090B1 (en) Method for manufacturing single crystal structures
DE69938563T2 (en) LASER WELDING OF ARTICLES FROM SUPER ALLOYS
DE102009051479A1 (en) Method and device for producing a component of a turbomachine
EP1711298A1 (en) Process of brazing repairing of a part having a base material with oriented microstructure
EP2760614A1 (en) Remelting method and subsequent refilling and component
US20150132601A1 (en) Superalloy material deposition with interlayer material removal
US20170008125A1 (en) Flux-assisted device encapsulation
DE102015205316A1 (en) A method of producing a superalloy member having a powder bed-based additive manufacturing method and superalloy member
DE102015113762A1 (en) METHOD FOR FORMING OXID DISPERSION RESISTANT (ODS) ALLOYS
Li et al. Microstructural characteristics and mechanical properties of laser solid formed K465 superalloy
EP3701060B1 (en) Method for repairing monocrystalline materials
Diepold et al. Rotating scan strategy induced anisotropic microstructural and mechanical behavior of selective laser melted materials and their reduction by heat treatments
WO2014053327A1 (en) Repairing component edges by means of psp elements and component
Chen et al. Research on microstructure and mechanical properties of hybrid plasma arc and micro-rolling additive manufacturing of Inconel 718 superalloy
EP4129533A1 (en) Alloy, alloy powder, alloy member, and composite member
EP2591877A1 (en) Remelting method under reactive gas atmosphere
DE69928722T2 (en) Heat-treated, spray-cast superalloy articles and methods of making the same
WO2015071011A1 (en) Geometrically adapted spraying in coating methods
WO2004053181A2 (en) Method for the production of a part having improved weldability and/or mechanical processability from an alloy
CN114799216A (en) Heat treatment method of titanium alloy
US20220389543A1 (en) Process for manufacturing an aluminum alloy part
WO2013068160A1 (en) Method for the build-up welding of a component made from monocrystalline or directionally solidified metal
EP1581674B1 (en) Method for the production of monocrystalline structures and component
EP1348781B1 (en) Methode de croissance épitaxiale par irradiation avec un faisceau d'énergie

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200320

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GUILLON, OLIVIER

Inventor name: KALFHAUS, TOBIAS

Inventor name: VASSEN, ROBERT

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210219

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FORSCHUNGSZENTRUM JUELICH GMBH

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1400560

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018005691

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210909

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210909

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210910

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2886226

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20211216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211011

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018005691

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

26N No opposition filed

Effective date: 20220310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211004

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211004

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20181004

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20230922

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230925

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231025

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231117

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231031

Year of fee payment: 6

Ref country code: FR

Payment date: 20231023

Year of fee payment: 6

Ref country code: DE

Payment date: 20231018

Year of fee payment: 6

Ref country code: CH

Payment date: 20231102

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210609